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Abstract

There is increasing interest in using data-driven unsupervised methods to

identify structural underpinnings of common mental illnesses, including major

depressive disorder (MDD) and associated traits such as cognition. However,

studies are often limited to severe clinical cases with small sample sizes and

most do not include replication. Here, we examine two relatively large samples

with structural magnetic resonance imaging (MRI), measures of lifetime MDD

and cognitive variables: Generation Scotland (GS subsample, N = 980) and

UK Biobank (UKB, N = 8,900), for discovery and replication, using an
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exploratory approach. Regional measures of FreeSurfer derived cortical thick-

ness (CT), cortical surface area (CSA), cortical volume (CV) and subcortical

volume (subCV) were input into a clustering process, controlling for common

covariates. The main analysis steps involved constructing participant K-nearest

neighbour graphs and graph partitioning with Markov stability to determine

optimal clustering of participants. Resultant clusters were (1) checked whether

they were replicated in an independent cohort and (2) tested for associations

with depression status and cognitive measures. Participants separated into two

clusters based on structural brain measurements in GS subsample, with large

Cohen’s d effect sizes between clusters in higher order cortical regions, com-

monly associated with executive function and decision making. Clustering was

replicated in the UKB sample, with high correlations of cluster effect sizes for

CT, CSA, CV and subCV between cohorts across regions. The identified clus-

ters were not significantly different with respect to MDD case–control status in
either cohort (GS subsample: pFDR = .2239–.6585; UKB: pFDR = .2003–.7690).
Significant differences in general cognitive ability were, however, found

between the clusters for both datasets, for CSA, CV and subCV (GS subsample:

d = 0.2529–.3490, pFDR < .005; UKB: d = 0.0868–0.1070, pFDR < .005). Our

results suggest that there are replicable natural groupings of participants based

on cortical and subcortical brain measures, which may be related to differences

in cognitive performance, but not to the MDD case–control status.

KEYWORD S
clustering, cognition, machine learning, major depressive disorder, Markov stability,
structural neuroimaging

1 | INTRODUCTION

Major depressive disorder (MDD) is a heritable and dis-
abling psychiatric condition associated with depressed
mood and changes in cognitive function (Malhi &
Mann, 2018), resulting in a significant reduction in the
quality of life and a substantial burden on the individual,
family and society. Many previous studies have reported
structural and functional brain alterations associated
with depression (Drevets et al., 2008; Jiang et al., 2019).
Moreover, psychiatric conditions (including MDD) have
been shown to be associated with cognitive alterations
(de Nooij et al., 2020). Both psychiatric conditions and
cognitive functions are found to have underlying neuro-
biological mechanisms. With recent advances in brain
imaging, computational as well as mathematical tech-
niques, there is increasing interest in developing objec-
tive measures that could help classify MDD status and
associated traits such as cognition using neuroimaging
data. Studies from many different research groups have
indicated structural brain differences in MDD using large
robust samples. MDD-related cortical thinning was found

in orbitalfrontal cortex (Schmaal et al., 2017), medial pre-
frontal cortex (Treadway et al., 2015), temporal (Zhao
et al., 2017), subgenual anterior cingulate cortex
(Anderson et al., 2020), lingual gyrus (Suh et al., 2019),
precentral (Bos et al., 2018) and par orbitalis (Merz
et al., 2018) regions. Some studies also reported lower
surface areas in lingual, fusiform, parahippocampal gyrii
(Couvy-Duchesne et al., 2018) and subcallosal regions
(Wei et al., 2020), as well as cortical volume reduction in
prefronal cortex, orbitalfrontal cortex (Grieve
et al., 2013), subcallosal regions (Wei et al., 2020), tempo-
ral pole, insula lobe (Amidfar et al., 2020) and subgenual
anterior cingulate cortex (Niida et al., 2019). Although
some research indicated MDD-related reduction in thala-
mus (Schmaal et al., 2016; Webb et al., 2014; Ye
et al., 2020), amygdala (Qi et al., 2018) and hippocampus
(Nugent et al., 2013), the MDD case–control volumetric
differences in subcortical regions have been found to be
insignificant in some other studies (Bos et al., 2018; Shen
et al., 2017). Furthermore, white matter microstructure
(Chen et al., 2017; Shen et al., 2017; van Velzen
et al., 2020), functional connectivity (Qiao et al., 2020;
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Ran et al., 2020) and abnormalities were also found in
MDD patients. Although MDD-related brain differences
were found in several literatures, these studies usually
reported small to very small effect sizes. Previous
machine learning (ML) studies with structural brain fea-
tures also show potential for unbiased diagnostic classifi-
cation (Lebedeva et al., 2017; Patel et al., 2015; Qiu
et al., 2014). Features derived from structural magnetic
resonance imaging (MRI) have shown promise for MDD
case–control classification, with linear or non-linear
supported vector machine classifiers achieving accuracies
of >70% (Gao et al., 2018). However, the ability of ML to
determine case–control status using such features
remains uncertain, especially when most existing studies
have been conducted on relatively small datasets
(N < 100), with limited independent replication. In addi-
tion, the majority of existing studies focus on clinically
ascertained cases, and therefore the results may not be
generalisable to population or community-based samples
(Stolicyn et al., 2020).

While supervised learning methods focus on the core
question of whether differences in brain measures char-
acteristic of MDD are sufficient to accurately classify
MDD cases from healthy controls, unsupervised learning
methods focus on determining whether natural group-
ings based on brain differences are relevant for MDD. We
considered this as a potentially useful approach, because
results from unsupervised learning methods could in turn
help us further refine and better understand the disorder.
Moreover, clustering has been shown to be an important
tool in other areas of medicine, such as in understanding
Alzheimer’s disease (Alashwal et al., 2019) and different
psychiatric disorders (Marquand et al., 2016). Recently,
other studies have also attempted similar unsupervised
clustering analysis approaches on structural (Zhou
et al., 2019) and functional imaging data (Drysdale
et al., 2017; Tokuda et al., 2018) as a way to identify
potential imaging-based data-driven depression subtypes.

In the current study, we applied unsupervised spec-
tral clustering, as an exploratory approach, to data from a
relatively large sample of well-characterised individuals
(MDD cases and controls drawn from a community-
based sample, Generation Scotland (GS) (Smith
et al., 2012), with structural imaging measures, depres-
sion phenotyping and cognitive data). Our rationale was
to explore if the effects are observable using unsupervised
spectral clustering. Our aim was to identify natural
groupings of individuals, characterised by maximally dis-
tinct patterns of structural brain properties. We then
attempted replication of the clustering in an independent
sample with imaging data (UK Biobank [UKB], Miller
et al., 2016), using regional between-cluster effects as a
basis for evaluating replication. Finally, we investigated

whether these natural imaging-based groupings are
related to distinct clinical and cognitive features of the
participants, focussing on those phenotypes that are con-
sistent across cohorts.

Participant graphs were constructed for each
FreeSurfer-derived structural metric of cortical thickness
(CT), cortical surface area (CSA), cortical volume
(CV) and subcortical volume (subCV) subsets separately.
Firstly, imaging variables were controlled for age, sex,
intracranial volume (ICV) and MRI site and then
normalised. K-nearest neighbour (k-NN) graphs were
then constructed based on pairwise distances between
each pair of participants, and finally clustering was con-
ducted using a dynamic graph-based Louvain modularity
algorithm (Blondel et al., 2008). This was chosen to opti-
mise the Markov stability (Schaub et al., 2012) as a mea-
sure of the clustering quality instead of the standard
modularity measure (Newman, 2006), which has been
shown to result in over-partitioning for graphs with
strong local structure, such as the k-NN graph (Schaub
et al., 2012). By optimising Markov stability, large com-
munities can be revealed at longer Markov times, thus
solving the problem of overpartitioning. As such, this
method can reveal stable natural groupings within a
cohort.

