
1. Introduction
Ocean waters are identified as Case 1 or Case 2 waters depending on the composition of optically signifi-
cant constituents (OSC), including suspended particles such as phytoplankton and non-biogenic particles and 
colored dissolved organic material (e.g., Mobley, 1994). Since the original definition (Morel & Prieur, 1977), 
several well-defined criteria were suggested for classifying these two types of waters (Gordon & Morel, 1983; 
IOCCG, 2000; Mobley et al., 2004; Morel, 1988). According to the current definition, Case 1 waters are waters 
where phytoplankton and associated colored dissolved organic material (CDOM) and detritus degradation prod-
ucts are the dominant OSCs and together with water determine all of the IOPs. In contrast, Case 2 waters present 
highly variable concentrations of organic and inorganic materials, such as terrigenous particles, resuspended 
sediments and CDOM, whose concentrations do not covary with the phytoplankton concentration. A number 

Abstract A spectral deconvolution model (SDM) for inversion of light absorption, a(λ) and backscattering, 
bb(λ), to estimate concentrations of chlorophyll (CHL), colored dissolved organic material (CDOM) and 
non-biogenic mineral suspended solids (MSS) in offshore and shelf waters is presented. This approach exploits 
the spectral information embedded in the ratio bb(λ)/a(λ), without the need to know each parameter separately. 
The model has been applied to in situ inherent optical properties (IOPs), a(λ) and bb(λ), and to in situ remote 
sensing reflectance, rrs(λ). CHL, MSS, and CDOM estimates are provided by propagating uncertainties in 
input IOPs and material-specific IOPs using a bootstrapping approach. Application of the SDM to a data set 
collected in the Ligurian Sea provides Mean Average Errors (MAE) of <0.7 mg m −3 for CHL, <0.02 m −1 
for CDOM, and <0.2 g m −3 for MSS. The SDM is found to perform as well as, or in some cases better than, 
single parameter algorithms and other semi-analytical algorithms (SAA) for each parameter for the Ligurian 
Sea data set. The SDM CHL product is tested using the NOMAD, Case 1 dominated, global data set and 
found to perform consistently with the quasi-analytical algorithm (Lee et al., 2002, https://doi.org/10.1364/
ao.41.005755) but with slightly poorer performance than standard OCx algorithms. However, the additional 
estimates of CDOM and MSS provided by the SDM suggest that the approach may be particularly useful for 
Case 2 waters. Successful retrieval of constituent concentrations with uncertainties suggests good potential to 
adapt this technique for satellite remote sensing.

Plain Language Summary A key goal for ocean color sensing is to be able to retrieve 
concentrations of optically significant constituents such as chlorophyll, colored dissolved organic material and 
inorganic particles or sediment. It is also important to assess the accuracy of these concentrations. We present 
a spectral deconvolution model that allows us to determine concentrations of all of these materials and to 
provide an estimate of associated uncertainties. The model operates on the ratio of backscattering to absorption, 
which is easily derived from measurements of remote sensing reflectance. This gives us a shortcut to bypass 
the difficult step of estimating absorption and backscattering separately that other similar approaches require, 
and lets us more directly use the information contained in remote sensing reflectance signals. We show that 
the approach works similarly well in clear oceanic waters and in shallow coastal waters in the Ligurian Sea 
(part of the North Western Mediterranean Sea). The spectral deconvolution model performs as well as other 
established algorithms for each product for the Ligurian Sea and is competitive when applied to the NOMAD 
global data set. Simultaneous sensing of all three constituent concentrations with robust uncertainties is a useful 
development for monitoring optical water quality in natural waters.
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of ocean color algorithms have been successfully developed to retrieve chlorophyll concentrations in Case 1 
waters (e.g., O'Reilly et al., 1998; Maritorena et al., 2002). However, algorithms specifically developed for Case 
1 waters can return inaccurate results if employed in Case 2 waters, and vice versa. For instance, most of the 
algorithms developed to estimate chlorophyll concentrations in Case 1 waters use the spectral signal at blue-green 
wavelengths (O’Reilly et al., 1998), while a variety of models for chlorophyll estimation in Case 2 waters are 
based on reflectance signals in the red and near-infrared wavebands (Gitelson et al., 2008; Yacobi et al., 2011). 
Whilst there have been attempts to tune existing blue-green algorithms for regional or water-type variations (e.g., 
McKee et al., 2007) it remains the case that accurate retrieval of CHL in optically complex coastal waters remains 
a challenge.

A long term goal for ocean color remote sensing is to be able to retrieve concentrations of the chemical proxies 
for each of the OSCs: chlorophyll—CHL (mg m −3), non-biogenic mineral suspended solids—MSS (g m −3) and 
colored dissolved organic material—CDOM (m −1), together with estimates of uncertainties for each (Organelli 
et al., 2016). Each OSC contributes to the inherent optical properties of the water (IOPs) with absorption, a(λ) 
(m −1), and backscattering, bb(λ) (m −1), being particularly important for remote sensing applications. Forward 
modeling from OSCs via IOPs to ocean color reflectance signals and other apparent optical properties (AOPs) 
is well-established, with radiative transfer models such as Hydrolight (Numerical Optics Ltd) largely limited by 
the quality of input data (OSCs and/or IOPs). However, the inverse problem remains a challenge, particularly in 
optically complex coastal waters where the non-covariance of each OSC is particularly problematic. It is well 
established that the performance of standard and even Case 2 focused CHL algorithms struggle to reach mission 
targets in coastal waters (Hooker et al., 1992), and Brewin et al. (2015) demonstrated that performance of existing 
semi-analytical algorithms generally produced inferior quality CHL estimates than standard empirical algorithms.

Various different inversion approaches have been adopted to estimate constituent concentrations from marine 
AOPs (e.g., Werdell et al., 2018). In most open ocean waters, considered Case 1 waters (Morel & Prieur, 1977), 
phytoplankton and co-varying CDOM dominate the non-water signal and retrieval of CHL is often achievable 
using standard blue-green reflectance ratio algorithms to within mission targets (e.g., ±30%, IOCCG, 2019). 
However, the performance of these algorithms deteriorates dramatically in optically complex coastal waters 
because the main OSCs are often widely variable and poorly correlated. The optical variability in coastal regions 
is influenced by various biogeochemical processes (Cherukuru et al., 2014 and references therein) and sediments 
and CDOM can significantly influence total IOPs and therefore impact on the performance of empirical reflec-
tance ratio algorithms designed for clear, Case 1 waters (e.g., Fan & Warner, 2014; McKee et al., 2007).

Successful retrieval of CHL in optically complex waters will generally require understanding of, or at least 
accommodation of, the contributions from other OSCs. This can be achieved using semi-analytical inversion 
algorithms (SAA). In such algorithms inverting the remote sensing reflectance above or below the water, Rrs(λ) 
or rrs(λ) respectively (both sr −1), to IOPs relies on approximate solution of the radiative transfer equation (RTE), 
the algorithm's analytical part, and a method for partitioning total IOPs into their components coupled with esti-
mations of IOP component spectral shapes (the algorithm's empirical part).

Roesler and Perry (1995) presented one of the earliest examples of a SAA to obtain unknown IOPs from AOPs. 
Another early example is the linear matrix inversion (LMI) technique suggested by Hoge and Lyon (1996). Both 
approaches (and the subsequent SAA algorithms) extract absorption and scattering properties of oceanic constit-
uents, from surface spectral reflectance measurements, by merging of robust relationships between rrs and the 
absorption and backscattering coefficients (e.g., Gordon et al., 1988). Hoge and Lyon's algorithm, in particular, 
using the spectral shapes of the partitioned IOP spectrum, determined by fixed empirical parameters, and reflec-
tances at three wavelengths (412, 490, and 555 nm), derives three unknown IOPs, (bbp, aph, and adg) algebraically 
and simultaneously. Moreover, despite the great variability of water mass types, the LMI technique minimize the 
errors in IOP spectral models by using a selection of covarying wavelengths, which reduces the impact of the 
high variability of other wavelengths. Therefore, the linear matrix nature of Hoge and Lyon's model suggests an 
easy retrieval of the total absorption and, after hyper-spectral data was tested, the usage of the fewest number 
of co-varying wavelengths (i.e., 3) achieves the best result and ensures a good efficiency in processing satellite 
images. The SDM presented in this paper shares with Hoge and Lyon's model the same linear matrix nature and 
the same need to consider only a few wavelengths, with the advantage of directly retrieving the water constit-
uent concentrations through a set of observed SIOPs. It should be noted that in the early stages of the estima-
tion of constituent concentrations from marine AOPs, sensitivity analyses have been frequently used to assess 
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how models affect retrievals (Hoge & Lyon, 1996; Roesler & Perry, 1995). 
However, early SAAs produced inverted products that were reported without 
associated uncertainties. The first general approach for quantifying uncer-
tainties in inverted parameters, based on uncertainties in the reflectance data 
and the model itself, was developed by Wang et al. (2005) and was then modi-
fied by Boss and Roesler (Chap 8, IOCCG, 2006) to be applied to remote 
sensing reflectance (Rrs). The SDM proposed in this study has the additional 
advantage of using a set of SIOPs with associated uncertainties. This feature 
further enables estimation of uncertainties for the final products of the SDM 
which in this case are the concentrations of the main optical constituents.

