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on neighbourhood degree 
sequences of complex networks
Keith M. smith  

Network topology is a fundamental aspect of network science that allows us to gather insights into 
the complicated relational architectures of the world we inhabit. We provide a first specific study of 
neighbourhood degree sequences in complex networks. We consider how to explicitly characterise 
important physical concepts such as similarity, heterogeneity and organization in these sequences, as 
well as updating the notion of hierarchical complexity to reflect previously unnoticed organizational 
principles. We also point out that neighbourhood degree sequences are related to a powerful subtree 
kernel for unlabeled graph classification. We study these newly defined sequence properties in a 
comprehensive array of graph models and over 200 real-world networks. We find that these indices 
are neither highly correlated with each other nor with classical network indices. Importantly, the 
sequences of a wide variety of real world networks are found to have greater similarity and organisation 
than is expected for networks of their given degree distributions. Notably, while biological, social 
and technological networks all showed consistently large neighbourhood similarity and organisation, 
hierarchical complexity was not a consistent feature of real world networks. Neighbourhood degree 
sequences are an interesting tool for describing unique and important characteristics of complex 
networks.

Contemplating the roles of components in natural and man-made systems, we begin to realise their diversity. 
Take for example, the structure of an organisation. At face value, employees are assigned titles and pay-scales 
which place the workforce in a convenient hierarchy with each level comprising of equivalencies based on the 
competitive value of the work done. However, in large and multifaceted organisations the work done is often 
highly variable and it is beneficial to have employees with a diverse range of skills and talents interacting in differ-
ent ways. Network science provides a natural framework to understand relationship patterns of such complex sys-
tems and we shall here formulate and study hierarchical equivalency in terms of neighbourhood degree sequences 
of complex networks. Figure 1A provides an illustration of how neighbourhood degree sequences intuitively help 
to understand global hierarchical patterns.

The distribution of connections among nodes in complex networks, known as the degree distribution, is a key 
consideration of its topology. Predated by the study of degree sequences1, interest in degree distributions arose 
from the study of real-world networks, where it was noted that they approximated various statistical distributions 
with heavy tails2, being particularly driven by the prevalence of strong hubs in real-world networks which are not 
present, for example, in random graphs3, random geometric graphs4 and small-world models5. Pertinent random 
null models, called configuration models, have since been developed in which the degree distribution is fixed, 
allowing unbiased random controls for studying network topologies6,7.

Although often explicitly mentioned with regard to real-world networks, what is meant by concepts such as 
organisation and complexity has largely been left to intuition. In seeking to understand the complexity of real 
world networks, Smith & Escudero8 recently proposed to look at neighbourhood degree sequences. For a given 
node, its neighbourhood degree sequence was defined as the ordered degrees of nodes in its neighbourhood. 
This was based on observations that ordered networks such as regular networks, quasi-star networks, grid net-
works and highly patterned networks shared the common feature of highly homogeneous neighbourhood degree 
sequences for nodes of the same degree. Conceptualising the degree distribution as a hierarchy of nodes, they 
proposed an index called hierarchical complexity to characterise the heterogeneity of hierarchically equivalent 
(i.e. same degree) nodes. Note, the term ‘hierarchy’ in networks is also associated with the scaling of commu-
nity structure9,10. Here, it is used– in the more lexically familiar sense– with respect to levels of importance, 
where nodes of higher degree are often considered of higher importance in the network topology11. Hierarchical 
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complexity was developed in the context of electroencephalogram functional connectivity, which, in contrast 
to ordered and random systems, was found to have inordinately high levels of heterogeneity amongst its neigh-
bourhood degree sequences8. This concept has since been utilised to help understand how best to binarise EEG 
functional connectivity for topological analysis12 and has been validated in structural MRI networks13. However, 
the prevalence of such topology amongst complex networks in general is unknown. In pure mathematics, Barrus 
& Donovan independently initiated study of neighbourhood degree lists as a topological invariant more refined 
than both the degree sequence and joint degree graph matrix14, while Nishimura & Subramanya proposed to 
study neighbourhood degree lists for the combinatorial problem of changing a graph into one with given neigh-
bourhood degrees15.

That is as far as has been done with neighbourhood degree sequences to date. Yet, the intriguing insights pro-
vided by hierarchical complexity in brain networks makes a broader study of neighbourhood degree sequences 
across a broader range of domains worthwhile. This work comes after work done involving neighbouring degrees 
and centralities such as the eigenvector centrality, a centrality index which is larger depending on the central-
ities of the nodes a node is connected to16; assortativity, an index of degree-degree correlation between con-
nected nodes17; and network entropy, a measure of edgewise node degree eccentricity18. Neighbourhood degree 
sequences, however, are a completely separate consideration of networks. Most notably, rather than comparing 
nodes which are connected to each other, we compare nodes which have the same degree, irrespective of whether 
they are connected or not, regarding such nodes as hierarchically equivalent within the network topology.