Our main aims were (1) to determine whether there
was a natural clustering of participants based on struc-
tural imaging features and whether these were replicated
in an independent cohort and, as an exploratory step,
(2) to assess whether the clustering results were associ-
ated with depression status or cognitive features in both
cohorts.

2 | METHODS AND MATERIALS

2.1 | Data acquisition and preprocessing

2.1.1 | GS dataset

GS (subsample) is a community-based dataset with imag-
ing data, reported previously (Habota et al., 2019; Navrady
et al., 2018; Romaniuk et al., 2019; Rupprechter
et al., 2020; Smith et al., 2012; Stolicyn et al., 2020). Demo-
graphic details of these participants and for the replication
cohort (UKB) are presented in Table 1. Ethical approval
for the GS subsample was obtained from the NHS Tayside
committee on research (reference 14/SS/0039).

T1 imaging of N = 1070 participants from GS subsam-
ple, scanned between June 2015 and May 2019, were per-
formed at two sites (N = 544 from Aberdeen and N = 526
from Dundee). Structural measures were derived from T1
images with FreeSurfer version 5.3 (Dale et al., 1999;
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Fischl et al., 1999, 2004). Mean CT, CSA and CV were
derived for 68 cortical regions defined by the Desikan–
Killiany atlas (Desikan et al., 2006). Volumes of 21 subcor-
tical structures—including left and right accumbens,
amygdala, caudate nucleus, hippocampus, pallidum,
putamen, thalamus and four cerebellar regions—were
also extracted with FreeSurfer. In total, N = 980 partici-
pants remained after quality control—removing partici-
pants with any missing values, as well as participants
whose ICV measure and global cortical measures, that is,
overall cortical volume (sum of regional cortical volumes)
and overall surface area (sum of regional surface areas),
were more than three standard deviations away from the
sample mean (Stolicyn et al., 2020). Details of MRI acqui-
sition and quality control process are described in

Sections S1.1.2 and S1.1.3. Participants whose demo-
graphic information was missing were also removed.
There were 225 FreeSurfer-derived features available for
each participant (204 cortical and 21 subcortical features).
Standard Z-score normalisation was performed prior to
graph construction.

For the GS subsample, there were N = 980 partici-
pants in total, of whom N = 302 were cases with lifetime
(current or past) MDD. Diagnosis was established using
the Structured Clinical Interview for DSM-IV Disorders
(SCID) (First, 1997) and was based on criteria from the
Diagnostic and Statistical Manual of Mental Disorders
(DSM) (American Psychiatric Association, 2000)
(Section S1.2.1). Participants were classed as currently
depressed if they had an ongoing depressive episode, and
as past MDD if they were not depressed at the time of
MRI scan but had at least one depressive episode previ-
ously (Stolicyn et al., 2020). Participants were classed as
recurrent if they had had more than one depressive epi-
sode. Data for each participant therefore included MDD
status according to the SCID diagnosis described above,
single versus recurrent episodes (single: N = 116, recur-
rent N = 186).

The cognitive measures were derived from the follow-
ing tasks: Wechsler Adult Intelligence Scale UK – Third
Edition (WAIS-IIIUK) logical memory (LM) Parts I and II
(sum of immediate/delayed recall) (Wechsler
et al., 1998), WAIS-IIIUK digit-symbol coding (DSy)
(Wechsler, 1998), phonemic verbal fluency C-F-L
(VF) (Lezak, 1995), Mill Hill vocabulary (MHV)
(Raven & Raven, 2003) and matrix reasoning (Matrix)
tests (Ritchie et al., 1993). Additionally, age, sex, MRI
scan site (Aberdeen or Dundee) and ICV were available
and controlled for as described below. Table 1a shows the
GS subsample participants characteristics.

2.1.2 | UKB dataset

The UKB obtained ethical approval from the NHS
Research Ethics Committee (reference11/NW/0382), and
our current study was approved by the UKB Access
Committee (Project #4844). All participants in both the
GS subsample and UKB gave written informed consent.

Data used were the raw T1-weighted volumes were
from the second release of UKB MRI data (January 2017).
All scans were acquired at the same 3T scanner (Siemens
Skyra) at one single site (Cheadle). Information on the
acquisition parameters can be found in the UKB online
Brain Imaging Documentation (https://biobank.ctsu.ox.
ac.uk/crystal/docs/brain_mri.pdf). As with GS subsample,
the T1 volumes were processed at the University of Edin-
burgh with FreeSurfer version 5.3 using default settings,

TAB L E 1 Participants characteristics for the two studied

cohorts

A. Participants characteristics for the GS subsample dataset

GS subsample Mean (SD) N

Age 59.94 (9.787) 980

Sex(F:M) 602:378 980

Site (Aberdeen:Dundee) 516:464 980

ICV* (in cm3) 1,397 (224.2) 980

MDD (Control:cases) 677:302 979

DSy 68.86 (14.98) 879

VF 43.05 (11.89) 879

MHV 31.69 (4.065) 879

Matrix 8.325(2.411) 879

LM 31.67(7.250) 873

B: Participants characteristics for the UKB dataset

UKB Mean (SD) N

Age 62.47 (7.464) 8,900

Sex (F:M) 4,682:4218 8,900

Site Manchester 8,900

ICV (in cm3) 1,519 (147.8) 8,900

MDD (control:cases) 3,865:1658 5,523

VNR 6.8811 (2.097) 8,484

RT (in log x) 6.3582 (0.1687) 8,796

Pairs match (in log (x + 1)) 1.288 (0.6473) 8,836

Prospective memory (1:0) 7,885:936 8,821

Note: *The ICV here for GS subsample was not standardised for each site. N
is the number of participants for whom data is available. Age is in years.
Measures for DSy/VF/ MHV/Matrix/LM and VNR represent raw task scores.

The x in RT and pairs match represents raw task scores. For the prospective
memory test, 1 means recall at the first attempt and 0 otherwise.
Abbreviations: LM, logical memory; Matrix: matrix reasoning; MHV, Mill
Hill vocabulary; Pairs Match, pairs matching; RT, reaction time; VF, verbal

fluency total score.
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and brain measures were extracted according to the
Desikan–Killiany atlas (Desikan et al., 2006). CT, CSA and
CV were computed for the 68 cortical regions, alongside
volumes of 21 subcortical structures. FreeSurfer
parcellations were visually assessed for a variety of errors
(Cox, Lyall, et al., 2019; Stolicyn et al., 2020). Major errors
included zero or partial output, substantial skull strip
issues or tissue identification errors. Where no major
errors were present, parcellations were examined for
minor errors including erroneous boundary placement,
minor skull stripping issues and minor tissue omission.
Participants with missing values, missing demographic
information, as well as those who were outliers in ICV and
global cortical measures (as above for GS subsample) were
removed, resulting in a dataset with N = 8,900 partici-
pants in total; see Section S1.1.4.

Diagnosis of lifetime depression was based on partici-
pant responses in the online version of the Composite
International Diagnostic Interview – Short Form (CIDI-
SF) (Kessler et al., 1998) and made according to the DSM
diagnostic criteria (Stolicyn et al., 2020); see S2.2. Data
for each participant included lifetime MDD according to
the DSM diagnostic criteria.