Classical spectral deconvolution methods (SDMs) are SAAs which first 
determine total absorption and backscattering coefficients from AOPs, 
usually from Rrs(λ), and then further partition these values into contributions 
from specific optical components (phytoplankton, detrital and dissolved 
matter, e.g., Lee et al., 2002; Smyth et al., 2006) to subsequently estimate 
water constituent concentrations. Commonly, the relationship used to link 
Rrs(λ) to rrs(λ) is the formula developed by Lee et al. (2002), rrs(λ) = Rrs(λ)/
[0.52 + 1.7Rrs(λ)], while the relationship between rrs(λ) and IOPs follows the 
approach of Gordon et al. (1988), with rrs(λ) as function of the ratio of the 
backscattering coefficient to the sum of absorption and backscattering coeffi-
cients, bb(λ)/[a(λ) + bb(λ)]. Other classical SDMs, such as the quasi-analytical 

algorithm (QAA) developed by Lee et al. (2002), do not directly determine constituent concentrations but rather 
focus on retrieving absorption coefficients of phytoplankton pigments and gelbstoff. It is commonplace to test 
SDM performance through combinations of simulated and field-measured data sets. However, SDMs are not 
usually coupled with procedures for direct propagation of measurement uncertainties, even though uncertainty 
propagation has been analyzed in some cases, notably Lee et al. (2010).

Recently, Ramirez-Perez et al. (2018) proposed a spectral deconvolution model for inversion of light absorption 
and attenuation data (with scattering derived by subtraction) in optically complex shelf seas, designed for use with 
in situ AC-9/s submersible spectrophotometer data. The simple formulation of the Ramirez-Perez et al. (2018) 
SDM facilitated propagation of uncertainties from input IOPs to output constituent concentrations. Moreover, 
this SDM presents an attractive opportunity to be adapted for remote sensing applications simply by replacing 
scattering with backscattering. The SDM presented here has been extended to the use of backscattering data, with 
the distinct advantage of extracting the spectral information contained in the ratio bb(λ)/a(λ). This is particularly 
important for remote sensing applications as it is relatively easy to determine bb(λ)/a(λ) from remote sensing 
reflectance data, and significantly harder to determine a(λ) and bb(λ) separately. Thus while the SDM can be used 
with separate measurements of a(λ) and bb(λ) for example, from in situ IOP measurements, it can also be used 
with estimates of bb(λ)/a(λ) derived from remote sensing reflectance measurements (here from in situ radiometry 
profiling). Importantly, Lo Prejato et al. (2020) have shown that Rrs(λ) and rrs(λ) are both equally well represented 
as functions of either bb(λ)/a(λ) or bb(λ)/[a(λ) + bb(λ)] in both Case 1 and Case 2 waters. For this application, the 
bb(λ)/a(λ) version provides the simplest route to a SDM and contains all of the spectral information provided by 
remote sensing reflectance. The SDM presented here can be applied to (a) in situ measurements of total a(λ) and 
bb(λ), and (b) to remote sensing reflectances measured above or below the sea surface, Rrs(λ) and rrs(λ) respec-
tively (see Figure 1 later). In all cases, concentrations of CHL, MSS, and CDOM can be obtained by inversion 
of input optical data and uncertainty estimates can be provided by propagating input measurement uncertainties 
through the SDM.

As for all SAA methods, this inversion procedure requires knowledge of spectral optical properties of OSCs, here 
the material-specific inherent optical properties (SIOPs). These have been estimated through linear regression of 
partitioned IOPs against associated constituent concentrations, determined from natural samples, following the 
partitioning methodology applied by Ramirez-Perez et al. (2018). Using linear relationships gives the advantage 
of solving the SDM as a system of linear equations, meaning that we always find a single best solution (in a 
linear least-squares sense), which is not guaranteed with non-linear inversion approaches (which find the local 
minimum near a given initial guess, but may not successfully find the global minimum). Uncertainties in both 

Figure 1. The SDM model can operate on either directly observed in situ 
IOPs or on values of bb(λ)/a(λ) derived from in situ radiometry. In both 
cases the SDM uses data in the form of bb(λ)/a(λ) as input along with SIOPs. 
Uncertainties in optical inputs and SIOPs are propagated by bootstrapping to 
produce distributions of estimated CHL, MSS, and CDOM. Final estimates of 
OSCs consist of medians and 95% confidence intervals for the bootstrapped 
distributions.

 23335084, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

A
002815 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [04/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

LO PREJATO AND MCKEE

10.1029/2022EA002815

4 of 25

IOPs and SIOPs have been estimated from real sample data and used in a bootstrapping approach to quantify 
uncertainties associated with results.

The SDM presented here attempts to invert 3 unknowns only (CHL, MSS, and CDOM), therefore a minimum 
of 3 spectral bands is required to solve the inversion, while a higher number of spectral signals leads to an 
over-constrained system. The information carried by all the available bands together could be redundant when 
solving for 3 unknowns only, but it is expected that the uncertainty in the retrieved unknowns will be much lower 
(Devred et al., 2013) because the use of more wavelengths allows better constraint of the model, resulting in a 
smaller uncertainty. On the other hand, increasing the number of constraints, when affected by significant uncer-
tainty, could introduce a bias in the final result. Therefore, the performance of the SDM has been tested with a 
synthetic data set of absorption and backscattering coefficients in order to establish an optimal combination of 
spectral information and number of bootstrap iterations to successfully retrieve the required OSCs.

The inversion procedure developed in this study is primarily intended for use in Case 2 waters where the ability to 
simultaneously derive CHL, MSS, and CDOM has most potential impact. However as Brewin et al. (2015) note, 
there is a qualitative requirement to produce algorithms that “facilitate seamless merging of Case-1 (open-ocean) 
and Case-2 (coastal optically-complex) waters.” It is therefore imperative to establish SDM performance in both 
Case 1 and 2 waters. As part of that analysis, the SDM can be reformulated as a Case 1 model where the contribu-
tion of MSS is assumed to be zero, and the potential negative impact of applying a Case 2 model in Case 1 waters 
can be assessed. The SDM presented here has the advantage of being applicable to: in situ IOP data, a(λ) and bb(λ) 
directly measured in the field; in situ radiometric data, by retrieving bb(λ)/a(λ) from rrs(λ); and remotely sensed 
reflectance data, by retrieving bb(λ)/a(λ) from Rrs(λ), with the IOP-reflectance relationships needed for the last 
two options available from Lo Prejato et al. (2020). This represents a comprehensive approach to determining key 
OSCs from in situ and remotely sensed optical measurements that will, we hope, facilitate consistent estimation 
of OSCs in situ and from space. Importantly, the method is based on simple bio-optical models and standard prop-
agation of measurement uncertainties, making it easy to understand performance across different water types.

In this paper we build on the earlier work presented by Ramirez-Perez et al. (2018) by converting the SDM to 
operate on the ratio of backscattering to absorption which is very easily related to remote sensing reflectance 
(Lo Prejato et al., 2020). This formulation of the SDM is tested using a synthetic data set encompassing a very 
broad range of OSC concentration combinations and using field data collected in the Ligurian Sea covering deep 
Case 1 and shallow Case 2 waters. Importantly, the SDM is tested using first in situ IOPs and then in situ radi-
ometry as inputs, illustrating the flexibility of the approach. Following the approach presented in Ramirez-Perez 
et al. (2018), measurement uncertainties in both SIOPs and optical measurements are easily propagated through 
the SDM using bootstrapping to provide the user with simultaneous estimates of CHL, MSS, and CDOM and 
uncertainties in each. Performance of the SDM approach is finally compared with existing single parameter and 
SAA algorithms for both the Ligurian Sea data set and the NOMAD global data set.

2. Theory
2.1. Spectral Deconvolution Model Development

In order to invert IOP measurements and estimate the concentrations of the major OSCs, the approach presented 
here is built on (a) a bio-optical model relating optical and biogeochemical data, and (b) non-parametric empirical 
SIOPs, able to describe the spectral shape of all the partial IOPs employed in the model. The bio-optical model 
presented in this study extends the model developed by Ramirez-Perez et al. (2018) by including backscattering 
and is the same bio-optical model used in Lo Prejato et al. (2020). Taking advantage of the additive characteristic 
of IOPs and a practical methodology for partitioning them, each total IOP has been written as sum of partial IOPs, 
with each one depending on linear contributions of relevant OSCs:

𝑎𝑎(𝜆𝜆) = 𝑎𝑎∗
𝑝𝑝𝑝
(𝜆𝜆)CHL + 𝑎𝑎∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
(𝜆𝜆)CHL + 𝑎𝑎∗

𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏
(𝜆𝜆)MSS + 𝑎𝑎∗

𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐
(𝜆𝜆)CDOM + 𝑎𝑎𝑤𝑤(𝜆𝜆) (1)

𝑏𝑏(𝜆𝜆) = 𝑏𝑏∗
ph
(𝜆𝜆)CHL + 𝑏𝑏∗

ndet
(𝜆𝜆)MSS + 𝑏𝑏𝑤𝑤(𝜆𝜆) (2)

𝑐𝑐(𝜆𝜆) = 𝑎𝑎(𝜆𝜆) + 𝑏𝑏(𝜆𝜆) (3)

𝑏𝑏𝑏𝑏(𝜆𝜆) = 𝑏𝑏∗
bph

(𝜆𝜆)CHL + 𝑏𝑏∗
bndet

(𝜆𝜆)MSS + 𝑏𝑏𝑏𝑏𝑏𝑏(𝜆𝜆) (4)
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Each subscript represents an OSC: phytoplankton, ph, biogenic detritus, bdet, non-biogenic detritus, ndet, colored 
dissolved organic material, cdom, and water, w. The asterisks denote the constituent-specific SIOPs that is, the rate 
of absorption, scattering or backscattering per unit concentration of constituent. The biogenic and non-biogenic 
detrital particulate absorption (abdet and andet) are assumed to co-vary with CHL and MSS respectively, while 
particulate scattering and backscattering are partitioned into algal and non-algal components which also vary with 
CHL and MSS respectively. The algal components of scattering and backscattering incorporate biogenic detrital 
components that are assumed to covary with CHL and are currently impossible to effectively partition from in situ 
observations. We note that this simple bio-optical model assumes linear relationships between IOPs and constitu-
ents and that alternative and possibly more robust approaches would be possible. For example, we have previously 
developed a set of non-linear relationships between IOPs and constituents for this data set (Bengil et al., 2016). The 
linear version of the bio-optical model is preferred in this instance as it allows formation of a linear system of equa-
tions for which robust solutions are more readily obtained than would be the case for a non-linear set of equations.

