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Abstract. Image segmentation is the foundation for analyzing and understanding high-level images. How to 
effectively segment an intensity inhomogeneous image into several meaningful regions in terms of human visual 
perception and ensure that the segmented regions are consistent at different resolutions is still a very challenging 
task. In order to describe the structure information of the intensity inhomogeneous efficiently, this paper 
proposes a novel hybrid bias field correction model by decoupling the multiplicative bias field and the additive 
bias field. These kinds of bias fields are assumed to be smooth, so can employ the Sobolev space to feature them 
and use a constraint to the multiplicative bias field. Since the proposed model is a constrained optimization 
problem, we use the Lagrangian multiplier method to transform it into an unconstrained optimization problem, 
and then the alternating direction method can be used to solve it. In addition, we also discuss some mathematical 
properties of our proposed model and algorithm. Numerical experiments on the natural images and the medical 
images demonstrate performance improvement over several state-of-the-art models.

Keywords Image segmentation · Bias correction · Intensity inhomogeneity · Augmented Lagrangian
method · MRI

1 Introduction

Medical image segmentation is a perfect combination of the medical field and computer vision field,
and it is the basis of various medical image applications. The purpose of medical image segmentation
is to separate the parts with special meaning in medical images, these regions have similar properties
such as grayscale, texture, brightness, contrast, etc[2]. Due to the factors such as space and imaging
equipment illumination, the problem of uneven pixel intensity often occurs, which poses a great challenge
to image segmentation. Intensity inhomogeneity is a smoothly varying bias field. For instance, in magnetic
resonance imaging (MRI), intensity inhomogeneity can lead to inconsistency of pixels in the same tissue
[28].

During these decades, there has been a lot of research on image segmentation[21, 19, 26, 32]. Various
variational methods, partial differential equations, and deep learning segmentation methods have been
proposed for image processing and image segmentation [11, 14, 16, 22]. There are two major classical
methods for image segmentation: region-based models and edge-based models. Region-based segmentation
methods utilize region information to guide the evolution of initial contours. Chan-Vese (CV) model [5],
local binary fitted (LBF) model [15] and local intensity clustering (LIC) model [16] are the approaches
of region-based models. In edge-based segmentation methods, the segmentation process is performed by
evolving the initial contour to the target boundary. Snake model [13], Geodesic active contours model [4]
are the classical edge-based models. However, these methods are greatly affected by the initial contour
and the boundary of the target object, and curve evolution tends to fall to a local minimum. These models
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are based on the assumption that the gray distribution is uniform. Therefore, it cannot achieve a good
segmentation effect for images with intensity inhomogeneity. It is a challenging task to segment regions
of interest from images with inhomogeneous intensity. To this end, a lot of research has been done on the
problem of image segmentation with uneven gray levels[25, 19, 20, 17].

Intensity inhomogeneity (i.e. bias field) is present in many real-world images from different modal-
ities, such as X-ray/tomography and magnetic resonance (MR) images. This phenomenon also occurs
in natural images, mostly due to uneven lighting. To solve the image segmentation problem of intensi-
ty inhomogeneity, Chan and Vese [29] proposed a piecewise smooth (PS) model. This method uses the
piecewise smooth function to replace the gray constant value function, and effectively segment the image
with intensity inhomogeneity. However, this model requires periodic initialization, which is difficult to
apply and cannot be generalized. Despite the advantages of these level set-based methods, the solution
can easily get stuck in local minima, depending on the initialization. Li et al. [16] introduced the kernel
function to the active contour model and then proposed the LBF model. This model solves the level
set reinitialization problem to a certain extent. In the literature [16], the author introduced a bias field
into the segmentation model, completes the bias field correction at the same time as the segmentation,
and improves the model’s dependence on the initial contour. Zhang et al.[36] presented a novel level set
method for image segmentation in the presence of intensity inhomogeneity. Simultaneously, Duan et al.
[7] introduced an L0 gradient regularizer to model the true intensity and a smooth regularizer to model
the bias field. Ali et al. [1] proposed a variational model with hybrid images data fitting energies for
segmentation, this method achieves good results on images with intensity inhomogeneity. Niu et al. [24]
improved Li’s model by introducing local entropy, which redefined the energy function of the level set
as a weighted energy integral. Jung [12] proposed a piecewise-smooth image segmentation model (L1PS)
by introducing L1 Data-Fidelity Terms. This model can effectively deal with the image with intensity
inhomogeneity and noise. In [38], Zosso et al. proposed the CVB model based on Retinex theory, which
assumes that a natural image can be seen as the sum of illuminance bias part and reflectance. Subud-
hi et al. [27] proposed a fuzzy set based on Gibbs Markov Random Field (MRF) to model the spatial
background information of magnetic resonance imaging, and combined with the principle of maximum
posterior probability estimation to segment images with uneven illumination. Yu et al. [35] proposed
an edge-based active contour model (ACM) for medical image segmentation, which integrates adaptive
perturbation into the framework of edge-based ACM. Thus, the stability of the evolution curve and the
accuracy of numerical calculation are ensured. Memon et al. [20] proposed a region-based hybrid active
contour model. The weight function in the model can obtain smooth contour boundaries at different
intensity levels, suppress the evolution of false contours, and regularize the target boundaries. In the
literature[3], Alirr et al. utilized deep learning and level set methods for organ segmentation. In this arti-
cle, we consider the total variation method to segment the kidney and spleen. Weng et al.[33] proposed a
level set method based on additive bias correction for image segmentation with intensity inhomogeneity.
Due to the different intensity values of image objects, this method is not suitable for segmenting objects
with significantly multiple colors.

In the ideal case, the physical property of the background area of the real image is zeros pixels
in MRI. Therefore, we assume that the input image consists of two parts, one is the product of the
piecewise constant function and the multiplicative bias field, and the other is the additive bias field.
This method makes full use of the advantages of decomposing the image into two parts, namely the true
image, which characterizes the physical properties of the image, and the multiplicative bias field, which
reflects the intensity inhomogeneity, and its respective spatial properties and additive bias field. Bias
field estimation and target segmentation are energy minimization processes implemented simultaneously.
Based on the augmented Lagrangian function, we design a fast and effective optimization method to solve
the problem and provide theoretical analysis to ensure the existence of the model solution and the local
convergence of the algorithm. Extensive experiments on natural images and real medical images show
that the proposed segmentation model outperforms state-of-the-art methods in terms of robustness to
noise and segmentation accuracy.
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The framework of this paper is as follows: Section 2 mainly introduces the proposed model with
multiplicative and additive bias field correction and establish the existence of a solution. We also review
several variational segmentation models related to our model in section 2. We propose an optimization
algorithm for solving this model using the variable splitting scheme and augmented Lagrangian method in
section 3. In section 4, we conduct related experiments and analysis on natural images and MRI images
respectively. Then, we present the numerical results of our model and compare the performance with
other existing methods. Finally, in Section 5 conclusions of this work are drawn.

