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Abstract
Autism spectrum disorder (ASD) and Developmental Coordination Disorder (DCD) are distinct clinical groups with over-
lapping motor features. We attempted to (1) differentiate children with ASD from those with DCD, and from those typically 
developing (TD) (ages 8–17; 18 ASD, 16 DCD, 20 TD) using a 5-min coloring game on a smart tablet and (2) identify neural 
correlates of these differences. We utilized standardized behavioral motor assessments (e.g. fine motor, gross motor, and 
balance skills) and video recordings of a smart tablet task to capture any visible motor, behavioral, posture, or engagement 
differences. We employed machine learning analytics of motor kinematics during a 5-min coloring game on a smart tablet. 
Imaging data was captured using functional magnetic resonance imaging (fMRI) during action production tasks. While 
subject-rated motor assessments could not differentiate the two clinical groups, machine learning computational analysis 
provided good predictive discrimination: between TD and ASD (76% accuracy), TD and DCD (78% accuracy), and ASD 
and DCD (71% accuracy). Two kinematic markers which strongly drove categorization were significantly correlated with 
cerebellar activity. Findings demonstrate unique neuromotor patterns between ASD and DCD relate to cerebellar function 
and present a promising route for computational techniques in early identification. These are promising preliminary results 
that warrant replication with larger samples.

Keywords Autism spectrum disorders · Developmental coordination disorder · Machine learning · fMRI · Early detection · 
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Introduction

Although not included in the diagnostic criteria, over 80% 
of individuals with Autism Spectrum Disorder (ASD; 
autistics) present with noticeable differences in motor 
functioning as assessed by current instrumentation (Bhat, 
2020; Licari et al., 2020; Miller et al., 2021; Zampella 
et al., 2021). Motor differences have been observed in the 
neonatal period, suggesting prenatal neurodevelopmental 
origins (Delafield-Butt & Trevarthen, 2017; Lim et al., 
2021; Reynolds et al., 2022; Trevarthen & Delafield-Butt, 
2013; Teitelbaum et al., 1998). Similarly, individuals with 
Developmental Coordination Disorder (DCD) experience 
impairments in fine motor skill, gross motor skill, dexter-
ity, limb speed, and visual-motor integration (for review 
see Blank et al., 2019) that present in early development. 
Unlike ASD, a diagnosis of DCD is not defined by impair-
ments in social functioning, although some secondary 
social differences may occur as a result of reduced oppor-
tunities to engage in sports teams or other social activities 
(Cermak & May-Benson, 2020). Both children with ASD 
and DCD display motor disruption in basic and postural 
motor control, and purposeful movement (Dewey et al., 
2007; Eggleston et al., 2017; Lim et al., 2017; Miller et al., 
2019; Mostofsky et al., 2006; Paquet et al., 2019; Roley 
et al., 2014). The early presentation of motor disturbances 
in both populations suggests an opportunity for the devel-
opment of early identification tools long before other more 
perceivable behavioral symptoms arise in ASD.

While assessments of motor skills can be extremely 
valuable for identifying individuals at high risk for motor 
delays, more subtle but significant aspects of coordination 
and timing may be harder to capture (Campbell & Hede-
ker, 2001). Assessments of motor skills are frequently 
performed using evaluation measures that are sensitive 
to human error, time consuming, and measure duration, 
frequency, and speed of actions involving fine motor, 
gross motor, and balance tasks (Harris et al., 2015). Other 
methods, like optical motion capture, can demonstrate 
disruptions to more subtle kinematic differences, but are 
expensive, time consuming, and require technical exper-
tise. To mitigate these problems, there has been enthusi-
asm for utilizing motor game play coupled with machine 
learning to contribute to diagnosis and understanding of 
motor dysfunction. Previous literature has shown that it 
is possible to use machine learning on data from smart 
tablet motor games or wearable devices to significantly 
distinguish ASD from TD (e.g. Anzulewicz et al., 2016; 
Tunçgenç et al., 2021). However, until these digital seri-
ous game assessments can provide differential identifica-
tion between similar childhood disorders (e.g., ASD and 
DCD), their precise contribution to psychological insight 

into differences in neurodevelopmental disorders will be 
limited, as will their potential clinical impact. Therefore, 
here we aim to identify differences between subtle kin-
ematic motor markers when comparing ASD to DCD using 
a smart tablet game. Additionally, we use functional Mag-
netic Resonance Imaging (fMRI) tasks to elucidate under-
lying neural mechanisms of these kinematic differences in 
the two clinical groups.

ASD and DCD Kinematics

In ASD, motor coordination deficits are pervasive (> 80%, 
Bhat, 2020; Fournier et al., 2010; Licari et al., 2020; Miller 
et al., 2021), and specific impairments are seen in kinemat-
ics for prospective goal-directed movement, but also for 
gait, posture, and other aspects of motor control (Cavallo 
et al., 2021; Chua et al., 2022; Eggleston et al., 2017; Miller 
et al., 2019; Trevarthen & Delafield-Butt, 2013). Synthesis 
of findings suggest that general sensorimotor integration 
for the prospective organization of movement is disrupted, 
and predictive feedforward and feedback mechanisms are 
consistently impaired (Chua et al., 2022; David et al., 2012; 
Gowen & Hamilton, 2013; Sinha et al., 2014; Trevarthen 
& Delafield-Butt, 2013). Deficits in praxis have also been 
observed in ASD, including poor imitation, gesture to com-
mand, and tool use skills (Abrams et al., 2022; Kilroy et al., 
2022a, 2022b; Mostofsky et al., 2006; Roley et al., 2014).

Children with DCD commonly display a generalized 
pattern of deficits in internal modeling, rhythmic coordi-
nation, interlimb coordination, gait and postural control, 
catching, sensoriperceptual function, discontinuous move-
ments, and praxis skills (Paquet et al., 2019; Kilroy et al., 
2022a, 2022b). In terms of writing and hand control, chil-
dren with DCD have difficulties with control in manipulation 
tasks (Oliveira et al., 2006), hand posture, pen grip force, 
pen pressure, speed, fluctuations in velocity, and oversized 
movements (Biotteau et al, 2019).