The aim of this exercise is to develop a SDM that can ultimately be applied to remote sensing reflectance data 
(in situ and from space) as well as to in situ measurements of IOPs. A central feature of our approach is that the 
information contained within either Rrs(λ) or rrs(λ) is retained within the ratio bb(λ)/a(λ). Thus it makes sense to 
develop a SDM based on this ratio. A key benefit of this approach is that it does not require further separation 
into a(λ) and bb(λ) separately (which is non-trivial), but can operate directly on bb(λ)/a(λ). To this end Equations 1 
and 4 are combined to give

𝑏𝑏𝑏𝑏(𝜆𝜆)

𝑎𝑎(𝜆𝜆)
=

𝑏𝑏∗
bpph

(𝜆𝜆)CHL + 𝑏𝑏∗
bpndet

(𝜆𝜆)MSS + 𝑏𝑏bw(𝜆𝜆)

𝑎𝑎∗
ph
(𝜆𝜆)CHL + 𝑎𝑎∗

bdet
(𝜆𝜆)CHL + 𝑎𝑎∗

ndet
(𝜆𝜆)MSS + 𝑎𝑎∗

cdom
(𝜆𝜆)CDOM + 𝑎𝑎𝑤𝑤(𝜆𝜆)

 (5)

This can be rearranged to give
[

[𝑎𝑎∗
ph
(𝜆𝜆) + 𝑎𝑎∗

bdet
(𝜆𝜆)]

[

𝑏𝑏𝑏𝑏

𝑎𝑎

]

(𝜆𝜆) − 𝑏𝑏∗
bpph

(𝜆𝜆)

]

CHL 

+

[

𝑎𝑎∗
ndet

(𝜆𝜆)

[

𝑏𝑏𝑏𝑏

𝑎𝑎

]

(𝜆𝜆) − 𝑏𝑏∗
bpndet

(𝜆𝜆)

]

MSS 

+𝑎𝑎∗
cdom

(𝜆𝜆)

[

𝑏𝑏𝑏𝑏

𝑎𝑎

]

(𝜆𝜆)CDOM 

=𝑏𝑏bw(𝜆𝜆) − 𝑎𝑎𝑤𝑤(𝜆𝜆)

[

𝑏𝑏𝑏𝑏

𝑎𝑎

]

(𝜆𝜆) (6)

Absorption and backscattering values by pure water (aw and bbw respectively) are available from Pope and 
Fry (1997) and Smith and Baker (1981). Spectrally resolved SIOPs need to be determined for each OSC (see 
below). CHL, MSS, and CDOM are the 3 unknowns and can be obtained by solving the linear system of equa-
tions that Equation 6 subsequently forms (see below).

Equation  6 provides the Case 2 SDM to find CHL, MSS, and CDOM for optically complex coastal waters. 
However, for oceanic (Case 1) waters, the SDM can be reduced to two variables (CHL and CDOM) and becomes

[

[𝑎𝑎∗
ph
(𝜆𝜆) + 𝑎𝑎∗

bdet
(𝜆𝜆)]

[

𝑏𝑏𝑏𝑏

𝑎𝑎

]

(𝜆𝜆) − 𝑏𝑏∗
bpph

(𝜆𝜆)

]

CHL 

+𝑎𝑎∗
cdom

(𝜆𝜆)

[

𝑏𝑏𝑏𝑏

𝑎𝑎

]

(𝜆𝜆)CDOM 

=𝑏𝑏bw(𝜆𝜆) − 𝑎𝑎𝑤𝑤(𝜆𝜆)

[

𝑏𝑏𝑏𝑏

𝑎𝑎

]

(𝜆𝜆) (7)

This Case 1 version is presented in order to further assess the impact of using the Case 2 version in Case 1 waters. 
In practice, it may be difficult to automatically partition data into Case 1 and 2 variants, in which case the expec-
tation is that the Case 2 version would be the default option. This is tested and discussed in more detail below.

The SDM presented here operates on the ratio of bb(λ)/a(λ). This makes it particularly accessible for use with 
radiometric data, including remote sensing data, where this ratio can be obtained from measurements of either 
Rrs(λ) or rrs(λ) using relationships given in Lo Prejato et al. (2020). It is significantly easier to derive the ratio of 
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bb(λ)/a(λ) than to find a(λ) and bb(λ) separately. Lo Prejato et al. (2020) demonstrated that there is no advantage 
to using the bb(λ)/[(a(λ) + bb(λ)] form to relate IOPs to remote sensing reflectance data and in this case the 
bb(λ)/a(λ) form is easier to manipulate in Equations 6 and 7. Figure 1 shows the workflows for operation of the 
SDM from either in situ IOP measurements or in situ radiometric measurements.

2.2. Solving the SDM and Uncertainty Propagation

Equation 6, with three unknowns, can be written for each available waveband, generating a system of n linear 
equations. In order to solve the system for three unknowns a minimum of three equations is needed, while with 
n > 3 the system becomes over-determined. In this study, the Matlab® (MathWorks Inc.) mldivide operator has 
been chosen because it can solve any linear equation system giving the best least-squares solution. The mldivide 
operator solves over-determined systems automatically by QR decomposition (also known as a QU factorization), 
applied to both square and rectangular matrices, providing the number of equations is greater than the number 
of unknowns. It does not, however, ensure non-negative solutions. We note that other studies have used singular 
value decomposition to solve over-determined systems (e.g., Brando et al., 2012). Both approaches appear to 
work similarly well for this type of problem.

As recently reminded by the IOCCG (International Ocean-Colour Coordinating Group) in their 18th Report 
(IOCCG, 2019), “there is no reason to trust a measurement value without an associated uncertainty”. Following 
this principle, uncertainties have been established for all measured values used as model input, and are propa-
gated through the model using bootstrapping in order to estimate the uncertainty for retrieved OSC concentra-
tions. Bootstrapping is a Monte Carlo method for estimating uncertainties in model-derived products (Davison 
& Hinkley, 1997). According to this procedure, input data are perturbed B times, thus returning an ensemble of 
B potential solutions. Perturbations are informed by the distribution of uncertainties for each input parameter. 
By randomly allocating an uncertainty estimate to each input value, it is possible to generate output distributions 
which are representative of the combined effect of uncertainties in all of the input variables. In this study, the 
median of this distribution of solutions is considered as the optimal solution, with an associated uncertainty given 
by 1.96 times the standard deviation (σboot) of the bootstrap distribution (95% confidence interval, 95%CI).

Uncertainties assigned to the input total IOPs were wavelength-independent since they were estimated through a 
residual analysis of the geometric mean regression (GMR) between two signals of the same instrument, closely 
spaced spectrally (McKee et al., 2009—see Section 3.2) Uncertainties in the ratio bb(λ)/a(λ), when this ratio 
is derived from a IOP-reflectance relationship applied to rrs(λ) data, were estimated through bootstrapping of 
wavelength-dependant uncertainties in rrs(λ) data (see Section 3.2). Uncertainties associated with SIOPs were 
wavelength-dependant and quantified using 95% confidence interval (95%CI) of linear regressions slopes between 
partitioned IOPs and related constituent concentrations (McKee & Cunningham, 2006; McKee et al., 2014—see 
Section 3.3). Uncertainties were assumed to be normally distributed. For each iteration of the bootstrap process, 
uncertainty in each input parameter was randomly assigned within the constraints of the uncertainty estimates 
established for that parameter.

During testing it was noticed that the quantity and quality of spectral information considered by the SDM affected 
the final result. Bootstrap estimators cannot be assumed to be unbiased, with the bias potentially depending on the 
nature of the model representation or it can originate from a conjunction of skewness of the sampling distribution 
and small sample size. Moreover, the recommended number of bootstrap iterations (B) may vary depending on 
the case study and the statistical parameter one wants to infer (Mooney & Duval, 1993). Therefore the SDM was 
tested with a synthetic data set using different numbers of bootstrap iterations and subgroups of spectral bands 
in order to assess the behavior of both the bias and random uncertainty, and to determine optimal combinations 
of both.

3. Methods
3.1. Field Sampling

The present study is based on data collected in the Ligurian Sea (LS), North Western Mediterranean Basin, on 
board NRV Alliance in March 2009 (Figure 2). Data from this cruise (BP09) have been published previously 
(Bengil et al., 2016; McKee et al., 2013, 2014; Ramirez-Perez et al., 2018). The data presented here includes 
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11 stations in deep, clear oceanic waters (considered Case 1) and 23 stations in shallow, turbid coastal waters 
(considered Case 2), in proximity to the plumes of the river Arno and other minor rivers. In the Arno river mouth, 
concentrations of chlorophyll are frequently higher than 1 mg m −3, while in the study area, spring blooms of vari-
able intensity occur typically from the end of February until the beginning of May (Bosc et al., 2004). The coastal 
data set is considered to be Case2 due to the presence of suspended inorganic sediment (from the Arno plume and 
resuspended from the seabed) and CDOM associated with freshwater inputs. During the BP09 cruise, a spring 
bloom was recorded offshore and the ranges of concentration of in water constituents were: 0.29–3.31 mg m −3 
for chlorophyll; 0.13–3.77 g m −3 for total suspended solids and 0.012–0.190 m −1 for colored dissolved organic 
matter.