The cognitive measures were derived from the follow-
ing tests: verbal numerical reasoning (VNR) test (UKB
Field ID: 20016.2.0), Reaction Time test (RT, UKB Field
ID: 20023.2.0, log-transformed), Pairs Matching test
(Pairs Match, UKB Field ID: 399.2.2, log (x + 1) trans-
formed) and Prospective Memory test (ProsMemory,
UKB Field ID: 20018.2.0) (Fawns-Ritchie & Deary, 2020).
Although it would have been optimal to match the tasks
more closely to those in our GS subsample, Matrix pat-
tern completion and symbol digit substitution tasks were
introduced later and therefore were not conducted con-
current with the imaging assessment for the N = 8,900
participants in this study. In a recent investigation, how-
ever, we note that he current four cognitive variables that
were concurrent with imaging correlated well with other
more detailed cognitive tasks within the UKB and with
standard validated psychometric indicators of g (Fawns-
Ritchie & Deary, 2020). Additionally, age, sex and ICV
were available and controlled for as described below.
Table 1b shows the UKB participants characteristics.

2.2 | Cognitive function g-factor
extraction

In addition to the measures from individual tasks, we
also derived a measure of general cognitive function—g-
factor for participants within each cohort (Deary
et al., 2010; Johnson & Bouchard, 2005) and assessed the
association between the clusters and the derived g-factor.

The measure of general cognitive ability (g-factor) was a
well replicated phenomena in psychological sciences
(Deary et al., 2010; Warne & Burningham, 2019). Previ-
ous research have shown that the g-factor derived from
entirely different sets of cognitive tests correlated well
with each other, given that the set of cognitive tasks
covers a sufficiently broad cognitive domain (Johnson
et al., 2004; Johnson, te Nijenhuis, & Bouchard, 2008).

The g-factor here is the first factor score from factor
analysis employed using the factoran function in
MATLAB 2020a. For GS subsample, the g-factor was
based on measures from the Matrix test (Ritchie
et al., 1993), verbal fluency test (Lezak, 1995), MHV test
(Raven & Raven, 2003), LM (Wechsler et al., 1998) and
digit-symbol coding tests (Wechsler, 1998). Proportion of
variance explained by g-factor in GS subsample was
26.0%. For UKB, g-factor was computed using measures
from all the available UKB cognitive tasks stated above
using the same process as in GS subsample. Proportion of
variance explained by the g-factor in UKB was 14.7%.
Details of the loadings can be found in Section S1.8,
Tables S4a and S4b.

2.3 | Correction for covariates

Correction for covariates was performed by residualizing
each brain measure with respect to sex, age, MRI site and
ICV using linear regression models (Alfaro-Almagro
et al., 2021; Becher, 1992; Dukart et al., 2011; Kostro
et al., 2014; More et al., 2021; Snoek et al., 2019). We addi-
tionally conducted a Kruskal–Wallis (KW) test to confirm
that no group differences remained on the basis of these
covariates between identified clusters for both GS sub-
sample and UKB (see Section S1.6, Tables S1 and S2).

2.4 | Graph construction

We applied a dynamical graph community detection
approach to assess clustering of participants, which
involved graph construction as the first step. Without
known graph geometry, the graph was determined by the
type of construction and the distance function chosen for
the pairwise distance matrix based on the structural vari-
ables and the type of construction.

2.4.1 | Defining distance between
participants

The pairwise distance matrix D is defined as Dij = d (xi,xj),
where xi and xj are vectors of regional measures (CV,

YEUNG ET AL. 6285
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CSA, CT or subCV) per participants in the data and d(�,�)
is the distance function to be specified. We used the stan-
dard Euclidean distance:

dðx,yÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi-yiÞ2
s

for x,y�ℝn, ð2:1Þ

to determine similarity between participants.
Euclidean distance was chosen as other distance func-

tions typically have more assumptions and constraints on
the dataset. For example, cosine dissimilarity is typically
used for non-centred and time-varying data, which were
not the case here. As a preprocessing step, we applied
standard Z-score normalisation to all measures before
calculating the pair-wise Euclidean distances to avoid
bias in features with broad value ranges.

2.4.2 | k-NN Graph Construction

We constructed k-NN graphs from the pairwise distance
matrices computed above. In the k-NN graph, each data
point (in this case, participant) is connected to the
k closest other data points, as found in the distance
matrix, D. It can be formulated as follows:

Aij ¼ 1 if dij ≤ di
ðkÞ

0 otherwise

(
, ð2:2Þ

where dij is the direct distance from node i to node j, and
di
(k) is the distance of the kth nearest neighbour from

node i. The resulting graph is binary and undirected. Dif-
ferent values of k were tested in order to determine the
optimal model for the respective graph construction by
verifying the Markov stability measure on the networks.

2.5 | Optimal graph partitioning

We used Markov stability, instead of modularity, as the
objective function for the Louvain algorithm for commu-
nity detection in our graphs (i.e., optimal clustering)
(Schaub et al., 2012). Contrary to other common commu-
nity detection methods (e.g., k-means clustering, hierar-
chical clustering or graph modularity optimisation),
Markov stability adopts a dynamics-based framework to
uncover community structure. Graph partitions can be
ranked and compared at each optimization time step that
helps identify stable, optimal partitions (Delvenne
et al., 2013). We briefly describe the Louvain algorithm
and the Markov stability measure below. Liu et al.

validated the Markov stability method on several real
datasets by comparing with other popular clustering
methods in Liu et al., and it had achieved the best
normalised mutual information (NMI) values on average
(Liu & Barahona, 2020). Moreover, although the number
of clusters are required for initialisation for other cluster-
ing methods, this clustering technique can perform the
clustering in a completely unsupervised manner.

2.5.1 | The Louvain algorithm

The Louvain method is a greedy algorithm for graph
community detection, which typically optimises modu-
larity of the graph partitions. The modularity is used
widely to measure the strength of division of a network
into clusters. Details and formulation of modularity is
included in Section S1.3. In the first phase, each node
(data point) is assigned its own group, and hence the
clusters are defined by individual nodes. Then, for each
node i, we evaluate the modularity increment of remov-
ing i from its community and putting it into the commu-
nity of j. At each step, the movement that leads to the
largest increase in modularity is chosen. The algorithm
repeats the same process until no further movement of
nodes can lead to an increase in modularity (Blondel
et al., 2008). At this stage, the local maximum is
achieved.

The second phase consists of forming a new network
from the communities found during the first phase, that
is, treating the communities in the original graph as
nodes in the new network. The sum of weights of edges,
wk, within the same community is represented as a self-
loop for that community, and edges between new nodes
are defined by the sums of respective weights of inter-
community links. This can be interpreted as a coarse ver-
sion of the original graph. The process in the first phase
is then applied to the new network. The two phases are
then repeated until modularity is optimised and a hierar-
chy of communities is produced, and this marks the end
of a Louvain run (Blondel et al., 2008).

In our study, we applied the Louvain algorithm with
optimisation of Markov stability measure instead of mod-
ularity measure for more optimal community detection.
We describe the concept of Markov stability below.

2.5.2 | Markov stability

Markov stability is a measure of quality of graph commu-
nity structure (Delvenne et al., 2010). Although modular-
ity is the default measure of partitioning quality in the
Louvain algorithm, optimising modularity can lead to
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overpartitioning or underpartitioning of the graph, and
detection of less natural groupings (Fortunato &
Barthelemy, 2007; Schaub et al., 2012). Compared with
modularity, optimising Markov stability takes into
account the different time scales within the partitioning
algorithm (in our case the Louvain algorithm), with finer
communities detected as optimal at earlier partitioning
time steps and larger communities at later time steps—
which leads to more natural groupings. Markov stability
measure is based on running random walks on the graph
and recording which groupings appear most natural for
each time scale according to the walk process, with
length of each walk determined by the time scale
(Delvenne et al., 2013, 2010). Details of the Markov sta-
bility calculation are described in (Delvenne et al., 2010;
Lambiotte et al., 2014). Further details on relation of
Markov stability to modularity, as well as how modular-
ity can be replaced with Markov stability in the Louvain
algorithm, can be found in Section S1.4.