2 Related work

Throughout this paper, let Ω ⊂ R2 be an open and bounded image domain, and I : Ω → R be an
observed grayscale image to be segmented. Let C be the edge set in Ω. The purpose of segmentation is
to divide the image domain Ω into N disjoint parts {Ωi}Ni=1, such that Ω = ∪Ni=1Ωi ∪ C. i.e. Ωi ∩Ωj = ∅,
∀i 6= j .

2.1 Related variational model

In the literature [23], For an observed image I, to find optimal piecewise sooth approximation I0 :
x ∈ Ω → R, C be a closed contour. The Mumford-Shah(MS) model can be represented as the following
minimization problem

EMS(I0, C) =
λ

2

∫
Ω

(I − I0)2dx +

∫
Ω/C
|∇I0|2dx + ν|C|. (1)

where λ, ν are the positive weight parameters, and |C| represents the total length of the arcs making up
C. Here I0 is the piecewise smooth approximation function of image I. The three terms of the model are
explained as follows: the first term requires I0 to be approximately I; the second term requires I0 to vary
little in each region Ωi; the third term requires the boundary contour C to be as short as possible. Since
the discontinuity of the integral region in the latter two terms and the non-convexity of the MS model, it
is difficult to realize the numerical minimization problem. Then there are some techniques to improve the
MS model. Chan and Vese [5] proposed the minimization energy function by simplifying the MS model

ECV (φ, c1, c2) =

∫
Ω

(I − c1)2H(φ) + (I − c2)2(1−H(φ))dx + ν

∫
Ω

|∇H(φ)|dx. (2)

where H is Heaviside function, φ is the level set function, and the contour C = {x : φ(x) = 0}. The
minimization problem (2) is to find constant approximations c1 and c2 of the mean intensity of pixels
inside and outside the contour C of the image I to be segmented. Since the model (2) is non-convex, Chan
[6] uses a convex relaxation technique by u := H(φ) to transform it into a convex problem.

min
u∈[0,1]

∫
Ω

(I − c1)2u+ (I − c2)2(1− u)dx + ν

∫
Ω

|∇u|dx. (3)

However, these models have segmentation errors when dealing with the image with intensity inhomogene-
ity. In the literature [8], Gao et al. introduced a local modified about (2) model to process the image with
intensity inhomogeneity. However, for images with serious intensity inhomogeneity, or in the presence of
noise, we still need to conduct further research.
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Fig. 1 Image decomposition assumptions about intensity inhomogenetity. I is the observed image. J is the true image. b1,
b2 are bias field.

2.2 Image model

In [10], Horn et al. analyzed the illumination problem and proposed the multiplicative model of
observed image, which describe the composition of real-world images. The real image can be represented
as a method of synthesizing the image model. For an observed image I can consist of reflectance portion,
illumination portion and additive noise. It can be expressed as the following formula

I = bJ + n. (4)

where J represents the intrinsic physical characteristics of the observed image, it’s called a true image. The
bias field is represented as b, which is the component with uneven intensity. Assumed that n is the zero-
mean Gaussian noise. This model has been widely used in modeling images with intensity inhomogeneity.
The assumptions regarding the true image and bias field are as follows

– The bias field b is assumed to vary slowly and smoothly. Thus, the bias field b is approximately
constant within the neighborhood of each point in the image domain.

– The image domain Ω is divided into disjoint N parts. The true image J takes N different constant
values c1, · · · , cN in each disjoint field.

In this article, we consider that the observed image consists of an illuminated part and a reflected
part. But we assume that the part where the intensity is inhomogeneity is made up of two parts, which
is b = {b1, b2}. Here we refer to the smoothing term of the multiplicative bias field and the smoothing
term of the additive bias field, respectively. The bias field b1 is the multiplicative component of intensity
inhomogeneity, b2 is the additive component of intensity inhomogeneity, and assume that n is zero-mean
Gaussian noise. The novel synthesizing image model can be expressed as the following formula

I = b1J + b2 + n. (5)

According to the bias correction assumption in the formula (4), this paper introduces two different bias
fields into the processing of uneven intensity. We make the following assumptions regarding the true
image J and bias field b1, b2.

– The bias fields b1, b2 are slowly varying and smoothly, and we assume that the bias fields b1 and b2
are approximately constant within the neighborhood of each point in the image domain.

– The image domain Ω is divided into disjoint N parts, each part is approximately a constant value ci
(i = 1, · · · , N), respectively. The true image J takes N different constant values c1, · · · , cN in each
disjoint field Ω1, · · · ,ΩN .

Based on the synthesizing image model, we define b1 and b2 are multiplicative bias field and additive
bias field. Here, we temporarily ignore the noise part of the observed image. Then the formula (5) can be
represented by Fig. 1. The multiplicative and additive bias field are displayed in the form of an image.
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2.3 Variational framework and Bias field correction

Assume that the observed image I consists of the product of a piecewise smooth function ci (i =
1, 2.) and a multiplicative bias field b1 and an additive bias field b2. We penalize the smooth function
multiplicative bias field b1 by imposing a constraint such that b1 is a bias field that varies smoothly
around a constant value. Then, we propose the following segmentation model to process the images with
intensity inhomogeneity.

min
u,b1,b2,c1,c2

λ

∫
Ω

(I − b1c1 − b2)2u+ (I − b1c2 − b2)2(1− u)dx

+ α

∫
Ω

|∇b1|2dx + β

∫
Ω

|∇b2|2dx +

∫
Ω

|∇u|dx,

s.t.

∫
Ω

(b1 − 1)2dx ≤ ε, u ∈ {0, 1}.

(6)

where ε > 0 is the bias parameter, λ, α, β are the weight parameters, and u subject to the constraint
{0, 1}. In the right side of (6), the first term is the data fitting term, which forces b1ci + b2, i = 1, 2. to
be close to the input image I, the second term and the third term are smooth term of bias field, which
ask that bias fields vary smoothly. The last term is the length term to regularize the contour. Our goal
is to recover bi, ci, i = 1, 2. from the observed image I and obtain the segmentation result. The bias field
b1 is usually assumed to vary slowly and take a value around 1, so we use constraint terms in the model
to represent it.

Since the model (6) is non-convex due to the binary constraint, and it is hard to solve numerically.
Therefore, we convex relaxation of u, such that u ∈ [0, 1]. Transform the formula (6) into an unconstrained
optimization problem, and the corresponding optimization problem is

min
u,b1,b2,c1,c2

E(u, b1, b2, c1, c2) :=λ

∫
Ω

(I − b1c1 − b2)2u+ (I − b1c2 − b2)2(1− u)dx + α

∫
Ω

|∇b1|2dx

+ β

∫
Ω

|∇b2|2dx +

∫
Ω

|∇u|dx + ν

∫
Ω

(b1 − 1)2dx + ΓD(u).