In this study a number of ways to analyse neighbourhood degree sequences are proposed. Notably, indi-
ces of node heterogeneity and neighbourhood similarity are introduced. We also consider a new notion of 
multi-orderedness in a network. This is based on the observation that nodes of a given degree in an ordered 
network may have several distinct neighbourhood degree sequences. This gives rise to another index defined as 
neighbourhood organisation which measures the extent to which such multi-orderedness is present in the net-
work. We then show that the existence of multi-ordered degrees can artificially raise the network’s hierarchical 
complexity. Thus, we utilise the formulation of neighbourhood organisation to provided a version of hierarchical 
complexity which corrects for multi-ordered degrees. We also described how neighbourhood degree sequences 
have clear links with powerful and efficient subtree kernels for graph classification. The proposed indices are then 
applied to a range of network models and compared with existing classical network indices, the aim of which is 
to ascertain to what extent these indices explain unique topological properties in complex networks. They are 
also applied to 215 real world networks from various disciplines of study in order to assess the characteristics of 
neighbourhood degree sequences in the world around us and the insights these new indices offer.

Neighbourhood Degree sequences
For ki the degree of node i, the neighbourhood degree sequence, si, of node i is
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i i

k
i

1 2 i
= …

where the kj
is are the degrees of the nodes to which i is connected and such that ≤ ≤ … ≤k k ki i

k
i

1 2 i
. For example, 

the graph in Fig. 1A has four degree 4 nodes (yellow) all with neighbourhood degree sequence {3, 3, 5, 8} and four 

Figure 1. (A) How can we efficiently capture the organisation of this graph mathematically without reference to 
node placements on the plane? We can note that the neighbourhoods of nodes of a given degree are equivalent 
with respect to the degrees of nodes they connect to– e.g. all yellow nodes (degree 4) connect to the same 
number of green (degree 3), orange (degree 5) and red (degree 8) nodes. Thus neighbourhood degree sequences 
appear as a promising avenue. (B) Illustration of a multi-ordered degree graph whose equal-degree nodes are 
organised into two distinct classes with different degree sequences. (C) Illustration of a subtree of height 2 for 
node i in panel A. The number of nodes at height 1 is the degree of i, while for a node at height 1, its degree is the 
the number of nodes at height 2 extending from it, all captured by i’s neighbourhood degree sequence, si.
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degree 5 nodes (orange) all with neighbourhood degree sequence {3, 4, 5, 5, 8}. In the following we shall consider 
a number of ways to study these sequences.

Node heterogeneity. One way to characterise neighbourhood degree sequences would be to employ the 
same methods to characterise degree distributions and then average over all nodes. As a pertinent example of 
this, a common index of graph heterogeneity is the degree variance v = var(k)19. We can then define node hetero-
geneity, Vn, as the average variance of neighbourhood degree sequences of a graph for all nodes of degree greater 
than 1:

V G
n

s( ) 1 var( )
(2)

n
i k

i
s t 1i

∑= .
. . >

Of course, it is then interesting to understand how average node heterogeneity compares to graph heteroge-
neity, i.e. comparing local and global heterogeneities of a graph. To do this we can simply divide (3) by v, giving
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High values of this measure tell us that nodes tend to be connected to nodes of homogeneous degrees, given 
the degree distribution, and low values tell us the opposite. Specifically, if this value is below 1, the degree variance 
within the neighbourhoods is on average less than the global degree variance, indicating that the nodes have more 
homogeneous neighbourhood degrees. It is worth highlighting the distinction between this and assortativity, 
which seeks to measure the similarity of degrees of connected nodes. Node heterogeneity is a measure of the 
similarity of the degrees of all neighbouring nodes, irrespective of the degree of the node itself.

Note that v is clearly minimal for regular graphs and is known to be maximal for quasi-star and quasi-complete 
graphs for any given number of nodes and edges20. On the other hand Vn is zero for regular graphs but is also 
small for quasi-star and quasi-complete graphs. For instance, the star graph consists of one node connected to all 
other nodes and no other edges. Thus it has one n − 1 degree node with degree sequence {1, 1, …, 1} and n − 1 1 
degree nodes with degree sequence {n − 1}. Clearly, these all have zero variance, giving Vn = 0 for the star graph. 
This is interesting because, while some believe star graphs should have maximum heterogeneity21, Vn points at a 
possible different view. The degree distribution of a star graph is just 1 node away from being completely regular– 
take the dominant node out and you have an empty graph (redundantly regular). Heterogeneity could perhaps be 
alternatively formulated in the sense that removing or adding nodes does not relegate the graph to being regular.

