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ABSTRACT  

Until now, machine learning has been underutilised in shallow geothermal and more specifically, mine water thermal applications. 

Mine water thermal is a low-carbon, self-replenishing solution to providing space heating and cooling yet does not have significant 

uptake in the UK relative to other European country counterparts. This slower development is partly due to a lack of understanding 

of heat movement and behaviour in existing and abandoned mine systems. Where machine learning could offer a different perspective 

to more traditionally used numerical modelling techniques is in its ability for algorithms to quickly synthesise and process large 

volumes of available data. In this paper, we present machine learning methods applied to a UK subsurface temperature dataset to 

begin to minimise some of the knowledge gaps currently hindering development. We collated publicly available temperature data 

from The Coal Authority, British Geological Survey, Glasgow UK GeoEnergy Observatory, Scottish Environment Protection 

Agency, and the North Sea Transition Authority alongside additional licenced data from The Coal Authority, to form a dataset with 

over 2.4 million datapoints from 800 distinct locations. Both k-means clustering and multiple linear regression algorithms are 

presented alongside preliminary results of three models where geothermal gradients are predicted. The average geothermal gradient 

predicted by these models was 22°C/km (model A) and 23°C/km (model B and C), which is lower than the average UK-wide 

geothermal gradient of ~26°C/km modelled by previous authors. Furthermore, mine water temperatures were predicted to be 2°C 

warmer than other groundwaters in unmined aquifers at the same depth. All models were statistically significant with R-squared 

values of >0.85. We suggest that the data is likely presenting skewed results due to the inclusion of temperatures taken from pumping 

boreholes and mine shafts that mixes the warmer water at depth with colder, shallower water, creating a more suppressed temperature 

with depth. The simple relationships between temperature and depth illustrated in this paper form the beginnings of a machine learning 

platform from which more features can be added to further understand heat flow in mines. This study has also highlighted the 

importance of data sharing: a national or even global temperature database of the mined subsurface would allow for the uncertainties 

surrounding mine water thermal resources to be more easily addressed.  

1. INTRODUCTION 

As one of the countries that signed both the 2015 Paris Agreement and 2021 Glasgow Climate Pact, the UK has committed itself to 

be net zero by 2050, meaning efforts towards the green transition must be increasingly rapid, purposeful, and just. The energy required 

for space heating (and increasingly, space cooling) contributes to 42% of the UK's energy demand each year – more than is used to 

produce electricity (20%) or for transport (38%). Approximately 90% of the required energy for space heating and cooling comes 

from the burning of natural gas (UK Government, 2021; Monaghan et al., 2022). Therefore, finding alternative low-carbon solutions 

to fossil fuels to meet the demand for space heating and cooling is increasingly urgent. The UK Government outlined its UK Net 

Zero Strategy in 2021 which sets out a detailed economic plan for the country’s investment into the green transition, including £3.9 

billion towards decarbonising heat and buildings and recognition that geothermal energy could form an important part of this process. 

Using the shallow subsurface for heating, cooling, and thermal storage has the potential to form part of the solution to decarbonising 

the UK energy mix and reaching net zero. Mine water thermal (MWT) uses warm water from networks of abandoned, flooded mines. 

Once abandoned, legacy mines usually flood with groundwater over time due to cessation of operational pumping leading to the 

production of naturally heated groundwater within the subsurface. This warm mine water has the potential to provide a low carbon 

source of heating, cooling, and thermal storage through various MWT systems. Mine workings represent both a store of potential 

thermal energy within the mine water and rocks, and an interconnected network of heat exchange pathways through which water and 

heat can be circulated under the ground surface (Burnside et al., 2016). Once the mine water and heat are extracted, ground source 

heat pumps (GSHPs) are used to boost the low-grade temperature of the mine water to deliver it to an end-user for heating and/or 

cooling consumption before being returned to the mines (Figure 1). Abandoned coal mines lie below an estimated 25% of homes in 

the UK (The Coal Authority, 2022). The UK therefore hits a sweet spot when it comes to the balance between heat demand and 

resource location – there is a strong overlap between 9 out of the 10 largest UK cities and legacy mines where energy can be extracted 

for space heating. 