(7)

where ν > 0 is penalty parameter. ΓD(u) is the characteristic function can be written as

ΓD(u) =

{
0, if u ∈ D,

+∞, otherwise.

where D = [0, 1].

2.4 Convergence analysis

Before the theoretical analysis, we first introduce some related lemmas, such as the lower semi-
continuity, the definition of bounded variation space, and Poincare inequality[30]. Then we prove the
convergence of the optimal solution.
Lemma 1. Assumed that u ∈ L1(Ω), according to the following equality, we define the bounded variation
space BV (Ω) as a space∫

Ω

|Du| := sup

{∫
Ω

udiv(φ)dx|φ ∈ C1
0 (Ω;Rn), |φ| ≤ 1

}
.

is finite. Then the BV norm is defined in BV (Ω) space can be written as

‖u‖BV = ‖u‖L1(Ω) +

∫
Ω

|Du|.
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The BV (Ω) space is a Banach space under the BV norm. The BV (Ω) space allows functions to have
discontinuous properties. Therefore, piecewise constant or smooth images are usually assumed in the
BV (Ω) space[18]. The term

∫
Ω
|Du| is represent total variation of u. Total variational regularization is

popular in variational image modeling.
Lemma 2. Supposed that uj ∈ BV (Ω)(j = 1, . . .) and uj → u in L1

loc(Ω). Then∫
Ω

|Du| ≤ lim inf
j→∞

∫
Ω

|Duj |.

Lemma 3. Let Ω be a bounded open subset of an n-dimensional Euclidean space with a Lipschitz
boundary, then there exists a constant C, whose value depends only on Ω and p. For each function u in

Sobolev space W 1,p(Ω), denoting (u)Ω :=
1

|Ω|

∫
Ω

udx, The Poincare inequality is defined as

‖u− (u)Ω‖Lp(Ω) ≤ C‖∇u‖Lp(Ω).

where 1 ≤ p ≤ n.
Lemma 4. Let Ω be a measure space, and uj(j=1,. . . ) be a sequence of measurable positive functions
with real values, such that ∫

Ω

lim inf
j→∞

ujdx ≤ lim inf
j→∞

∫
Ω

ujdx.

where the limit of the function is the limit in the sense of point by point convergence.
Theorem 1. Let I ∈ BV (Ω), c1, c2 > 0, and the admissible set is Λ = {u, b1, b2|u ∈ BV (Ω), satifiesu ∈
[0, 1], b1 ∈ W 1,2(Ω), b2 ∈ W 1,2(Ω)}. For fixed parameters λ, α, β are positive, there exists a minimizer
(u∗, b∗1, b

∗
2, c
∗
1, c
∗
2) of problem (7) in the admissible set Λ.

Proof. It is obvious that every term in (7) is positive, it has a finite lower bound. Thus there exits a
constant K, we have the following inequality

inf E(u, b1, b2, c1, c2) ≤ K. (8)

according to the definition of the lower bound, hence there exits a minimizing sequence (uk, bk1 , b
k
2 , c

k
1 , c

k
2),

such that
lim
k→∞

E(uk, bk1 , b
k
2 , c

k
1 , c

k
2) = inf E(u, b1, b2, c1, c2). (9)

For the sequence {uk}, notice that Ω ∈ R2 be a bounded image domain, we have
∫

Ω
ukdx ≤ |Ω| due to

u ∈ D. And uk ∈ BV (Ω) ↪→ L2(Ω), hence there exits u∗ ∈ BV (Ω), such that

uk −−−−→
L1(Ω)

u∗ and uk −−−−−→
a.e. in Ω

u∗. (10)

By the weak lower continuous of TV semi-norm, we obtain the following inequality of the problem∫
Ω

|∇u∗|dx ≤ lim inf
k→∞

∫
Ω

|∇uk|dx. (11)

For the sequence {bki }, where i = 1, 2. Let (bki )Ω := 1
|Ω|
∫

Ω
bki dx donate the mean value in Ω. By the

Poincare inequality, it follows that there exists a constant C > 0, such that

‖bki ‖L2(Ω) = ‖bki − (bki )Ω + (bki )Ω‖L2(Ω) ≤ ‖bki − (bki )Ω‖L2(Ω) + ‖(bki )Ω‖L2(Ω)

≤ C‖bki − (bki )Ω‖L2(Ω) ≤ C‖∇bki ‖L2(Ω) ≤ CK.
(12)

and therefore, the sequences {bki } and {∇bki } are bounded in the space W 1,2(Ω), we have the following
inequality ∫

Ω

|∇b∗i |2dx ≤ lim inf
k→∞

∫
Ω

|∇bki |2dx, i = 1, 2. (13)
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and the sequence {bk1} is given by∫
Ω

(b∗1 − 1)2dx = lim inf
k→∞

∫
Ω

(bk1 − 1)2dx. (14)

For the sequence {cki }, where i = 1, 2. ci is bound in R. Then there exits a convergent subsequence, thus
we have cki → c∗i . According to uk → u∗, bki → b∗, and cki → c∗i , based on the Fatou lemma we get∫

Ω

lim inf
k→∞

(I − ck1bk1 − bk2)2ukdx =

∫
Ω

(I − c∗1b∗1 − b∗2)2u∗dx ≤ lim inf
k→∞

∫
Ω

(I − ck1bk1 − bk2)2ukdx. (15)

∫
Ω

lim inf
k→∞

(I − ck2bk1 − bk2)2ukdx =

∫
Ω

(I − c∗2b∗1 − b∗2)2u∗dx ≤ lim inf
k→∞

∫
Ω

(I − ck2bk1 − bk2)2ukdx. (16)

Thus we obtain the following inequality

E(u∗, b∗1, b
∗
2, c
∗
1, c
∗
2) ≤ lim inf

k→∞
E(uk, bk1 , b

k
2 , c

k
1 , c

k
2) = inf E(u, b1, b2, c1, c2). (17)

To summarize, we prove that (u∗, b∗1, b
∗
2, c
∗
1, c
∗
2) is a solution of the problem (7).

3 Numerical algorithm

We first solve the subproblem of u, and then solve the other variables separately. Let’s introduce
two auxiliary variables p1, p2 to transform (7) into the following constrained optimization problem. The
solution method is to transform the original optimization problem into an alternate-direction optimization
multiplier method by variable splitting. So far, the problem that we consider is therefore

min
u,b1,b2,c1,c2

λ

∫
Ω

p2
1u+ p2

2(1− u)dx + α

∫
Ω

|∇b1|2dx + β

∫
Ω

|∇b2|2dx

+

∫
Ω

|∇u|dx + ν

∫
Ω

(b1 − 1)2dx + ΓD(u),

s.t. p1 = I − b1c1 − b2, p2 = I − b1c2 − b2.