Neighbourhood similarity. The other way of characterising neighbourhood degree sequences we shall con-
sider is to compare all neighbourhood degree sequences of equal length. Indeed, this is the perspective employed 
to formulate hierarchical complexity, looking at the element-wise variance of equal-length neighbourhood degree 
sequences. Another, fairly more simple characteristic can be posed by considering the number of nodes in the 
network whose neighbourhood degree sequence matches that of another node in the graph. We call this neigh-
bourhood similarity (reflecting the concept of geometric similarity) and, using the Kronecker delta function δ(x, 
y) which is 1 if x = y and 0 otherwise, write

δ δ
=

∑ − ∑
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Notice, this uses the δ function twice. The first time is to find the number of matching neighbourhood degree 
sequences for node i. The second delta is used to determine if there are any matching sequences, i.e. seeing if the 
sum of the first δ s is different from 0. Since this is a negation (δ returns 0 if there are any matches), we then have 
to subtract the answer from 1 to provide the answer to whether any match exists for node i. Summing over all 
i and dividing by n provides the proportion of nodes which have at least one matching neighbourhood degree 
sequence. It is clear that 0 ≤ S ≤ 1 for all graphs, since it concerns a fraction of the network nodes. It certainly 
attains 1 for regular graphs. However, we prove the following result with respect to graph symmetry on the plane, 
establishing the link between neighbourhood similarity and graph symmetry.

Proposition 1: Let G be a graph which can be arranged on the plane such that G has mirror or rotational symmetry 
whose axis does not pivot on any node. Then S(G) = 1.

Proof: Let si be a neighbourhood degree sequence for general node i. Then the node, j, in the position symmetric 
to i with respect to the axis of symmetry has neighbourhood degree sequence sj and has the same degree as i. 
Further, each node in the neighbourhood of i, pi, also has a node in position symmetric to pi with respect to the 
axis of symmetry, pj, and these nodes are connected to j and such that k kp pi j

= , by symmetry. Thus si = sj and 
since si was arbitrary and no nodes lie on the axis of symmetry itself, S(G) = 1, as required.

Thus, neighbourhood similarity of a graph is indeed related to the planar symmetry of a graph. That being 
said, the opposite is not true– not all values S(G) = 1 are attained by planar symmetric graphs, as can be quickly 
seen by regarding non-symmetric regular graphs such as the Frucht graph22.

Hierarchical complexity: oversights of multi-ordered degree graphs. Hierarchical complexity 
is an index developed with the aim to be low for all highly ordered graphs and graphs with simple generative 
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mechanisms. Simple in the sense that one needs only a few rules to compute the graph such as in random graphs 
(edges exist with uniformly random probabilities) or random geometric graphs (nodes are randomly sampled 
on a n-D Euclidean space and then connected based on distances in the space). In this sense, one can describe 
precisely how one can expect the graph and subsamples of the graph to behave. On the other hand, attempts to 
model real world networks indicates that a larger and more a complicated set of rules would be required to gen-
erate complex network-like topologies where subsamples of the graph (such as node neighbourhoods) would be 
less likely to show similar behaviours13. The hypothesis is that nodes of a given degree in highly ordered graphs 
play equivalent roles in the topology, which implies that they have the same or similar neighbourhood degree 
sequences. However, what fails to be taken account of in its formulation is the possibility to have a high degree 
of order in which nodes of a given degree can be split into different groups of identical sequences. For example, 
Fig. 1B shows a graph with degree 1 and 6 nodes. The six-degree nodes fall into one of two sequences {1, 1, 6, 6, 6, 
6} and {6, 6, 6, 6, 6, 6}, as illustrated by the green and orange nodes, respectively. One-degree nodes are connected 
to either one- or six-degree nodes, as illustrated by the grey and yellow nodes, respectively. We call such a graph 
here a multi-ordered degree graph.

Definition 1: Let qp be the number of all p-length neighbourhood degree sequences and s{ }p i k pi
σ = =  be the set of 

(unique) p-length neighbourhood degree sequences. Then p is a multi-ordered degree of the graph if 1 < |σp| ≪ qp. A 
graph for which 1 < |σp| ≪ qp or, otherwise, |σp| = 1 for all p is called a multi-ordered degree graph.