2.5.3 | Assessing clustering robustness

Because several runs of the Louvain algorithm are
needed to define optimal partitions, we completed
100 runs of the Louvain algorithm for each time step.

Consistency of graph partitioning at each time step
between different Louvain algorithm runs was measured
by the average variation information (VI) between all pairs
of partitions from different runs, evaluated as follows:

V I P,P’ð Þ¼ 2HðP,P’Þ � HðPÞ � HðP’Þ
HðP,P’Þ

¼HðP,P’Þ � IðP,P’Þ
HðP,P’Þ

ð2:3Þ

with

IðP,P’Þ¼HðPÞþHðP’Þ � HðP,P’Þ ð2:4Þ

where I(P,P’) is the mutual information, and H(P), H(P’)
and H(P,P’) are Shannon entropies used to measure the
amount of information contained in partitioning P. Divi-
sion by H(P,P’) is for normalisation. In the following sec-
tions, we denoted variational information (VI) across
different Louvain runs by VI and denoted VI across
different time steps by VI(t,t0).For each Louvain run, a dif-
ferent initial condition (i.e., the order of nodes being
scanned during each merging step in the first phase) was
chosen, so the effect of perturbation on partitioning results
could be assessed. We assessed the consistency of parti-
tions at each chosen time point and persistence of the

number of communities over the time scale to choose opti-
mal partitions (Delmotte et al., 2012). When more than
one partition was considered as stable over a time scale,
the clustering partition that remained stable for the lon-
gest time period was selected as the most stable.

2.5.4 | Stability postprocessing

Stability postprocessing applied in the current study is
conceptually similar to the Convex Hull of Admissible
Modularity Partitions (CHAMP) method described in
Weir et al. (Weir et al., 2017). The Louvain algorithm
with stability optimisation was run 100 times with
500 time-steps on each run (the 500 time steps were loga-
rithmically spaced from 1 to 100), on the k-NN graphs
constructed with k = 5, 7, 9 and 11. For each of the
500 time steps, an optimal graph partitioning was defined
across the entire 100 Louvain runs. As a final post-
processing step, the defined optimal graph partitions for
each time step were updated by considering partitions in
all other time steps. Details of the postprocessing func-
tion can be found in Section S1.5.

2.5.5 | Assessing clustering consistency

We applied NMI to assess consistency between optimal
partitions identified when different k values were used
for constructing the graphs. NMI measures the informa-
tion shared by two partitions, Ci and Cj. In other words, it
measures to what extent knowing about Ci reduces the
uncertainty about Cj. The NMI is defined as
(Kvålseth, 2017):

NMI P,P’ð Þ¼ IðP,P’Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðPÞHðP’Þp ð2:5Þ

where H(P) is again, the Shannon entropy. If the two par-
titions are independent, the NMI is 0. If the two parti-
tions are exactly the same, then NMI is equal to
1. Another alternative we proposed is the accuracy mea-
sure, which is formulated as follows:

Accuracy¼number of correctly classif ied samples
number of samples in data

2.6 | Assessing reproducibility and
relation of clusters to cognition and MDD

After stability optimisation and testing for robustness and
consistency, we assessed the reproducibility of the

YEUNG ET AL. 6287

 14609568, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.15423 by U

niversity O
f Strathclyde, W

iley O
nline L

ibrary on [16/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



partitioning results and tested associations of clusters
from the stable partitions with variables of interest.

To evaluate whether clustering was similar in GS sub-
sample and UKB, we computed Pearson correlations
between the cluster effects Cohen’s d values in GS sub-
sample and in UKB for regions in each of the four modal-
ities. For computing the Cohen’s d values, we took the
values of each FreeSurfer region across participants and
then calculated the standardised mean differences
between the two participant clusters identified for each
modality. Cohen’s d values indicated the level of contri-
bution of each regional measure to the separation
between clusters; hence, a strong correlation of Cohen’s
d values between GS subsample and UKB would indicate
that each measure had a similar contribution to the
between-cluster separation in both cohorts; that is, a
measure with large Cohen’s d in GS subsample would
have large Cohen’s d in UKB and vice versa.

To assess associations with MDD and cognitive tasks,
the KW test was used since the variables were not nor-
mally distributed. For cognition, we initially tested associ-
ation with the general cognitive ability (g-factor) and then
the individual cognitive tasks separately for both cohorts.
For individual tasks, in GS subsample, this involved test-
ing associations with LM, DSy, VF, MHV and Matrix tasks

and in the UKB association with VNR, RT, Pairs Match
and ProsMemory tasks. The Benjamini–Hochberg proce-
dure was used to correct the p values across the tasks for
each cohort (Benjamini & Hochberg, 1995).

3 | RESULTS

3.1 | Participant clusters based on brain
measures

3.1.1 | Clustering results in GS subsample

As an illustration of how the optimal partitions were cho-
sen, we took the partitioning of the 5-NN graph with
regional surface area features in the GS subsample
dataset as an example (Figure 1). Figure 1 illustrates par-
ticipant partitioning throughout the time scale, after con-
trolling for covariates. It shows that partitions with five,
three and two clusters, had large plateaus with few VI
(t,t0) spikes within the plateaus, whereas partitions with
three and two clusters also had low VI (across algorithm
runs). This indicates that the key partitions were those
with three and two clusters. Similar procedures were used
to inspect the other k-NN graphs for different modalities.

F I GURE 1 Community information, VI(t,t0), together with 2D projections of the graphs, with nodes coloured according to cluster labels

and nodes arranged with reference to five-cluster partition, over Markov time for the clustering analysis on 5-NN graph, constructed with

residualised FreeSurfer surface area metrics for Generation Scotland (GS) subsample. Clustering results are based on time-dependent

Markov Stability optimisation and had undergone post-processing for smoothing stability and obtaining more stable clustering result. The

fact that the VI(t,t0) stays zero for most of the time steps indicates robustness of the partition results. Note that the 500 time steps are

logarithmically spaced from 1 to 100
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Notably, the data were consistently partitioned into
two clusters across different k-NN graphs (Figure 2).
Strong similarity between partitions from different k-NN
graphs for CT and CV is illustrated by high NMI (>0.7)
between two-cluster partitions of the 11-NN and two-

cluster partitions of either 5-NN, 7-NN or 9-NN graphs
(Table 2). Although we see slightly decreased NMI for CSA
and subCV, high accuracies (CSA: ≥89.6%; subCV:
≥94.7%) still indicate strong similarity between partitioning
results within each of the four modalities. To show that

F I GURE 2 Number of clusters found (left y-axis) and VI(t,t0) (right y-axis) over Markov time for K-nearest neighbour (k-NN) graphs

based on the FreeSurfer surface area metrics in Generation Scotland (GS) subsample. Low variational information (VI) indicates that

variations among different Louvain runs are small, which implies that the important clusters are from partitions into two or three modules.

The VI(t,t0) is an evaluation of the variational information of the partition at time step tn with that of tn � 1 and the spikes indicate changes

in partitioning result. No spikes are present in any of the plots after clustering into 2, implying the two clusters are equally stable with any k.