(18)

3.1 The u-subproblem

By introducing the auxiliary variable q = ∇u, and the corresponding optimization problem is

min
u∈[0,1]

λ

∫
Ω

(p2
1 − p2

2)udx +

∫
Ω

|q|dx,

s.t. q = ∇u.

Similarity, we have the following augmented Lagrangian function

min
u,q

max
ξ
Lu(u,q; ξ1) = λ

∫
Ω

(p2
1 − p2

2)udx +

∫
Ω

|q|dx−
∫

Ω

ξ1(q−∇u)dx +
r1

2

∫
Ω

(q−∇u)2dx.

where ξ1 is the Lagrange multiplier, r1 represents the penalty parameter. Convert the above problem into
a sub-problem to solve. In the alternate optimization process, the optimization sub-problems of uk+1 is
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calculated respectively, and the auxiliary variables qk+1 and the Lagrangian multiplier ξk+1
1 are updated.

Specifically, the formula is as follows
uk+1 = argmin

u∈[0,1]

Lu(u,qk; ξk1 ), (19a)

qk+1 = argmin
q
Lu(uk+1,q; ξk1 ), (19b)

ξk+1
1 = ξk1 − r1(qk+1 −∇uk+1). (19c)

• The subproblem (19a)

min
u∈[0,1]

λ

∫
Ω

(p2
1 − p2

2)udx−
∫

Ω

ξk1 (qk −∇u)dx +
r1

2

∫
Ω

(qk −∇u)2dx.

solving the following optimal equation

r1∆uk+1 = λ(p2
1 − p2

2) + r1div(qk − ξk1
r1

).

we can take the constraint by projecting u on [0, 1],

uk+1
i,j = min(max(Ak+1

i,j , 0), 1). (20)

where

Ak+1
i,j =

1

4
[(uk+1

i+1,j + uk+1
i−1,j + uk+1

i,j+1 + uk+1
i,j−1)− λ(p2

1 − p2
2)

r1
+ div(qk − ξk1

r1
)].

and

div(qk − ξk1
r1

) = qki,j + qki−1,j + qki,j + qki,j−1

− 1

r1
([ξk1 ]i,j + [ξk1 ]i−1,j + [ξk1 ]i,j + [ξk1 ]i,j−1).

•The subproblem (19b)

min
q

∫
Ω

|q|dx−
∫

Ω

ξk1 (q−∇uk+1)dx +
r1

2

∫
Ω

(q−∇uk+1)2dx.

we use soft-threshold operator to solve q.

qk+1 = shrinkage(∇uk+1 +
ξk1
r1
,

1

r1
). (21)

3.2 The bi, ci-subproblem

The ADMM method is a fast and efficient solution method. We formulate the minimization problem
for bi, ci as follows

min
b1,b2,c1,c2

λ

∫
Ω

p2
1u+ p2

2(1− u)dx + α

∫
Ω

|∇b1|2dx

+ β

∫
Ω

|∇b2|2dx + ν

∫
Ω

(b1 − 1)2dx,

s.t. p1 = I − b1c1 − b2, p2 = I − b1c2 − b2.

(22)
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Based on augmented Lagrange method, we have the following formulation

min
b1,b2,p1,p2,c1,c2

max
ξ2,ξ3
L(b1, b2, p1, p2, c1, c2; ξ2, ξ3) = λ

∫
Ω

p2
1u+ p2

2(1− u)dx

+ α

∫
Ω

|∇b1|2dx + β

∫
Ω

|∇b2|2dx + ν

∫
Ω

(b1 − 1)2dx

−
∫

Ω

ξ2(p1 − (I − b1c1 − b2))dx +
r2

2

∫
Ω

(p1 − (I − b1c1 − b2))2dx

−
∫

Ω

ξ3(p2 − (I − b1c2 − b2))dx +
r2

2

∫
Ω

(p2 − (I − b1c2 − b2))2dx.

where ξ2, ξ3 are the Lagrange multipliers, r2 represents the penalty parameter. Convert the above problem
into a sub-problem to solve.

bk+1
1 = argmin

b1

L(b1, b
k
2 , p

k
1 , p

k
2 , c

k
1 , c

k
2 ; ξk2 , ξ

k
3 ), (23a)

bk+1
2 = argmin

b2

L(bk+1
1 , b2, p

k
1 , p

k
2 , c

k
1 , c

k
2 ; ξk2 , ξ

k
3 ), (23b)

pk+1
1 = argmin

p1

L(bk+1
1 , bk+1

2 , p1, p
k
2 , c

k
1 , c

k
2 ; ξk2 , ξ

k
3 ), (23c)

pk+1
2 = argmin

p2

L(bk+1
1 , bk+1

2 , pk+1
1 , p2, c

k
1 , c

k
2 ; ξk2 , ξ

k
3 ), (23d)

ck+1
1 = argmin

c1

L(bk+1
1 , bk+1

2 , pk+1
1 , pk+1

2 , c1, c
k
2 ; ξk2 , ξ

k
3 ), (23e)

ck+1
2 = argmin

c2

L(bk+1
1 , bk+1

2 , pk+1
1 , pk+1

2 , ck+1
1 , c2; ξk2 , ξ

k
3 ), (23f)

ξk+1
2 = ξk2 − r2(pk+1

1 − (I − bk+1
1 ck+1

1 − bk+1
2 )), (23g)

ξk+1
3 = ξk3 − r2(pk+1

2 − (I − bk+1
1 ck+1

2 − bk+1
2 )). (23h)

•The subproblem (23a)

min
b1

α

∫
Ω

|∇b1|2dx +
r2

2

∫
Ω

(pk1 − (I − b1ck1 − bk2)− ξk2
r2

)2dx

+ ν

∫
Ω

(b1 − 1)2dx +
r2

2

∫
Ω

(pk2 − (I − b1ck2 − bk2)− ξk3
r2

)2dx.

the Euler Lagrange formulation of b1 can be written as

(−2α∆ + 2ν + r2(ck1)2 + r2(ck2)2)b1 = r2c
k
1(I − pk1 − bk2 +

ξk2
r2

) + r2c
k
2(I − pk2 − bk2 +

ξk3
r2

) + 2νI

In periodic boundary conditions, we use the fast Fourier transform to solve the subproblem b1

bk+1
1 = F−1

ck1r2F(I − pk1 − bk2 +
ξk2
r2

) + ck2r2F(I − pk2 − bk2 +
ξk3
r2

) + 2νF(I)

(2ν + r2(ck1)2 + r2(ck2)2)F(I)− 2αF(∆)

 . (24)

•The subproblem (23b)

min
b2

β

∫
Ω

|∇b2|2dx +
r2

2

∫
Ω

(pk1 − (I − bk+1
1 ck1 − b2)− ξk2

r2
)2dx

+
r2

2

∫
Ω

(pk2 − (I − bk+1
1 ck2 − b2)− ξk3

r2
)2dx.
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the Euler Lagrange formulation of b2 can be represented as

(−2β∆ + 2r2)b2 = r2(I − pk1 − bk+1
1 ck1 +

ξk2
r2

) + r2(I − pk2 − bk+1
1 ck2 +

ξk3
r2

).