ASD vs. DCD Kinematic Motor Differences

Comparing ASD and DCD groups on motor tasks, the 
results for motor skills such as balance, aiming and catch-
ing, and manual dexterity, are mixed, with some studies 
showing no differences between groups (Kilroy et  al, 
2022a, 2022b), while others show poorer skills in the 
ASD group (Dewey et al., 2007; Wisdom et al., 2007), and 
others show the opposite (Paquet et al., 2019), or mixed 
results, depending on the motor assessment (Green et al., 
2002). However, ASD and DCD may significantly differ 
in ability to imitate meaningful gestures (ASD perform-
ing worse than DCD; Abrams et al., 2022; Dewey et al., 
2007; Green et  al., 2002; Kilroy et  al., 2022a, 2022b; 
Paquet et al., 2019). Further, there may be differences 
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in the underlying neurobiological basis of motor deficits 
between the two groups. A previous fMRI study during 
action imitation, observation, and mentalizing tasks found 
ASD vs. DCD differences in a number of regions associ-
ated with motor planning, sensorimotor functioning, and 
action understanding (Kilroy et al., 2021).

Cerebellum in ASD and DCD

Prior studies have shown functional and structural differ-
ences in both ASD and DCD groups in the cerebellum 
(Fatemi et al., 2012; Heijden et al., 2021). The cerebel-
lum has been associated with skills of oculomotor con-
trol, motor speech, grip, control of voluntary movement, 
timing, sensorimotor coordination, and perception of 
hand movement (Manto et al., 2012); it is also involved 
in working memory, executive and social functioning, 
and language processing (Levisohn et al., 2000; Riva & 
Giorgi, 2000). Cerebellar alterations may be associated 
with a number of behaviors seen in autism (Sivaswamy 
et al., 2010), including difficulties with affect processing, 
executive function, prosody, social skills, eye contact, and 
repetitive behaviors (Riva & Giorgi, 2000). Studies have 
demonstrated in autistics, alterations in cerebellar gray 
matter structure (D’Mello et al., 2015; Stoodley, 2014), 
disruption of white matter tracts to and from the cere-
bellum (Catani et al., 2008; Di et al., 2018; Kilroy et al., 
2022a, 2022b; Sivaswamy et al., 2010), altered functional 
connectivity between the cerebellum and the cerebral cor-
tex (Khan et al., 2015; Noonan et al., 2009), and abnormal 
functional activity in the cerebellum during simple motor 
tasks (Allen et al., 2004).

Children with DCD also show cerebellar abnormali-
ties, including decreased gray matter volume in cerebel-
lar sensorimotor regions (lobule VIIIa; lobule IX), and 
an increased gray matter volume in cerebellar regions 
associated with motor behavior and cognition (lobule VI; 
crus I and crus II), compared to TD children (Gill et al., 
2022b). Compared to controls, children with DCD show 
reduced activation of the cerebellum during motor tasks 
of manual dexterity (Fuelscher et al., 2018 for review), 
predictive motor timing (Debrabant et al., 2013), finger 
sequencing (Licari et al., 2015), and visuomotor drawing 
(Pangelinan et al., 2013; Zwicker et al., 2011). Further, in 
individuals with DCD, a recent study showed gray matter 
volume increase in the right crus II, left IX, and bilateral 
VIIIa following an intervention targeted for improving 
motor performance (Gill et al., 2022a). Taken together, 
there is ample data suggesting that cerebellar regions may 
be involved in the interplay between sensorimotor and cog-
nitive processing, and may be relevant to both ASD and 
DCD symptomology.

Motor Games

As stated previously, prior studies using standard motor 
assessments (e.g. Motor Assessment Battery for Children 
[MABC-2]) find mixed or null results for ASD vs. DCD 
differences in motor skills. However, such findings may be 
reflective of measurement issues. One way to mitigate such 
issues is to use machine learning analysis on more subtle 
motor information collected during digital motor games 
using smart tablets or other motion capture hardware. 
Machine learning has previously been used to analyze chil-
dren’s movements with an iPad serious game (Anzulewicz 
et al., 2016), a Kinect dance imitation game (Tunçgenç 
et al., 2021), and kinematic and eye movement features 
(Vabalas et al., 2019) to distinguish between ASD and TD 
children and adults. These studies classified individuals to 
their respective groups with between 73 and 93% accuracy. 
Thus, previous findings support the use of machine learning 
with kinematic data for classifying ASD and TD individuals. 
However, to make this technology useful, it is essential to 
be able to distinguish ASD from other neurodevelopmental 
motor disorders. Here we aim to attempt a similar method to 
distinguish ASD from another major group of children with 
developmental motor deficits, those with DCD.

Methods

Design

The current study was part of a larger study where youths 
(aged 8–17; Ns = 30 ASD, 23 DCD, 33 TD) participated 
in one day of behavioral testing and a second day of brain 
imaging (Kilroy et al., 2021). A subset of those youths par-
ticipated in the current study (aged 8–17; Ns = 18 ASD, 16 
DCD, 20 TD), performing on an iPad serious game follow-
ing their scan session. Between-group comparisons of the 
full data set, including behavioral and brain imaging data, 
can be found in Kilroy et al. (2021), Harrison et al. (2021), 
Kilroy et al., (2022a, 2022b), Butera et al., (2022, 2023) 
and Ringold et al. (2022). Here, we include analysis from 
only the subset that completed smart-tablet games and those 
with usable brain imaging data (N = 50; 19 TD, 16 ASD, 15 
DCD). No autistic people or family members, community 
providers, policy makers, agency leaders or other commu-
nity stakeholders were involved in developing the research 
question, study design, measures, implementation, or inter-
pretation and dissemination of this study.