Though there is a growing body of literature on the assessment of flooded mines and their potential use as a low-carbon heating 

resource, a detailed understanding of water and heat movement in flooded mine systems has thus far proved elusive. Much uncertainty 

exists over mine abandonment state, flooding history, and present-day hydrogeological behaviour of mine water systems. 

Furthermore, the extent to which multiple schemes tapping into the same mine system might hydrogeologically and thermally interact 

is unknown. As such, an artificial intelligence (AI) machine learning (ML) approach has been adopted and applied to publicly 

available data from UK coal mine areas to identify subsurface data knowledge gaps and to aid selection of key parameters for 

advancement of numerical modelling of heat flow within mine water systems. Model outputs will de-risk mine water geothermal 

developments, particularly for future scenarios where more than one scheme is permitted within a single mine system and scheme 

cross-interference has to be assessed. We aim to provide important information for policymakers, industry, and government to 
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accelerate the rollout of mine water heating, cooling, and thermal storage in the UK and globally. In this paper, we present our initial 

ML findings and make further recommendations for complimentary further research. 

 

2. BACKGROUND 

In the UK, the need to further our understanding of MWT systems is pressing as the industry continues to grow. There are only two 

MWT schemes currently operational – large-scale commercial schemes both operating at Lanchester Wines, Gateshead, NE England. 

The schemes have been fully operational since 2020, comprising of two sets of abstraction and reinjection borehole doublets 

approximately 700 m apart from one another that are used to heat commercial warehouses with heat pump capacities of 2.4 MW and 

1.2 MW respectively (Banks et al., 2022). Elsewhere in the UK, potential mine water thermal projects are increasing (Figure 2) – in 

2021 the Coal Authority estimated that there were at least 42 projects in their planning stages (Northeast LEP, 2021). Northeast 

England is becoming established as a leader in installed mine water geothermal systems in the UK. This is unsurprising given the 

extensive occurrence of Carboniferous Coal Measures which have been intensively mined in this area. As an example, the Seaham 

Garden Village is planning on utilising warm mine water from a nearby mine water treatment facility to heat 1,500 new homes by 

2028. Furthermore, Gateshead Council have plans to use mine water to expand the existing Gateshead District Energy Scheme and 

deliver a heating capacity of 6 MW.  

Figure 1: Typical mine water thermal well doublet used for heat extraction in which mine water is pumped to the surface, 

transferred to a GSHP where the heat is boosted to a suitable temperature for space heating before the cool water is 

reinjected to the mine to be reheated via natural geothermal flux and/or injected waste heat (UKGEOS, 2022). 

Figure 2: Locations of past, present, and future planned MWT schemes in the UK (as of January 2023) with 

The Coal Authority's hydrogeologically distinct 'mine water blocks' shown in purple. 
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The Coal Authority (TCA) currently only permits the operation of one geothermal scheme per distinct mine water block unless a case 

can be made for the safe utilisation of more than one scheme.  A mine water block is characterised as a set of interconnected flooded 

collieries which have a continuous water level gradient and little to no hydraulic connectivity with other blocks. Currently, TCA have 

174 defined mine water blocks (Farr et al., 2020). There is little understanding on how adjacent schemes may interact with one 

another, particularly in the long-term. In areas such as Northeast England where several schemes are proposed within single mine 

water blocks, the importance of de-risking future scenarios is significant.  

Because little is known about how heat interacts in mine water bodies, use of AI ML techniques applied to relevant data would allow 

for models to find patterns within the data that may otherwise not be obvious through more traditional methods of analysis. Besides 

the well-acknowledged correlation with depth, other factors that may influence heat flow in mine include the geology (stratigraphy, 

host rock thermal, hydrological, and mechanical properties), local hydrogeology (groundwater flow, composition), the mine network 

(connectivity, mine type, vintage and collapse state, fracturing) and engineering perturbations (pumping and cooling during mining, 

pumping and water treatment since abandonment). The sheer number of often interlinked factors that could influence heat transfer, 

heat retention, and water flow in a given mine means that the problem lends itself well to AI ML approaches given that a large enough 

database can be generated benefitting from these factors.  