In periodic boundary conditions, we use the fast Fourier transform to solve the subproblem b2

bk+1
2 = F−1

r2F(I − pk1 − bk+1
1 ck1 +

ξk2
r2

) + r2F(I − pk2 − bk+1
1 ck2 +

ξk3
r2

)

2r2F(I)− 2βF(∆)

 . (25)

•The subproblem (23c)

min
p1

λ

∫
Ω

p2
1udx +

r2

2

∫
Ω

(p1 − (I − bk+1
1 ck1 − bk+1

2 )− ξk2
r2

)2dx.

The optimal solution to p1 can be shown as

pk+1
1 =

r2(I − bk+1
1 ck1 − bk+1

2 ) + ξk2
2λu+ r2

. (26)

•The subproblem (23d)

min
p2

λ

∫
Ω

p2
2(1− u)dx +

r2

2

∫
Ω

(p2 − (I − bk+1
1 ck2 − bk+1

2 )− ξk3
r2

)2dx.

The optimal solution to p2 can be shown as

pk+1
2 =

r2(I − bk+1
1 ck2 − bk+1

2 ) + ξk3
2λ(1− u) + r2

. (27)

•The subproblem (23e)

min
c1

∫
Ω

(pk+1
1 − (I − bk+1

1 c1 − bk+1
2 )− ξk2

r2
)2dx.

the optimal solution of variable c1 gives

ck+1
1 =

∫
Ω

bk+1
1 (I − bk+1

2 − pk+1
1 +

ξk2
r2

)dx∫
Ω

(bk+1
1 )2dx

. (28)

•The subproblem (23f)

min
c2

∫
Ω

(pk+1
2 − (I − bk+1

1 c2 − bk+1
2 )− ξk3

r2
)2dx.

similarly, the optimal solution of variable c2 can be written as

ck+1
2 =

∫
Ω

bk+1
1 (I − bk+1

2 − pk+1
2 +

ξk3
r2

)dx∫
Ω

(bk+1
1 )2dx

. (29)

We choose the appropriate initial value to solve the problem iteratively, and the specific algorithm process
is shown in Algorithm 1.
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Algorithm 1 The algorithm of the Multiplication-additive image segmentation model

Setting the initial values u0 = b02 = p0
1 = p0

2 = c01 = c02 = q0 = 0, b01 = I, the parameters λ, α, β > 0, let k = 1 and start
k-th iteration. Let k = k + 1 return to the k + 1 iteration till converge.

while (not converged and k ≤ Kmax) do
◦ Compute uk+1 from Eq.(20) by fixing other variables;

– uk+1
i,j = min(max(Ak+1

i,j , 0), 1).

– where Ak+1
i,j = 1

4
[(uk+1

i+1,j + uk+1
i−1,j + uk+1

i,j+1 + uk+1
i,j−1)− λ(p21−p

2
2)

r1
+ div(qk − ξk1

r1
)].

◦ Compute qk+1 from Eq.(21) by fixing other variables;

– qk+1 = shrinkage(∇uk+1 +
ξk1
r1
, 1
r1

).

◦ Compute bk+1
1 , bk+1

2 from Eq.(24) and Eq.(25) by fixing other variables;

– bk+1
1 = F−1

 ck1r2F(I−pk1−b
k
2+

ξk2
r2

)+ck2r2F(I−pk2−b
k
2+

ξk3
r2

)+2νF(I)

(2ν+r2(ck1 )2+r2(ck2 )2)F(I)−2αF(∆)

 .

– bk+1
2 = F−1

 r2F(I−pk1−b
k+1
1 ck1+

ξk2
r2

)+r2F(I−pk2−b
k+1
1 ck2+

ξk3
r2

)

2r2F(I)−2βF(∆)

 .

◦ Compute pk+1
1 , pk+1

2 from Eq.(26) and Eq. (27) by fixing other variables;

– pk+1
1 =

r2(I−bk+1
1 ck1−b

k+1
2 )+ξk2

2λu+r2
.

– pk+1
2 =

r2(I−bk+1
1 ck2−b

k+1
2 )+ξk3

2λ(1−u)+r2
.

◦ Compute ck+1
1 ,ck+1

2 from Eq. (28) and Eq. (29) by fixing other variables;

– ck+1
1 =

∫
Ω
bk+1
1 (I − bk+1

2 − pk+1
1 +

ξk2
r2

)dx∫
Ω

(bk+1
1 )2dx

.

– ck+1
2 =

∫
Ω
bk+1
1 (I − bk+1

2 − pk+1
2 +

ξk3
r2

)dx∫
Ω

(bk+1
1 )2dx

.

◦ Update ξk+1
1 , ξk+1

2 , ξk+1
3 from Eq.(19c), Eq. (23g), Eq. (23h);

– ξk+1
1 = ξk1 − r1(qk+1 −∇uk+1).

– ξk+1
2 = ξk2 − r2(pk+1

1 − (I − bk+1
1 ck+1

1 − bk+1
2 )),

– ξk+1
3 = ξk3 − r2(pk+1

2 − (I − bk+1
1 ck+1

2 − bk+1
2 )).

Check the convergence condition
‖uk+1−uk‖1
‖uk‖ ≤ ε.

end while
Output result u = uk+1.

4 Experimental results

4.1 Experiment introduction

To verify the feasibility and effectiveness of the model proposed in this paper, we conduct experiments
on a variety of datasets including natural images, lesion segmentation, and images with noise. We have
conducted comparative experiments with related segmentation models, such as ICTM [31], CVE [37],
WBHMS [34], NLDA [9], LIC [16], L1PS [12]. All experiments are performed using MATLAB(R2021a)
on a windows(10)(64bit) desktop computer with an Intel Core i7 3.20 GHz processor and 16.0GB of
RAM.

4.2 Parameters setting

Throughout all experiments, we set the maximum number of iterations as Kmax = 300 and the
termination condition error is ε = 10−4. The variables involved in our method are the data fidelity
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Fig. 2 Evaluation and comparison on natural images downloaded from the Weizmann segmentation dataset, and we label
the images.

parameter λ, the weight of bias field α, β, the penalty parameters r1, r2. The penalty parameter of the
constraint term of multiplicative bias field ν. The weight of the data fit term is λ ∈ [4, 80]. The range
of r1 and r2 values are r1 ∈ [0.001, 2], r2 ∈ [0.001, 10] respectively. The range of weight parameter ν is
[0.01, 10]. The range of the weight of bias field are α ∈ [102, 105], β ∈ [102, 105] respectively. During the
experiment, we adjust the parameters λ, r1, α to achieve the ideal segmentation result. Other parameters
are fixed at a certain value for different images. For different types of image segmentation tasks, we will
again discuss the parameter range and its impact on the segmentation results separately.