Participants

Participants were recruited through flyers and advertise-
ments posted in community centers, on social media, website 
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postings, clinics in the greater Los Angeles healthcare sys-
tem, and local schools. Exclusion criteria for all groups 
included (a) IQ < 80 (in the clinical groups, cases where the 
full-scale IQ was less than 80, participants were included if 
their verbal IQ score or perceptual reasoning IQ score were 
greater than 80 as assessed by the Wechsler Abbreviated 
Scale of Intelligence 2nd edition (WASI-2; Wechsler, 2011); 
(b) history of loss of consciousness greater than 5 min; (c) 
left-handedness by self-report or as assessed by a version of 
the Edinburgh questionnaire (Crovitz & Zener, 1962); (d) 
not fluent in English or parent without English proficiency; 
(e) born before 36 weeks of gestation. All participants were 
screened for MRI compatibility. Inclusion and Exclusion 
Criteria.

TD controls were additionally excluded if they had any 
psychological or neurological disorder. Additional exclu-
sionary criteria included: scores below the 25 percentile on 
the Movement Assessment Battery for Children (MABC-2; 
Henderson et al., 2007), suspected DCD based on the Devel-
opmental Coordination Disorder Questionnaire (DCDQ; 
Wilson et al., 2007), and a Social Responsiveness Scale, 
Second Edition (SRS-2; Constantino & Gruber, 2012) score 
of T > 60, indicating a risk of social impairment. Addition-
ally, a T > 65 on the Conners 3AI-Parent report (Conners, 
2008), indicating a risk for attention deficit and hyperactivity 
disorder (ADHD), was exclusionary for the TD group.

ASD group eligibility included a previous diagnosis 
through clinical diagnostic interview or diagnostic assess-
ment as well as current clinical symptoms assessed using 
the Autism Diagnostic Observation Schedule, Second Edi-
tion (ADOS-2; Lord et al., 2000), or previous symptoms 
using the Autism Diagnostic Interview-Revised (ADI-R; 
Lord et al., 1994). Individuals were excluded if they had a 
diagnosis of other neurological or psychological disorders 
with the exception of attention deficit disorder or general-
ized anxiety disorder. Eight ASD participants were on pre-
viously prescribed psychotropic medication at the time of 
data collection.

Probable DCD group eligibility criteria additionally 
included: (a) performance at or below the 16th percentile 
on the MABC-2; (b) no first degree relatives with ASD; 
(c) no concerns about an ASD diagnosis. The ADOS-2 
was administered to participants whose SRS-2 scores were 
in the “severe risk” category of T = 65–74 (N = 3), but 
none met ASD criteria so none were excluded. Four DCD 
participants were on previously prescribed psychotropic 
medication at the time of data collection.

The study details were relayed in accordance with the 
protocols approved by the University of Southern Califor-
nia Institutional Review Board, and written child assent 
and parental consent were obtained. There was no com-
munity involvement in the reported study.

Behavioral Measures

Smart‑Tablet Game

A previously-tested naturalistic coloring game (Anzul-
ewicz et al., 2016) was played by participants on an iPad 
mini (iPad mini 4; iOS 13.3.1). After a two minute trial 
session to become familiar with available tools and pic-
tures, children completed the coloring game using their 
dominant hand for 5 min and these spontaneous action 
patterns were captured by inertial sensor data and touch-
screen data from the iPad (Fig. 1).

Motor Skills

Motor skills were assessed using the MABC-2 (Henderson 
et al., 2007), which evaluates manual dexterity, aiming and 
catching skills, and balance. Subtest and total scores were 
calculated using the normative samples.

Fig. 1  Movement data acquisition. A A child engages freely with the 
smart-tablet game, played on an iPad mini 4. The tablet is protected 
and made slip-resistant by a bumper and placed firmly on a table. 
Movement data are acquired from B the touch screen and C the iner-

tial movement unit (IMU) sensor that detect the touch trajectories and 
accelerations along with the change of orientation of the iPad result-
ing from a gesture, respectively. Adapted from Anzulewicz et  al. 
(2016)
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Praxis

A version of the The Florida Apraxia Battery (Rothi et al., 
2003), modified for children (FAB-M), was used to identify 
praxis ability and was scoring according to Mostofsky et al., 
(2006). The assessment includes gesture to command, action 
imitation, and tool use.

Behavioral Gameplay Coding Analysis from Video 
Data

Recordings from a minimum of 55 participants (see 
Table S1 for full breakdown), made during the 5 min in 
which kinematic data was captured from tablet gameplay, 
were coded for posture, engagement, and gameplay behav-
ior. Participants’ activity was coded across 13 character-
istics (summarized in Table S1). Two researchers coded 
the recordings, with 14% of videos being coded by both 
researchers. Cohen’s Kappa was used to assess inter-rater 
agreement between researcher’s coding of videos across 12 
of the characteristics, whilst the Intraclass Correlation Coef-
ficient (ICC) was calculated for the thirteenth characteristic 
(‘number of pictures colored’). Coding results for ‘number 
of pictures colored’ were analyzed using a within-subjects 
one-way ANOVA, whilst differences between groups within 
the remaining 12 characteristics were analyzed using Fish-
er’s exact test.

Machine Learning Analysis of Drawing Patterns

Gameplay and Feature Extraction

Data were collected for analysis from the 5-min assessment 
phase. Gameplay data were collected by two sets of sensors 
within the smart-tablet: (1) the touch screen sensor recorded 
the Cartesian coordinates of each touch, with its displace-
ment across the screen recorded with a variable sampling 
rate of ca. 60 times per second as the finger traveled across 
the screen; and (2) a triaxial accelerometer and gyroscope 
inertial movement unit (IMU) sensor that detected the small 
accelerations and rotations of the smart-tablet device as the 
child’s fingers impact on the screen, creating small displace-
ments to give subtle, but significant displacive forces dur-
ing a gesture, with a regular sampling rate of ca. 20 times 
per second. Movement ‘features’ were then calculated from 
these raw sensor signals to build a computational characteri-
zation of each child’s gameplay. These included, for exam-
ple, for the touch screen sensors, the duration of a gesture, 
its maximum velocity, deviation from a straight line, its peak 
acceleration, and the variance of these parameters across a 
gameplay session. Features from the raw IMU sensors were 
similarly extracted by calculating, for example, peak acceler-
ation and rotation for each axis, their mean values and SDs.