AI refers to the science and engineering of making intelligent machines, and in particular, intelligent computer programmes 

(Okoroafor et al., 2022). The latest AI Index Report, which tracks and disseminates the use of AI in all sectors and industries of all 

scales across the world, highlighted the increasing activity in the field of AI. For instance, private investment in AI doubled between 

2020 and 2021 and academic publications in AI have increased 12-fold over the last 20 years (Zhang et al., 2022). However, this 

rapid growth in AI is not echoed universally – the report reveals that investment of AI in the energy sector is negligible and 

publications are far fewer compared to those from other industries. Zhang et al. (2022) suggest that this is in part due to a reliance on 

familiar physics-based process models, rather than other data-driven models, to describe energy industry-related processes.  

ML is a branch of AI that uses statistical methods to train computational models from data (Okoroafor et al., 2022) (Figure 3). ML 

uses mathematical models of data to let a computer learn without direct instruction, allowing the computer to continue learning on its 

own. Algorithms are mathematical functions that contain many parameters that map inputs (or features) and one or more outputs (or 

targets) which can range from a probability to the recognition of a particular structure (Okoroafor et al., 2022). Training an ML 

algorithm involves optimizing the parameters to be able to map features and predict targets accurately (Bortnik & Camporeale, 2021). 

ML can produce models that analyse large and complex data far faster than human intelligence would permit. In the context of this 

research, ML models derived from subsurface data relating to heat (e.g., data relating to temperature, depth, geology etc.) would 

provide calibration and validation basis for the numerical modelling analysis. 

 

Within the shallow geothermal energy sector and particularly related to mine water thermal, there is little peer-reviewed research that 

utilises AI techniques, let alone any investment within industry relating to the development of AI-related projects. Database searches 

reveal that compared to other forms of modelling, AI methods are not being used in research to further understand the complexities 

surrounding heat flow in mine systems (abandoned or operational, Table 1). Of these papers, many are not solely focused on AI 

methods nor are there any that specifically look at mine water thermal and AI ML applications based on UK data. Therefore, the 

numbers revealed through simple database searches exaggerate the magnitude of current research in this field. In fact, the authors 

could not find any studies on ML methods relating to mine water thermal applications globally. Past studies, such as Okoroafor et al. 

(2022), have focused on applying AI and ML approaches to geothermal power rather than those delivering geothermal heat from 

shallow, low temperature sources such as mine water thermal. 

In this paper we initiate a database of mine temperature data that can act as a framework to which other potential determinants can 

be added, as they emerge. We present the initial dataset from UK mines and boreholes in unmined areas containing the features of 

temperature, depth, and location. Descriptive statistics of ML models fit to this data are examined to elucidate spatial relationships, 

and we discuss the next steps for adding additional training features to the dataset to examine the validity of other data clusters. 

Figure 3: Venn diagram showing the relationship between artificial intelligence (AI), machine 

learning (ML), deep learning (DL), data science, and big data (Okoroafor et al., 2022). 
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Table 1: Search results for shallow geothermal and mine water thermal publications relating to artificial intelligence, 

machine learning, and numerical models for three commonly used publication databases. 

Search keyword term Database Results (as of 7 December 2022) 

Shallow geothermal "artificial intelligence" 

 

GEOBASE 0 

Science Direct (Elsevier) 282 

Web of Science 4 

Shallow geothermal "machine learning" 

GEOBASE 7 

Science Direct (Elsevier) 409 

Web of Science 13 

Shallow geothermal "numerical model" 

 

GEOBASE 268 

Science Direct (Elsevier) 5,726 

Web of Science 114 

"Mine water" thermal "artificial intelligence" 
 

 

GEOBASE 0 

Science Direct (Elsevier) 25 

Web of Science 0 

"Mine water" thermal "machine learning" 

 
 

GEOBASE 0 

Science Direct (Elsevier) 21 

Web of Science 0 

"Mine water" thermal "numerical model" 
 

 

GEOBASE 9 

Science Direct (Elsevier) 133 

Web of Science 5 

 