Because the plateau at two-cluster partition was the largest (i.e., the algorithm stays at two-cluster partition for the largest time period), we

therefore identified that the two-cluster partition as the most stable partition

TAB L E 2 Normalised mutual information (NMI) between two-cluster partitions of the different K-nearest neighbour (k-NN) graphs

and the two-cluster partitions of the 11-NN graph in GS subsample for each of cortical thickness (CT), cortical surface area (CSA), cortical

volume (CV) and subcortical volume (subCV) measures

Similarity measure 5-NN graph 7-NN graph 9-NN graph

CT NMI (accuracy) 0.7405(95.5%) 0.8014(96.6%) 0.7796(95.9%)

CSA NMI (accuracy) 0.5618(89.7%) 0.5951(89.6%) 0.7776(96.1%)

CV NMI (accuracy) 0.7375(95.5%) 0.8284(97.4%) 0.8581(97.9%)

subCV NMI (accuracy) 0.6664(94.9%) 0.7558(95.9%) 0.7194(94.7%)

Note: The high NMI and accuracies (except for CSA where small fluctuations were seen) indicate that the clustering results of different graphs are similar and
hence that the partitioning result is meaningful.
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the resulting clusters based on different metrics were not
highly dependent on each other, we computed the NMI
between the clusters. The NMI between the clusters based
on different modalities was presented in Section S1.9,
Table S5a. The low NMI among clusters is also consistent
with the increasing numbers of studies reporting low corre-
spondence between these modalities, particularly for area
and thickness in terms of genetic influences and associated
phenotypes (Cox et al., 2018; Grasby et al., 2020; Panizzon
et al., 2009; Winkler et al., 2010).

Figure 2 shows the summary of modules merging
along the time scale and reaching an equilibrium of two
clusters for all four k-NN graphs. The VI across Markov
time for different k-NN graphs was low for clustering into
2 and 3, which implied that these partitions were stable
(Figure 2). Because the plateau at the two-cluster parti-
tion was the largest (i.e., the algorithm stays at the two-
cluster partition for the largest time period and that is
consistent across different k-NN settings), we therefore
concluded that the two-cluster partition was the most sta-
ble partition to assess for associations with the clinical
and cognitive phenotypes.

We computed differences in brain measures between
the two clusters identified in the 11-NN graph in Cohen’s
d effects for GS subsample. The regions with largest Cohen’s
d for each modality were as follows: CT, right hemisphere
(RH) supramarginal (d = 1.662); CSA, left hemisphere
(LH) rostral middle frontal (d = 1.387); CV, LH superior
frontal (d = 1.461); subCV, RH ventral diencephalic volume
(d = 1.762). Overall, regions with large effect sizes included
superior, medial and orbitofrontal regions, temporal and
parietal cortices, and subcortically in ventral diencephalic
volume, as well as thalamus and hippocampus. Full results
are reported in Section S2.1.1, Tables S6–S9.

3.1.2 | Replication of clustering results
in UKB

Similar to GS subsample, two clusters were identified
within each of the feature modalities (CT, CSA, CV and
subCV) for UKB data.

The data were again optimally partitioned into two
clusters across different k-NN graphs. Strong similarity
between the partitions from different k-NN graphs for CT,
CSA and CV was found with high NMI (>0.7) between
the two-cluster partitions of the 5-NN and the two-cluster
partitions of either 7-NN, 9-NN or 11-NN graphs
(Table 3). For subCV, we also saw high accuracies (subCV:
≥92.9%). The NMI between the clusters based on different
modalities was presented in Section S1.9, Table S5b.

Similar to the GS subsample, we computed differences
in brain measures between the two clusters identified in
the 5-NN graph in Cohen’s d effects for UKB. The regions
with largest Cohen’s d for each modality were as follows:
CT, RH inferior parietal (d = 1.536); CSA, LH superior
frontal (d = 1.090); CV, LH precuneus (d = 1.058); subCV,
RH ventral diencephalic volume (d = 1.416). Cluster-
related differences were highly correlated between GS sub-
sample and UKB datasets: correlation coefficients were
0.9392, 0.9226, 0.9241 and 0.7931 respectively for CT, CSA,
CV and subCVmodalities; see Figure 3. The top 20 cortical
regions and top 10 subcortical regions driving the clusters’
separations as well as the corresponding Cohen’s d for
each of the four clustering analyses are listed in Table 4.
These results indicate that the natural groupings of partici-
pants, as well as the regional measures that best separate
the identified clusters, were similar across the GS subsam-
ple and UKB datasets. Among those top regions, there was
at least 70% overlap between the two cohorts. The over-
lapping regions included ventral diencephalic volume,
thalamus and hippocampus for subcortical regions, and
superior, medial and orbitofrontal regions, as well as pari-
etal regions for cortical metrics.

Details of effect sizes for the clustering results based
on all four modalities for both cohorts are reported in
Section S2.1.1, Tables S6–S9. All effect sizes were positive,
which implies that across all four feature modalities,
regional measures in one cluster were larger compared
with the other cluster, independent of sex, age and ICV
differences. Figure 4 shows that the effect sizes were posi-
tive for all regions when clustering was based on CSAs.
Figures for other modalities can be found in Section S2.2,
Figures S1–S3.

TAB L E 3 Normalised mutual information (NMI) between two-cluster partitions of the different K-nearest neighbour (k-NN) graphs

and the 2-cluster partitions of the 5-NN graph in UKB for each of cortical thickness (CT), cortical surface area (CSA), cortical volume (CV)

and subcortical volume (subCV) measures

Similarity measure 7-NN graph 9-NN graph 11-NN graph

CT NMI (accuracy) 0.7883(96.7%) 0.7760(96.6%) 0.7325(95.5%)

CSA NMI (accuracy) 0.7592(96.0%) 0.7128(95.9%) 0.7038(95.8%)

CV NMI (accuracy) 0.7623(96.3%) 0.7163(95.2%) 0.6441(92.7%)

subCV NMI (accuracy) 0.6221(93.4%) 0.6310(92.9%) 0.6290(92.9%)

Note: The high NMI and accuracies indicate that the clustering results of different graphs are similar and hence that the partitioning result is meaningful.
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F I GURE 3 Mean differences between the two clusters in cortical thickness (CT), cortical surface area (CSA), cortical volume (CV) and

subcortical volume (subCV) measures for Generation Scotland (GS) subsample and UK Biobank (UKB), with ordered GS subsample regional

Cohen’s d values (blue lines) as reference, where x-axes are the FreeSurfer regions (there are 68 cortical regions and 21 subcortical regions).

High correlation indicates successful replication and that the clustering algorithm has likely identified natural groupings for general

population
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TAB L E 4 Top 20 regions in CT, CSA and CV, and top 10 regions in subCV driving the separation between the clusters for each of the

