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Abstract. Registration aligns features of two related images so that information can be compared and/or fused5
in order to highlight differences and complement information. In real life images where bias field6
is present, this undesirable artefact causes inhomogeneity of image intensities and hence leads to7
failure or loss of accuracy of registration models based on minimization of the differences of the8
two image intensities. Here, we propose a non-linear variational model for joint image intensity9
correction (illumination and translation) and registration and reformulate it in a game framework.10
While a non-potential game offers flexible reformulation and can lead to better fitting errors, proving11
the solution existence for a non-convex model is non-trivial. Here we establish an existence result12
using the Schauder’s fixed point theorem. To solve the model numerically, we use an alternating13
minimization algorithm in the discrete setting. Finally numerical results can show that the new14
model outperforms existing models.15
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1. Introduction. Image registration computes a reasonable spatial geometric transfor-19

mation between given images of the same object taken at different times or using different20

devices. It is a challenging task but, yet, a useful one in diverse fields of computational sciences21

and engineering such astronomy, optics, biology, chemistry, medicine and remote sensing and22

particularly in medical imaging. For an overview of image registration methodology and ap-23

proaches, we refer to [20, 22, 33, 38, 43]. Here, we focus on development of robust variational24

models for deformable image registration as in the related works of ([9, 12, 15, 24, 31, 32, 48]).25

The usual choice of frameworks is between mono-modality (minimization of the intensity26

differences) and multi-modality (minimization of some non-trail functions’ differences of the27

intensities) models. Our interested problem is somehow in between these two since an image28

with bias field present behaves like a different modality but the bias can introduce undesirable29

artefacts in registration transform, i.e., multi-modality model is not suitable since one would30

treat bias as features to register.31

Mathematically, the image registration problem can be described as follows: Given a fixed32

image R, called reference and a moving image T called template which are scalar functions33

T,R : Ω ⊂ Rd −→ R, find a reasonable geometric transformation ϕ(u)(x) = x + u(x) with34

x, u : Rd −→ Rd such that:35

(1.1) T [ϕ(u)] ≡ T (x + u(x)) ≡ T (u) ≈ R.36
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2 A. THELJANI AND K. CHEN

This is an equation for the unknown u, the displacement field, which is supposed to be37

sought in a properly chosen functional space. The reconstruction problem based on model38

(1.1) is an ill-posed inverse problem and thus regularization techniques are needed to achieve39

well-posedness [20]. Generally, regularization consists in finding a desired displacement u by40

solving the following optimization problem:41

(1.2) min
u∈H
{J (u) = S(u) +

λ

2
D(T (u), R)}42

where we denote by T (u) the image T (x + u(x)) and H is a space for the solution. The first43

term S(u) is a regularization term which controls the smoothness of u and reflects our expec-44

tations by penalising unlikely transformations. With the aim to get more possible plausible45

transformations, various regularizes have been proposed, such as first-order derivatives-based46

on total variation [11], diffusion [18] and elastic regularizer registration models and higher-47

order derivatives-based on linear curvature [19], mean curvature [13] and Gaussian curvature48

[25].49

The second term D(T (u), R) is a similarity measure, which quantifies distance or similarity50

of the transformed template image T (u) and the reference R, whereas λ is a positive weight51

controlling the trade-off between them. In the case of mono-modal images, the fixed and the52

moving images have the similar features and the same intensity range. Thus, the L1− distance53

(Sum of Absolute Differences) D = ‖T − R‖1 or the well-known choice L2− distance (Sum54

of Squared Differences) between R and T (u) i.e. D = ‖T − R‖22 can be used as a similarity55

measure.56

Varying illumination. In many real life applications, even a pair of mono-modality images57

acquired from the same source can differ from each other, leading to inaccurate registration58

results. The difference is often presented as an undesirable artefact either caused by the device59

itself (spatially-homogeneous signal response, bias field and shading in MRI images) or caused60

by the imaging modality itself such as perfusion CT which creates some high contrasted regions61

in the image. In order to obtain accurate registration results and to cope with these problems,62

many models have been developed for intensity correction [1, 21, 29, 50]. It is important to63

note that, without intensity correction, both mono-modality and multi-modality models may64

fail to register the images correctly because bias introduces incorrect intensity values or false65

edges.66

As known, the artefacts can be of either additive or multiplicative type [34, 12, 21]. It67

has been generally accepted that the image T with bias field, generally presented as a mixed68

type, relates to the ‘true’ unbiased image T ∗ via the following affine like intensity relationship:69

T = mT ∗ + s, where m(x) and s(x) are responsible for the intensity-correction. Rigorously70

speaking, the word ‘affine’ is misleading because both m, s are never constants so the model71

is highly non-trivial. Once m, s are found or estimated, the registration task is to find the72

deformation field u such that T ∗(u) ≈ R. Denote by Tc(u) = T ∗(u) the corrected and73

registered image of T . Hence the equivalent statement to the model T = mT ∗ + s is74

(1.3) T (u) ≈ R1 ≡ mR+ s, since Tc(u) =
T (u)− s

m
≈ R,75
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JOINT MODEL FOR BIAS CORRECTION AND REGISTRATION 3

where T (u) is the uncorrected and registered image, carrying the bias field features from T
and aligned with R i.e. one may minimize one of these fidelity terms for m, s,u in some norm:

‖mR+ s− T (u)‖,
∥∥∥T (u)− s

m
−R

∥∥∥.
We remark that any model building on minimization of the above quantities may be much76

simplified if one of the unknowns is dropped (i.e. m ≡ 1 or s ≡ 0); however as our tests in77