Dataset Preparation and Feature Preprocessing

Two methods were used to extract features for two different 
forms of machine learning classification. Before employing 
the machine learning algorithms, data were normalized in 
the standard feature-wise fashion and only with usage of 
training data.

First, following previous work (Anzulewicz et al., 2016), 
we extracted 269 features by simple computations of the 
raw sensor signals. These were obtained from the touch 
screen (105 features) and IMU (164 features) data using 
two approaches: either by calculating the variables for each 
individual feature or by calculating the variables across the 
gameplay session. Both were performed using a dedicated, 
bespoke engine. Touch data for each gaming session were 
aggregated and split into single, atomic gestures based on 
the start and end of any particular gesture. For each single 
gesture, sets of variables were calculated. These features can 
be split into two major groups: (i) features of movements’ 
kinematics, (e.g., velocity and acceleration); and (ii) tap-
based features, (e.g., the number of taps in a game). Inertial 
sensor values were computed across the game session irre-
spective of the touch data. The values for each feature for 
each game were then reduced to its mean and used as input 
variables for machine learning training.

The second approach employed to preprocess the touch 
data again used singular movements, but included more 
detailed investigation of the profiles of velocity and accel-
eration of the movements over the movement’s duration (e.g. 
Chua et al., 2022; Lu et al., 2022). Given that each particular 
movement consisted of a different number of points due to 
differing gesture durations, each movement was time-nor-
malized (start 0.0 and end 1.0) and split into n time bins to 
ensure comparability of the movements. After assignment of 
a bin for each data point, values for each bin were calculated. 
Simple features were extracted for each bin: mean, median, 
standard deviation, 25% percentile (Q1), and 75% percentile 
(Q3). Next, each movement was treated separately (i.e. each 
movement was used as a separate sample during machine 
learning training, keeping its label to avoid the injection 
of training set data to test set data). The prediction for this 
method required averaging the result across all movements 
made by the user during a gameplay session. Probabilistic 
output from the model was generated for each movement 
and saved in the array. The final prediction was calculated as 
an average of the predictions generated for each movement.

Machine Learning Algorithms and Methods of Validation

Given the size of the dataset and imbalance between groups 
(ratio [1.1–1.25] between groups) several methods were 
employed to ensure stability of the results and the best pos-
sible generalization properties. First, imbalance between 
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groups was mitigated by automatically computing an offset 
for each classified pair by weights (e.g., the bigger groups 
were multiplied by a factor less than 0). Next, cross-valida-
tion methods were employed with addition of repetitions 
for k-fold related methods. In the first run, given the small 
sample size, one-leave-out cross validation was employed. 
Data were shuffled before each training step. Finally, meth-
ods using k-folding were used, both with use of standard 
and nested approaches (inner loop of cross validation), and 
to further randomize choice of the fold for validation, the 
whole process was repeated 10 times. The number of folds 
was treated as a hyper-parameter. Four folds that produced 
the best classification accuracy. This method was employed 
as a best-possible approach to reduce opportunity for over-
fitting, but given the small sample size should be considered 
experimental.

Machine Learning Differentiation Between ASD, 
DCD, and TD Groups

Two classes of models were tested. For the combined touch 
and sensor feature sets, neural networks were primary target 
models for testing. A typical scheme included usage of shal-
low networks (two layers deep, with 20–40 units per layer). 
Adam optimiser (Kingma, & Ba, 2014; Beta 1 = 0.95, Beta 
2 = 0.99) with learning rate (0.01–0.001) was used, with 
addition to invert scaling learning rate (with power = 0.5). 
Activation function employed: ReLU (Fukushima, 1975; 
Nair & Hinton, 2010). For the kinematic feature set, a gra-
dient boosting machine learning algorithm was used (Fried-
man, 2001). A typical scheme employed 500–1000 trees 
with a learning rate of 0.1, a subsample of 0.8, and with low 
depth (2) and log2 (feature count) features. Parameters for 
each model were optimized with a grid search method and 
the best results selected.

iPad Feature Analysis

A total of 269 iPad features from each participant were cal-
culated from their smart-tablet gameplay session, includ-
ing 164 features calculated using the inertial measurement 
unit (IMU) data and 105 features calculated using the touch 
trajectories on the screen. The purpose of this analysis was 
to identify the smart-tablet features statistically different 
among or between groups for further correlation analyses 
with the brain imaging data. For those with normal distri-
butions, one-way ANOVA was used to compare the fea-
ture values among the TD, ASD, and DCD groups, and an 
independent-t test was used to compare the feature values 
between two groups. Except for some testing conditions of 
the 4 IMU features listed in Table S3, non-parametric tests 
were performed for comparisons. Kruskal–Wallis test was 
used to compare the feature values among the TD, ASD, and 

DCD groups, and Mann–Whitney U test was used to com-
pare the feature values between two groups. These statistical 
analyses were performed using SPSS.

Correlation of iPad Features and Brain Imaging ROIs

First, the normality tests of a total of 283 variables were 
tested, including 269 features and 14 non-feature measures 
(i.e. age, IQ, MABC-2, and FAB-M scores). The normality 
of each variable was tested using a one-sample Kolmogo-
rov–Smirnov test across all participants and within each 
group (TD, ASD, and DCD), and indicated that the data 
were not normally distributed across participants or within 
groups (p < 0.05 on most tests). Thus, non-parametric analy-
ses were performed to determine the correlations between 
each feature and other non-feature measures. Kendall’s tau 
was chosen because it would be less affected by extreme 
values. Customized MATLAB scripts were used to perform 
the correlation analyses.

