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ABSTRACT

Hyperspectral Imagery (HSI) has great importance in indus-
trial remote sensing applications, such as geological explo-
ration and soil mapping. HSI has high spectral resolution,
which gives each object a unique spectral response, making
them easily identifiable. Nonetheless, their spatial resolution
is compromised due to sensor limitation, which hinders utiliz-
ing HSI to their full potential. This paper deals with the spa-
tial enhancement of HSI using Single Image Super Resolution
(SISR) approaches. One of the main challenges in this area
of research is preserving the spectral signature of HSI while
improving the spatial resolution simultaneously. To tackle
this challenge, we propose a 3D Wide Residual Convolutional
Neural Network (3D-WRCNN) model that effectively utilizes
the principle of wide activation to enhance feature propaga-
tion throughout the network. Residual connections are also
deployed to boost image reconstruction and information shar-
ing between the layers to reduce overfitting. Furthermore, this
study incorporates and demonstrates the usage of Bayesian-
optimized hybrid loss function to further improve the per-
formance of the 3D-WRCNN. The quantitative and qualita-
tive evaluation indicate that the proposed approach prevails
over other state-of-the-art approaches. The implementation of
the proposed model is provided in this repository: https:
//github.com/NourO93/SISR_Library

Index Terms— Hyperspectral, SISR, 3D CNN, hybrid
loss function, Bayesian optimization

1. INTRODUCTION
The amount of information an image provides is expressed as
“image resolution”. Multispectral Imagery (MSI) are images
with high spatial resolution, while Hyperspectral Imagery
(HSI) have high spectral resolution. Due to sensor limita-
tions, remote sensing images cannot be captured with high
spatial resolution and high spectral resolution simultaneously.
Hence, efforts have been exerted to enhance either the spec-
tral resolution of MSI or the spatial resolution of HSI. The
scope of this paper focuses on the latter, also known as HSI
Super Resolution (HSI-SR). The taxonomy of HSI-SR can
be broadly viewed as Fusion methods, and Single Image Su-
per Resolution (SISR) methods. Fusion approaches, such as
pansharpening [1], matrix factorization [2], and tensor-based

approaches [3], assume that for a given HSI, an MSI can
be captured of the same scene with high geolocation accu-
racy, which is not a practical assumption. Furthermore, these
approaches often require knowledge about the Point Spread
Function (PSF) of the sensor, which is not always attain-
able. Therefore, despite their excellent performance, Fusion
methods are constrained by these assumptions, in addition
to their high computational complexity. Conversely, SISR
approaches do not require auxiliary MSI. This offers conve-
nience, but it also introduces the challenge of dealing with a
highly non-linear, ill-posed problem.

The earliest known SISR method is interpolation, such as
bilinear and bicubic interpolation [4]. Even though they are
no longer used as standalone approaches nowadays, they are
still used within other more sophisticated approaches and Ma-
chine Learning (ML) algorithms, such as Convolutional Neu-
ral Networks (CNNs). CNNs revolutionized the field of im-
age processing after ImageNet breakthrough in 2014 [5]. Ever
since then, many SR CNNs have been developed that achieve
decent performance on MSI [6, 7, 8]. Several studies estab-
lished that networks that are designed for MSI-SR cannot be
used directly for HSI mainly because they operate in 2D and,
thus, fail to preserve the spectral fidelity of HSI [9]. This
problem can be mitigated with 3D CNNs, as several studies
have demonstrated [10, 11, 12]. Nonetheless, researchers still
strive to overcome some of the most commonly faced chal-
lenges in the field of HSI-SISR, such as spectral distortions,
overfitting due to limited dataset size. The purpose of this
study is to mitigate those challenges by proposing a novel 3D
residual CNN that utilizes the principles of wide activation
convolution [13] to maximize spatial enhancement and min-
imize spectral loss. Combined with a hybrid loss function,
the proposed approach surpasses other state-of-the-art algo-
rithms. The main contributions are as follows:

1. We present an alternative approach to the hybrid
spectral-spatial loss function, which we previously
proposed in [14], by utilizing Bayesian Optimization
Algorithm (BOA) to tune its parameters.

2. We architect a 3D Wide Residual CNN (3D-WRCNN)
and integrate it with the Bayesian-optimized hybrid
spectral-spatial loss function.
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3. We demonstrate the advantage of the proposed ap-
proach on Pavia University dataset against other ap-
proaches quantitatively in terms of Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index Mea-
surement (SSIM), and Spectral Angle Mapper (SAM).