§5 show, a full model including both m and s always gives better results in solution quality.78

In fact, in many cases, intensity correction by either multiplicative or additive model is not79

always enough [46, 45, 41] since a combined model is necessary.80

Two-stage model. To design a general-purpose registration model, a widely used ap-81

proach is to make a preprocessing of the image by correcting the intensity (i.e. m, s) and then82

register (by u) the corrected T ∗ to the reference R. The bias field and the corresponding T ∗83

are estimated by a variational approach in deionising like fashion. The work of [28] treated84

m and s separately: in a pre-step, they first deal with the additive term s, referred as noise,85

using an additive decomposition model; see e.g. [11]. Then they proposed to minimize an86

energy compromised of a residual term plus regularization terms:87

(1.4) J (T ∗,m) := λ

∫
Ω
|T −mT ∗|2dx + ν

∫
Ω
|∇2m|2dx + κ

∫
Ω
|T ∗|2dx + µ

∫
Ω

Φε(|DT ∗|)dx,88

where λ, ν, κ and µ are regularization parameters and Φε(·) is the well-known Gauss-TV89

penalty function.90

To be precise, later, we implement a direct model aiming to find T ∗, m, s, u by minimising91

by a two-stage model:92

Stage 1 min
T ∗,m,s

J (T ∗,m, s) := λ

∫
Ω
|T −mT ∗ − s|2dx +R(T ∗, s,m)(1.5)93

Stage 2 min
u

λ

2
‖R− T ∗(u)‖22 +R(u)(1.6)94

95

where R(·) contains regularization terms associated to the concerned unknowns, where dif-96

ferent regularizes can be used. Here we have used the equivalence in (1.3).97

We remark that a two-stage approach of this type is at disadvantage due to difficulties in98

obtaining the corrected image T ∗ properly. One example is the perfusion imaging modality99

because it is non-trivial to identify high contrast in some region as bias field or noise, and100

without additional information from the second image, i.e., a low contrast image, there is101

no way to eliminate this high contrast as it is natural in the image and it is not an obvious102

artefact. This can be confirmed later in numerical tests. A combined model for both intensity103

correction and registration seems the right approach to proceed.104

Joint model. In this paper, we propose a variational approach for joint bias correction105

and image registration. Our first variant is the following106

(1.7) JM J (u,m, s) := λ

∫
Ω
|mR+ s− T (u)|2dx +R(u, s,m),107
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4 A. THELJANI AND K. CHEN

where R(u, s,m) will be chosen to be the same as comparable models shortly. Since m is not108

a constant function, the first term in (1.7) is not convenient for numerical implementation109

for solving the sub-problems. Below we propose a second variant to reformulate this term.110

We want to transform the multiplicative term into an additive one since the latter is more111

convenient (a simple filtering problem). We apply a splitting method to transform the bias112

model (1.3) into an additive one:113

(1.8) Kl = ml +Rl, T (u) = eKl + s,114

which is easier to handle, assuming m,R > 0. Here Rl = ln(R) is known since R is given,115

ml = log(m), and Kl is the intermediate quantity as a spitting variable. The application116

of a logarithmic transform in the context of intensity transformations increases the contrast117

between certain intensity values [16, 10, 5, 44]. Then, our variational model takes the following118

form119

min
u,s,ml,Kl

{L(u, s,ml,Kl) =

R(u, s,ml,Kl) + λ1

∫
Ω
|T (u)− eKl − s|2dx + λ2

∫
Ω
|ml +Rl −Kl|2dx}

(1.9)120

where u is the main deformation field variable, R(·) contains regularization terms associated121

to all four unknowns (to be specified) and the rest of the energy are two fidelity terms. Here,122

we used the penalty method to incorporate the constraints (1.8) and alternatively we can123

use an augmented Lagrangian approach [6, 7]. Clearly there are no multiplicative terms in124

(1.9) as designed. One would normally specify R(·) and try to solve the joint optimization125

problem by some techniques e.g.the alternating direction method of multipliers (ADMM) [7].126

The problem (1.9) will be split into 4 sub-problems for each of the main variables: u, s,ml,Kl.127

There are two challenges: i) choosing the 5 parameters (assuming there are 3 new parameters128

from R(·)) suitably is a highly non-trivial task; ii) one cannot avoid coupling all 4 variables129

in any sub-problem.130

However, we like to reformulate it to another form using the Nash game idea where131

both of these two challenges are overcome: first, each sub-problem will have one parameter132

which can be tuned for that sub-problem in an easier way; second, we can modify the above133

sub-problems to reduce couplings and hence improve convergence. Accompanied with these134

advantages, unfortunately, we have two emerging questions: (i) the optimization energy is135

implicitly modified so the new minimizers may not be the same as for the original model –136

which is better? (ii) how to show that the game based reformulation has a solution? We137

shall demonstrate that the game model offers a better solution for two main aspects: choice of138

underlying parameters and proof of solution existence. In fact, the Kl sub-problem in model139

(1.9) has three terms and involves two penalty parameters λ1 and λ2, which are pretended140

to be large enough. The solution will be sensitive to these two parameters and the optimal141

choice is non-trivial. We shall reformulate this problem to yield only one parameter (instead142

of two) by considering a game approach that has a separable structure in the sense that it is143

not very sensible these weights.144

In game approach, the proof of existence of an equilibrium solution is generally challenging145

for non-convex functions (though easy for convex ones).146
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JOINT MODEL FOR BIAS CORRECTION AND REGISTRATION 5