Neighbourhood organisation. We can pose a measure for this sense of multi-ordered degrees using 
neighbourhood degree sequences. We could simply divide the number of unique p-length sequences by the total 
number of p-length sequences, giving

q
,

(5)

p

p

σ| |

however this is the same no matter how many unique degree sequences occur more than once. Consider the fol-
lowing. Let cpj denote the number of neighbourhood degree sequences of length p in G that have equivalency to 
sj ∈ σp. Then, for example, take qp = 5 and |σp| = 3. We could have cp1 = 1, cp2 = 1 and cp3 = 3 or cp1 = 1, cp2 = 2 and 
cp3 = 2. Both of these options would have the same value of (5), yet the latter has better qualities of being multiply 
ordered than the former since there are two distinct sequences which occur more than once, rather than just the 
one in the former case. We can offset (5) by considering the differences between the number of p-length 
sequences, qp, and the number of occurrences of each (unique) neighbourhood degree sequence in σp. Then 
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This is maximal, qp(qp − 1), when all p-length neighbourhood degree sequences are unique and zero (i.e. min-
imal) when all p-length neighbourhood degree sequences are equal. We can thus normalise this term as
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Just taking (6) would also not reflect the multi-order requirement. It is really the combination of (5) and (6) 
that is required to realise a measure of multi-ordered degrees– elements of σp should occur frequently and at the 
same time the number of unique sequences should be as large as possible. Combining (5) and (6), then, we get
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Taking the mean of this over all degrees and subtracting from 1, we have the neighbourhood organisation 
coefficient
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where 2 is the set of degrees of the graph taken by at least 2 nodes.

Updated hierarchical complexity. Given the above consideration of multi-ordered degrees and the neigh-
bourhood organisation index, we can formulate an update to hierarchical complexity that takes into account 
multi-ordered degrees. In the terminology of this paper, hierarchical complexity can be written
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where p  is the set of nodes of degree p and μp(j) is the mean of the j th entries of all p length neighbourhood 
degree sequences.

To correct for multi-ordered degrees in this index, we can implement the term ωp inside the first summand 
in to give

D D V
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When ωp is small, multi-orderedness is present in the p degree nodes and thus the value of hierarchical com-
plexity for these degrees is suppressed and vice versa. Computing this for the example in Fig. 1A we obtain 
RΩ = 0.0029– a 65 fold decrease from R and a more reasonable expected value of neighbourhood degree sequence 
diversity.

Link to the graph isomorphism problem. The Weisfeiler-Lehman graph isomorphism test23 is a pow-
erful method for distinguishing labelled graph topologies which holds for almost all graphs24. Based on this test, 
subtree kernels have been produced for assessing graph similarity in machine learning approaches which are 
highly efficient compared to other successful kernels25. Indeed, these subtree kernels have been shown to outper-
form the competition when implemented into a graph neural network approach while mapping similar graph 
topologies to similar embeddings in a low-dimensional space26.

The subtree of node i of height h constructs a tree rooted at i which extends out to i’s neighbours and then out 
again to i’s neighbours’ neighbours and so on for h steps, see Fig. 1C. The kernel is a reduction of these subtrees to 
identifying labels which are then compared between two graphs to check their similarity. Subtrees of height h = 2 
or 3 have been shown to achieve best performance in most cases25.

The link to neighbourhood degree sequences then can be established by realising that the information in a 
subtree of height 2 in an unlabelled graph is completely captured by the node’s neighbourhood degree sequence. 
The length of the neighbourhood degree sequence tells us how many nodes are at height 1 of its subtree kernel 
(i.e. the degree of the node), while the entries of the sequence tell us how many nodes at height 2 are linked to each 
node at height 1 (the degrees of each neighbouring node).

Methods
Real-world networks. Thirty networks were obtained from the network repository27 from different research 
domains. Descriptions are kept to a minimum. For further details, we refer the reader to the references.

Social networks. The classical Zachary’s karate club network28, a dolphin social network29, the Advogato net-
work30; the anybeat network; the Hamsterster network31; and a wikivote network32.

Biological networks. The macaque cortex network freely available from the BCT was used33. This comes as a 
binary, directed network. To make this undirected we simply took all connections as undirected connections 
to signify whether or not any connection exists between two regions. We also look at the undirected c. elegans 
metabolic network34; bioGRID protein networks of the fruitfly, mouse and a plant; a yeast protein interaction 
network35; and a mouse brain network36.

Ecological networks. The everglades, florida and mangwet ecosystems networks37.