Next, we represent the range of parameters involved in the comparative experiments. We refer to the
corresponding literature and then adjust the parameters of the comparison method to the optimum to
obtain the most ideal method results. The parameters involved are the regularization parameter, length
item parameter, the penalty parameters, etc.

1) WBHMS: The detailed description of the WBHMS model is a weighted bounded Hessian variational
model. The data fidelity parameter is chosen from λ ∈ [0.4, 20], the penalty parameters r1 and r2 are
chosen r1 ∈ [0.3, 20] and r2 ∈ [0.1, 8]. the penalty parameter r3 is chosen from r3 ∈ [0.005, 2], the value
ranges of c1 and c2 are c1 ∈ [0.01, 0.45] and r2 ∈ [0.51, 0.90], respectively.

2) ICTM: The detailed description of the ICTM model is an efficient iterative thresholding method. The
data fidelity parameter is chosen from λ ∈ [0.02, 0.083], the time step δ ∈ [0, 0.1].

3) NLDA: The detailed description of the NLDA model is a new non-Lipschitz decomposition approach.
The data fidelity parameter of L0 are chosen from λ ∈ [0.001, 0.3], the smooth term parameter is
selected as α = 103, the Tikhonov regular item parameter is set to γ = 0.08, and the penalty item
parameter is set to r = 10.

4) LIC: The detailed description of the LIC model a local intensity clustering model. The data fidelity
parameter is set to λ = 1, the length parameter is set to ν = 0.001 ∗ 255 ∗ 255, the Gaussian kernel
parameter is chosen to be σ ∈ [15, 40], the level set regularization parameter is set to µ = 1, the
constant parameter in the Heaviside-Dirac function is set to ε = 1, the time step is set to δ = 0.1.

5) L1PS: The detailed description of the L1PS model is a model with L1 norm data fidelity term. The
data fidelity term parameter is chosen as λ ∈ [1, 103], the length term parameter is set as ν = 1,
the smooth term parameter is chosen as α ∈ {2.5 ∗ 105, 5 ∗ 105}, the penalty parameter is set to
r1 = {10, 50}, r2 = λ.

6) CVE: The detailed description of the CVE model is an Eulers elastica based Chan-Veses segmentation
model. The parameter value a, b of the function (10) in CVE [37] model are a = 0.001, b ∈ [0.5, 6],
the regular parameter η ∈ [0.5, 6], the penalty parameters are r1 = 1, r2 ∈ [0.5, 6], r3 ∈ [0.1, 0.5],
r4 ∈ [0.8, 2].

Image segmentation based on the hybrid bias field correction
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(a) Original image (b) Initial contour (c) WBHMS (d) ICTM (e) NLDA

(f) LIC (g) L1PS (h) CVE (i) OURS (j) Ground truth

Fig. 3 Segmentation results of our and comparative models in natural image #9 are shown. (a): The original image
’rollingroscoe’ is 300*255; (b): Initial contour of the image; (c)-(h): segmentation results of comparative models; (i) our
segmentation result; (j): Ground truth.

4.3 Evaluation indicators

In the numerical experiment part, we use four metrics to objectively evaluate the segmentation results.
For example, Jaccard Similarity (JS), Accuracy, F1-Score, Kappa coefficient (κ). In the literature [34],
we can refer to the detailed explanation of each indicator. The closer the values of these indicators are to
1, the closer the experimental results are to the ground truth. Next, we discuss the influence of different
images and parameters in the experiments on the results. Specifically, natural images, noise images, MRI
images, etc.

4.4 Natural images

For the experimental operation, we set two termination criteria, one is the number of iterations,
and the other is the relative error of the segmentation results. Next, we discuss the parameters of the
model and the experimental results for different experimental datasets. The natural images on which we
conduct related comparative experiments come from datasets on the web 1. We arbitrarily select twelve
images for related experiments, the indicator sets of Jaccard Similarity (JS), Accuracy, F1-Score, κ are
shown in Table 1. We present the comparative experimental results of images #9 and #11. Segmentation
is challenging when the contrast between the target and the background is not obvious, or when the
background is uneven. For images with a sharp contrast between the target area and the background,
such as images #1, #4, #5, #7, etc. Whether it is our method or the comparison model, it can achieve
a good segmentation effect. For images with similar image background and target, or images with noise,
such as images #3, #11, etc. The experiment only needs to adjust parameter λ, r1. The specific range
are λ ∈ [9, 12], r1 ∈ [0.001, 0.1]. The range of other parameters can refer to those listed above.

1 https://www.wisdom.weizmann.ac.il/ vision
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(a) Original image (b) Initial contour (c) WBHMS (d) ICTM (e) NLDA

(f) LIC (g) L1PS (h) CVE (i) OURS (j) Ground truth

Fig. 4 Segmentation results of our and comparative models in natural image #10 are shown. (a): The original image ’but-
terfly’ is 225*300; (b): Initial contour of the image; (c)-(h): segmentation results of comparative models; (i) our segmentation
result; (j): Ground truth.

In Fig. 3, we focus on the details of the segmentation result image. Fig. 3(a) is the given image
’rollingroscoe’. Fig. 3(b) is an arbitrarily given initial contour. The initial contours of the experiments
performed afterward are completely identical. Fig. 3(c)-3(h) are the segmentation results of the WBHMS,
ICTM, NLDA, LIC, L1PS, and CVE models. From the experimental results, we can observe that these
methods have over-segmentation or under-segmentation. The details of the upper leaves of the image
’rollingroscoe’ are not handled properly. Fig. 3(i) is the experimental result of our method. Comparing our
results with the ground-truth (Fig. 3(h)), our experimental results are the closest to the ideal segmentation
results, both visually and on the index set. The parameters selection of the image are as follows, the weight
of data fitting item λ = 9, the penalty values r1 = 0.004, r2 = 7. The value of ν is 0.01. The weight of
multiplicative bias field and additive bias field are α = 102, β = 105. The parameters α and r1 have a
great influence on the experimental results, and we can adjust these two parameters multiple times to
obtain accurate results.

The image ’butterfly’ is typical image with complex background. As shown in Fig.4, Fig. 4(a) is the
given image ’butterfly’. Fig. 4(b) is an arbitrarily given initial contour. WBHMS, L1PS, and CVE models
cannot identify the edge of image well and realize the segmentation of edge details. ICTM, LIC and
NLDA models incorrectly segment the background information, similar to the interference of noise. The
parameters of the image are selected as follows: the weight of data fitting item λ = 9, the values of r1

and r2 are r1 = 0.1, r2 = 10. The value of ν is 0.1. The weight of multiplicative bias field and additive
bias field are α = 1 ∗ 105, β = 103.