Nash game terminology. We consider a game with four energies Ji(·), one for each
player i indexed by i ∈ {1, . . . , 4}, which are written in the following form

Ji(p1, p2, p3, p4) = Ri(pi) + Gi(p1, p2, p3, p4)

where Gi(·) represents the individual penalty of player “i” depending on the strategies of all147

players and Ri is a convex penalty for player “i” .148

Definition 1.1. A quadruplet zN = (p∗1, p
∗
2, p
∗
3, p
∗
4) ∈ X1 × X2 × X3 × X4 is called Nash

equilibrium [36] for the four-players game involving the costs Ji(·) (i = 1, . . . , 4) if the following
inequalities hold 

J1(p∗1, p
∗
2, p
∗
3, p
∗
4) ≤ J1(p1, p

∗
2, p
∗
3, p
∗
4), ∀p1 ∈ X1,

J2(p∗1, p
∗
2, p
∗
3, p
∗
4) ≤ J2(p∗1, p2, p

∗
3, p
∗
4), ∀p2 ∈ X2,

J3(p∗1, p
∗
2, p
∗
3, p
∗
4) ≤ J3(p∗1, p

∗
2, p
∗
3, p
∗
4), ∀p3 ∈ X3,

J4(p∗1, p
∗
2, p
∗
3, p
∗
4) ≤ J4(p∗1, p

∗
2, p
∗
3, p4), ∀p4 ∈ X4.

Observe that, to achieve equilibrium in an algorithmic fashion, each optimization has one149

variable to minimize; if each one optimizes with respect to all 4 variables, there will be at150

least 4 unrelated (respective) solutions to compete to each other – hence a game. As remarked,151

existence of a Nash equilibrium in non-potential games can be easily obtained by applying152

the Nash theorem if each energy Gi(·) is convex w.r.t the variables pi [37]. For important153

techniques and results in game theory and its connections to partial differential equations154

(PDEs) for other problems, the reader is directed to [23, 26, 27, 42].155

The rest of the paper is organized as follows: Section 2 is devoted to the introduction156

of the proposed Nash game strategy approach with four strategies. Section 3 addresses the157

mathematical analysis of the proposed model as well as the proof of the existence of Nash158

equilibrium. Section 4 is dedicated to the numerical study. We first propose the iterative159

numerical algorithm used to find a Nash equilibrium [37] and then prove its convergence.160

Finally, Section 5 concerns the implementation and the presentation of several numerical161

examples to test the efficiency and robustness of the proposed approach in comparison with162

existing models.163

2. Nash game based reformulation of our registration model and its theory. In this
section, we formulate our second variant (1.9) of a joint model as a game involving four
players and seek its solution as a Nash equilibrium. We discuss the characterization of
this equilibrium solution and prove its existence. We define the players in our problem by
(p1, p2, p3, p4) = (u, s,ml,Kl) in the space X = W ×W 1,2(Ω) ×W 1,2(Ω) ×W 1,2(Ω) where
W = W 2,2(Ω,R2) ∩W 1,2

0 (Ω,R2). The space X is endowed with the following norm

‖z‖X =
(
‖u‖2W + ‖∇s‖2W 1,2(Ω) + ‖∇ml‖2W 1,2(Ω) + ‖∇Kl‖2W 1,2(Ω)

)1/2
,

where ‖u‖W =
(
‖∇u‖22 + ‖∇2u‖22

)1/2
. The game formulation allows many choices of energies164

Ri(·) and Gi(·) whose terms may not be part of each other. The choice of the different energies165

leads to either potential or non-potential games [35]. The potential game structure is very166
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6 A. THELJANI AND K. CHEN

important because it makes easy to prove the existence of Nash equilibrium [37, 36]. One167

example is to make the particular choice of the following energies Ji(·) = Ri(·) + Gi(·) with168

(2.1)



R1(u) = ‖u‖2W , G1(u, s,ml,Kl) = λ1

∫
Ω |T (u)− eKl − s|2dx,

R2(s) =
∫

Ω |∇s|
2 dx, G2(u, s,ml,Kl) = λ2

∫
Ω |T (u)− eKl − s|2dx,

R3(ml) =
∫

Ω |∇ml|2 dx, G3(u, s,ml,Kl) = λ3

∫
Ω |ml +Rl −Kl|2dx,

R4(Kl) =
∫

Ω |∇Kl|2 dx, G4(u, s,ml,Kl) = λ4

∫
Ω |ml +Rl −Kl|2dx

+λ5

∫
Ω |T (u)− eKl − s|2dx,

169

where Ri(·) is the regularization term in energy i. There are many possible choices of regular-170

ization leading to different solution spaces. For the deformation u, we use regularizes based171

on combined first and second-order derivatives. Using only the first-order derivatives, i.e.,172

H1 semi-norm, is sensitive to affine pre-registration. We avoid this problem by combining it173

with the second-order derivative term which are not sensitive to (affine) pre-registration as it174

has the affine transformations in its kernel. Moreover, this choice penalizes oscillations and175

also allows smooth transformations in order to get visually pleasing registration results. The176

variables Kl, ml and s are chosen in the space W 1,2(Ω) and we could consider different spaces177

such as W 2,2(Ω) or the space of bounded variation functions BV (Ω).178

The formulation in (2.1) is special cases of game formulation known as a potential game179

(PG) [35] which amounts to find a minimizer of an energy L(·) =
∑4

i Ji(u, s,ml,Kl) in (1.9)180

– then the game model reduces to an ADMM algorithm if alternating iterations are used or a181