four modalities in both cohorts

Top regions in each cohort GS subsample Cohen’s d UKB Cohen’s d

Cortical thickness rh.supramarginal 1.6617 rh.inferiorparietal 1.5359

rh.inferiorparietal 1.6615 lh.supramarginal 1.4962

lh.superiorfrontal 1.6055 rh.precuneus 1.4790

lh.inferiorparietal 1.5852 rh.supramarginal 1.4502

rh.precentral 1.5828 lh.superiorfrontal 1.4499

rh.superiorfrontal 1.5617 lh.inferiorparietal 1.4262

lh.supramarginal 1.5517 lh.precuneus 1.3948

rh.superiortemporal 1.4962 lh.rostralmiddlefrontal 1.3930

lh.precuneus 1.4942 rh.superiorparietal 1.3923

rh.precuneus 1.4922 rh.superiorfrontal 1.3916

lh.caudalmiddlefrontal 1.4836 lh.precentral 1.3665

rh.superiorparietal 1.4666 lh.superiorparietal 1.3369

lh.precentral 1.4665 lh.caudalmiddlefrontal 1.3297

rh.caudalmiddlefrontal 1.4011 rh.precentral 1.2939

rh.postcentral 1.3938 lh.postcentral 1.2761

lh.superiorparietal 1.3852 rh.superiortemporal 1.2668

lh.postcentral 1.3813 rh.rostralmiddlefrontal 1.2667

lh.superiortemporal 1.3561 lh.superiortemporal 1.2567

rh.rostralmiddlefrontal 1.3506 rh.caudalmiddlefrontal 1.2554

lh.rostralmiddlefrontal 1.3395 rh.middletemporal 1.2468

Cortical surface area lh.rostralmiddlefrontal 1.3871 lh.superiorfrontal 1.0902

rh.superiorfrontal 1.3132 rh.superiorfrontal 1.0301

rh.rostralmiddlefrontal 1.3077 lh.rostralmiddlefrontal 1.0281

rh.middletemporal 1.2980 rh.rostralmiddlefrontal 1.0034

lh.superiorfrontal 1.2216 rh.superiortemporal 0.9897

lh.lateralorbitofrontal 1.2098 lh.lateralorbitofrontal 0.9896

lh.superiortemporal 1.2075 lh.precuneus 0.9742

rh.superiortemporal 1.2065 lh.superiortemporal 0.9596

rh.inferiortemporal 1.1435 rh.lateralorbitofrontal 0.9054

rh.precuneus 1.1261 rh.middletemporal 0.9047

rh.inferiorparietal 1.1009 rh.precuneus 0.8879

lh.precuneus 1.0989 rh.fusiform 0.8317

lh.middletemporal 1.0980 lh.postcentral 0.8288

lh.fusiform 1.0861 rh.medialorbitofrontal 0.8186

lh.inferiortemporal 1.0761 lh.fusiform 0.8068

lh.postcentral 1.0752 rh.inferiortemporal 0.8035

lh.lateraloccipital 1.0652 lh.middletemporal 0.8031

lh.supramarginal 1.0649 rh.postcentral 0.7926

rh.superiorparietal 1.0327 lh.insula 0.7890

lh.precentral 1.0322 lh.superiorparietal 0.7771

(Continues)
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For both the GS subsample and the UKB, those regions
contributing the most to cluster separation included lateral
orbitofrontal, post central, precentral, precuneus, rostral
middle frontal, superior frontal, superior parietal and sup-
ramarginal areas in both hemispheres. Large effect sizes
were noted for these regions (GS subsample: d = 0.8682–
1.662; UKB: d = 0.7761–1.536), including some regions
where d > 1.2, giving confidence in the separation of the
clusters (Lakens, 2013; Sullivan & Feinn, 2012). Those
regions contributing least to between cluster separation
(most consistent across individuals) were the caudal ante-
rior cingulate cortex, entorhinal cortex, frontal pole and

temporal pole in both hemispheres, and parahippocampal
gyrus in the LH (GS subsample: d = 0.2095–0.6893, UKB:
d = 0.2498–0.6389).

3.2 | Association between clusters and
MDD and cognitive variables in GS
subsample and UKB

As stated in the method sections, the KW test was used
as the test statistics to determine statistical significance of
between-cluster differences for MDD and cognitive

TAB L E 4 (Continued)

Top regions in each cohort GS subsample Cohen’s d UKB Cohen’s d

Cortical volume lh.superiorfrontal 1.4611 lh.precuneus 1.0578

rh.superiorfrontal 1.4606 rh.superiorfrontal 1.0278

lh.lateralorbitofrontal 1.4279 lh.superiorfrontal 1.0213

rh.precuneus 1.3651 rh.precuneus 1.0201

rh.superiortemporal 1.2925 lh.lateralorbitofrontal 0.9902

lh.precuneus 1.2347 rh.superiortemporal 0.9554

lh.superiortemporal 1.1974 lh.rostralmiddlefrontal 0.9449

lh.rostralmiddlefrontal 1.1870 lh.precentral 0.9142

lh.supramarginal 1.1595 lh.superiortemporal 0.9087

rh.insula 1.1360 rh.precentral 0.9072

lh.insula 1.1316 rh.rostralmiddlefrontal 0.9070

rh.rostralmiddlefrontal 1.1303 rh.lateralorbitofrontal 0.8954

lh.lateraloccipital 1.1243 lh.insula 0.8720

rh.lateralorbitofrontal 1.1239 rh.inferiorparietal 0.8444

rh.inferiorparietal 1.0981 lh.postcentral 0.8406

rh.superiorparietal 1.0974 rh.superiorparietal 0.8341

lh.precentral 1.0793 lh.supramarginal 0.8265

rh.precentral 1.0691 lh.superiorparietal 0.8171

lh.superiorparietal 1.0581 rh.lateraloccipital 0.7796

rh.middletemporal 1.0376 lh.inferiorparietal 0.7776

Subcortical volume Right.VentralDC 1.7621 Right.VentralDC 1.4164

Left.VentralDC 1.6753 Left.VentralDC 1.2586

Brain.Stem 1.6241 Brain.Stem 1.2144

Right.Thalamus.Proper 1.4319 Left.Cerebellum.White.Matter 1.0156

Right.Cerebellum.Cortex 1.2596 Right.Cerebellum.White.Matter 1.0027

Left.Cerebellum.Cortex 1.2545 Right.Putamen 0.9641

Left.Thalamus.Proper 1.2382 Left.Putamen 0.8870

Right.Hippocampus 1.1968 Right.Pallidum 0.8345

Left.Cerebellum.White.Matter 1.1537 Right.Hippocampus 0.8142

Right.Cerebellum.White.Matter 1.1153 Right.Thalamus.Proper 0.7929

Note: The overlapping regions across cohorts are in bold text.

Abbreviations: CT, cortical thickness; CSA, cortical surface area; CV, cortical volume; GS, Generation Scotland; lh, left hemisphere; rh, right hemisphere;
subCV, subcortical volume; UKB, UK Biobank.
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variables in GS subsample and UKB, and the p values
were FDR corrected.

3.2.1 | Association of clusters with MDD in
GS subsample

The clusters were found to have no significant association
with the presence of an MDD diagnosis in any of the

two-cluster results derived from the four different modal-
ities (CT: pFDR = .2239; CSA: pFDR = .3777; CV:
pFDR = .2295; subCV: pFDR = .6585). We also tested
whether the clusters were associated with the severity of
depression in GS subsample by only including recurrent
cases (N = 186) in the MDD group and found that this
was also not significant (CT: pFDR = .9353; CSA:
pFDR = .4020; CV: pFDR = .9184; subCV: pFDR = .6906).

F I GURE 4 Standardised mean differences in regional cortical surface areas (CSAs) between the two clusters identified in the

Generation Scotland (GS) subsample and in UK Biobank (UKB). Higher differences between clusters were found for lateral orbitofrontal,

post central, precentral, precuneus, rostral middle frontal, superior frontal, superior parietal and supramarginal areas in both hemispheres.

Most of these areas are closely related to executive functions and decision making. These regions are also associated with various diseases

that may contribute to larger differences between individuals
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Information about the effect sizes between clusters as
well as the effect sizes between cases and controls is
included in Section S2.1.2, Tables S10–S13.