Ramirez-Perez et al.  (2018) previously showed that offshore, deep oceanic 
waters had a lower particulate backscattering ratio and concentration 
of total suspended solids compared to the shallow coastal waters where 
non-biogenic material was abundant. According to Matsushita et al. (2012), 
Rrs(412) ≥ Rrs(443) occurs in Case 1 waters, and vice versa in Case 2 waters. 
Figure 3 shows the application of this criterion to the Ligurian Sea data set: 
the signal at 440 nm has been used in place of the 443 waveband and the 
reflectance data measured below the surface, rrs(λ, 0 −), have been converted 
to remote sensing reflectance in air, Rrs(λ, 0 +) through the relationship 
Rrs(λ, 0 +) = 0.518 rrs(λ, 0 −)/[1–1.562rrs(λ, 0 −)] (Lee et al., 1998). The two 
geographically separated subsets of offshore and onshore stations conform 
to the Matsushita et al. classification for Case 1 and Case 2 waters. We note 
that this classification scheme may not be universally robust but appears to 
perform to expectations for these waters.

3.2. In Situ Optical Measurements

Non-water absorption an(λ) and attenuation cn(λ) coefficients were measured 
in situ with a 25 cm path length AC-9 reflective tube attenuation and absorp-
tion meter (WETLabs Inc.) operating at 9 wavebands centered at 412, 440, 
488, 510, 532, 555, 650, 676, and 715 nm. IOP measurements were corrected 
for salinity and temperature using data from a Seabird SBE 19 plus CTD. AC-9 
absorption data was corrected for scattering errors using the proportional 

Figure 2. In the left map, the small dashed rectangle shows the study area, located in the North Western Mediterranean Sea. 
On the right, the positions of the sampling stations (BP09 cruise), in the Ligurian Sea, classified as offshore (empty squares) 
and onshore (filled squares). Reproduced from Lo Prejato et al. (2020), their Figure 1.

Figure 3. Classification of Case 1 and Case 2 waters based on reflectance 
data (Matsushita et al., 2012). Offshore waters verify the criteria for Case 1 
waters: Rrs(412) ≥ Rrs(443). Spectral signal at 440 nm (instead of 443 nm) has 
been used to apply the criterion.
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method (Zaneveld et al., 1994). A WETLabs BB-9 was mounted alongside the AC-9 to measure backscattering 
coefficients at 412, 440, 510, 532, 595, 660, 676, and 715 nm. Backscattering data were subsequently interpolated 
to match AC-9 wavelengths and corrected for path length absorption using proportionally corrected AC-9 absorp-
tion data. The particulate volume scattering function (VSF) was derived from the total VSF measured by the BB-9 
at an effective scattering angle of 117°, after subtraction of water VSF obtained from Morel (1974), while the 
particulate backscattering coefficients, bbp(λ), were estimated from measurements of βp(117°,λ) using a χ-factor 
of 1.1 (Boss & Pegau, 2001). The total backscattering coefficient, bb(λ) was then calculated as the sum of bbp(λ) 
and the backscattering from pure water, bbw(λ) derived from Smith and Baker (1981).

Random measurement uncertainties were estimated for both absorption and backscattering data using the 
approach of McKee et al. (2009). This method is based on residual analysis of the GMR between two signals of 
the same instrument, closely spaced spectrally. The approach is based on the principle that if the spectral differ-
ence of the IOP is stable (i.e., natural variability is minimal) the residual variability between each set of data can 
be attributed to random measurement uncertainties. The magnitude of the measurement uncertainty range for 
each parameter can be estimated by taking the 95th percentile of the absolute distribution, broadly equivalent to 
95% confidence interval (CI) of a traditional linear regression. The resulting distributions are likely to slightly 
overestimate the random measurement uncertainty (some of the variability will be due to natural variations in 
spectral dependence), but the procedure provides reasonable ballpark figures.

Figure 4a shows particulate backscattering data at two wavelengths (532 and 510 nm) plotted against one another 
for the entire data set. The GMR coefficient of determination is close to unity and the very small offset suggest 

Figure 4. Measurement uncertainties estimated for both backscattering and absorption data from GMR and 95th percentile, 
according to McKee et al. (2009): (a) GMR of particulate backscattering (bbp) signals at two close wavelengths, 510 and 
532 nm and (b) related residual histogram. (c) GMR of an(510) against an(488) and (d) residual histogram.

 23335084, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

A
002815 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [04/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

LO PREJATO AND MCKEE

10.1029/2022EA002815

9 of 25

that the residual variability (Figure 4b) can be reasonably referred to random uncertainties, with the 95th percen-
tile of the resulting distribution giving a magnitude of ±6.1 × 10 −4 m −1. The same approach has been applied to 
non-water absorption data at 488 and 510 nm (Figures 4c and 4d), giving ±0.0036 m −1 for the residual measure-
ment uncertainty. This value is consistent with the operational uncertainty for an AC-9 that has been calibrated 
and corrected with optimal accuracy (IOCCG Protocol Series, 2018). The assumption that spectral dependence of 
an(λ) is small and uniform for a small wavelength difference probably does not hold as well as it does for bbp(λ), 
but the approach does seem to provide reasonable estimates of random measurement uncertainty for both instru-
ments. In practice there may be other systematic errors that remain unaccounted for in this analysis, but we are 
not aware of any means to determine them.

Upwards radiance, Lu(z,λ) and downwards irradiance, Ed(z,λ), were measured using a free-falling HyperPro 
profiler (Satlantic Inc.) configured with hyperspectral sensors. Downwards above-surface irradiance data, Es(t,λ), 
were also collected by a reference sensor positioned on the ship's superstructure. The profiling radiometer was 
deployed in a multi-cast mode to sample the surface layer multiple times at each station. All underwater radi-
ometric data were corrected for changes in solar elevation during the cast sequence and to minimize the impact of 
wave-induced effects (Zibordi et al., 2004), broadly following Sanjuan Calzado et al. (2011). Only data from the 
top 3 m were used during the correction routine. This depth was considered adequate to establish good linear fits 
to log-transformed data and shallow enough to avoid most changes in water column structure and to have reason-
able signals in blue and red channels. Lu(z, λ) and Ed(z,λ) were extrapolated to the surface after applying a linear 
regression to the ensemble of sub-cast profiles of log-transformed data, concurrently removing outliers associated 
with wave focusing effects. Uncertainties in Lu(0 −, λ) and Ed(0 −,λ) just below the sea surface were estimated as 
95% confidence intervals (CI) of the intercepts of the best fit lines (Figure 5). The remote sensing reflectance 
below the water, rrs(0 −, λ), was estimated through the ratio of Lu(0 −, λ) to Ed(0 −, λ) and the associated uncertainty 
was estimated by propagating uncertainties in Lu(0 −, λ) and Ed(0 −,λ) using standard quadrature. Figure 5c shows 
an example rrs(λ) spectrum with corresponding wavelength dependent uncertainties. We note that additional 
factors such as temperature dependence, stray light and accuracy of cosine response have not been considered 
here. As such our estimates of radiometric uncertainty should not be considered as a complete analysis, but do 
provide a first order estimate of uncertainty associated with the processing steps outlined above.

3.3. Laboratory Measurements

The absorption of all dissolved and suspended components minus water was measured using a Point Source 
Integrating Cavity Absorption Meter (PSICAM), with an estimated accuracy of ±2% even in highly turbid 
waters (Röttgers et al., 2005, 2007). Measurements were made using fresh Milli-Q ultrapure water references 
and then corrected for salinity and temperature effects on water absorption (Röttgers & Doerffer, 2007; Röttgers 
et al., 2014). Measurements of absorption by colored dissolved organic matter, acdom(λ), were performed using a 
1 m liquid waveguide capillary cell (LWCC) with an Ocean Optics USB2000 minispectrometer, with a noise range 
of ±0.0001 m −1 at 532 nm (Lefering et al., 2017). In this study, the concentration of colored dissolved organic 
material is represented by its absorption at 440 nm, CDOM = acdom(440) following for example, Kirk (2011). 
Total particulate absorption, ap(λ) was derived by subtracting acdom(λ) from PSICAM non water absorption. Total 
particulate absorption was also obtained by measuring the optical density of particles, ODp(λ) (nondim), retained 
on a 25 mm GF/F filter using a Shimadzu UV-2501 PC benchtop spectrophotometer in transmission mode. After 
applying dilute bleach and rinsing with filtered seawater to remove algal pigments, the measurement was repeated 
for each sample to provide the detrital optical density of non-algal particles, ODdet(λ). The particulate and detrital 
absorption coefficients, ap(λ) and adet(λ) respectively, were obtained from

𝑎𝑎𝑥𝑥(𝜆𝜆) = 2.303
𝐴𝐴𝑓𝑓𝑓𝑓𝑂𝑂𝑂𝑂𝑥𝑥(𝜆𝜆)

𝑉𝑉𝑓𝑓 𝛽𝛽
 (8)

where ax(λ) is the required absorption coefficient, Afp is the exposed area of the filter pad, Vf is the volume of 
sample filtered (m 3), β is the path length amplification factor (nondim) and ODx(λ) is the required optical density. 
A linear regression approach (Lefering, Röttgers, et al., 2016; McKee et al., 2014) using a combination of PSICAM 
and LWCC data was employed for the determination of path length amplification factors (β) and scattering offset 
corrections for both filter pad absorption measurements. Absorption by phytoplankton, aph(λ), was derived by 
subtracting absorption of detrital particles from the total particulate absorption, aph(λ) = ap(λ) − adet(λ).
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Figure 5. Example of radiometric measurements at one station (ST04): multicast data ensemble for (a) upwards radiance, 
Lu, and (b) downwards irradiance, Ed, at 488 nm, with best fit regression line (red lines) and 95% confidence intervals (black 
dashed lines). The red dot is the intercept of the regression line for (a) Lu(0 -) and (b) Ed(0 -), and black squares are associated 
95% CIs on the intercepts. (c) The remote sensing reflectance spectrum below the water, rrs(0 -, λ), and associated uncertainty 
are shown as a black line and vertical error bars, respectively.
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Concentrations of chlorophyll-a (CHL) and total suspended solids (TSS) were measured in triplicate by colleagues 
from Management Unit of the North Sea Mathematical Models (MUMM) with averaged results reported here. 
CHL concentrations were determined by standard HPLC measurements: triplicate samples were analyzed using 
a reversed phase, acetone-based method with a C18 column and a Jasco FP-1520 fluorescence detector. TSS 
concentrations were estimated using pre-ashed, rinsed and pre-weighed 47  mm  GF/F filters, careful rinsing 
each sample with ultrapure water. Filters were stored frozen and returned to the lab where they were dried and 
reweighed. A simple relationship between TSS and CHL for Case 1 waters, obtained by least squares regression 
forced through zero, gives biogenic TSS (TSSbio) per unit CHL (TSSbio = 0.234 CHL). This is used to estimate 
the concentration of biogenic TSS for Case 2 waters, with mineral (i.e., non-biogenic) suspended solids (MSS) 
obtained for Case 2 waters by subtracting the estimate of TSSbio from total TSS (Bengil et al., 2016).