Nash equilibrium of (1.9) is a minimizer of
∑4

i Ji(u, s,ml,Kl). We refer the reader to [35, 4, 2]182

for more details about potential game in PDEs .183

In this work, instead of (2.1), we modify J3,J4 new sub-problems which lead to a better184

model than (2.1); our new energies to be minimized are still denoted by Ji = Ri + Gi, for185

i = 1, 2, 3, 4, with all terms defined in (2.1) except these 3 new terms i.e.186

(2.2)


R1(u) = ‖u‖2W , G1(u, s,ml,Kl) = λ1

∫
Ω |T (u)− eKl − s|2dx,

R2(s) =
∫

Ω |∇s|
2 dx, G2(u, s,ml,Kl) = λ2

∫
Ω |T (u)− eKl − s|2dx,

R3(ml) =
∫

Ω |∇ml|2 dx, G3(u, s,ml,Kl) = λ3

∫
Ω |ml +Rl − ln(T (u)− s)|2dx,

R4(Kl) =
∫

Ω |∇Kl|2 dx + ιA(Kl), G4(u, s,ml,Kl) = λ4

∫
Ω |ml +Rl −Kl|2dx,

187

where A = {Kl ∈ L2(Ω);Kmin ≤ Kl ≤ Kmax} is a closed and convex set and ιA(·) is a188

projection into A. The variables Kl is bounded for theoretical reasons in order to prove189

the existence of a Nash equilibrium. In this case, a Nash equilibrium is not a minimizer of190 ∑4
i Ji(u, s,ml,Kl), which makes difficult the proof of the existence. Formally this Nash game191

problem is called a non-potential game (denoted by NPG). Clearly the essential simplification192

is in G4 and there are other possible alternative formulations e.g. using L1 semi-norm. These193

changes simplify the Kl-problem in (2.1), equivalently in (1.9), where the Kl-energy has three194

terms and which necessitates two regularization parameters λ4 and λ5. Whereas, in the game195

approach (2.2), the same problem consists only of regularization and one fidelity term, i.e.,196

has only one parameter λ4. Moreover, to discuss any theory for (2.2), we have to address197

the non-convexity e.g. the energy G1(·) is non-convex w.r.t u. Non-convexity means that we198
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JOINT MODEL FOR BIAS CORRECTION AND REGISTRATION 7

cannot apply the Nash theorem [37] to show the existence of a Nash equilibrium. To overcome199

this challenge, we take the inclusion approaches below.200

2.1. Existence of Nash equilibrium. To establish the existence of a Nash equilibrium for201

model (2.2), we take a monotone operator method for solving an auxiliary monotone inclusion202

problem [14], whose solutions are Nash equilibria [8]. We define the following two operators203

to incorporate gradients of our four energies {Ji}:204

(2.3) A = (∇R1,∇R2,∇R3,∇R4), B = (∇p1G1,∇p2G2,∇p3G3,∇p1G4).205

Then, the quadruplet z = (p1, p2, p3, p4) = (u, s,ml,Kl) is a Nash equilibrium for our game206

involving the four energies {Ji(·)}, if it solves the inclusion problem207

(2.4) z ∈ ker(A + B).208

The fact that z is a Nash equilibrium can be seen from

z ∈ ker(A + B)⇔ B(z) ∈ −A(z)⇐⇒


∇p1G1(z) ∈ ∇R1(z),

∇p2G2(z) ∈ ∇R2(z),

∇p3G3(z) ∈ ∇R3(z),

∇p4G4(z) ∈ ∇R4(z).

We consider the inclusion problem (2.4) by solving the following system209

(2.5)



−∆u1 + div2[∇2u1] = λ1(T (u)− eKl − s)∂xT (u),

−∆u2 + div2[∇2u2] = λ1(T (u)− eKl − s)∂yT (u),

− ∆s+ λ2s = λ2T (u)− λ2e
Kl ,

−∆ml + λ3ml = λ3 ln(T (u)− s)− λ3Rl,

−∆Kl + λ5Kl + p = λ4(ml +Rl),

210

where p ∈ ∂ιA(Kl). In general, the existence of solution in (2.5) is guaranteed if the operator B211

is monotone; such a property is not true in our case due to non-convexity. Therefore, we prove212

the existence of Nash equilibrium for the NPG game (2.2) by using a fixed point methodology.213

We introduce the operator T (u, s) = (v, h) : (L2(Ω))2 × L2(Ω) −→ (L2(Ω))2 × L2(Ω) defined214

by the following auxiliary system of PDEs215

(2.6)



−∆v1 + div2[∇2v1] = λ1(T (u)− eKl − h)∂xT (u),

−∆v2 + div2[∇2v2] = λ1(T (u)− eKl − h)∂yT (u),

− ∆h+ λ2h = λ2T (u)− λ2e
Kl ,

−∆ml + λ3ml = λ3 ln(T (u)− s)− λ3Rl,

−∆Kl + λ4Kl + p = λ4(ml +Rl),

216

where p is an element of the sub-differential of ιA(Kl), i. e., p ∈ ∂ιA(Kl). Now, we show that217

such a definition is well posed.218
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8 A. THELJANI AND K. CHEN

Proposition 2.1. For any given (u, s) ∈ (L2(Ω))2×L2(Ω), there exists a unique weak solu-219

tion z = (v, h,ml,Kl) for the system (2.6).220

Proof. The system (2.6) is written in the following form221

(2.7) −N(z) ∈M(z),222

where223

(2.8) M(z) = A(z) +


0
0
λ2

λ3

0

 · z, N(z) =


−λ1(T (u)− eKl − h)∂xT (u)
−λ1(T (u)− eKl − h)∂yT (u)