Economic networks. The global city network is a network of economic ties between cities38. This is a weighted 
network which was binarised at 20% density (20% of largest weights kept) for our analysis. We also used the 
beacxc and beaflw economic networks.

Interaction networks. A university email network39; a Dublin infection network40; and an enron email network41.

Infrastructure networks. A US and Canada airport network found in the Graph Algorithms in Matlab Code 
toolbox42; the euroroad network43; and a grid power network5.

Web networks. The EPA hyperlink network44; the edu hyperlink network45 and the indochina 2004 hyperlink 
network46.

Technological networks. A router network.
In addition, we study a benchmark dataset of 406 real world networks used in47 from the Colorado Index of 

Complex Networks48. This includes 186 static networks of which just 3 overlap with the above (dolphin social 
network, Macaque cortex and the uni email network). It also includes two temporal networks relating to the same 
data of organisation affiliations each with 111 samples taken monthly from May 2002 until August 201149. The 
first of these is a network of organisation co-affiliations of directors while the other is a network of co-directorship 
among organisations.

Models. Configuration models. Random graphs with fixed degree distributions7 were generated using a 
freely available algorithm in the Brain Connectivity Toolbox33. Fifty randomisations were computed for each real 
world network.

https://doi.org/10.1038/s41598-019-44907-8


6Scientific RepoRts |          (2019) 9:8340  | https://doi.org/10.1038/s41598-019-44907-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Classical global network indices. Clustering coefficient. The global clustering coefficient, C, measures 
the ratio of closed to open triples in the network. A triple is a path of length two, {(i, j), (j, k)}, where it is closed if 
(k, i) also exists in the network and open otherwise. It is a measure of network segregation.

Degree variance. The degree variance, v = var(k), is a measure of network heterogeneity19. Here we use the nor-
malised version50.

Characteristic path length. The characteristic path length, L, is the average of the shortest paths existing between 
all pairs of nodes in the network. It is known as a measure of network integration.

Assortativity. Assortativity, r, is a correlation of the degrees of nodes which are connected in the network. It is 
positive if similar degree nodes are generally connected to one another, negative if similar degree nodes are gen-
erally not connected to one another and zero if there is no pattern of correlation17.

Modularity. Modularity, Q, measures the propensity of nodes to form into highly connected communities 
which are less connected to the rest of the network51.

experiments
The supplementary material contains results of indices of a variety of different models– random graphs3, random 
geometric graphs4, small-world models5, scale-free models52 and random hierarchy models8. The main article 
shall focus on experiments using the most relevant data of all– over 200 real world networks.

Index correlations. Spearman correlations were computed between the proposed indices alongside classical 
network indices across all real networks, Fig. 2. We used Spearman’s correlation since the values clearly did not 
follow a normal distribution (i.e. Pearson’s correlation would not have been valid). The red box contains all cor-
relations between neighbourhood degree sequence indices and classical network indices. It is clear that there are 
no observable high correlations between proposed indices and classical indices, providing strong evidence that 
indeed these new indices explain previously unrealised properties of network topology. Unsurprisingly, R and RΩ 
were highly correlated, although the correlation between Ω and RΩ was only low to moderate. But the fact there 
were no strong correlations other than between R and RΩ (>0.8) suggests there is a rich amount of information to 
be obtained from neighbourhood degree sequences.

On the other hand, among classical network indices, strong correlations were found to exist between the L, 
V and Q, indicating that these indices all pointed mostly towards a single topological property of the networks. 
We suggest that this property is likely to be about the dominance of hub nodes, since these nodes are those which 
enable general short path lengths, while Newman’s modularity is known to be confounded by hubs53.

Although high correlations which are above the standard of 0.8 have been highlighted, there are notable mod-
erate correlations between L and S (0.6477), Q and S (0.6419) and V and R (0.6274). However, the average correla-
tion across all metric pairs has a magnitude of 0.4283, which would be regarded as a low-to moderate correlation. 
We then have to expect that measurements of a network will likely have some degree of correlation simply due to 
the fact that they are enacted in measuring the same topologies and since complex networks tend to show broadly 
consistent features in comparison with random null models. Nonetheless, the standard deviation of the metric 

Figure 2. Absolute values of index correlations (Spearman’s correlation coefficient) for combined values of 
small-world, scale-free, random, random geometric, and random hierarchy network models and the thirty 
real world networks considered (a total of 150 samples). Within the red square are the correlations between 
neighbourhood degree indices S– neighbourhood similarity, Vn– node heterogeneity, Ω– neighbourhood 
organisation, R– hierarchical complexity, RΩ– hierarchical complexity corrected for multi-ordered degrees, and 
classical network indices C- transitivity, v– degree variance, L– characteristic path length, r– assortativity, and 
Q– modularity.
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correlation magnitudes is 0.2269, putting one standard deviation above the mean at 0.6552 of which none of the 
moderate correlations previously mentioned lie above. Thus, although in usual terms these are moderate correla-
tions, with respect to complex network metrics they appear to be within reasonable limits to suggest they broadly 
measure different network properties.