SIOPs were obtained using the linear regression approached initially proposed by McKee and Cunningham (2006) 
and then applied by Ramirez-Perez et al. (2018) for an analogous IOP inversion exercise. Spectral SIOPs were 
calculated as the slopes of simple linear regressions forced through the origin of partitioned IOPs against asso-
ciated constituent concentrations using natural samples from the surface layer of the ocean. SIOP uncertainties 
were estimated as the 95% CIs for regression slopes. More details and a complete explanation of the partitioning 
methodology can be found in Ramirez-Perez et al.  (2018). The full set of SIOPs obtained in this manner are 
shown in Lo Prejato et al. (2020, Figure 2).

4. Results
Development and testing of the SDM is presented in multiple stages below. In the first stage (Section 4.1) a 
synthetic data set is used to test performance of the SDM across a wide range of OSC concentration ranges and 
to establish optimal numbers of spectral bands and bootstrap iterations. Real world performance of the SDM is 
then tested using first in situ IOP measurements (Section 4.2) followed by in situ radiometry (Section 4.4), with 
Section 4.3 focusing on conversion of rrs to bb/a using in situ data. The performance of the SDM is then compared 
with those of alternative algorithms using the Ligurian Sea data set (Section 4.5). Finally, the general applicabil-
ity of the SDM approach is tested using the NOMAD global data set (Section 4.6).

4.1. Sensitivity Analysis Using Synthetic Data Set

The performance of the Case 2 SDM was evaluated through a sensitivity analysis based on a synthetic data 
set of 1,690 combinations of fixed log-spaced constituent concentrations (0.01  <  CHL  <  100  mg  m 3, 
0.01 < MSS < 100 g m 3, 0.01 < CDOM < 10 m −1) used to generate total absorption and total backscattering 
coefficients and to populate Equation 6 (see Lo Prejato et al., 2020 for details). This synthetic test data set was put 
through the Case 2 SDM with bootstrapping used to propagate uncertainties. The bootstrap median (medianboot) 
for each OSC concentration was adopted as the best estimate, while 95% confidence intervals (CI) of the boot-
strap distribution was used to estimate the effect of error propagation on estimates of OSC concentrations. For 
the sake of comparison, the relative CI (CI%) and the bias percentage error (Bias%) have been calculated using

CI% =

(

1.96𝜎𝜎boot

mea𝑛𝑛boot

)

× 100 (9)

Bias% =

(

medianboot − input value

input value

)

× 100 (10)

Bias% provides an estimate of how close the median of the bootstrap distribution lies to the known input value 
from the synthetic data set. CI% gives a measure of the spread of the bootstrap distributions.

The fundamental performance of the Matlab solver was established by solving the SDM with zero uncertainties in 
the IOPs and SIOPs, with the resulting bootstrap results being both accurate and unbiased (both Bias% and CI% 
<10 −12). This indicates that in the absence of measurement uncertainties, and assuming the bio-optical model is 
properly representative of the optical properties of the sample, the solver would always return essentially perfect 
results. In practice, of course, there will always be uncertainties in both the input measurements and the SIOPs, 
there may be real natural variability in SIOPs (e.g., Bricaud et al., 1995, but also see McKee et al., 2014), and 
absence or presence of specific OSCs may impact on the structure of the bio-optical model leading to variable 
quality of estimated OSC concentrations.
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Applying the Case 2 SDM to the full synthetic data set and propagating uncertainties in IOPs and SIOPs demon-
strated that the Bias% of each OSC increased dramatically as the contribution of that OSC to formation of optical 
signals diminishes at low concentrations compared to other OSCs, analogous to results previously shown by 
Ramirez-Perez et al. (2018) for the model operating on b(λ)/a(λ). The full synthetic data set covers a very large 
range of variability in OSC concentrations that goes far beyond that encountered in the BP09 field experiment. 
In an effort to constrain the sensitivity analysis to more representative ranges, a reduced synthetic data set was 
selected (0.2 < CHL < 5 mg m −3, 0.1 < MSS < 5 g m −3, 0.02 < CDOM < 0.1 m −1) corresponding to the BP09 
ranges of concentrations. This subset of synthetic data was used to test the impact of choosing both the number 
of wavebands used in the SDM and the number of bootstrap iterations. Five different waveband subgroups were 
selected (412–440–488–510–532–555–650–676  nm; 412–440–488–532–555–650  nm; 412–440–488–555–
650 nm; 412–488–555–650 nm; 412–488–555 nm) with a maximum of 8 bands, excluding the signal at 715 nm, 
and a minimum of 3 bands, required to solve a system with 3 unknowns. The selection of the spectral bands 
included in each subgroup was based on optical characteristics of the OSCs, taking into consideration the possi-
bility that if some of the bands are highly correlated with each other, a subset of spectral information can be 
as effective as the full spectral range available for the derivation of the required OSC concentrations (Lee & 
Carder, 2002; Sathyendranath et al., 1994; Wernand et al., 1997). Figure 6 (a and b) shows the impact of varying 

Figure 6. Median value of (a) bias percentage error (med Bias%) on CHL, CDOM, MSS, and (b) median value of 95% 
Confidence Intervals (med CI%) when considering different subsets of spectral signal and 500 bootstrap iterations. Trend of 
(c) med Bias% and (d) med CI% for increasing number bootstrap iterations, considering the spectral subgroup including 5 
bands.
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the number of wavebands on the retrievals of CHL, MSS, and CDOM. The SDM has been applied to the reduced 
synthetic data set with the median values of Bias% and CI%, medBias% and medCI% respectively, showing 
the overall effect on each OSC. Increasing the number of wavebands increases the medBias% almost linearly 
though at relatively small values, while medCI% rapidly decreases but ultimately plateaus. From this analysis we 
conclude that 5 wavebands provide an optimal combination of Bias% and CI% for this SDM. The 5 wavebands 
version of the model was subsequently tested by varying the number of bootstrap iterations (B = 50, 100, 500, 
1,000, 5,000, 10,000). Figure 6 (c and d) demonstrate that increasing the number of iterations has essentially no 
impact on medCI% but significantly reduces medBias% until B = 500, beyond which there is no further improve-
ment. From this analysis we conclude that the 5 wavebands SDM operating with 500 bootstrap iterations provides 
optimal output quality and computational efficiency and is used hereafter throughout the paper in Case 1 and 
Case 2 versions of the SDM.

The distribution of Bias% and CI% for CHL, MSS, and CDOM concentrations within the LS range is shown in 
Figure 7. The highest values of Bias% (∼20%) for CHL occurred when the model was used to retrieve the smallest 
value (∼0.1 mg m −3) of CHL in the range (Figure 7a). For both MSS and CDOM, highest Bias% (∼25%) occurs 
when retrieving small values of these quantities with high levels of CHL (Figures 7c and 7e). CI% estimates exhibit 
similar behavior, with highest values occurring when trying to retrieve low concentrations of an OSC when other 
OSCs are high. This is a physically realistic result. If an OSC is making only a relatively small contribution to the 
optical signals, there ought to be more uncertainty in retrieving its concentration. It is unrealistic to expect to be able 
to retrieve small concentrations of CHL accurately in the presence of high concentrations of MSS and/or CDOM, as 
discussed by for example, Doerffer and Schiller (1994). Note, however, that this is not necessarily a property of opti-
cal complexity per se. If it was, the results of the analysis of synthetic data with zero noise would not have been essen-
tially perfect. Instead, it is important to realize that the ability to resolve small contributions to the reflectance signal 
is limited by the associated uncertainties in measurements and modeling parameters, in this case bb/a and the SIOPs.

4.2. Performance of SDM for bb/a From in Situ IOPs

The Case 2 SDM was applied to in situ AC-9 absorption and BB-9 backscattering measurements with result-
ing estimates of CHL, CDOM and MSS shown in Figure 8 (a, b and c respectively). Figure 8c illustrates the 
generation of non-zero MSS estimates for offshore (Case 1 waters) when the Case 2 model is applied. Implement-
ing the Case 1 SDM forces MSS to zero a priori. The resulting concentrations of CHL and CDOM for the Case 1 
SDM applied in offshore waters are shown as gray triangles in Figures 8a and 8b.

The estimated concentration values are medians of the bootstrap distributions after applying the SDMs with 
B  =  500 and using the spectral information from five wavebands (412–440–488–555–650  nm). The vertical 
error bars represent the 95% CI of the bootstrap distribution and originate from the propagation of the combined 
uncertainty on both the optical measurements and the SIOPs. The Mean Absolute Error (MAE) is presented as a 
metric to evaluate the performance of the SDMs.