Functional Brain Imaging Acquisition and Analysis

Complete information on stimuli, imaging acquisition and 
analysis can be found in Kilroy et al., 2021, as well as in 
the Supplementary Materials. Below we delineate the action 
execution and imitation tasks, presented in an 8-min run 
each, used here. Subjects practiced all tasks in a mock scan-
ner prior to scanning. They were also filmed and monitored 
in the MRI in order to confirm task completion. In the cur-
rent study, we used the hand condition (since it is most simi-
lar to the iPad task) and a mean of activity across conditions 
(all conditions; in order to maximize number of trials). A 
black crosshair in the middle of a white screen was shown 
for the rest blocks in all runs. Run and block design details 
may be found in the Supplementary Materials.

fMRI data acquisition fMRI data were acquired on a 
3 Tesla MAGNETOM Prisma (Siemens, Erlangen, Ger-
many) with a 20-channel head coil. Each functional scan 
consisted of an echo-planar imaging (EPI; 150 whole 
brain volumes) acquired with the following parameters: 
TR = 2 s, TE = 30 ms, flip angle = 90°, 64 × 64 matrix, in-
plane resolution 3 × 3 mm, and 41 transverse slices, each 
1.5 mm thick, covering the whole brain with a multiband 
factor of three. Spin Echo EPI field mapping data was also 
acquired in AP and PA directions with identical geom-
etry to the EPI data for EPI off-resonance distortion cor-
rection (TR = 1020  ms, TE1 = 10  ms, TE2 = 12.46  ms, 
flip angle = 90°, FOV = 224 × 224 × 191 mm3, voxel 
size = 1.5 × 1.5 × 1.5  mm). A structural T1-weighted 
MPRAGE was acquired for each subject (TR = 1950 ms, 
TE = 3.09 ms, flip angle = 10°, 256 × 256 matrix, 176 sagit-
tal slices, 1 mm isotropic resolution). Total scan time was 
5 min.
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Within subject analysis The following preprocessing 
steps were taken: brain extraction for non-brain removal; 
spatial smoothing using a Gaussian kernel of FWHM 5 mm; 
B0 unwarping in the y-direction, standard non-aggressive 
denoising ICA-AROMA (Pruim et al., 2015) to remove 
motion-related noise, high pass filter with a cutoff period 
of 90s, and subject-specific motion correction parameters 
were entered as nuisance regressors. Functional images 
were registered to the high-resolution anatomical image 
using a 7-degrees of freedom linear transformation. Ana-
tomical images were registered to the MNI-152 atlas using 
a 12-degree of freedom affine transformation, and further 
refined using FNIRT for nonlinear registration.

Participant head motion was evaluated using the mean 
relative root-mean square framewise displacement (Jenkin-
son et al., 2002). Those participants who exhibited extreme 
in-scanner head motion (> 0.4 mm) were excluded from data 
analysis. Additional retrospective head motion correction 
was employed during data analysis. In first-level analysis, 
individual head motion parameters were included in the 
GLM. Following which, independent components (from 
ICA) were filtered using ICA-AROMA. No significant dif-
ferences in either absolute or relative head motion were 
found between groups in any task.

Execution

Still stimuli were used as cues to execute a pre-trained 
action. In each 15-s block, three stimuli (5-s each) were 
presented from one of three categories: emotional facial 
actions (e.g. sad face as cued by photo of a dead plant), 
non-emotional facial actions (e.g., tongue to lip as cued by 
photo of face with whip cream on lip), and bimanual hand 
actions (e.g., a photo of a xylophone cuing pantomiming 
playing the xylophone). Participants were instructed to per-
form the cued action for the entire time that the stimulus was 
presented (5 s).

Imitation

The Imitation task used videos depicting three categories 
of actions: (a) emotional face actions (e.g., smiling); (b) 
nonemotional face actions (e.g., tongue to upper lip); (c) 
bimanual hand actions (e.g., hands playing xylophone; face 
not shown). Participants were instructed to copy what they 
saw for the full duration of each video.

Within‑Subject Analyses

Subject level functional imaging analyses were completed 
using FSL. For preprocessing and registration procedures, 
please see Supplementary Materials. Experimental conditions 
were each modeled with a separate regressor derived from a 

convolution of the task design and a double gamma function to 
represent the hemodynamic response and temporal derivative.

Group Analysis

All three groups were entered into the multivariate linear 
regression model. Age, sex, and full scale IQ were centered 
across groups and entered as covariates. For group analysis, 
image registration was performed using FSL’s FLIRT (Jen-
kinson & Smith, 2001; Jenkinson et al., 2002). Each indi-
vidual’s statistical images were entered into a higher level 
mixed-effects analysis using FSL’s FLAME algorithm. Three 
stimulus conditions (emotional face, non-emotional face, and 
hand actions) were collapsed to determine the main effect of 
the task compared to a resting baseline. Resulting group level 
images were thresholded using FSL’s cluster probability algo-
rithm, with Z > 3.1 and a corrected cluster size probability of 
p = 0.05, FDR.

Whole Brain Activation Related to iPad Features

To determine whether smart-tablet features were correlated 
with BOLD response to the action execution or imitation task, 
three separate regression analyses were performed with the 
mean-centered features. These comparisons were also thres-
holded at Z > 3.1, FDR. Parameter estimates for significant 
clusters were extracted from each participant and plotted in 
a graph to rule out the presence of outliers. Any individual 
who had a mean percent signal change over 3 box lengths 
(length between first and third quartiles) from the median was 
removed from feat query analyses, and R and p values for the 
whole group and within-group correlations were calculated.

ROIs

We focused on anatomical ROIs defined using the Har-
vard–Oxford dictionary and including the cerebellar crus I 
and cerebellar crus II, which were binarized and thresholded 
at 35%. Parameter estimates for ROIs were extracted from 
all task conditions for the execution and imitation tasks. 
Independent-samples t-tests were performed to identify 
group differences in ROI activation. Pearson correlation 
was performed across groups and within groups between 
each parameter estimate with the three selected iPad features 
that demonstrated the group differences in earlier analyses.

Results

Behavioral Gameplay Coding

Cohen’s Kappa demonstrated high inter-rater reliability 
between researchers with κ ranging from 0.579 to 1.00 with 
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a mean of 0.808 across all characteristics excluding ‘number 
of pictures colored’; for this characteristic there was perfect 
agreement between researchers (ICC = 1.00). There were 
no significant differences between groups (F(2, 52) = 0.142, 
p = 0.868) in the number of pictures colored. Fisher’s exact 
tests performed for the remaining 12 characteristics showed 
no significant difference between groups (p > 0.08 for all 
characteristics). Results demonstrate a lack of evidence for 
visible behavioral, postural or engagement differences dur-
ing gameplay between participants with ASD, DCD, or TD 
youths.