It is also worth recalling that correlation does not mean causation. This means that the general tendency of 
complex networks to exhibit correlated metrics does not necessarily mean they are measuring the same or similar 
property in the network, as it may be that networks which have greater modularity have greater characteristic 
path lengths by virtue of an underlying joint causation.

Characteristics of real-world networks. All proposed indices were applied to the thirty real-world net-
works of the Network Repository and the 181 non-overlapping static networks of the ICON, alongside median 
values taken over the two temporal networks. In addition, ten realisations of configuration models with fixed 
degree distributions were generated for each real-world network and we compared the neighbourhood indices 
of the real networks with the average values obtained from configuration models. The results are described for 
each Network Repository network in Table 1. Scatter plots of all real network values against configuration model 
values are show in Fig. 3.

Although all indices found significant differences between real networks and configuration models, Table 2, 
first row, the greatest general differences found were in neighbourhood similarity, p = 4.74 × 10−28 with a paired 
ranked effect size of 0.5320, and in neighbourhood organisation, p = 1.66 × 10−23 with a paired ranked effect size 
of 0.4841. This was clearly observed in Fig. 3, first and centre plots, respectively. On the other hand, hierarchical 
complexity was only weakly greater in real networks than their configuration models. This was even less con-
vincing when we took account of multi-orderedness, increasing the p-value to just below 0.05. This is interesting 
in light of the work done on hierarchical complexity of the human brain function and structure. Hierarchical 

Type Name S Vn Ω R RΩ Size Density

s

karate club 0.324 (0.062) 1.714 (2.081) 0.279 (0.062) 0.296 (0.318) 0.190 (0.269) 34 0.1390

hi-tech firm 0.111 (0.044) 0.811 (0.993) 0.119 (0.066) 0.181 (0.183) 0.176 (0.157) 36 0.1444

dolphins 0.113 (0.111) 0.669 (0.736) 0.076 (0.062) 0.045 (0.044) 0.040 (0.027) 62 0.0841

wikivote 0.245 (0.249) 4.299 (4.594) 0.044 (0.042) 0.155 (0.145) 0.139 (0.121) 889 0.0074

hamsterer 0.455 (0.124) 3.237 (4.581) 0.153 (0.012) 0.218 (0.129) 0.156 (0.120) 2426 0.0057

advogato 0.394 (0.176) 16.977 (20.231) 0.016 (0.011) 0.607 (0.457) 0.569 (0.420) 6551 0.0019

anybeat 0.593 (0.566) 333.632 (418.489) 0.017 (0.014) 15.561 (10.581) 11.164 (7.276) 12645 0.0006

enron email 0.042 (0.025) 1.657 (1.711) 0.049 (0.019) 0.176 (0.151) 0.168 (0.145) 143 0.0614

dublin contact 0.015 (0.011) 0.960 (1.137) 0.014 (0.008) 0.074 (0.044) 0.071 (0.044) 410 0.0330

uni email 0.148 (0.144) 1.339 (1.559) 0.029 (0.027) 0.033 (0.027) 0.030 (0.023) 1133 0.0085

b

mouse brain 0.000 (0.000) 0.937 (0.930) 0.630 (0.597) 0.024 (0.016) 0.024 (0.016) 213 0.7160

macaque cortex 0.050 (0.003) 1.116 (1.291) 0.039 (0.003) 0.436 (0.302) 0.354 (0.317) 242 0.1047

celegans metabolic 0.265 (0.015) 18.957 (17.647) 0.209 (0.017) 2.410 (2.513) 1.757 (2.502) 453 0.0198

mouse bioGRID 0.849 (0.792) 4.652 (11.464) 0.271 (0.173) 0.229 (0.206) 0.111 (0.133) 1455 0.0015

plant bioGRID 0.675 (0.579) 1.363 (3.135) 0.122 (0.064) 0.050 (0.027) 0.040 (0.022) 1745 0.0020

yeast protein 0.677 (0.664) 2.603 (3.694) 0.153 (0.136) 0.014 (0.016) 0.007 (0.013) 2114 0.0010

fruitfly bioGRID 0.404 (0.384) 3.798 (3.775) 0.039 (0.024) 0.022 (0.016) 0.019 (0.014) 7282 0.0009