The rest of the paper is organized as follows: Section 2 ex-
plains the proposed 3D-WRCNN along with the BOA hybrid
loss function, Section 3 demonstrates and analyzes the advan-
tage of 3D-WRCNN against other approaches in addition to
the advantage added by the hybrid loss function, finally, Sec-
tion 4 concludes this paper and states the future direction of
this study.

2. METHODOLOGY
2.1. Problem Formulation

For a groundtruth HR-HSI denoted Y ∈ RM×N×B , LR-HSI
denoted X ∈ Rm×n×B is defined as follows:

X = DGY + E , (1)

where m << M and n << N . D is the downsampling
operation, G is the blurring kernel, and E is the additive noise.
In this study, LR-HSI is generated synthetically by applying
Gaussian blur and using bicubic interpolation as a downsam-
pling operation. This is a common approach for generating
LR-HSI according to [15].

HR-HSI can be estimated by minimizing the the loss func-
tion L between Y and the estimated HR-HSI Ŷ = F(X, φ),
over all bands B, as follows:

φ̂ = argminL(Y, F (X, φ)) (2)

where F is the HSI-SISR model with φ and φ̂ denoting
the initial and updated parameters of the model, respectively.
The complexity of HSI cube makes this a highly non-linear
optimization problem, which will be solved using the pro-
posed 3D-WRCNN.

2.2. Proposed 3D-WRCNN

The first step in the proposed network is to interpolate the LR-
HSI by the required scale factor before it propagates through
the network. The network overall consists of 6 convolution
layers of varying sizes. The network deploys wide activa-
tion principle; that is, the amount of extracted features is ex-
panded by as much as possible before applying ReLU. The
sizes of each convolution layers are indicated in Figure 1. All
the convolution layers operate in 3D in order to extract spa-
tial features while providing spectral context simultaneously.
This is considered a 3D deep CNN, and it may suffer from
vanishing gradient problem and over-parametrization, espe-
cially when the dataset size is limited. This issue can be miti-
gated by introducing residual connections to the architecture.
Two forward residual connections are added to the network.

Nonetheless, this does not cancel the possibility of overfit-
ting. It has been demonstrated that ReLU activation function
can hinder the propagation of spectral features throughout the
network [13]. Therefore, wide activation strategy is adapted.
The 6 convolutional layers are not followed by ReLU in orde
to expand the features. This boosts the performance without
compromising the computational complexity. ReLU function
is only added at the end of the network before producing the
final output.

Batch normalization, and pixel shuffling operations have
been avoided. Batch normalization has been shown to cause
spatial degradation for SISR applications [16]. As for pixel
shuffling, while it does not cause spatial degradation, it dis-
torts the spectral signature of HSI [17]. Additionally, pool-
ing is a double-edged sword that can be beneficial for SISR
if used within an encoder-decoder architecture [18]. Since
the proposed network is not very deep and does not follow
encoder-decoder topology, pooling layer is avoided.

2.3. Bayesian Optimized Hybrid Spectral-Spatial Loss
Function

Charbonier loss function shown in Equation 3 was proven to
be one of the best loss functions to quantify the error be-
tween Y and Ŷ [14]. However, it captures spatial errors
only and does not consider the spectral context. The lat-
ter can be facilitated with Cosine Similarity (CS) loss func-
tion shown in Equation 4. This function calculates the error
between the Ground Truth (GT) HSI vector y and the esti-
mated HR-HSI vector ŷ at pixel location (i, j). Using ei-
ther a spatial loss function or a spectral one restricts the qual-
ity of the enhanced HSI. For example, if Charbonier is used
by itself, spectral distortions will potentially be introduced
to the final outcome. The hybrid spectral-spatial loss func-
tion combines both aspects to boost spatial resolution while
preserving the spectral one. The loss function is shown in
Equation 5, where α, β ∈ [0, 1], and β = 1 − α. Char-
bonier has a lower bound but it has no upper bound, such
that 0 ≤ LCh < ∞. On the other hand, CS is a bounded
function, such that −1 ≤ LCS ≤ 1, which can be changed
to 0 ≤ LCS + 1 ≤ 2 so that it would share the same lower
bound with LCh. Note that ϵ in Equation 3 is a small value,
typically 10−3.