Demographics and Group Differences

Results included 50 participants (18 ASD, 16 DCD, 20 TD, 
15 females). Our sample self identified as 48% White, 12% 
Black, 10% Asian, 16% more than one race, and 13% not 
reported; with 20% identifying as Hispanic or Latino. Fami-
lies' self-reported annual household gross income was: 16% 
less than eighty thousand ($80K), 32% $80K–$140K, 12% 
$140K–$200K, 10% $200K–$260K, 14% 260K–320K, and 
14% more than 400K. All other means and standard devia-
tions are reported below in Table 1. Children with ASD and 
DCD did not differ on IQ, motor performance, or praxis 
measures, though both groups differed on motor perfor-
mance and praxis as compared to TD participants (Table 1).

Machine Learning Differentiation Between ASD, 
DCD, and TD Groups

Machine learning analytics of the smart-tablet sensor data 
were successful in differentiating ASD from DCD motor 
patterns with 71% accuracy, as well both ASD and DCD as 
from TD motor patterns with 76% and 78% accuracy, respec-
tively (Table 2). When classified in a 3-way paradigm, which 
is a more challenging classification task, overall accuracy 
yield was 57%, or 73% above chance (Table 3).

Comparisons Between ASD, DCD, and TD Groups

Statistical results indicated no 3-way significant differ-
ences in the feature distributions across all groups. Features 
with 3-way differences of p < 0.1 between all groups, and 

Table 1  Descriptives and group comparisons

Kruskal–Wallis was first used to test the differences among the three groups. If the distribution was not the same across the three groups 
(p < 0.05), Dunn’s pairwise tests were carried out for the three pairs of groups. *p < 0.05, **p < 0.01; *** p < 0.001
WASI-II Wechsler Abbreviated Scale of Intelligence, Second Edition, VCI Verbal Comprehension Index PRI Perceptual Reasoning Index, FSIQ-
4 Full Scale IQ, FSIQ-2 Two Factor IQ, MABC-2 Movement Battery for Children, Second Edition, MD Manual Dexterity, AC aiming and catch-
ing, FAB-M Florida Apraxia Battery-Modified, GTC  gesture to command, IMI imitation, TU tool use, ML meaningless gestures, MF meaningful 
gestures, SD standard deviation

TD ASD DCD TD, ASD, DCD TD, ASD TD, DCD ASD, DCD
Mean ± SD Mean ± SD Mean ± SD p p p p

Age 12.09 ± 2.58 12.36 ± 1.99 12.03 ± 2.25 0.755
WASI-II VCI 114.85 ± 12.73 109.72 ± 20.27 115.44 ± 17.54 0.339
WASI-II PRI 111.95 ± 12.42 108.22 ± 20.82 107.56 ± 23.13 0.710
WASI-II FSIQ-4 115.30 ± 11.22 109.56 ± 19.35 112.38 ± 19.88 0.583
WASI-II FSIQ-2 115.35 ± 11.07 109.00 ± 17.77 114.44 ± 19.01 0.481
MABC-2 MD 10.00 ± 2.38 4.56 ± 1.98 5.25 ± 2.60 0.000** 0.000** 0.000** 1.000
MABC-2 AC 11.15 ± 2.96 6.22 ± 3.69 6.44 ± 2.76 0.000** 0.000** 0.001** 1.000
MABC-2 balance 10.40 ± 2.50 6.78 ± 3.46 5.31 ± 2.15 0.000** 0.003** 0.000** 0.328
MABC-2 total 10.40 ± 1.67 4.67 ± 2.45 4.44 ± 1.79 0.000** 0.000** 0.000** 1.000
FAB-M GTC 0.69 ± 0.14 0.57 ± 0.13 0.63 ± 0.15 0.035* 0.029* 0.724 0.575
FAB-M IMI 0.65 ± 0.13 0.46 ± 0.16 0.51 ± 0.17 0.001** 0.001** 0.034* 1.000
FAB-M TU 0.80 ± 0.09 0.59 ± 0.15 0.65 ± 0.14 0.000** 0.000** 0.012* 0.675
FAB-M IMI ML 0.58 ± 0.21 0.40 ± 0.22 0.44 ± 0.20 0.027* 0.032* 0.160 1.000
FAB-M IMI MF 0.70 ± 0.13 0.51 ± 0.17 0.58 ± 0.17 0.002** 0.002** 0.054 1.000

Table 2  Machine learning classification performance between sets of 
two groups

Pair Feature set Accuracy Sensitivity Specificity

TD, ASD Touch, sensors 0.763 0.85 0.67
TD, ASD Kinematic 0.634 0.65 0.60
TD, DCD Touch, sensors 0.778 0.75 0.81
TD, DCD Kinematic 0.666 0.7 0.63
ASD, DCD Touch, sensors 0.706 0.67 0.75
ASD, DCD Kinematic 0.694 0.67 0.80
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significant differences (p < 0.05) between pairwise groups 
are reported (Table 4). Based on these data, three features 
(touch features only, less sensitive to artifact of picking up 
the tablet) were selected for further correlation analyses 
with brain imaging data: Gesture Area Variance, Minimum 
Gesture Acceleration, and Gesture Directness Variance. 
Attitude Variance was additionally included in machine 

learning analysis. The three remaining features computed 
(i) the variance in the area of a gesture of all swipes during 
a trial, where area was calculated by placing a minimal poly-
gon around the swipe and its area calculated (Gesture Area 
Variance); (ii) the minimum acceleration of a swipe (Mini-
mum Gesture Acceleration); and (iii) the variance in the 
smoothness of a gesture during its final data points across a 
gameplay trial (Gesture Directness Variance).