−λ2T (u) + λ2e
Kl

−λ3 ln(T (u)− s) + λ3Rl
λ4Kl − λ4(ml +Rl)

 and z =


v1

v2

h
ml

Kl

 .224

where the operator A is given in (2.3). Moreover, we easy verify that (N(z)−N(z′)·(z−z′) ≥ 0,225

which means that the operator N is monotone; we see that the first three PDEs are strictly226

elliptic. On the other hand, since the operator M is maximally monotone in the space X , the227

system (2.6) has a unique solution z [14].228

Note that whenever there exists a fixed point (u, h) for operator T (·), the quadruplet (u, h,ml,Kl)229

will be a solution for the inclusion problem (2.5). We are ready to state a main result for our230

model (2.6).231

Proposition 2.2. There exists C > 0 such that T : B(0, C) −→ B(0, C) is is continuous232

and compact, where T is the operator from (2.6) and B(0, C) is the convex and closed ball in233

(L2(Ω))2 × L2(Ω) of radius C. Hence T admits a fixed point and consequently model (2.2)234

admits a solution z.235

Proof. Existence of C. Multiplying the first, second and third equations by v1, v2 and h,236

respectively, we get237

‖v1‖22 ≤ λ1‖T (u)∂xT (u)‖2‖v1‖2 + λ1‖eKl∂xT (u)‖2‖v1‖2 + λ1‖h∂xT (u)‖2‖v1‖2,238

‖v2‖22 ≤ λ1‖T (u)∂yT (u)‖2‖v2‖2 + λ1‖eKl∂yT (u)‖2‖v2‖2 + λ1‖h∂yT (u)‖2‖v2‖2,239

‖h‖22 ≤ λ2‖T (u)‖2‖h‖2 + λ2‖eKl‖2‖h‖2.240241

As both the image T and its gradient ∇T (·) are assumed to be bounded, and u ∈ X , i.e.,242

continuous, we have that T (u) and ∇T (u) are bounded and243

‖v1‖2 ≤ C1(‖T (u)‖2 + ‖eKl‖2 + ‖h‖2),(2.9)244

‖v2‖2 ≤ C2(‖T (u)‖2 + ‖eKl‖2 + ‖h‖2),(2.10)245

‖h‖2 ≤ λ2(‖T (u)‖2 + ‖eKl‖2),(2.11)246247

where C1, C2 > 0 depend on ∇T (·). Moreover, we have Kmin ≤ Kl ≤ Kmax since Kl is the
unique solution of

arg min
Kl

∫
Ω
|∇Kl|2 dx+ λ4

∫
Ω
|ml +Rl −Kl|2dx+ ιA(Kl).
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Thus, using the fact that Kmin ≤ Kl ≤ Kmax and∇T (·) is bounded, we get from the inequality
(2.11) that ‖h‖2 ≤ c for a constant c > 0. Moreover, from the inequalities (2.9) and (2.10),
we also get that ‖v‖2 ≤ c1 where c1 > 0 is a constant. Thus, have

‖(v, h)‖2 ≤ C,

where C is a constant depending on T, ∇T , Kmax and Kmin. Then, we conclude that the248

operator maps from B(0, C) into itself, where B(0, C) is the closed ball in (L2(Ω))2 × L2(Ω)249

of radius C, i.e., T : B(0, C) −→ B(0, C).250

Compactness of T . As the injection from the product space W(Ω) ×W 1,2(Ω) into the251

space (L2(Ω))2 × L2(Ω) is compact, the operator T : B(0, C) −→ B(0, C) is then compact.252

Continuity of T . Let (un, sn)n≥0 be a sequence in B(0, C) which converges to (u, s) and253

(vn, hn) = T (un, sn). Then, from the definition of the operator T (·), (vn, hn) fulfils the254

following system of PDEs255

(2.12)



−∆vn1 + div2[∇2vn1 ] = λ1(T (un)− eKl
n − hn)∂xT (un),

−∆vn2 + div2[∇2vn2 ] = λ1(T (un)− eKl
n − hn)∂yT (un),

−∆hn + λ2h
n = λ2T (un)− λ2e

Kl
n
,

−∆ml
n + λ3mln = λ3 ln(T (un)− sn)− λ3Rl,

−∆Kl
n + λ5Kl

n + pn = λ4(ml
n +Rl),

256

where pn ∈ ∂ιA(Kl
n). Since (un, sn) ∈ B(0, C) × B(0, C) and image T (·) is bounded, we257

get that (ml
n)n is uniformly bounded in W 1,2(Ω) from the fourth equation of system (2.12).258

Furthermore, we have259

‖Kln‖W 1,2
0 (Ω)

≤ cJ4(Kln) ≤ cJ (Kmin) = cλ4

∫
Ω
|mln +Rl −Kmin|2dx,260

where c > 0. Since (ml
n)n is uniformly bounded in W 1,2(Ω), we get that (Kl

n)n is also261

bounded in W 1,2(Ω). The last equation in the system (2.12) combined with the boundedness262

of (Kl
n)n in W 1,2(Ω) and (ml

n)n in L2(Ω) give that (pn)n is bounded in L2(Ω). Using classical263

stability estimates for elliptic PDEs for the three first equations in system (2.12) and the fact264

that Kmin ≤ Kl ≤ Kmax, T (·) and ∇T (·) are bounded, we obtain that (vn)n and (hn)n265

are uniformly bounded in the spaces W and W 1,2(Ω), respectively. Thus, we can extract266

a subsequence (vn)n, (hn)n, (ml
n)n, (Kl

n)n and (pn)n such that vn ⇀ v weakly in W(Ω),267

hn ⇀ h weakly in W 1,2(Ω), ml
n ⇀ ml weakly in W 1,2(Ω), Kl

n ⇀ Kl weakly in W 1,2(Ω)268

and pn ⇀ p weakly in L2(Ω) where p ∈ ∂ιA(Kl), as n goes to +∞. It follows that the limit269