MAE =

𝑛𝑛
∑

𝑖𝑖=1

|𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖|

𝑛𝑛

 (11)

where xi and yi are measured and estimated values of each parameter respectively and n is the total number of 
available matchups. MAE has been calculated separately for onshore and offshore sampling stations in order to 
allow comparisons between the Case 1 and Case 2 versions of the SDM (Table 1). The Case 2 SDM applied to 
onshore waters returned MAEs of 0.60 mg m −3 for CHL, 0.012 m −1 for CDOM and 0.18 g m −3 for MSS. For 
offshore waters, the Case 2 SDM produced slightly lower accuracy CHL and CDOM values compared to the Case 
1 SDM, but the differences are fairly marginal suggesting that the Case 2 SDM could be used in all waters with 
limited problems. Interestingly, the Case 2 SDM returns low but non-zero MSS values for offshore waters that are 
inconsistent with our assumption of zero MSS for these stations. This may indicate the presence of small amounts 
of inorganic material in these waters, possibly associated with diatoms forming the bulk of the offshore algal 
bloom, but as discussed below, this may also reflect residual issues with the quality of in situ IOP measurements.

4.3. Conversion of rrs to bb/a

A new set of IOP-reflectance relationships based on extensive Hydrolight simulations has recently been 
published (Lo Prejato et al., 2020) allowing retrieval of IOPs in the form of the ratio bb(λ)/a(λ) from under water 
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remote sensing reflectance, rrs(λ, 0 −). The 5th order polynomial relationship suggested in Table 1 of Lo Prejato 
et al. (2020) has been applied to the radiometric data of this study and the resulting data set of bb(λ)/a(λ) values 
has been used as input for the SDM. The associated uncertainties in rrs(λ), estimated from real samples (see 
Section 3.2) have been used in a bootstrapping framework to quantify uncertainties associated with resulting 
bb(λ)/a(λ) values. The uncertainty attributable to the polynomial relationship itself has been considered negligible 
compared to the uncertainties derived from rrs(λ) measurements.

The comparison between measured and retrieved bb(λ)/a(λ) presented in Figure  9 shows a clear bifurcation, 
with one branch deviating strongly from the 1:1 line for higher values of the ratio bb(λ)/a(λ). The source of this 
overestimation of the retrieved ratios is not clear. Analysis of systematic errors in AC-9 data through applica-
tion of alternative scattering correction methods for absorption and attenuation measurements (not shown) did 
not significantly improve consistency with modeled data, broadly in line with findings from Lefering, Bengil, 

Figure 7. Distribution of the offset percentage error (Bias%) for (a) CHL, (c) MSS, and (e) CDOM and the corresponding 
relative 95% confidence intervals (CI%) of the bootstrap mean distribution for (b) CHL, (d) MSS, and (f) CDOM. The LS 
range of concentrations, 500 bootstrap iterations and 5 wavebands (412; 440; 488; 555; 650 nm) have been considered.
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et  al.  (2016) which showed that light field calculations were not strongly 
influenced by this potential source of error. Other potential sources of error 
include problems with correction of backscattering data and errors in radi-
ometric measurements for example, performance of cosine collectors, accu-
racy of radiometric calibrations. Unfortunately none of these are currently 
well characterized and the obvious disagreement between measured and 
modeled relationships is both disappointing and concerning. However, the 
retrievals of the main optical compounds from in situ radiometry are at least 
as good as the retrievals from optical field data (see next section) which 
suggests that the underpinning polynomial relationship between rrs(λ, 0 -) and 
bb(λ)/a(λ) is performing well and is unlikely to be a major source of error.

4.4. Performance of SDM for bb/a From in Situ Radiometry

The SDMs were applied to estimates of bb(λ)/a(λ) derived from in situ meas-
urements of remote sensing reflectance below the water, rrs(λ, 0 −), for both 
onshore and offshore stations. The Case 2 SDM was applied to the full data 
set and then the Case 1 SDM was applied to offshore stations only. The results 
(Figure 10) show that the MAE (=0.31 mg m −3) for CHL in onshore waters 
is smaller compared to the analogous case obtained from in situ IOP data. 
In offshore waters, the Case 1 SDM improves the results for CHL retrievals 
compared to the Case 2 SDM, but the results for CDOM deteriorate (Table 1). 
The Case 2 SDM returns smaller MSS values for offshore waters using in situ 
radiometry inputs than it did using in situ IOPs, suggesting that (a) there are 
indeed unresolved issues with the in situ IOP data, and (b) application of the 
Case 2 SDM in open Case 1 waters is a reasonable prospect with no need for 
active partitioning. In onshore waters, the MAE values for all constituents 
are smaller or equivalent to the values obtained using in situ IOPs as input. 
The error bars obtained by using radiometric data for input encompass the 
1:1 line, but are generally smaller than those found using in situ IOPs as 
input. Overall, it is remarkable that the performance of the SDM appears, if 
anything, to be superior when used with in situ radiometry based inputs than 
with in situ IOPs. Together with the deviation between measured and derived 
IOPs observed in Figure 9, it is tempting to suggest that the balance of error 
remains with in situ IOP measurements.

4.5. Comparison With Other Algorithms for the Ligurian Sea

The Case 2 SDM is unusual in that it can be used to simultaneously predict 
CHL, CDOM, and MSS. There are, of course, many other possible algo-
rithms to obtain these constituent concentrations from radiometry individu-
ally. Here we compare the performance of the Case 2 SDM algorithm with a 
variety of previously published algorithms focusing on other SAAs, standard 
algorithms (for CHL) and where possible, algorithms that have been specifi-
cally tuned for Mediterranean waters.

4.5.1. Ligurian Sea CHL

The quasi-analytical algorithm (QAA) developed by Lee et  al.  (2002) has 
been widely used during the last 2 decades in ocean-color inversions (IOCCG 
report 2006) for CHL retrievals. Subsequent updated versions of the original 
model have been published and evaluated (Brewin et al., 2015; Lee, 2014; 

Lee et al., 2005, 2007, 2009; Mishra et al., 2014). It is a multi-band algorithm in 10 steps which mixes a set of 
well-known empirical, semi-analytical, and analytical models in order to retrieve several IOPs of the water body 
from (below) above-surface remote sensing reflectance, (rrs) Rrs. It retrieves total absorption, at(λ), first and then 

Figure 8. Comparison of estimated versus measured (a) CHL, (b) CDOM, 
and (c) MSS in onshore (black squares) and offshore (black triangles) 
stations using the Case 2 SDM operating on in situ IOP (AC-9 and BB-9) 
measurements. Error bars are 95% CI of the bootstrap distributions. CHL and 
CDOM retrieved in offshore stations using the Case 1 SDM are shown as gray 
triangles. 1:1 lines are shown as solid black lines in each plot. Data shown for 
23 onshore and 10 offshore stations.
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decomposes it into individual absorption components, including the absorption by phytoplankton, aph(λ). An up to 
date version (QAA_v6) is available on-line (https://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.
pdf). The CHL concentration is not a direct output of the model, therefore, it has been estimated as a function of 
aph(443), using the power law relationship proposed by Bricaud et al. (1995) and widely used for CHL retrievals 
from semi-analytical models (e.g., Brewin et al., 2015):

CHL =

(

𝑎𝑎ph(443)

𝐴𝐴

)1∕𝐵𝐵

 (12)

with A = 0.0497, B = 0.7575 and assuming aph(443) ≈ aph(440).

CHL concentration can also be estimated using empirical maximum band ratio (MBR) algorithms. These empir-
ical algorithms are developed using a global data set (e.g., NOMAD) of in situ CHL concentrations, repre-
senting a wide variety of oceanic and coastal waters. These models are polynomial relationships that relate 
the log-transformed ratio of blue-green remote sensing reflectances to CHL using 2 to 6 bands (O’Reilly 
&Wertdell, 2019; O’Reilly et al., 1998, 2000). Details of the methodology can be found at https://oceancolor.gsfc.

nasa.gov/atbd/chlor_a/. However, in optically complex waters biases between 
calculated and in situ concentrations are frequent. This is the case for parts 
of the Mediterranean Sea and as a result a number of regional variants of 
standard algorithms have been developed.

After converting in situ rrs into Rrs using a constant transmission factor 
(T = 0.54) following Lee et al. (1998), standard and regional OCx algorithms 
were applied to the LS data set, using the available blue and green wave-
bands (440, 488, 510, and 555 nm). Here it assumed that differences caused 
by using for example, 440 nm instead of 443 nm have minimal impact on 
algorithm performance. Algorithms used here are: OC3M (https://ocean-
color.gsfc.nasa.gov/atbd/chlor_a/), the standard CHL algorithm for MODIS, 
calibrated on the NOMAD global data set, with coefficients a0 = 0.2424, 
a1  =  −2.7423, a2  =  1.8017, a3  =  0.0015, a4  =  −1.2280; OC4S (https://
oceancolor.gsfc.nasa.gov/atbd/chlor_a/), the standard CHL algorithm 
for SeaWiFS, with coefficients a0 = 0.3272, a1 = −2.9940, a2 = 2.7218, 
a3 = −1.2259, a4 = −0.5683; MedOC3, developed by Santoleri et al. (2008) 
and calibrated on a representative bio-optical data set collected in the Medi-
terranean area. Coefficients are: a0  =  0.380; a1  =  −3.688; a2  =  1.036; 
a3 = 1.616; a4 = −1.328; and AD4, originally developed for the Adriatic Sea 
(Berthon & Zibordi, 2004; D'Alimonte & Zibordi, 2003), with coefficients: 
a0 = 0.236, a1 = −3.331, a2 = 2.286, a3 = 4.2834, a4 = −5.816.