LCh(Y, Ŷ) =
1

MNB

B∑
k=1

M∑
i=1

N∑
j=1

√
(Y(i,j,k) − Ŷ(i,j,k))

2 + ϵ2 (3)
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∑M
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∑N
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i=1

∑N
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2
i

√∑M
i=1

∑N
j=1 ŷ

2
i

(4)

Loss = βLCh + α(1 + LCS) (5)

α is a parameter that must be tuned in order to obtain the
best possible result from the loss function. Ideally, PSNR
and SSIM must be maximized, and SAM must be minimized.
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Fig. 1: Overall architecture of the proposed network with the indicated filter (F) and kernel (K) sizes, and ReLU location.

This paper focuses on maximizing PSNR as a case study. The
proposed 3D-WRCNN can be considered as a computation-
ally expensive black box objective function, with the goal of
maximizing its predicted PSNR. Thus, BOA can be used a
probabilistic framework to find the α that offers the global
maximum. The fundamental idea behind BOA is to create a
rough surrogate model of the objective function, f(α), and
then use the model to decide on the following point to evalu-
ate. BOA creates a method that can identify the ideal value of
a non-convex function with a manageable number of evalua-
tions since it makes use of all the data from prior assessments
of f(α). Gaussian Process (GP) is the most commonly used
probabilistic model for BOA due to its flexibility [19].

The prior over the functions and the acquisition function
are the two key decisions that must be taken during the op-
timization process. While the acquisition function is used to
find the next best point for evaluation, most likely to reduce
uncertainty in the function’s possible values, the prior conveys
assumptions or provides information about the function being
optimized. The GP denoted G(x, y) is fit onto x = α and
y = f(α), such that G(x, y) serves as the surrogate model
for f(α). The acquisition function then uses the GP to pre-
dict how f(α) varies with α in order to identify which value
leads to the largest G(x, y). The most commonly used ac-
quisition function is Upper Confidence Bound (UCB) [19],
which is defined as:

UCB(α∗) = µ(α∗) + γ1/2σ(α∗), (6)

where µ(α∗) represents exploitation regions of a specific
value α∗, σ(α∗) represents exploration regions, and γ is a
parameters that balances exploitation and exploration. Often
large values of γ are encouraged. In this research γ = 2.0,
such that it provides balance between good values and unex-
plored areas. This process is iterated 50 times at maximum.
Early stopper strategy is adopted, such that the optimization
stops if α does not improve PSNR for 10 consecutive itera-
tions.

3. EXPERIMENTAL ANALYSIS
3.1. Proposed 3D-WRCNN Performance

The proposed 3D-WRCNN is compared against other net-
works; namely 3D Super Resolution CNN (3D-SRCNN)
[11], 3D Robust UNET (3D-RUNET) [18], and 3D Full CNN

(3D-FCNN) [20], in addition to the traditional bicubic inter-
polation. All networks are trained using Mean Squared Error
(MSE) loss function and Adam optimizer over 1000 epochs
with 10−5 learning rate. To ensure fairness of comparison,
training and testing procedures for all networks are done
within the same environment, with each training repeated 5
times. The average results are then computed. Table 1 reveals
that the proposed 3D-WRCNN outperforms all the aforemen-
tioned approaches in terms of all quantitative metrics across
scale factors ×2 and ×4. It is worth mentioning that, with the
exception of 3D-WRCNN, all approaches show sharp deteri-
oration in SAM when moving from ×2 to ×4. For example,
in the case of 3D-SRCNN, which showed the second best
overall performance, the difference in SAM between ×2 and
×4 is 2.06◦. On the other hand, the deterioration for 3D-
WRCNN is only by an amount of 1.52◦. This demonstrates
the resilience of 3D-WRCNN with high scale factors. An
interesting case to note is 3D-RUNET. This network previ-
ously showed decent performance on Botswana and Salinas
datasets [18], which are bigger than Pavia University. It is a
very deep network with a large number of parameters, so it
overfits when trained over a small dataset.