(v, h,ml,Kl) is a weak solution of the system (2.6). Therefore, from the uniqueness of a weak270

solution for the system (2.6) in Proposition 2.1, we have T (u, s) = (v, h). Thus, we conclude271

that T (·) is continuous in B(0, C).272

Existence. Finally to complete the proof, applying the Schauder’s fixed-point theorem [17]273

and from the above properties, we see that T admits a fixed point, which implies that the274

inclusion problem (2.5) admits a solution z. Consequently this quadruplet z is also a solution275

to model (2.2).276
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10 A. THELJANI AND K. CHEN

3. Iterative algorithm. To compute a Nash equilibrium, we use an alternating forward-277

Backward algorithm (ADMM like) [3, 14], by means of an iterative process and proximal278

operators [40]. We first discuss the discretization step.279

3.1. Discretization. The given images R, T and the displacement fields u are discretized280

on a uniform mesh by vertex centred discretization. We assume that the images have p × q281

pixels, where p and q are the numbers of rows and columns in the image, respectively. So the282

discrete solution ui,j = (u1(xi, yj), u2(xi, yj)), i = 1, · · · , p, j = 1, · · · , q. Other quantities are283

set up similarly.284

For sake of simplicity, we use a generic notation u for discussing discretization. For the285

discrete differential operators, we assume periodic boundary conditions for u. Then, the action286

of each of the discrete differential operators can be regarded as a circular convolution of u287

and allows the use of fast Fourier transform (see [39, 47, 49] for more details). The discrete288

gradient is an operator from Rp×q to Rp×q × Rp×q and given by ∇u = (∂xu, ∂yu) where ∂xu289

and ∂yu are forward difference operators defined as follows:290

∂xu =

{
u(i+ 1, j)− u(i, j), 1 ≤ i < p, 1 ≤ j ≤ q,
u(1, j)− u(i, j), i = p, 1 ≤ j ≤ q,

291

292

∂yu =

{
u(i, j + 1)− u(i, j), 1 ≤ i ≤ p, 1 ≤ j < q,

u(i, 1)− u(i, j), 1 ≤ i ≤ p, j = q.
293

The discrete divergence is an operator from Rp×q × Rp×q to Rp×q, for n = (n1, n2), is given294

by backward difference operators: divn =
←−
∂ xn1 +

←−
∂ yn2 where295

←−
∂ xu =

{
u(i, j)− u(i− 1, j), 1 < i ≤ p, 1 ≤ j ≤ q,
u(i, j)− u(p, j), i = 1, 1 ≤ j ≤ q,

296

297

←−
∂ yu =

{
u(i, j)− u(i, j − 1), 1 ≤ i ≤ p, 1 < j ≤ q,
u(i, j)− u(i, q), 1 ≤ i ≤ p, j = 1,

298

are backward difference operators. Then, the discrete Laplace operator is given by ∆u =299

div (∇u). Similarly, we define the second-order discrete differential operators:300

∂xxu =
←−
∂ xxu =


u(p, j)− 2u(i, j) + u(i+ 1, j), i = 1, 1 ≤ j ≤ q,
u(i− 1, j)− 2u(i, j) + u(i+ 1, j), 1 < i < p, 1 ≤ j ≤ q,
u(i− 1, j)− 2u(i, j) + u(1, i), i = p, 1 ≤ j ≤ q.

301

302

∂yyu =
←−
∂ yyu =


u(i, q)− 2u(i, j) + u(i, j + 1), 1 ≤ i ≤ p, j = 1,

u(i, j − 1)− 2u(i, j) + u(i, j + 1), 1 ≤ i ≤ p, 1 < j < q,

u(i, j − 1)− 2u(i, j) + u(i, 1), 1 ≤ i ≤ p, j = q.

303

304

∂xyu = ∂yxu =


u(i, j)− u(i+ 1, j)− u(i, j + 1) + u(i+ 1, j + 1), 1 ≤ i < p, 1 ≤ j < q,

u(i, j)− u(1, j)− u(i, j + 1) + u(1, j + 1), i = p, 1 ≤ j < q,

u(i, j)− u(i+ 1, j)− u(i, 1) + u(i+ 1, 1), 1 ≤ i < p, j = q,

u(i, j)− u(1, j)− u(i, 1) + u(1, 1), i = p, j = q.

305
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306

←−
∂ xyu =

←−
∂ yxu


u(i, j)− u(i, q)− u(p, j) + u(l, cq), i = p, j = 1,

u(i, j)− u(i, j − 1)− u(p, j) + u(p, j − 1), i = 1, 1 ≤ j < q,

u(i, j)− u(i, q)− u(i− 1, j) + u(i− 1, q), 1 < i < p, j = 1,

u(i, j)− u(i, j − 1)− u(i− 1, j) + u(i− 1, j − 1), 1 < i < p, 1 < j ≤ q.