3.2.2 | Association of clusters with cognitive
measures in GS subsample

Table 5 shows the corrected p values and effect sizes of
associations between the cognitive tasks and the cluster-
ing result for CT, CSA, CV and subCV modalities. The
general cognitive ability (g-factor) was found to be signif-
icantly associated with the clustering based on CSA
(d = 0.2771, pFDR = 8.69e-5), CV (d = 0.3490,
pFDR = 5.27e-6) and subCV (d = 0.2529, pFDR = .0022)
but not CT. As for individual tasks, the digit symbol cod-
ing (DSy) and Matrix tests were found to be significantly
associated with the clustering based on CSA (DSy:
d = 0.3181, pFDR = 4.26e-5, Matrix: d = 0.3229,
pFDR = 1.56e-5), CV (DSy: d = 0.4161, pFDR = 2.08e-8,
Matrix: d = 0.4450, pFDR = 1.81e-10) and subCVs (DSy:
d = 0.4036, pFDR = 4.19e-7, Matrix: d = 0.3057,
pFDR = 3.88e-4). In addition, those two tasks were found
to be significantly associated with the clustering based on
CT (DSy: d = 0.3455, pFDR = 1.68e-5, Matrix: d = 0.1971,
pFDR = .0051). Significant positive effect sizes in

FreeSurfer measures (for all of CT, CSA, CV and subCV)
were related to positive effect sizes in cognitive measures,
and these results were independent of sex, age and ICV
differences. These results suggest that participant clusters
defined by larger imaging measures may be characterised
by better cognitive performance.

3.2.3 | Associations of clusters with MDD
status and cognitive measures in UKB

As in the GS subsample, clusters in UKB were found to
have no significant associations with lifetime MDD diag-
nosis (CT: pFDR = .7690; CSA: pFDR = .3059; CV:
pFDR = .2003; subCV: pFDR = .6703). The absence of a
direct one-to-one correspondence between the cognitive
tasks in GS subsample and the UKB precluded a direct
replication of the test-specific cognitive findings in GS
subsample using UKB data. However, due to the advan-
tages of cross-battery stability conferred by computing a
g-factor (Fawns-Ritchie & Deary, 2020; Johnson
et al., 2004; Johnson, te Nijenhuis, & Bouchard, 2008),
we replicated the group differences in g-factor. The g-
factor were found to be significantly associated with clus-
tering based on CSA (d = 0.0868, pFDR = 2.05e-4), CV
(d = 0.1070, pFDR = 1.24e-5), subCV (d = 0.0919,

TAB L E 6 p values and Cohen’s d values (in brackets) for cluster effects on each cognitive performance measure for the four measure

modalities in UKB

Structural brain measure modality VNR RT Pairs Match ProsMemory g-factor

CTs 0.0318*(0.0502) 0.5595(�0.0230) 0.3748(�0.0258) 0.0489*(0.0485) 0.0318*(0.0573)

CSAs 5.19e-5*(0.0999) 0.7270(0.0049) 0.1637(�0.0298) 0.5052(0.0178) 2.05e-4*(0.0868)

CVs 1.17e-5*(0.1091) 0.8778(�0.0055) 0.1324(�0.0308) 0.0468*(0.0483) 1.24e-5*(0.1070)

subCVs 4.48e-5*(0.0923) 0.0011*(�0.0716) 0.5062(0.0121) 0.5062(0.0156) 4.48e-5*(0.0919)

Note: p values were FDR corrected. Similar to GS subsample, significant positive effect sizes in UKB FreeSurfer measures were related to positive effect sizes in
cognitive measures, except for reaction time task.
*Statistically significant.
Abbreviations: g-factor, general intelligence coefficient derived from all cognitive variables; Pairs Match, pairs matching; ProsMemory, prospective memory;

RT, reaction time; VNR, verbal numerical reasoning.

TAB L E 5 p values and Cohen’s d values (in brackets) for cluster effects on each cognitive performance measure for the four measure

modalities in GS subsample

Structural brain
measure
modality DSy VF MHV Matrix Memory g-factor

CTs 1.68e-5*(0.3455) 0.0914(�0.1431) 0.3291(�0.0591) 0.0051*(0.1971) 0.2418(0.1337) 0.2220(0.1154)

CSAs 4.26e-5*(0.3181) 0.6627(0.0717) 0.1172(0.1092) 1.56e-5*(0.3229) 0.2092(0.0965) 8.69e-5*(0.2771)

CVs 2.06e-8*(0.4161) 0.9541(0.0239) 0.4300(0.0909) 1.81e-10*(0.4450) 0.0106*(0.2075) 5.27e-6*(0.3490)

subCVs 4.19e-7*(0.4036) 0.3231(0.0867) 0.7565(0.0022) 3.88e-4*(0.3057) 0.3155(0.1085) 0.0022*(0.2529)

Note: p values were FDR corrected. Significant positive effect sizes in FreeSurfer measures were related to positive effect sizes in cognitive measures.
*Statistically significant.
Abbreviations: DSy, digit symbol coding; g-factor, general intelligence coefficient derived from cognitive variables; Matrix, Matrix reasoning total correct; MHV,
Mill Hill vocabulary; VF, verbal fluency.
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pFDR = 4.48e-5), and also for CT (d = 0.0573,
pFDR = .0318). As for individual tasks, the score for VNR
(UKBID:20016.2.0, Fluid Intelligence) was also found to
be significantly associated with clustering based on CSA
(d = 0.0999, pFDR = 5.19e-5), CV (d = 0.1091,
pFDR = 1.17e-5), subCV (d = 0.0923, pFDR = 4.48e-5) and
CT (d = 0.0502, pFDR = .0318). There are also significant
associations of clusters based on subCV with reaction
time (d = �0.0716, pFDR = .0011), and clusters based on
CV and CT with prospective memory (CV: d = 0.0483,
pFDR = .0468, CT: d = 0.0485, pFDR = .0489) (see
Table 6).

4 | DISCUSSION

4.1 | Summary of results

4.1.1 | Overall summary

In the current study, we employed an exploratory
approach and performed unsupervised spectral clustering
with k-NN graphs, which were based on pairwise dis-
tances in structural brain measures derived with
FreeSurfer. We aimed to determine the presence of natu-
ral groupings of participants and their relation to lifetime
MDD and cognitive ability. The results identified a natu-
ral split of the data into two main clusters for each of the
four modalities studied, where clustering results for sepa-
rate modalities were independent of each other. We repli-
cated the natural groupings of participants into two main
clusters in each modality in an independent dataset
(UKB) based on the highly correlated cluster-related dif-
ferences between the two cohorts, with correlation coeffi-
cients 0.9392, 0.9226, 0.9241 and 0.7931 respectively for
CT, CSA, CV and subCV modalities. Moreover, the
results were not driven by common covariates, namely,
sex, age, MRI site and ICV. It was found that the stron-
gest contributors to the cluster separation were the ven-
tral diencephalic volume, thalamus and hippocampus for
subcortical regions (d = 1.0891–1.7621) and superior,
medial and orbitofrontal regions, along with temporal
and parietal regions for cortical metrics (d = 0.8192–
1.6617).

The clusters identified were not related to lifetime
MDD status in either dataset. We also did not find associ-
ations with the more severe MDD cases by taking only
those with recurrent MDD in the GS subsample (see Sec-
tions 3.2.1 and 3.2.3). Although we found no relationship
with MDD, there was however significant relationships
with cognition base on the general cognitive ability (g-
factor) in both GS subsample and UKB (Johnson,
Carothers, & Deary, 2008). The clusters also showed

significant relationships with some other specific tests
mainly in the domains of reasoning (Matrix in GS sub-
sample and VNR in UKB) and processing speed (WAIS-
IIIUK DSy score in GS subsample and Reaction Time
Task in UKB). Results suggest that the participant clus-
ters defined by larger FreeSurfer measures are in general
characterised by better cognitive performance. Apart
from MDD status and cognitive abilities, assessing associ-
ations of clusters with other variables (for example brain
age, stress and social economic status) could also be an
interesting future research direction.