Neuroimaging Results

Whole Brain Group Differences In the execution task, the 
only significant group difference identified was TD > DCD 
in the medial-frontal cortex during the all action condition 
(Fig. 2). During the imitation task, DCD demonstrated a 
decrease in cerebellar activation when compared to both TD 
(right cerebellar crus II) and ASD (left cerebellar crus I & II) 
groups during all conditions (Z > 3.1; Fig. 2). During imita-
tion of hand actions, the DCD group had reduced activation 

Table 3  Machine learning classification confusion matrix for all three 
groups

The confusion matrix shows overall accuracy yield of 57%, which is 
73% above chance

Clinical group

TD ASD DCD

Machine learning classification TD 14 2 4
ASD 5 11 2
DCD 5 5 6

Table 4  Feature data; 
significant differences between 
groups

Features with both borderline significant differences (p < 0.1) across TD, ASD, and DCD groups, and with 
significant differences (p < 0.05) between groups are summarized in this table
a Features were selected for further correlation analyses with the brain imaging data

Feature name Type TD, ASD, DCD TD, ASD TD, DCD ASD, DCD
p p p p

Attitude variance (x-axis) IMU 0.058 0.038 – 0.042
Gesture area  variancea Touch 0.058 – – 0.030
Minimum gesture  accelerationa Touch 0.073 0.030 – –
Rate of change of acceleration 

direction (y-axis)
IMU 0.076 – – 0.046

Rotation variance (x-axis) IMU 0.076 0.033 – –
Attitude variance (y-axis) IMU 0.094 0.035 – –
Gesture directness  variancea Touch 0.098 – 0.036 –

Fig. 2  Group differences dur-
ing all actions. STG superior 
temporal gyrus, AG angular 
gyrus, PCG postcentral gyrus, 
MFC medial-frontal cortex, R 
right; L left
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compared to the TD group in right lateral occipital cortex, 
and the angular gyrus during all conditions (Z > 3.1; Fig. 2), 
and in the right lateral occipital cortex, and the left fron-
tal pole (Z > 3.1). During imitation of all actions, the ASD 
group had lower activation of the right postcentral gyrus 
compared to the DCD group, and of the right precuneus and 
right superior temporal gyrus compared to the TD group 
(Z > 3.1; Fig. 2).

ROI Group Differences

Visuals of ROIs and group differences can be found in 
Fig. 3. During execution of all actions, the ASD group had 
reduced activation in the right cerebellar crus I compared 
to the DCD group (p = 0.033). During action imitation, the 
DCD group had reduced activation compared to the TD 

group in left cerebellar crus I (HAND: p = 0.015; ALL: 
p = 0.020), the right cerebellar crus II (HAND: p = 0.022; 
ALL: p = 0.022), and left cerebellar crus II (ALL: p = 0.012). 
The DCD group also had reduced activation compared to the 
ASD group in left cerebellar crus II during imitation of all 
actions (p = 0.009).

Whole Brain Correlations

We correlated the previously mentioned features that dis-
tinguished groups (Gesture Area Variance, Minimum Ges-
ture Acceleration, Gesture Directness Variance) with levels 
of change in neural activation during action execution in 
the scanner. Across all participants during execution of all 
actions, Directness Variance was negatively correlated with 
activation in the left superior lateral occipital cortex, and 

Fig. 3  Regions of interest and group differences. Between group differences in cerebellar regions of interest during execution and imitation of all 
actions. TD typically developing, ASD autism spectrum disorder, DCD developmental coordination disorder, R right, L left
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Gesture Area Variance was negatively correlated with acti-
vation in the left cerebellar crus I and II (Fig. 4). Significant 
correlations were also observed between Gesture Direct-
ness Variance and left superior lateral occipital cortex in the 
ASD (r = − 0.693, p = 0.003) and DCD groups (r = − 0.589, 
p = 0.044). Gesture Area Variance was negatively correlated 
with activation in the left cerebellar crus I and II, during 
execution of all conditions (Fig. 4). This relationship was 
also significant in the ASD (r = − 0.765, p = 0.001) group. 
There were no whole brain correlations in the imitation task 
with any of the smart-tablet features.

ROI Correlations

Across all participants, a significant negative correlation was 
observed between gesture area variance feature and the right 
cerebellar crus II during execution of all actions (r = − 0.360, 
p = 0.019). This relationship was also observed in the ASD 
group where it trended toward a significant negative cor-
relation with the right cerebellar crus II for all conditions 

(r = − 0.497, p = 0.050). Activity in the left cerebellar crus 
I was significantly negatively correlated with Gesture Area 
Variance (r = − 0.360, p = 0.019) during execution of hand 
actions across groups, though this relationship was not sig-
nificant in any individual group. During imitation, for all 
actions across groups, the left cerebellar crus II was signifi-
cantly positively correlated with Gesture Directness Vari-
ance (r = 0.284, p = 0.046), though this relationship was not 
significant in any individual group.

Discussion

Here we demonstrate that using machine learning from a 
simple motor coloring game on a smart-tablet, we can sig-
nificantly differentiate the gameplay of children with ASD, 
DCD, and TD. This is especially significant since in the 
current study, standard behavioral motor measures could 
not distinguish between ASD and DCD groups, nor could 
video coding analysis. We further show that measures that 

Fig. 4  Correlations with iPad features. Correlations during action execution and action imitation across all participants during all action condi-
tions
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reflect control of movements and their degree of displace-
ment are the driving motor features that differentiate clini-
cal groups. Finally, cerebellar regions previously associated 
with reduced activation in both ASD and DCD groups, show 
significant relationships with kinematic features from the 
smart-tablet data. We further discuss each of these results 
below.

Classifying ASD/DCD/TD by Game‑Play

Coupled with machine learning, kinematics recorded from 
the smart tablet game were able to categorize ASD from 
TD at 76%, ASD from DCD at 71%, and DCD from TD at 
78% accuracy. To our knowledge, this is the first time seri-
ous game digital technology has been used to distinguish 
two similar motor developmental disorders—ASD from 
DCD. Given that visual behavioral analysis of video data 
nor standard motor assessments, such as the MABC-2 did 
not distinguish the two groups apart, this finding is espe-
cially promising, and suggests that this method may usefully 
contribute to clinical diagnosis, as well as better informing 
the particular underlying motor disturbances in each group, 
although more research with larger sample sizes are needed. 
Refinements of this technique can be explored in future stud-
ies to increase between-group categorization accuracy, for 
example by additionally including social motor games.