307

Based on the above operators, we define the following fourth-order differential operator:308

div2[∇2u] =
←−
∂ xx∂xxu+

←−
∂ yy∂yyu+

←−
∂ xy∂xyu+

←−
∂ yx∂yxu.309

3.2. Solution of sub-problems. In this section, we present an iterative solution algorithm310

for all four discrete sub-problems in Algorithm 3.1. The efficiency is achieved by the use of311

the FFT-transform.

Algorithm 3.1 Forward-Backward algorithm for computing a Nash equilibrium

• Set k = 0 and choose an initial guess z(0) = (u(0), s(0),ml
(0),Kl

(0)).

• Step 1: Compute (in parallel) (u(k+1), s(k+1),ml
(k+1),Kl

(k+1)) solution of

u(k) = uk − γ∇Gp1(uk, sk,ml
k,Kl

k), u(k+1) = proxγR1
(u(k))(3.1)

s(k) = sk − γ∇Gp2(uk, sk,ml
k,Kl

k), s(k+1) = proxγR2
(s(k))(3.2)

ml
(k) = ml

k − γ∇Gp3(uk, sk,ml
k,Kl

k), ml
(k+1) = proxγR3

(ml
(k))(3.3)

Kl
(k)

= Kl
k − γ∇Gp4(uk, sk,ml

k,Kl
k), Kl

(k+1) = proxγR4
(Kl

(k)
)(3.4)

• If ‖z
(k+1)−z(k)‖2
‖z(k)‖2

≤ ε, stop. Otherwise k = k + 1, go to Step 1.

312

Remark 3.1. The existence of a Nash equilibrium for the discrete game, i.e., discrete313

energies, can be handled similarly to the continuous case, i.e., using an inclusion problem and314

a fixed point methods.315

The u-subproblem. Fixing Kk, sk and mk and λki (i = 1, . . . , 5) and using the definition
of the proximal operators, the u-subproblem (3.1) amounts to solve

min
u
{R1(u) +

1

γ
‖u− u(k)‖22}, w.r.t u(k) = uk − γ∇Gp1(uk, sk,ml

k,Kl
k),

which is equivalent to find the deformation u = (u1, u2) that satisfies the following system of316

PDEs in Ω:317

(3.5)

{
−γ∆u1 + γdiv2[∇2u1] + u1 = uk1 − γλ1(T (uk)− eKl

k − sk)∂xT (uk),

−γ∆u2 + γdiv2[∇2u2] + u2 = uk2 − γλ1(T (uk)− eKl
k − sk)∂yT (uk),

318

with the periodic boundary conditions on ∂Ω. Here, uk = (uk1, u
k
2) denotes the solution from319

the previous iteration for the alternating algorithm. To solve the above fourth-order equations320

in each iteration, we use the 2-dimensional discrete Fourier transforms. In fact, we have:321

L1 · F(u1) = F(F1(uk)), and L1 · F(u2) = F(F2(uk)),322
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12 A. THELJANI AND K. CHEN

where L = I − γ F(∆) + γ F(div2[∇2]) and

F1(uk) = uk1 − γλ1(T (uk)− eKl
k − sk)∂xT (uk),

F2(uk) = uk2 − γλ1(T (uk)− eKl
k − sk)∂yT (uk).

where I is an p× q matrix composed of ones, the operator F(·) is the Fourier transform and323

“ · ” means point-wise multiplication of matrices. Therefore, the discrete solutions u1 and u2324

can be obtained by applying the inverse of the discrete two-dimensional Fourier transform to325

the previous equation and we have:326

(3.6) u1 = F−1
(
F(F1(uold))./L1

)
and u2 = F−1

(
F(F2(uold))./L1

)
,327

where“ · /” means the point-wise division.328

The s-subproblem. The problem (3.2) is equivalent to solve

min
s
{R2(s) +

1

γ
‖s− s(k)‖22}, w.r.t s(k) = sk − γ∇Gp2(uk, sk,ml

k,Kl
k),

which leads to its optimality condition:329

(3.7) − γ∆s+ s = sk − γλ2T (uk)− λ2e
Kl

k

+ sk) or L̂1s = S2330

which is a linear problem with the periodic boundary condition on ∂Ω, where we denote

L̂1 = I − γ∆ and S2 =k −γλ2T (uk)− λ2e
Kl

k

+ sk).

We take advantage of the 2-dimensional discrete Fourier transforms to compute s. In fact,
applying the Fourier transforms to discrete forms on both sides of equation (3.7), we get:

L1 · F(s) = F(S2), L = F(L̂2) = I − γF(∆),

and, therefore, the discrete solution given by:331

(3.8) s = F−1 (F(S2) · /L1) ,332

where “ · ” means point-wise multiplication of matrices, F−1(·) is the inverse of the discrete333

two-dimensional Fourier transform.334

The ml-subproblem. The problem (3.3) leads to the optimality condition:335

(3.9) − γ∆ml +ml = ml
k − γ(λ3 ln(T (uk)− sk)−Rl),336

which is a linear problem for ml. Therefore, the discrete solution is given by:337

(3.10) ml = F−1 (F(S3) · /L3) ,338

where F−1(·) is the inverse of the discrete two-dimensional Fourier transform,

L1 = −γF(∆) + I, and S3 = ml
k − γ(λ3 ln(T (uk)− sk)−Rl).
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The Kl-subproblem. The problem (3.4) involves computing the proximal operator

Kl = proxγR4
(Kl

(k)
) = proxγιA ◦ proxγS4

(Kl
(k)

),

where S4(Kl) =
∫

Ω |∇Kl|2 dx. First, we find find the solution Kl = proxγS4
(Kl

(k)
) and which339

is the unique solution for the linear PDE:340

(3.11) − γ∆Kl +Kl = Kl
k − γ(λ4(ml

k +Rl)) = 0,341

with the periodic boundary condition on ∂Ω. Therefore, the discrete solution is given by