3. DATA COLLECTION 

In the UK there is no single temperature dataset that uses a consistent method of data collection for coalfields and the undisturbed 

subsurface, therefore, temperature and depth data were obtained from secondary sources. Available data sources included (1) The 

Coal Authority (TCA) historic coal mine measurements; (2) British Geological Survey's (BGS) UK Geothermal Catalogue (1987); 

(3) UK Geoenergy Observatories (UKGEOS) Glasgow Observatory boreholes; (4) Scottish Environmental Protection Agency 

(SEPA) groundwater monitoring boreholes; and (5) Oil and Gas Authority (now the North Sea Transition Authority, NSTA) onshore 

boreholes. Furthermore, a single licenced dataset from (6) TCA comprises of downhole monitoring borehole data was used. Of these 

sources, TCA is the only data explicitly measured from mined coalfields, with the other sources (BGS, UKGEOS, SEPA, and NSTA) 

consisting of data from both mined and unmined coalfields as well as non-coal areas. Data sources were identified based on known 

data-holding authorities within the UK, and others were identified based on the combined experience of the authors. Data were 

collected between March and August 2022. The final combined subsurface temperature dataset includes over 2.4 million data points 

from ~800 distinct locations across the UK (Figure 4).  

Figure 2: Locations of subsurface temperature data (Basemap from Google Maps, 2023). 
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4. METHODOLOGY 

AI ML algorithms were coded in Anaconda using the Python programming language and 'statsmodels' and 'sklearn.cluster.KMeans' 

libraries within Python. Based on the dataset available, the methods presented below have been used to investigate how temperature 

changes with depth in UK groundwaters, including mine waters, forming AI-generated geothermal gradients.  

Initially, a k-means clustering unsupervised learning approach was used in which the algorithm is given a set of data and derives 

structure, patterns, and relationships from the dataset without any prior information of the relationship between of the input variables 

(features) (Hurbans, 2020). A k-means clustering algorithm delineates data into distinct groups based on similar characteristics. For 

this study, the k-means algorithm was used to define eight distinct spatial clusters based on the input variables of latitude and longitude 

(Table 2). A data point was placed into a cluster group based on what cluster centroid (centre) it was closest to.  

Secondly, supervised multiple linear regression models were used in which a learning algorithm attempts to determine the link 

between two or more input features (variables) based on pre-existing information to be able to predict outcomes. Multiple linear 

regression fits a linear equation to the dataset and as a result, is one of the most robust tools for understanding relationships between 

variables. Put simply, the algorithm finds the relationship between the dependent variable, in this case, temperature, and the 

independent variables, depth, k-means cluster, data source, date of measurement, and mASL (metres above sea level) (Table 2).  

Table 2: Parameters used in multiple linear regression machine learning algorithms. 

Feature Name Dependent/Independent Description 

Depth depth Independent Metres below ground level. 

K-means 

cluster 
cluster Independent 

Each location gets cluster number assigned based on latitude and 

longitude. K-means clustering algorithm used to determine 

groups. 

Data source data_source Independent 

3 options: (1) coalfield data, (2) other groundwaters, (3) shallow 

groundwaters. Groups assigned by source dataset: 

1. minewater_src = ['bgs_uk_geo', 'tca_historic', 'tca_main'] 

2. deep_ground_src = ['bgs_geo_cat', 'oga_onshore'] 

3. shallow_ground_src = ['sepa'] 

Date of 

measurement 
date Independent 

Year of measurement, used to determine if temperature changes 

over time. 

mASL above_sea_level Independent Metres above sea level from measurement ground level. 

Temperature temp Dependent Temperature at measured depth in ℃. 

 

Models were created based on A) simple algorithm in which the features are location, depth, cluster, mASL, and temperature; B) 

including date of measurement as a feature; and C) including data source as a feature. Model B explores whether the date from which 

the measurement could make a difference to the model.  Model C explores if the type of groundwater the temperature was measured 

from is significant, here data sources were split into three groups – shallow groundwaters, coalfield data, and other groundwaters. 