Motor Markers that Distinguish Groups

The kinematic markers that most contribute to differentiat-
ing between groups include the control of deceleration and 
variability in the distance, or area covered, of the motor ges-
tures. On average, autistics were more variable in the size 
of the gesture area used on the smart-tablet than individuals 
with DCD for each motor gesture. This suggests that for an 
individual with ASD, there is more variability in gesture 
size, with some gestures made as very small and some as 
very big in the course of the coloring game, compared to 
individuals in the DCD group. Such large variation may be 
related to two contrasting types of gesture behavior within 
an ASD individual, large gestures driven by a reluctance to 
shift from the ongoing gesture once engaged with it, and 
very short gestures produced by rapid tapping. Either way, 
the underlying nature of ‘restricted and repetitive’ behaviors 
manifests in each type of motor behavior. Future work will 
need to investigate this to better understand individual action 
patterns and their distribution in autistics.

Finally, we investigated neural regions (cerebellar crus I/
II) previously associated with differences in ASD and DCD 
groups (Allen et al., 2004; Gill et al., 2022b; Fuelscher et al., 
2018; Debrabant et al., 2013; Licari et al., 2015; Pangelinan 
et al., 2013; Zwicker et al., 2011), and differences in imi-
tation and praxis (Dapretto et al., 2006). In ASD groups, 

crus I has previously been shown to be involved in control 
of hand movements, performance of precision grips (Neely 
et al., 2013; Vaillancourt et al., 2006), and force variability 
(McKinney et al., 2022) and related to repetitive behaviors 
in females (McKinney et al., 2022). Crus I and II together 
are involved in sensorimotor tasks, as well as working mem-
ory, attention, and social cognition (Guell & Schmahmann, 
2020; McKinney et al., 2022; Van Overwalle, 2020). Thus 
they may be particularly involved in the interplay between 
sensorimotor function and cognition. Notably, while dif-
ficulties with working memory, attention, and social cog-
nition are common symptoms of ASD, individuals with 
DCD may fall between ASD and TD groups on all these 
behaviors (Kilroy et al., 2022a, 2022b; Ringold et al., 2022). 
Our data indicate that during motor imitation, the crus II 
is significantly hypoactive in DCD (Left: TD/ASD > DCD 
[ROI]; ASD > DCD [whole brain]; Right: TD > DCD [ROI 
and whole brain]). For the right crus I, during the execu-
tion task, we find the ASD group is hypoactive compared 
to the DCD group (DCD > ASD [ROI]). For the left crus I, 
during imitation, both clinical groups are hypoactive com-
pared to TD, though the DCD group may show significantly 
more hypoactivity (TD > ASD/DCD [ROI] and ASD > DCD 
[whole group]). Taken together, these data indicate that dur-
ing motor tasks, the right and left crus II are particularly 
hypoactive in DCD, while activity patterns in crus I may be 
more nuanced between groups. It is possible that differences 
previously observed in DCD in imitation performance may 
be more related to cerebellar influences, rather than imitation 
differences previously observed in ASD, which may be more 
dependent on frontal cortical regions (Kilroy et al., 2021).

Interestingly, we find that during our fMRI motor tasks, 
activity in these cerebellar regions correlates with the iPad 
kinematic features that are the best at differentiating between 
specific pairwise groups. During motor tasks, we find activ-
ity in the left crus II correlates with Gesture Directness Vari-
ance across participants and with Gesture Area Variance in 
the ASD group. The latter pattern is also found for the left 
crus I and right crus II; during execution, activity in these 
areas correlates with Gesture Area Variance across groups 
and within the ASD group. These cerebellar regions may 
show differential activation patterns in ASD and DCD, and 
their activity may also be related to motor control of decel-
eration and measures of gesture size, which both clinical 
groups perform differentially, in alignment with prior studies 
(McKinney et al., 2022). Thus differential activity in these 
cerebellar regions may lead to behavioral motor differences 
between groups, allowing the use of kinematic patterns to 
distinguish between ASD, DCD, and TD groups. Interest-
ingly, only features that were associated with classifying 
ASD vs DCD, and TD vs DCD differences were correlated 
with brain activity during our tasks, no features that were 
best associated with classifying TD vs ASD differences were 



Journal of Autism and Developmental Disorders 

1 3

correlated with brain activity, reiterating the idea that crus 
I and II may be more involved gesture execution and imita-
tion deficits seen in the DCD group. Previous literature has 
shown hyperconnectivity (during resting state and motor 
tasks) between crus I and II and premotor and motor cortices 
(Jung et al., 2014; Verly et al., 2014), therefore domain spec-
ificity of cerebro-cerebellar connections might be abnormal 
in ASD, rather than cerebellar activation alone.

Limitations

We note that future studies are needed with larger sample 
sizes and more diverse groups (e.g., more females; larger 
age range; left handers; wider range of IQ). Despite machine 
learning methods employed to reduce overfitting and deliver 
best-possible results, the small sample size necessarily 
implies the findings reported here should be tested for rep-
lication within larger cohorts. Further, motor games with 
more social aspects (e.g., imitation, social interactions) may 
offer even better categorization accuracy between groups. 
Finally, to better understand the neural mechanisms, future 
studies may attempt to execute smart-tablet tasks during 
fMRI, and should probe relationships with other areas of 
interest that appeared in the whole-brain comparisons 
(medial-frontal cortex angular gyrus, lateral occipital cortex, 
left frontal pole, right postcentral gyrus, right precuneus and 
right superior temporal gyrus).

Conclusions

Here we show that kinematics from a simple motor smart-
tablet game can be utilized to categorize ASD, DCD, and TD 
groups. We further show that two driving kinematic mark-
ers for this categorization are control of deceleration and 
variability in gesture size. These two kinematic markers are 
associated with neural activity in cerebellar regions during 
motor tasks across groups. These data may be important for 
the development of motor markers for screening and diagno-
sis of ASD and DCD and for development of individualized 
interventions.
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