Figure 11 shows results for CHL retrieval for the Ligurian Sea data set using 
each of the CHL algorithms listed above applied to in situ radiometry, with 
data partitioned further into onshore and offshore stations. The performance 
of the Case 2 SDM is generally at least comparable with other established 

MAE

Result with in situ IOPs (a(λ) and bb(λ)) Result with in situ radiometric data (rrs(λ))

Case 2 SDM Case 1 SDM Case 2 SDM Case 1 SDM

Onshore Offshore Offshore Onshore Offshore Offshore

CHL (mg m −3) 0.60 0.54 0.40 0.31 0.73 0.51

CDOM (m −1) 0.012 0.013 0.010 0.011 0.004 0.021

MSS (g m −3) 0.18 – – 0.18 – –

Table 1 
Mean Absolute Errors (MAE) for Retrievals of Optical Constituents Using In Situ IOPs and Radiometry, for Onshore and 
Offshore Waters, and Using Case 1 and Case 2 Versions of the SDM

Figure 9. Retrieved versus measured data in onshore (black squares) and 
offshore (gray triangles) stations, at 5 wavebands (412–440–488–555–
650 nm). Horizontal error bars are observed in situ IOP measurement 
uncertainties. Vertical error bars are the result of propagating associated rrs(λ) 
measurement uncertainties through a 5th order polynomial IOP-reflectance 
relationship (see text) and represent the 95%CI of the bootstrap distribution.
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algorithms. The majority of Case 2 SDM CHL estimates fall within the ±35% 
mission target for ocean color CHL retrievals for this data set (Figure 11a). 
QAAv4 has a general tendency to overestimate CHL though performance is 
generally better offshore (Figure 11b). Conversely, QAAv6 tends to underes-
timate CHL with the majority of points lying close to the lower threshold of 
the mission target range (Figure 11b). OC3M and OC4S both perform well in 
offshore waters, but have a clear tendency to overestimate CHL for onshore 
stations (Figure 11c). MEDOC3 and AD4 also tend to overestimate CHL in 
onshore waters and have slightly more varied performance than OC3M and 
OC4S for offshore waters (Figure  11d). Case2 SDM performance is most 
similar to QAAv6 and it is noticeable that most of the other algorithms return 
overestimates in a number of cases, possibly reflecting residual issues in 
dealing with the optical complexity of the LS data set.

4.5.2. Ligurian Sea CDOM

Absorption by CDOM is strongest in the UV-blue and decreases approxi-
mately exponentially into the red-NIR (Schwarz et  al.,  2002). In Case 1 
waters, CDOM originates mainly from phytoplankton while in coastal waters 
CDOM can be highly variable in composition and concentration and can 
absorb up to 90% of sunlight between 400 and 500 nm (Bélanger et al., 2008). 
Absorption by CDOM can be derived from reflectances using both SAAs and 
empirical band ratio algorithms. In Figure 12 we compare the performance 
of the Case 2 SDM CDOM product with a selection of previously published 
CDOM algorithms including: the 2 versions of the QAA algorithm (QAAv4, 
QAAv6) discussed previously (Lee et al., 2002) and a third version (QAAZY) 
optimized for CDOM retrieval in turbid estuarine and coastal waters (Zhu & 
Yu, 2013); two band ratio algorithms (M2008, M2014) based on observa-
tions from US coastal waters (Mannino et al., 2008, 2014); and a further two 
band ratio algorithms proposed by Berthon et al. (2006) for the Adriatic Sea 
region (B_AD) and European coastal regions (B_EC) for CDOM retrieval. 
NB. The Berthon et al. algorithms recover absorption by CDOM at 400 nm 
while the rest of our CDOM values are reported at 440 nm. We have applied 
a best-fit conversion factor of 2.5 to the B_AD and B_EC data to establish 
comparability with other algorithms.

All bar one of the Case 2 SDM data points falls within the ±35% mission 
target boundary indicating robust performance for the data set from which 
the model was developed. QAAv4 performs well for offshore waters but is 
less reliable onshore, while the opposite is true for QAAv6. QAAZY appears 
to overestimate CDOM in all cases tested here. The Mannino et al. band ratio 
algorithms typically overestimate CDOM for these waters but the general 
approach appears to be reasonably robust as demonstrated by the strong 
performance of the two Berthon et al. algorithms. It seems possible that the 
differences in performance between these two sets of band ratio algorithms 
might be associated with regional differences in the data sets used to generate 
them. Overall it would appear that retrieval of CDOM with the Case 2 SDM 
is at least on a par with previously published algorithms.

4.5.3. Ligurian Sea MSS

Mineral particles are well known to be have potential to influence remote 
sensing reflectance signals in the red-NIR through relatively efficient gener-
ation of optical backscattering signals (e.g., Doxaran et  al.,  2002). Neil 

et al. (2011) derived polynomial expressions for computation of the maximum and minimum values of suspended 
mineral particles of terrigenous origin in the presence of independently varying concentrations of CHL and 
CDOM, based on Rrs667. Figure 13 shows these two relationships applied to onshore Ligurian Sea in situ Rrs(663) 

Figure 10. Comparison of estimated versus measured (a) CHL, (b) CDOM, 
and (c) MSS in onshore (black squares) and offshore (black triangles) stations, 
using the SDM operating on bb(λ)/a(λ) derived from radiometric data. Error 
bars are 95% CI of the bootstrap distributions. CHL and CDOM retrieved in 
offshore stations using the Case 1 SDM are shown as gray triangles. 1:1 lines 
are shown as solid black lines in each plot. Data shown for 23 onshore and 10 
offshore stations.
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data (in lieu of Rrs(667)) along with estimates of MSS from the Case 2 SDM. It is clear that the Case 2 SDM 
estimates of MSS are generally consistent with previous predictions of the relationship between MSS and red 
reflectance given by Neil et al., with the SDM model directly accounting for the influence of other materials on 
red reflectance rather than leaving this factor as an unknown.

4.6. Application to a Global Data Set

In the previous section the Case 2 SDM was found to perform at least as well as other existing algorithms for 
CHL, CDOM, and MSS, with the SDM approach having the additional merit of directly producing estimates for 
all three constituent simultaneously and, as shown earlier, with associated uncertainties. However it would be 
reasonable to expect that the Case 2 SDM approach would work particularly well for the data set from which it 
was derived. In this section we compare the performance of the SDM approach with other CHL algorithms using 
a global data set. The intention is to establish a more robust understanding of general algorithm performance.

Data were selected from the NOMAD data set, which is a community generated set of in situ bio-optical data 
compiled by the NASA Ocean Biology Processing Group at Goddard Space Flight Center, Maryland, USA 

Figure 11. Comparison of estimated versus measured CHL for the Ligurian Sea data set using (a) the Case 2 SDM applied 
to in situ radiometry, (b) two versions of the QAA algorithm, (c) two standard MBR CHL algorithms, and (d) two regionally 
tuned versions of standard MBR algorithms. 1:1 lines are shown as solid black lines and ±35% mission targets are shown as 
dashed lines in each plot. Squares and triangles represent onshore and offshore stations respectively. Data shown are for 23 
onshore and 10 offshore stations.
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(Werdell & Bailey, 2005). This provided ∼500 stations with CHL data available between 0 and 10 m and remote 
sensing reflectance data available at 4 wavebands (412, 440, 488, and 555 nm). Note the 650 nm band that was 
previously used in the Case 2 SDM was not available from this data set, so in what follows the Case 2 SDM oper-
ates on the 4 wavebands identified in this paragraph only. Figures 14a–14d shows estimation of CHL for the 4 
waveband version of the SDM approach along with estimates from QAAv4, OC3M, and OC4S. The Case 2 SDM 
and QAAv4 perform very similarly, with both having a tendency to underestimate CHL at high concentrations 
and to exhibit more spread than is observed with the two band ratio algorithms. This is consistent with the find-
ings reported by Brewin et al. (2015) who noted that performance of SAA algorithms was generally not as strong 
as for MBR algorithms. That said, in all cases there are large numbers of CHL estimates that fall well outside 
the ±35% mission target lines indicating that general performance levels are not ideal. Figure 14 (e and f) shows 
distributions of CDOM and MSS estimates from the Case 2 SDM. Note the log-spaced histogram bins. These 
results suggest that there is a great deal of optical complexity within this subset of the NOMAD data set and that 
the Case 2 SDM approach returns low values of CDOM and MSS which is expected as much of the data set is 
from relatively clear offshore waters. Overall it would appear that the Case 2 SDM performs similarly to other 

Figure 12. Comparison of estimated versus measured CDOM for the Ligurian Sea data set using (a) the Case 2 SDM applied 
to in situ radiometry, (b) three versions of the QAA algorithm, (c) two 2-wavelength band ratio CDOM algorithms presented 
by Manino and co-workers based on observations from the USA, and (d) two 2-wavelength band ratio CDOM algorithms 
presented Berthon and co-workers based on observations from the Adriatic Sea and from other European coastal waters. 1:1 
lines are shown as solid black lines and ±35% mission targets are shown as dashed lines in each plot. Squares and triangles 
represent 23 onshore and 10 offshore stations respectively.

 23335084, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

A
002815 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [04/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

LO PREJATO AND MCKEE

10.1029/2022EA002815

20 of 25

established algorithms for CHL and has the additional merit of providing 
plausible estimates of CDOM and MSS for regions well outside the original 
training data set.

5. Discussion and Conclusions
5.1. SDM Construction Considerations

The spectral deconvolution model presented here is a modified version of the 
model presented by Ramirez-Perez et al. (2018) with the fundamental change 
being transition from use of scattering coefficients to backscattering coeffi-
cients. This is an important modification that facilitates transfer of the SDM 
from in situ AC-9/S IOP measurements toward remote sensing applications 
where the relationship between remote sensing reflectance and the ratio of 
backscattering to absorption is particularly relevant. Recent results presented 
by Lo Prejato et al. (2020) reaffirm the potential to easily relate remote sens-
ing reflectance to bb/a in both clear oceanic and optically complex coastal 
waters. Thus this version of the SDM has been formulated to operate on the 
ratio of bb/a rather than bb and a separately as the ratio is easily derived from 
remote sensing reflectance whereas a and bb would be much more difficult 
to determine separately. There is therefore a clear path to use this SDM with 
either direct in situ measurements of absorption and backscattering or from 
either in situ or remotely sensed values of Rrs. Here we have chosen to focus 
on in situ primary data sources as a stepping stone to allow us to fully under-
stand practical performance characteristics of the SDM before tackling the 
more complicated case of remote sensed data inputs.