All SEPA (4) data have been categorised as shallow groundwaters: they all come from depths of <20 m, and none of the other datasets 

have data from <20 m.  Shallow geothermal and MWT projects tend to tap into deeper strata than 20 m. Coalfield data measurements 

were those taken directly from coalfields (this includes mined and unmined areas) and consisted of all TCA data (1 and 6). These 

include measurements from boreholes and measurements from within mines (boreholes and shafts). All other data (2, 3, and 5) were 

classified as other groundwaters as they were taken from a variety of aquifers throughout the UK, including some which go through 

unmined Coal Measures (note, Coal Measures in the UK is a lithological term, and some of these boreholes may contain no coal). 

Some of the other groundwaters are deeper than the mined strata. Separating coalfield data from the other groundwaters allowed us 

to investigate the effect of the regional mining on local geothermal gradients.  

Ordinary Least Squared (OLS) error was used to minimise the sum of the squared residuals of the models, i.e., any positive errors 

should not be compensated by negative ones as they are both bad for the model, which reduces the error between predicted and true 

(real) values. OLS is one of the most widely used models due to its efficiency in producing a robust statistical analysis from which 

the accuracy of a model can be interpreted. 

5. RESULTS AND DISCUSSION 

(A) Simplest model with location, depth, cluster, mASL and temperature features  

In Figure 5a, the orange data points on the temperature and depth graph represent the fitted temperatures; they are the model predicted 

temperatures based on all available data and represent the 'linear regression' line of best fit. The reason for the spread of points is the 

error in the model. The blue dots represent the true temperatures from all available data. At greater depths, the model predicts higher 

temperatures than are true. Big differences such as these could represent "bad" data, or more likely, suggest that more features need 

to be added to the model to explain these anomalies.  

Figure 5b illustrates the same true temperatures as in Figure 5a, but this time the fitted temperature values are represented by the 

single black line. At lower temperatures of <10°C, there is a wide spread of data away from the fitted line, which indicates that the 

inclusion of the SEPA data (<20 m) may be increasing the variance of the model and may not be suitable without the addition of 

features to explain them. 
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Data was grouped into eight clusters based on geographical spread (Figure 5c). These were defined through a series of trial-and-error 

algorithms that resulted in a ‘Goldilocks’ number of eight for this study. Six clusters form distinctly independent groups, whereas 

two clusters located in the Midlands represent two neighbouring groups – one in Lincolnshire (East Midlands, green) and one in 

Derbyshire, Staffordshire, and Cheshire (Central and West Midlands, brown). The model may have potentially picked out these two 

groups for a reason related to the variability in the geology across these areas. In the East Midlands, the Carboniferous geology is 

buried under ~1km of Permo-Triassic sediments, whereas large parts of Derbyshire and Staffordshire in the West Midlands have 

Carboniferous rocks at ground level. More features are required to be added to the algorithm to determine if there are other controls 

that could explain this split in the identified clusters. Alternatively, these locations are relatively data-rich compared to other regions, 

so the model could have overfitted the data based on the training set data. 

Figure 5d shows which clusters have lower (blue) or higher (red) predicted temperatures than the full dataset based on the k-means 

clustering algorithm. In Scotland, temperatures tend to be 2°C colder than the overall dataset, whereas in the southeast of England 

temperatures are 8°C higher. Measured temperatures are higher in Cornwall and Devon compared to southeast England. This may be 

subtly mirrored in the different temperatures in the East and West Midlands. On review of the training set data, this east-west 

difference does not appear to be related to a specific dataset, so it may be due to features yet to be identified.  

The model outputs a geothermal gradient of 22°C/km for model A (Figure 6, coef column), equating to 34°C at 1 km depth using a 

mean annual air temperature of 11°C (Met Office, 2023). This is relatively low compared to other calculated geothermal gradients 

for the UK, e.g., Busby et al. (2011) estimate a geothermal gradient of 26°C/km, equivalent to an in-situ temperature of 37°C at 1 km 

depth. This discrepancy may be due to the nature of our dataset, which included surface-recorded temperature values from pumped 

borehole and mine shaft waters. Ex-situ temperature measurements on potentially cooled groundwaters may skew some of the data 

points, leading to a decrease in the calculated geothermal gradient. Usually, pumped boreholes would increase the temperature at 

depth due to vertical and lateral mixing of deeper, warmer groundwaters with cooler, shallower groundwaters.  