everglades eco 0 (0) 1.300 (1.286) 0.174 (0.178) 0.323 (0.164) 0.323 (0.165) 69 0.3762

mangwet eco 0.062 (0) 1.433 (1.323) 0.189 (0.133) 0.402 (0.281) 0.357 (0.239) 97 0.3106

florida eco 0.070 (0) 1.569 (1.642) 0.087 (0.029) 0.396 (0.192) 0.362 (0.190) 128 0.2553

tr
US airports 0.022 (0) 0.976 (0.834) 0.076 (0.048) 1.578 (0.350) 1.552 (0.347) 456 0.3658

euroroad 0.906 (0.912) 1.169 (1.327) 0.509 (0.550) 0.001 (0.001) 0.000 (0.000) 1174 0.0021

en

global cities 0.309 (0.249) 0.620 (0.606) 0.417 (0.356) 0.029 (0.034) 0.025 (0.035) 55 0.2000

beacxc 0.010 (0.009) 1.332 (1.289) 0.008 (0.008) 1.238 (0.216) 1.238 (0.200) 506 0.332

beaflw 0 (0) 1.316 (1.285) 0 (0) 0.839 (0.226) 0.839 (0.221) 507 0.352

in

EPA hyperlink 0.958 (0.767) 12.764 (7.723) 0.568 (0.113) 0.054 (0.045) 0.053 (0.070) 3031 0.0014

edu hyperlink 0.538 (0.524) 10.752 (10.903) 0.056 (0.039) 0.073 (0.086) 0.029 (0.031) 4772 0.0008

indochina hyperlink 0.940 (0.262) 8.608 (5.344) 0.509 (0.029) 0.029 (0.014) 0.016 (0.012) 11358 0.0007

t
techrouters 0.442 (0.376) 2.069 (3.254) 0.053 (0.028) 0.077 (0.040) 0.071 (0.034) 2113 0.0030

power grid 0.862 (0.861) 1.314 (1.514) 0.310 (0.310) 0.001 (0.001) 0.001 (0.000) 4941 0.0005

Table 1. Neighbourhood degree sequence characteristics of 30 real-world networks from the Network 
Repository. Bracketed values are the means for ten realisations of configuration models. Underneath are the 
p-values for Wilcoxon signed rank tests and their effect sizes between real and edge-randomised values for 
each index. Legend: s- social, b-biological, tr- transportation, en- economic, in- informational, t- technological. 
S- neighbourhood similarity, Vn- relative node heterogeneity, Ω- neighbourhood organisation, R- hierarchical 
complexity, RΩ- hierarchical complexity update.
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complexity was not a consistent feature of real world networks and can thus be conjectured as a special feature of 
brain networks, where a great diversity of functional roles is present13.

Tentatively, hierarchical complexity also appears to be a strong property of ecological networks. We only stud-
ied three such networks here, but all had substantially higher hierarchical complexity than expected for their 
degree distributions, while other characteristics are not notably different from the expected values, Table 1.

We then looked at neighbourhood degree sequence properties among different network classes. We applied 
Wilcoxon sign rank tests, as before, but this time restricted to classes and subclasses of networks, see47 for more 
details. Results are shown in Fig. 4. Greater neighbourhood organisation and similarity were found consistently 
among all classes with a high enough statistical power. On the other hand, technological networks, including dig-
ital circuit networks failed to find any difference in neighbourhood heterogeneity between real networks and their 
configuration models, suggesting a general topological difference between technological networks and biological 
and social networks, particularly. Interestingly, technological networks (including digital circuit networks) were 
found to have less hierarchical complexity than their configuration models. We expect that this is to do with a 
higher degree of order present in digital circuit networks, where different components connect in limited ways, 
constricted by the logical ordering of electronics. It was also very noticeable that the difference of hierarchical 
complexity in biological and social networks dropped away when updating for multi-orderedness, suggesting that 

Figure 3. Scatter plots (log-log scale) of real network index values against average values for configuration 
models. Real world networks have generally well organised neighbourhoods for their degree distributions. They 
also show a tendency towards hierarchical complexity, although there is a strong drop in statistical significance 
when taking into account multi-ordered degrees.

p-value 4.74 × 10−28 6.07 × 10−19 1.66 × 10−23 9.25 × 10−4 0.048

effect size 0.5320 −0.4308 0.4841 0.1605 0.0957

Table 2. Statistical differences between neighbourhood degree sequence characteristics of 213 real-world 
networks. Shown are the p-values for Wilcoxon signed rank tests and their effect sizes between real and edge-
randomised values for each index.