To evaluate the segmentation results of our model under different initial contours, we conduct ex-
periments on two natural images. The three natural images are #03, #07 and #10, respectively. We
randomly selected six initial contours at different positions for experiments. In Fig.5, the initial contours
are selected on the target or the background. The experimental results show the robustness of the pro-
posed model to the initial conditions. The parameters selected for different initial profile experiments are
shown below: For the image #03, we fixed the values of r1 and r2 are r1 = 1, r2 = 9. the weight of data
fitting item λ = 26, The value of ν is 0.2. The values of α and β are α = 1 ∗ 105, β = 7 ∗ 105. For the
image #07, the values of r1 and r2 are r1 = 0.002, r2 = 10. the weight of data fitting item λ = 12, The
value of ν is 1. The values of α and β are α = 1 ∗ 105, β = 103. For different initial contours, we just need
to fine-tune and get the results we satisfied.

Image segmentation based on the hybrid bias field correction

14



Fig. 5 Evaluation and comparison on natural images #03, #07,#10, and we choose random initial contour of images and
segmentation results.

4.5 MRI data

MRI has excellent imaging capabilities for soft tissue, with high resolution. Medically, MR imaging
of the body is used to observe the catastrophe, liver, chest and other structures. Intensity inhomogeneity
is how an artifact exists in MRI, along with random field noise, magnetization, and more. We conduct
related medical image segmentation experiments on several MRI images from Henan Provincial People’s
Hospital. These images are approved by the Medical Ethics Committee of Henan Provincial People’s
Hospital. We ask experienced radiologists to perform manual segmentation as ground truth. Regarding
the MRI experimental images, we focus on adjusting the parameters of the penalty function, and their
specific value ranges are r1 ∈ [0.1, 2], r2 ∈ [0.001, 0.1]. The segmentation experiment results of each
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Segmentation Evaluation Metrics for Natural Images

Criterions JS Accuracy

Images WBHMS ICTM NLDA LIC L1PS CVE Ours WBHMS ICTM NLDA LIC L1PS CVE OURS
#1 0.9545 0.9538 0.9839 0.9829 0.9818 0.9814 0.9831 0.9938 0.9937 0.9979 0.9978 0.9976 0.9976 0.9978
#2 0.8398 0.8356 0.8439 0.8522 0.8450 0.8602 0.8612 0.9778 0.9773 0.9784 0.9795 0.9785 0.9798 0.9806
#3 0.9131 0.6844 0.9268 0.9089 0.8803 0.8888 0.9185 0.9782 0.8935 0.9817 0.9771 0.9690 0.9723 0.9797
#4 0.9929 0.9936 0.9939 0.9945 0.9946 0.9902 0.9946 0.9980 0.9982 0.9983 0.9984 0.9985 0.9972 0.9985
#5 0.9718 0.9735 0.9736 0.9686 0.9734 0.9690 0.9751 0.9922 0.9927 0.9927 0.9913 0.9927 0.9914 0.9931
#6 0.9098 0.9157 0.9311 0.9125 0.9244 0.9132 0.9304 0.9556 0.9585 0.9661 0.9572 0.9628 0.9563 0.9659
#7 0.9645 0.9643 0.9676 0.9667 0.9675 0.9799 0.9717 0.9931 0.9930 0.9937 0.9935 0.9936 0.9961 0.9945
#8 0.8110 0.7723 0.7971 0.8633 0.8979 0.8465 0.9103 0.9670 0.9602 0.9645 0.9761 0.9821 0.9729 0.9843
#9 0.7541 0.6907 0.8434 0.7720 0.7443 0.7417 0.8737 0.9696 0.9617 0.9801 0.9717 0.9683 0.9671 0.9839
#10 0.9438 0.7789 0.9401 0.9531 0.9697 0.9583 0.9734 0.9924 0.9635 0.9919 0.9936 0.9959 0.9944 0.9964
#11 0.9254 0.7776 0.8910 0.8985 0.9251 0.9153 0.9574 0.9865 0.9515 0.9792 0.9819 0.9866 0.9846 0.9924
#12 0.8867 0.7110 0.9404 0.4094 0.9073 0.8821 0.9433 0.9723 0.9298 0.9855 0.7132 0.9775 0.9711 0.9862
Mean 0.9056 0.8376 0.9194 0.8736 0.9169 0.9106 0.9411 0.9814 0.9645 0.9842 0.9609 0.9836 0.9817 0.9878
Std 0.0685 0.1121 0.0601 0.1528 0.0711 0.0697 0.0414 0.0127 0.0292 0.0108 0.0756 0.0119 0.0132 0.0092

Criterions F1-Score κ

Images WBHMS ICTM NLDA LIC L1PS CVE Ours WBHMS ICTM NLDA LIC L1PS CVE OURS
#1 0.9767 0.9764 0.9919 0.9914 0.9908 0.9906 0.9915 0.9732 0.9727 0.9907 0.9901 0.9895 0.9892 0.9902
#2 0.9129 0.9104 0.9153 0.9202 0.9160 0.9248 0.9254 0.9003 0.8975 0.9030 0.9085 0.9037 0.9132 0.9143
#3 0.9546 0.8126 0.9620 0.9523 0.9363 0.9411 0.9575 0.9402 0.7399 0.9500 0.9372 0.9159 0.9231 0.9442
#4 0.9964 0.9968 0.9969 0.9973 0.9973 0.9951 0.9973 0.9950 0.9955 0.9957 0.9962 0.9962 0.9931 0.9962
#5 0.9857 0.9866 0.9866 0.9840 0.9865 0.9843 0.9875 0.9803 0.9815 0.9816 0.9781 0.9815 0.9784 0.9828
#6 0.9528 0.9560 0.9643 0.9542 0.9607 0.9546 0.9639 0.9110 0.9169 0.9321 0.9141 0.9255 0.9124 0.9316
#7 0.9820 0.9518 0.9866 0.9831 0.9835 0.9899 0.9857 0.9777 0.9775 0.9816 0.9791 0.9795 0.9874 0.9822
#8 0.8957 0.8715 0.8871 0.9266 0.9462 0.9168 0.9530 0.8763 0.8484 0.8664 0.9124 0.9356 0.9008 0.9436
#9 0.8598 0.8171 0.9151 0.8713 0.8534 0.8517 0.9326 0.8431 0.7965 0.9039 0.8557 0.8360 0.8334 0.9235
#10 0.9711 0.8757 0.9691 0.9760 0.9846 0.9754 0.9865 0.9667 0.8545 0.9645 0.9723 0.9823 0.9787 0.9845
#11 0.9613 0.8749 0.9424 0.9466 0.9611 0.9558 0.9782 0.9531 0.8451 0.9296 0.9357 0.9530 0.9465 0.9736
#12 0.9399 0.8311 0.9693 0.5810 0.9514 0.9373 0.9708 0.9220 0.7884 0.9598 0.3898 0.9368 0.9187 0.9618
Mean 0.9491 0.9051 0.9572 0.9237 0.9557 0.9515 0.9692 0.9366 0.8845 0.9466 0.8974 0.9446 0.9396 0.9607
Std 0.0391 0.0643 0.0336 0.1089 0.0388 0.0395 0.0223 0.0448 0.0822 0.0387 0.1582 0.0443 0.0462 0.0270