A key feature of our work is the use of covariates to
ensure that the clusters are not driven by important fac-
tors such as age, head size and sex. Prior to our study,
Zhou et al. employed supervised feature selection on
N = 3,297 brain morphometric measures that approxi-
mately represented the 3D neuroanatomical integrity of
the participants’ brains in the UKB as well as N = 4,316
demographic, clinical, biological specimen, imaging,
genomic, and questionnaire variables for N = 9,914 sub-
jects (Zhou et al., 2019). Although using different cluster-
ing methods (k-means clustering and hierarchical
clustering), Zhou et al. also carried out clustering analysis
on all derived neuroimaging measures and also obtained
two clusters, of which one cluster showed larger values
in all of their top 20 neuroimaging variables. Contrary to
the results of our study, their resulting clusters did show
differences regarding in mental health variables, includ-
ing depressive symptoms. However, they did not adjust
for basic covariates and found a significant association of
clusters with sex, so that the significant between-cluster
differences found in mental health variables, including
depressive symptoms, might be driven by the significant
sex disparity between the clusters. That the current study
and Zhou et al.’s study show mixed results regarding
associations with mental health variable may therefore
be related to different methodological approaches.

4.1.2 | Interpretation of between-cluster
effect sizes

The calculated effect sizes, that is, the Cohen’s
d coefficients, represent the degree of separation between
the individuals in the two clusters for each brain region.
Most regions had medium to high effect sizes, which
indicates that the two clusters were clearly separated
(Lakens, 2013; Sullivan & Feinn, 2012).

The greatest effect sizes were seen for CT in RH sup-
ramarginal area in GS subsample (d = 1.662) and for CT
in RH inferior parietal area in UKB (d = 1.536) in cortical
measures as well as right ventral diencephalic volume for
both GS subsample (d = 1.762) and UKB (d = 1.416) in
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subcortical measures. The top regions between GS sub-
sample and UKB had a high percentage of overlap, as
shown in Table 4. Details of between-cluster effects can
be found in Section S2.1.1, Tables S6–S9.

In general, for both cohorts, as well as across different
cortical metrics, we note that those regions with larger
effect sizes tended to be those that are commonly associ-
ated with higher cognitive functions such as executive
function and decision making (e.g., precuneus, rostral
middle frontal gyrus, superior frontal gyrus, lateral
orbitofrontal gyrus and superior temporal gyrus) (Barbey
et al., 2012; Camilleri et al., 2018). These results are in
line with prior work on brain regional correlates of intel-
ligence (Cox et al., 2018; Cox, Ritchie, et al., 2019) and
add further reference—via an unsupervised clustering
method—that these higher order cortical regions are
related to cognitive ability beyond influences of gross
head size, age and sex.

We note that Cox et al. found that the frontal pole
contributed the most to intelligence (Cox, Ritchie,
et al., 2019), whereas, in the current study, the frontal
pole was found to have one of the smallest between-
cluster effect sizes. We consider that this difference likely
originates from substantial differences in software, ana-
tomical labelling and analysis methods. Cox et al.
employed the UKB-processed FSL FIRST and FSL FAST
parcellations, whereas this study used FreeSurfer derived
metrics. This is important because there is currently no
consensus regarding the definitions of the posterior
extent of the frontal pole from structural neuroimaging
data and both of these methods uses different atlas defini-
tions (see Bohland et al., 2009; Cox et al., 2014). Further,
Cox et al. implemented structural equation models
(SEMs) targeting the associations between individual
ROIs and the g-factor directly, although clustering analy-
sis as used here in general does not directly test associa-
tions between ROI measures and other variables.
Moreover, the clustering analysis in this study was meth-
odologically driven by structural brain measures and not
cognitive ability measures.

4.2 | Limitations

A non-hypothesis-driven graph clustering analysis can
generally help to discover population subtypes based on
non-linear relationships between independent variables.
For clinical studies, the drawback is that the identified
subtypes (clusters) are not guaranteed to be clinically rel-
evant. In our case, we found that the partitioning results
were not associated with MDD status as measured in the
current samples. However, we note that our samples
were relatively healthy, with few individuals having

current depression (most cases met criteria for lifetime
MDD rather than current MDD). It is possible that using
these diagnostic criteria may have contributed to lack of
association of clustering results with MDD status. Previ-
ous studies of MDD case-control classification, where
high accuracies (i.e., ≥85 %) were achieved, typically had
sample size smaller than 100 and involved clinically
ascertained current MDD cases, in some cases with
severe or treatment-resistant depression (Johnston
et al., 2015; Mwangi et al., 2012; Patel et al., 2015).

In terms of the lack of MDD-related differences
between the clusters in the context of previous supervised
studies, we cannot exclude the possibility that this may
be due to sample differences (our samples are relatively
well community-based samples) or that our unsupervised
method may not be sensitive enough in its current form
to detect these brain features of typically small to very
small effect sizes.

Moreover, we also performed clustering analysis with-
out controlling for any covariates as an initial testing of
our method. We found that the resulting clusters were
associated with MDD status based on CT, CSA and CV
measures for GS subsample and CT, CSA, CV and subCV
measures for UKB (see Section S1.7, Tables S3a and S3b)
but they were also strongly driven by sex, age, ICV and
scan site. Because we were not specifically interested in
sex, age or site effects, these regressed out of the brain
measures prior to the main analysis. We note, however,
that without residualisation, we do indeed see the
expected clustering related to these characteristics. We
cannot exclude the possibility however that
residualisation may have removed some effects related
to MDD.

In spite of the relative invariance of g to cognitive test
battery content, we note that sufficient breadth of cogni-
tive domains is an important consideration in deriving a
comparable g-factor. For example, it might be considered
that GS tests were more nonverbal and fluid when com-
pared with the verbal and crystallised abilities in UKB.
Thus, although there were verbal and crystallised ele-
ments in the UKB VNR test, that the UKB tests used here
were subsequently shown to be relatively good g mea-
sures, it is possible that the g measures extracted across
the two cohorts showed imperfect correspondence. Nev-
ertheless, our finding that the natural clustering showed
g-differences in both cohorts further militates against this
as a substantial confounder of our results.

The current study involved using information from
MRI scans based on FreeSurfer parcellations according to
the Desikan–Killiany atlas. We note that greater informa-
tion in the form of raw voxel-wise data may be a better
representation of the brain structure and may improve
the clustering quality. This would, however, significantly
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increase the computational cost. Future research could
also apply clustering analysis on functional MRI data.

5 | CONCLUSION

We employed a novel unsupervised clustering algorithm
to find natural participant groupings within two large
independent datasets of brain structural measures. A nat-
ural grouping of two clusters was identified in the first
dataset (GS subsample) for each of the four studied
modalities and was replicated in the second dataset
(UKB). The main regions driving cluster separation were
ventral diencephalic volume, thalamus and hippocam-
pus, superior, medial and orbitofrontal regions, along
with temporal and parietal regions in both GS subsample
and UKB datasets. Although the clusters were not related
to lifetime MDD, they were found to be associated with
general cognitive ability (g-factor, computed based on
multiple cognitive tasks) in both cohorts, and also with
specific reasoning tasks, namely, the Matrix and DSy
tasks in GS subsample and Fluid Intelligence Score in
UKB. Regions with relatively high cluster-related effect
sizes were the higher order cortical regions, commonly
associated with executive function and decision making.
Future work could focus both on development and appli-
cation of ML methods to voxel-wise and multimodal
brain imaging data as well as looking at associations with
other clinically relevant metrics.
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