Figure 4. The p-values of Wilcoxon sign rank tests of the statistical difference between network indices for 
classes of real networks and their configuration models.
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multi-orderedness is a distinct feature of biological and social networks. In biological networks, this appeared 
to be driven by protein networks, where food webs and connectomes were not found to be more hierarchically 
complex than configuration models even from the original definition. The fact that connectomes of animals (3 
cat, 5 primate, 2 macaque, 2 nematode, 2 visual cortical neuron level networks in human) were not found to have 
a general property of hierarchical complexity again suggests the specialness of this feature in the macro-level 
human brain particularly13 and hints towards possible links with intelligence.

Neighbourhood organisation in Norwegian director co-affiliation temporal networks. In a spe-
cific example of revealing new insights into networks using these methods, we undertook an analysis of the two 
temporal networks included in the ICON corpus. These were monthly sampled social networks of Norwegian 
company directors, where edges between directors appeared where the two were affiliated with at least one com-
pany, and concurrently sampled Norwegian company networks where edges existed where those companies 
shared a director49. Both spanned the same time period from May 2002 to August 2011 and the significance of the 
data was that, during this time period, legislation was passed to ensure proportional representations of women in 
directorships to counteract structural inequalities49. From an organisational standpoint, it stands to reason that 
this may cause a fairly dramatic disruption to these networks. Figure 5 shows neighbourhood organisation over 
time for both networks alongside that of their configuration models constructed at each time point.

It is striking that while the company network maintained similar levels of neighbourhood organisation 
throughout the period, the neighbourhood organisation of the director network steadily decreased throughout 
the period from roughly 0.8 down to around 0.4 (coinciding with company network levels) by mid 2008 where 
it stayed until the end of the sampling. No particular trends were notice in either of the configuration models. 
Looking more closely at the director network trend, it was apparent that the decrease in neighbourhood organisa-
tion appeared almost stepwise in two year cycles with steps down around May 2004, 2006 and 2008. This validates 
the hypothesis that the overhaul in directorships in a short space of time contributed to a substantial disruption 
to the neighbourhood organisation of the network. Although it is beyond the scope of this study, it would be of 
interest to seek out explanations for this trend as well as possible correlations with this phenomenon and other 
factors.

Limitations and Future Work
There is significant scope to extend and improve on these proposed methods. A lot of the methods developed 
here depend on comparing nodes of the same degree, however it would be of great relevance to have this property 
more relaxed so that comparisons can be done across nodes of similar but not necessarily identical degrees. This 
is particularly the case for real-world and configuration models where the greater spontaneity of connections 
means that nodes which exhibit similar properties may differ in degree by one or two connections. Furthermore, 
this may help to create more reliable indices with less variability within populations.

We demonstrated a link between neighbourhood degree sequences and Weisfeiler-Lehman graph subtree 
kernels25 which provide powerful graph learning results26 based on long-standing graph isomorphism results23. 
It would be of high interest to undertake a detailed study of the relevance of the neighbourhood degree sequence 
analyses for interpreting the embedding space of these graph classification approaches as network phenomena. 
At the same time, this link hints that analysing the diversity and structure of neighbourhood degree sequences 
within a network– such as hierarchical complexity and neighbourhood organisation– is indeed a very powerful 
and efficient way to describe the topological similarity within a network. Further detailed work is required to 
substantiate this conjecture.

Conclusion
We introduced several methods to understand complex networks through neighbourhood degree sequences. 
These targeted key concepts such as similarity and symmetry, organisation, complexity and heterogeneity. The 
developed network indices were not found to be strongly correlated with each other nor with classical network 
indices over 215 real world networks, indicating that neighbourhood degree sequences offer a rich and unique 
branch of analysis. We found that neighbourhood similarity and neighbourhood organisation were consistent 
general characteristics of complex networks. Evidence suggested that the hierarchical complexity evident in the 
human brain was not a general property of animal connectomes. Also, neighbourhood organisation was found 

Figure 5. Temporal progression of neighbourhood organisation in the director-organisation affiliation 
networks.
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to decrease over time in a company director network where the composition of directors went through major 
alterations, while neighbourhood organisation in the company network remained steady. It is expected that this 
study will act as a springboard for new methods and applications relating to neighbourhood degree sequences, 
revealing important insights into networks across various disciplines.

Data Availability
The real data used in the manuscript were obtained freely online as noted in section III.A. Code for computing 
the network models and novel indices are available on the Open Science Framework at https://doi.org/10.17605/
OSF.IO/W7BK6.
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