Segmentation Evaluation Metrics for MRI Images
Criterions JS Accuracy

Images WBHMS ICTM NLDA LIC L1PS CVE Ours WBHMS ICTM NLDA LIC L1PS CVE OURS
M1 0.2022 0.7902 0.3012 0.1085 0.8723 0.3764 0.9498 0.8838 0.9928 0.9322 0.7538 0.9955 0.9520 0.9984
M2 0.0420 0.0195 0.0091 0.0780 0.5526 0.2025 0.8608 0.9118 0.9198 0.0383 0.8961 0.9960 0.9786 0.9987
M3 0.0367 0.0355 0.0360 0.0340 0.7800 0.0085 0.9277 0.9366 0.9449 0.9505 0.9308 0.9993 0.9138 0.9998
M4 0.0045 0.0037 0.0052 0.0045 0.0041 0.0023 0.6650 0.8100 0.8692 0.8366 0.7840 0.8004 0.4476 0.9995
M5 0.0432 0.0510 0.0091 0.0338 0.6022 0.0126 0.8789 0.8467 0.8643 0.1201 0.7968 0.9967 0.4376 0.9989
M6 0.0347 0.0490 0.0318 0.0217 0.1819 0.0100 0.9260 0.9218 0.9544 0.9131 0.8586 0.9845 0.6499 0.9997
Mean 0.0606 0.1582 0.0654 0.0468 0.4989 0.1021 0.8680 0.8851 0.9242 0.6318 0.8367 0.9621 0.7299 0.9992
Std 0.0647 0.2831 0.1061 0.0354 0.3102 0.1417 0.0957 0.0444 0.0460 0.3931 0.0634 0.0725 0.2297 0.0005

Criterions F1-Score κ

Images WBHMS ICTM NLDA LIC L1PS CVE Ours WBHMS ICTM NLDA LIC L1PS CVE OURS
M1 0.3363 0.8828 0.4630 0.1958 0.9318 0.0569 0.9742 0.3005 0.8791 0.4365 0.1482 0.9295 0.5261 0.9734
M2 0.0806 0.0382 0.0181 0.1446 0.7118 0.3368 0.9252 0.0655 0.0226 0.0005 0.1303 0.7100 0.3281 0.9245
M3 0.0708 0.0686 0.0696 0.0658 0.8764 0.0168 0.9625 0.0658 0.0636 0.0646 0.0607 0.8760 0.0114 0.9624
M4 0.0090 0.0073 0.0104 0.0089 0.0082 0.0046 0.7988 0.0062 0.0046 0.0077 0.0061 0.0055 0.0018 0.7986
M5 0.0828 0.0970 0.0181 0.0655 0.7517 0.0248 0.9355 0.0684 0.0830 0.0020 0.0507 0.7501 0.0009 0.9350
M6 0.0671 0.0933 0.0617 0.0424 0.3077 0.0198 0.9616 0.0608 0.0873 0.0552 0.0358 0.3036 0.0129 0.9614
Mean 0.1078 0.1979 0.1068 0.0872 0.5979 0.0766 0.9263 0.0945 0.1900 0.0944 0.0720 0.5958 0.1469 0.9259
Std 0.1052 0.3079 0.1609 0.0635 0.3311 0.1174 0.0594 0.0946 0.3096 0.1551 0.0507 0.3318 0.2063 0.0594

Table 1 Metrics showing the segmentation results of our and comparative models in natural images and MRI images.

method of MRI are shown in Fig.6. All experiments use the same initial contour, but we find that
several methods involved in the comparative experiments are not affected by the initial contour, such as
WBHMS, CVE, etc. The experimental results show that the WBHMS, ICTM, NLDA, LIC and L1PS
methods cannot segment the lesion area well, and segment other parts of the tissue incorrectly. Fig.7
is our method segmentation result. From top to bottom are the original image, the initial contour, our
results, and the ground truth. The relevant indicator values are shown in Table 1. Our method has higher
segmentation accuracy than other methods, and can intuitively see that the details are well segmented,
as shown in Fig. 7.
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Fig. 6 Segmentation results of our model in MRI images are shown. From top to bottom are the original image, the
experimental results of the models WBHMS, ICTM, NLDA, LIC, L1PS, CVE, and the ground truth.
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Fig. 7 Segmentation results of our model in MRI images are shown. From top to bottom are the original image, the initial
contour, our results, and the ground truth.

4.6 Noise images

The image size is ”131*101” in Fig.8 shows a vascular X-ray image with uneven gray distribution.
Due to the interference in the imaging process, the gray value of some vessels is lower than that of the
background. In this case, image segmentation methods based on gray information often result in wrong
segmentation results. The segmentation method based on the bias field model can solve this problem
effectively. Our model can simultaneously segment and correct images with intensity inhomogeneous, and
performs better in the segmentation of images with intensity inhomogeneous. We conduct experiments
on several noisy images, where the initial contours are randomly selected. In Fig.8, Fig.8(a) are the given
images, these images have varying degrees of noise and intensity inhomogeneity. We annotate the size
of the image on the left side of the image. Fig.8(b) show the initial contour. Fig.8(c)-Fig.8(h) are the
segmentation results for the models ICTM, CVE, WBHMS, NLDA, LIC, L1PS. It is observed from the
experimental results that Models WBHMS, ICTM and CVE cannot correctly segment objects for images
with uneven intensity. The ICTM model is sensitive to images with noise and cannot achieve correct
segmentation. The NLDA, LIC and L1PS models cannot well describe the edge information of the target.
Fig.8(i) are the segmentation result, which can accurately segment the sharp corners and edges of the
images. For image segmentation with noise, the parameters of our model that we need to adjust are λ,
r1. The specific range is λ ∈ [4, 11], r1 ∈ [0.001, 0.1]. The range of other parameters can refer to the
parameters listed above.
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Fig. 8 Segmentation results of our model under strong noise conditions. From left to right: original image and initial
contour and segmentation result.

5 Conclusion

This paper proposed a new total variation model for bias field correction and segmentation. From
the perspective of the bias field, there are two bias fields in the image, and they are corrected. Then
we conducted a theoretical analysis of the model and conducted related comparative experiments on
a wide range of experimental datasets, which fully demonstrate the effectiveness of our method. The
experimental datasets include natural images, MRI images, and images with noise.
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