 

The P value (Table 6, P>|t| column) represents the probability for a given model that the null hypothesis is true (e.g., that temperature 

does not change with depth). This number should be below 0.01: higher coefficients mean that it is not clear whether the feature has 

a positive or negative impact on the model e.g., cluster group 8. The R-squared number shows how much variance is explained by 

the model: the closer the value to 1.0, the better the model is at replicating observed outcomes. A "good" R-squared value for our 

Figure 3: Results from model A. a) – model fitted (orange) and true temperature/depth 

measurements (blue) from multiple linear regression. b) – true and fitted temperature 

values from multiple linear regression. c) – k-means cluster groups. d) – predicted 

temperature differences of data based on their location.  

a b 

c d 
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study would be a value of >0.85 (or 85% of the variance explained by the model). The R-squared number is 0.895 which indicates 

that the model can explain 89.5% of the variance.  

 

 

(B) More complex model with date of measurement as a feature  

Model B, which included date of measurement as a feature, gave similar results to model A (Figure 7). The average temperature 

seems to decrease in later years compared to earlier years (coefficient of -0.011, Figure 8). This may again be due to increased 

pumping activity in boreholes and mine shafts where the temperatures are regularly mixed, resulting in lower measured temperatures 

post-pumping compared to pre-pumping. Anecdotal miner testimonies suggest that during active mining operations, dewatering pump 

rates often varied in response to hitting no-flow boundaries, such as faults or impervious layers, where water would pool between 

areas of high flow to low or no flow. One miner remembers a particular coal seam being wet compared to the rest of the coal-bearing 

strata and, therefore, requiring higher levels of pumping in associated parts of the mine. Ex-miner interviews are part of an ongoing 

study and will be presented in a future publication.  

Figure 4: OLS regression model A output results. 

Figure 5: Results from model B. a) – model fitted (orange) and true temperature/depth measurements (blue) 

from multiple linear regression. b) – true and fitted temperature values from multiple linear regression. c) – 

k-means cluster groups. d) – predicted temperature differences of data based on their location.  

 

b a 

c d 
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The estimated geothermal gradient for model B is 23°C/km, slightly higher than model A (Figure 8, coef column). Although the 

coefficients for the datasets are different from the previous model, the datasets that have the highest coefficients are the same (i.e., 

the BGS and UKGEOS data sources, Figure 8, dataset_bgs rows). This means that these data sources still have the greatest impact 

on the model predictions of temperature. The R-squared number for this model is 0.907, which while higher than in model A, does 

not necessarily indicate that model B is more reliable because the R-squared number would be expected to increase as new features 

are added.  

 

(C) Complex algorithm with data source added as a feature  

Figure 9a illustrates the temperature with depth for the whole dataset (blue) and the fitted and true temperatures with depth for the 

three data source groups: coalfield data (orange), shallow groundwaters (green) and other groundwaters (red). Generally, the spread 

of coalfield data is narrow compared to other groundwaters. This may be because there are more coalfield data than other 

groundwaters (2,408,631 compared to 1,152 data points) and, therefore the dataset is more variable. As predicted prior to the model, 

shallow groundwaters show high variance, which despite being no higher than the other two data source groups, skewed predicted 

temperatures at shallow depths. The model was re-run without shallow groundwaters, to test this groups impact on predicted 

geothermal gradient; however, there was no alteration in the final result. As MWT energy is unlikely to be extracted from such 

shallow (< 20 m) depths, any degree of variance (high or low) in shallow groundwaters data is unlikely to have a large impact on 

model predictions for more relevant MWT target depths. The geothermal gradient in model C was predicted to be the same as model 

B at 23°C/km. 