Due to space limitation, only the qualitative results of
scale factor ×2 are displayed. Figure 2 shows visual com-
parisons between the proposed 3D-WRCNN and other ap-
proaches. The top row shows a side-by-side comparisons be-
tween the predicted results of each network (b)-(f) and the GT
HSI (a). The bottom row shows a visualization of the Root
MSE (RMSE) between each predicted result and the GT. Fig-
ure 2(k) produced from 3D-WRCNN indicates that it contains
the least errors. The area indicatd by the yellow box shows the
most distinctive differences between all the outcomes. Addi-
tionally, Figure 3 shows a plot of the spectral signature of a
random pixel as generated by the proposed 3D-WRCNN and
the other approaches. It can be seen that the spectral signature
from 3D-WRCNN is closer to the GT one.

Table 1: Comparison between the proposed 3D-WRCNN and
other approaches on Pavia University dataset.

Method PSNR (dB) SSIM SAM(◦)
×2 ×4 ×2 ×4 ×2 ×4

Bicubic 29.52± 0.12 24.86± 0.15 0.846± 0.020 0.641± 0.021 5.56± 0.28 8.56± 0.29
[20] 31.79± 0.09 27.31± 0.13 0.928± 0.011 0.737± 0.015 5.03± 0.19 7.87± 0.26
[11] 31.86± 0.13 27.75± 0.25 0.930± 0.012 0.767± 0.019 4.74± 0.04 6.80± 0.09
[18] 29.88± 0.26 27.10± 0.33 0.891± 0.021 0.723± 0.025 6.97± 0.25 8.85± 0.27

Proposed 32.07± 0.08 28.60± 0.14 0.934± 0.002 0.787± 0.014 4.34± 0.11 5.86± 0.13
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 2: The top row shows qualitative comparison of the images predicted by each approach (b) bicubic, (c) 3D-RUNET, (d)
3D-FCNN, (e) 3D-SRCNN, and (f) 3D-WRCNN, compared to the groundtruth image(a) for scale factor ×2. the bottom row
shows a visualization of the RMSE between each predicted result and the GT; (g) bicubic, (h) 3D-RUNET, (i) 3D-FCNN, (j)
3D-SRCNN, and (k) 3D-WRCNN.

3.2. Proposed Loss Function Performance

BOA is used to optimize α of the proposed hybrid spectral-
spatial loss function. It is expected that a value of α that pro-
vides nearly equal weights between spectral and spatial fea-
tures would yields the best possible results. Table 2 shows
the results for scale factor ×2. Overall, the results obtained
from the hybrid loss function for all iterations are better than
the standard loss MSE results. Iteration 14 of α = 0.597461
lead to the highest PSNR and SSIM values. Even though the
value of SAM is relatively low, it is not the absolute mini-
mum, as the lowest value is obtained in iterations 12 and 13.
This insinuates that maximizing PSNR does not necessarily
minimize SAM.

Fig. 3: Spectral signature of a random pixel at location (16,
35) produced by different methods. 3D-WRCNN follows the
GT pattern more closely than other methods.

4. CONCLUSION
In this study, 3D-WRCNN was developed, trained, and eval-
uated in terms of PSNR, SSIM, and SAM. Qualitative and
quantitative results demonstrated by the proposed network
show its superiority against other approaches. Furthermore,
the network is integrated with a Bayesian-optimized hybrid
spectral-spatial loss function to further boost its performance
in terms of maximizing PSNR. The future direction of this
study invovled optimizing SSIM and SAM concurrently,
while maximizing PSNR. Furthermore, data scarcity prob-
lem must be addressed in order to avoid network overfitting,
potentially by using Transfer Learning or Generative Adver-
sarial Networks [21].

Table 2: BOA of α over 15 iterations for 3D-WRCNN with
scale factor ×2.

Iteration α PSNR (dB) SSIM SAM (◦)
0 0.970327 32.62 0.937 4.03
1 0.592509 33.02 0.937 4.07
2 0.975416 32.36 0.936 4.05
3 0.743334 32.94 0.936 4.06
4 0.727956 33.02 0.937 4.06
5 0.743356 32.94 0.936 4.07
6 0.740545 32.98 0.937 4.06
7 0.589236 33.05 0.937 4.06
8 0.585616 33.04 0.937 4.06
9 0.581712 33.05 0.937 4.05
10 0.577735 32.99 0.937 4.05
11 0.723736 32.97 0.937 4.06
12 0.732175 33.08 0.938 4.03
13 0.735368 33.04 0.937 4.03
14 0.597461 33.09 0.938 4.04
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