The approach we have developed here shares a heritage with a number of previous studies in this area, notably 
models presented by Hoge and Lyon (1996) and Wang et al. (2005). Like Hoge and Lyon, our model uses a form 
of linear matrix inversion to solve a system of linear equations. Where Hoge and Lyon solved for three parameters 
using three wavebands, we have extended the analysis to include over-constrained systems, where the expecta-
tion is that inclusion of additional wavebands provides more spectral information to improve retrieval of OSC 
concentrations. We have shown that this is indeed the case, but that the improvement is not without limitations. 
Another novel feature of our approach comes from having access to an unusually rich set of SIOPs that allows us 
to fully populate a simple bio-optical model (Equation 6). This was made possible by the particular distribution 
of stations occupied during the BP09 cruise and by the development of a careful partitioning approach outlined 
in Ramirez-Perez et al. (2018) and extended in Lo Prejato et al. (2020). As a result, our bio-optical model is fully 
based on observed SIOPs, does not rely on assumed models for spectral backscattering and does not bundle detri-
tal particle absorption with CDOM absorption for example, Wang et al. (2005) and many others. The SIOPs used 
in our SDM have the further potential advantages of (a) being based on highly accurate PSICAM measurements 
for some of the absorption coefficients, and (b) having been generated by the linear regression technique which 
reduces sensitivity to the impact of measurement uncertainties (McKee et al., 2014). Estimation of propagated 
measurement uncertainties for SIOPs further enables estimation of uncertainties for the final products of our 
SDM. The bootstrapping approach taken in this paper is simple to implement and allows us to combine uncertain-
ties on all inputs. This SDM has been developed with this aspect in mind from the outset and we believe that the 
general simplicity of the SDM construction through Equation 6 makes this particularly tractable.

5.2. Optimisation of the SDM

As was the case with the previous version presented by Ramirez-Perez et al. (2018), the new version of the SDM 
works perfectly if no errors are introduced into the data inputs. This is true for any number of wavebands from the 
minimum, equal to the number of OSCs to be retrieved, for example, Hoge and Lyon (1996), up to the maximum 
of 8 wavebands available for this study. However, incorporating realistic errors into both IOPs and SIOPs inevi-
tably introduces errors in retrieved OSCs. Unsurprisingly OSC errors are most significant when the contribution 
of the OSC in question to total IOPs is small compared to other constituents. This is an important point: given the 

Figure 13. Dashed lines show predicted upper and lower limits for the 
relationship between MSS and red reflectance taking into account the 
influence of CHL and CDOM. All bar one of the Case 2 SDM MSS 
predictions fall within these boundaries.
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broad spectral features associated with marine OSCs, there is no reason to expect to be able to accurately retrieve 
small OSC concentrations in the presence of overwhelming concentrations of other components. On the other 
hand, it is absolutely essential that OSC concentrations are provided to end users with reasonable estimates of 
uncertainties and, preferably, with information about the concentration of other components to inform judgment 
on likely data quality. The SDM approach presented here achieves both of these goals. In a similar manner, it is 
important to understand the impact of measurement uncertainties on algorithm performance. The synthetic data 
set results illustrate that measurement uncertainties may play as important a role in SDM performance breakdown 

Figure 14. Comparison of (a) Case 2 SDM CHL performance against (b) QAAv4, (c) OC3M and (d) OC4S for the subset of 
the NOMAD data set providing Rrs data compatible with the Case 2 SDM algorithm requirements. Solid lines show 1:1 and 
dashed lines represent ±35% mission targets. Distributions of Case 2 SDM (e) CDOM and (f) MSS concentrations for the 
NOMAD data set indicate that there is a wide range of optical complexity in this data set.

 23335084, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

A
002815 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [04/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

LO PREJATO AND MCKEE

10.1029/2022EA002815

22 of 25

as variability in SIOPs. Whilst many existing algorithms do breakdown in Case 2 waters due to the effects of 
optical complexity, to a large extent the SDM approach is robust. It does however remain sensitive to uncertainties 
in inputs (IOPs or radiometry), natural variability in SIOPs and the presence of additional OSCs with distinctive 
properties for example, coccolithophores. Importantly, the SDM could be adapted in future to accommodate 
additional OSCs if suitable libraries of SIOPs can be established and classification schemes developed to identify 
these occurrences.

The SDM is designed to exploit spectral information content provided by either in situ IOPs or remote sensing 
reflectance data. A naïve approach would suggest that including more spectral information would presumably 
improve retrieved data quality. However, analysis of SDM performance showed that simply increasing the number 
of wavebands does not lead to ever greater accuracy in OSC retrieval, with the spread error (%CI) plateauing for 5 
or more wavebands and the bias error (%Bias) appearing to increase at least up to the maximum of 8 wavebands 
available here. This result is consistent with others in the literature (e.g., Sathyendranath et al., 1994; Wernand 
et al., 1997; Lee & Carder, 2002) and suggests that hyperspectral data may not be necessary or even beneficial for 
retrieving this level of OSC information. Indeed, these results raise the intriguing possibility that relatively small 
numbers of wavebands could be effective for retrieving CHL, MSS, and CDOM, a result that is potentially useful 
for designing sensors for very small remote sensing platforms for example, remotely piloted aircraft and cubesats. 
However, that said, there may be potential to expand the SDM to include additional components for example, 
specific algal groups with characteristic spectral features such as cyanobacteria. In this case, access to additional 
wavebands from hyperspectral sensors would almost certainly prove useful (see e.g., Giardino et al., 2019).

A key benefit of the SDM is ability to easily propagate errors in order to provide OSC concentrations with uncer-
tainties. Computational efficiency of the SDM is largely driven by selection of an appropriate number of itera-
tions for the bootstrap process and it has been shown that this also impacts on the production of stable estimates 
of CI% and Bias% values. Optimal OSC retrieval was reached for runs using 500 iterations, but the number of 
iterations could be reduced with only minimal impact on CI% and Bias%. This is not problematic when applying 
the SDM to relatively small numbers of in situ data points, but could easily become a major consideration in the 
case of applying the SDM to remote sensing imagery. Being able to reduce the number of iterations to much 
lower values without significantly reducing data integrity is therefore an important feature for future applications.

5.3. Performance of the SDM

The SDM has been tested using both offshore (Case 1) and onshore (Case 2) data sets from the Ligurian Sea, and 
using both in situ IOP and in situ radiometric data. As Table 1 illustrates, the MAEs for each OSC are broadly 
comparable under each of these variations. Ignoring the use of the Case 2 SDM in Case 1 waters, the MAE for 
CHL is ≤ 0.6 mg m −3, the MAE for CDOM is ≤ 0.021 m −1 and the MAE for MSS is 0.18 g m −3. How useful these 
levels of accuracy are depends on the application. In the first instance it is clearly a benefit to be able to retrieve all 
three parameters simultaneously. Knowledge of the three OSCs, and knowing that performance is limited when 
the contribution of an OSC is low compared to others, helps to inform judgment of data quality. Second, provision 
of an estimate of uncertainty for each retrieved OSC concentration is a further aid to establishing data quality. 
Note that the error bars shown in Figures 8 and 10 represent 95% CIs (rather than standard deviations–therefore 
∼2x greater), and are presented to highlight that there is in fact considerable uncertainty beyond that expressed 
by the MAE values. In most (but not all) cases, the 95% CI encompasses the 1:1 line. In all cases there is no 
sign of major systematic deviations from the 1:1 line. Taking into consideration the turbid nature of the onshore 
stations, this is potentially a major achievement when considered against the performance of for example, stand-
ard blue-green reflectance ratio algorithms in turbid waters (e.g., McKee et al., 2007). It is likely that the level 
of performance presented here is of more value for Case 2 applications than for Case 1 waters, but the ability 
to provide a consistent data product across both water types may be useful as well. The fact that performance is 
similar using both in situ IOPs and in situ radiometry, despite the discrepancy between the two noted in Figure 9, 
is a very welcome sign that the approach has potential to be transferred to remote sensing applications. As demon-
strated clearly here, however, the quality of input data is crucial in determining the quality of retrieved OSCs.

Comparison of the SDM performance with other single parameter and SAA algorithms was generally favorable, 
with the SDM producing OSC estimates that were at least of similar quality for the Ligurian Sea data set from 
which the SIOPs used to populate the SDM were derived. Similar results were obtained for the NOMAD global 
data set, with the SDM performing consistently with the QAA algorithm and only a little worse that the OCx 
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algorithms. In all cases, the delivery of all three OSC concentrations and provision of associated uncertainties 
suggests that the SDM approach has general merit, particularly for optically complex coastal waters.

5.4. Future Perspectives

The SDM approach presented here has demonstrated that it is possible to retrieve information on major OSCs 
using a relatively small number of wavebands across a wide range of water types and to obtain estimates of OSC 
uncertainties in the process. The next stage of development will be to apply the technique to satellite-derived 
remote sensing reflectance data. Looking further into the future, a major attraction of the SDM approach is that it 
is based on a logical, easily understood bio-optical model that can potentially be adapted as circumstances require/
permit. The SDM approach has previously been shown to have potential to be incorporated into an adaptive 
scheme to address features such as the package effect for chlorophyll-specific absorption and natural variability 
in other SIOPs (Brando et al., 2012). It may also be possible to add additional components (e.g., cyanobacteria) 
or adapt it toward a phytoplankton functional type algorithm where the limiting factors are being able to provide 
a suitable suite of SIOPs and sufficient spectral input data to the SDM. Establishing libraries of SIOP spectra for 
different water types/OSCs and potentially further developing the solving approach to support analysis of more 
complex mixtures of OSCs (e.g., Zhang et al., 2011) are potentially fruitful lines of research to build on this work.
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