 

In model C, the predicted temperature differences of data based on their location and source were investigated for each grouping 

(Figure 10). Notably, the other groundwaters map (Figure 10c) is very similar to the maps from models A and C. This is due to the 

other groundwaters data sources having the largest impact on the temperature predictions in the model (as indicated by their high 

coefficients in Figure 8, coef column, rows dataset_bgs). For the coalfield data map (Figure 10b), the West Midlands cluster appears 

to have the highest predicted temperatures, and Scotland the lowest. The other clusters (peach coloured data points) have statistically 

significant higher predicted temperature (~1.5°C above the average overall predicted gradient of 23°C/km). Coalfield data generally 

have slightly higher predicted temperatures than the other groundwaters, meaning temperatures associated with coalfield data 

Figure 6: OLS regression model B results. 

 

Figure 7: Results from model C. a) model fitted (shallow groundwaters, green; coalfield data, orange; 

other groundwaters, red) and true temperature/depth measurements (blue) from multiple linear 

regression. b) – true and fitted temperature values from multiple linear regression. 

  
a b 
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including mined areas are generally elevated above that observed in unmined aquifers. The higher predictions for shallow 

groundwaters (Figure 10a) in the west of Scotland compared to the east is because most eastern data points are <8 m deep where the 

seasonal influence of air temperature will be greater. 

 

Statistically, this model is no more accurate than model B as no new features were introduced, only groupings. The R-squared number 

for model C is 0.907. Grouping data based on their groundwater source helps to review these data through use of the machine learning 

model, although does not provide more detail beyond that. For the model to be improved, more features need to be added to help 

explain predictions made e.g., geology or date of mine closure. 

6. CONCLUSIONS  

One of the main challenges of using artificial (AI)/machine learning (ML) algorithms for mine water thermal (MWT) applications is 

the suitability and volume of data. As was experienced during this project, there is not a lot of mine data publicly available and 

suitable for use in ML due to the varying nature in which mine data were recorded and maintained in the (often long) period since 

mine closure. For this reason, the scope of the project was expanded to include other subsurface data from non-coalfield areas in the 

UK, enabling more data to be collected at scale, resulting in a significant dataset with ~2.4 million data points for UK subsurface 

temperatures. As was suggested, for these models to be improved and produce more accurate results, more features need to be added. 

This presents its own challenges as there are currently restrictions over the quantity of data that can be licensed to one user by The 

Coal Authority (TCA). Farr et al. (2021) suggest that permits to investigate MWT should have a requirement to submit temperature 

data to a central database, which would ultimately start to address some of these data challenges. We concur and add that equitable 

access to data will only serve to ensure the increased uptake and longevity of MWT developments in the UK and further afield. 

Mine water thermal resources have the potential to form part of the solution to achieve net zero by 2050 in the UK; this paper outlines 

ML approaches on predominantly publicly available data in order to start addressing the uncertainties surrounding heat in mine 

systems that pose a barrier for MWT developments. Based on temperature data from The Coal Authority (TCA), British Geological 

Survey (BGS), Glasgow UK GeoEnergy Observatory (UKGEOS), Scottish Environment Protection Agency (SEPA), and the North 

Sea Transition Authority (NSTA), our subsurface temperature dataset has been imported into unsupervised and supervised ML 

algorithms to determine average geothermal gradients for the UK alongside observations of heat at depth in mined areas. The average 

ML predicted geothermal gradient for model A was 22°C/km and for models B and C was 23°C/km, which is ~3°C lower than 

previous estimates. We attribute this largely to the pumped data included in the dataset, which in future studies should be cleaned and 

omitted to produce a more accurate representation of the heat in place. ML cluster maps indicate that mine waters are generally 

predicted to be ~2°C warmer than other groundwaters at the same depth, suggesting local factors such as geology and mine type may 

play a significant role in boosting temperatures in such mine systems. However, the preservation of, and access to, mine records is 

highly heterogenous, therefore information on the other relevant features (e.g., local stratigraphy or mine network linkage) will need 

to be collected on a site-by-site basis. The ML platform created thus far will facilitate this. 

AI ML methods have a place in mine water thermal and other shallow geothermal applications if enough unpumped data are available 

to use. The preliminary results presented in this study reflect the learning process of using ML on a novel application and we hope 

that the lessons highlighted here can be used to further its use in the energy sector. 
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