Kl = F−1 (F(S4) · /L1) , S4 = Kl
k − γ(F ′(Kl

k) + λ4(ml
k +Rl)),

where F−1(·) is the inverse of the discrete two-dimensional Fourier transform. After that, we342

make the projection step proxγιC (Kl).343

Remark 3.2. If periodic boundary conditions cannot be assumed, a fast Fourier transform344

is not applicable so the four sub-problems have to be solved by other solvers. One good choice345

would be a linear multigrid solver. Then, the same efficiency can be achieved. We also point346

out that some images T,R may be padded with zeros at boundaries in order to ensure that347

zero periodic boundary conditions for u are reasonable.348

4. Numerical results. In the numerical validation, we assess the performance of the pro-349

posed algorithm 3.1 for our new model (denoted by “New” below). The experiments will350

show that the proposed algorithm can have significant robustness in presence of bias noise351

and varying illumination. In order to balance the energies in our approach, we need an ap-352

propriate choice of the weighting parameters. In our tests, we fix the parameters in the model353

by using λ1 = 200 for the u-subproblem, λ2 = 20 for the s-subproblem, λ3 = 1 for the ml-354

subproblem, and λ4 = 5 for the Kl-subproblem. These parameters are chosen large enough355

to satisfy the constraint (1.9). The suitability of these constraints can be seen and checked356

numerically by the high-similarity between the corrected image Tc and the reference R.357

We initialize the displacement u by a multi-resolution technique, also to avoid local minima358

and to speed up registration: this is a scale space approach where we resize the original images359

to a sequence of coarser levels where computations are cheap and register these smaller images.360

Then starting from the coarsest level, we interpolate the obtained transformation fields to get361

a starting guess on finer (next) levels until the original resolution on the finest level is reached.362

To convince the reader that the new approach is unique and performs better than related363

and conceivable methods, we include 4 methods on the comparison ist. We denote by “JM ”364

the earlier joint model (1.7) where we minimize this global energy directly. This is the model365

that we must compare with because it is a more natural choice for the class of problems that366

we study. We also compare the proposed game approach with the non- game approach which367

consists in solving the classical variational model (1.9) that we denote by “CV ”. For the368

numerical implementation of “JM ” and “CV ” models, we use an alternating algorithm and369

iterative procedure [3, 14]. We also compare with the purely multiplicative model proposed370

in [34] and that we denote by “MM”.371
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We also compare with the Mutual Information based multi-modality model where the372

we minimize an energy which uses R1(·) and the Mutual Information as similarity measure373

(denoted by “MI” below). This model is not expected to work well (for this matter nor374

do all multi-modality models), because a bias field represents redundant or unwanted image375

features and registering such features rigorously leads to misleading results. In fact, Mutual376

Information similarity measure fails when features with different intensities in the first image377

have similar intensities in the second one [30], which is the case in perfusion imaging.378

Numerical experiments on MI are performed using the publicly available image registration379

toolbox – Flexible algorithms for image registration (FAIR)1, where the implementation is380

based on the Gauss-Newton method.381

As a final comparison, we also present results from a two-stage approach (named as “TS”):
In stage 1, we use the correction model (1.5), where for to choose the regularizer R(·), we
borrow the idea from model (1.4) and we consider:

R(T ∗,m, s) = ν1

∫
Ω
|∇2m|2dx + ν2

∫
Ω
|∇2s|2dx + κ

∫
Ω
|T ∗|2dx + µ

∫
Ω

Φε(|DT ∗|)dx.

For the numerical resolution of Step 1, we use an alternating algorithm similar to Algorithm382

(3.1). In Stage 2, we minimize an energy (1.6) where R1(·) is the regularizer and the sum383

of squared difference (SSD) is the similarity measure between the estimated image T ∗ which384

will be moved and the reference R, i. e., ‖T ∗(u) − R‖22. This approach is also natural and385

in fact there exist many works that aim to correct bias fields. We do not expect that such386

a two-stage idea works well because (as remarked before) removing bias from a single image387

is insufficient due to lack of guide of a second image to differentiate valid features and bias388

regions without user input.389

We note that the corrected and registered image is Tc(u), not T (u) which registers to390

mR + s, as respectively defined by the formula Tc = (T (u)− s)/eml for “New” and “CV ”,391

and Tc = (T (u) − s)/m for “JM” and “TS” (as discussed in (1.3)). In contrast, the final392

registered image for “MI” is just T (u). We also use the normalized correlation coefficient393

(NCC) between Tc and R to quantify the performance of the models and the comparison (the394

closer the NCC is to 1, the better is the alignment). For MI model, NCC between T (u) and395

R also makes sense.396

Test example 1. We start our numerical validation on a pair of synthetic images. In397

Fig 1, we consider an image of a disk as reference and a bigger disk with a grayscale rectangle398

on its interior as template. We compare New, JM and MM. For each model, we plot the399

registered image T (u), the corrected image Tc(u), and the difference (error) between them.400

The registered image obtained using New is clearly better than the ones obtained using JM401

and MM. In Fig. 2, we also display the corrected images and the auxiliary the variables402

involved in all compared models. The corrected image using New seems to be very close403

to the reference and it is better than the result obtained using New and MM. Moreover,404

New performs better than JM and MM registration as well as in intensity correction. We405

have added colorbars to the figures. The colorbars show that New and MM models give406

1http://www.siam.org/books/fa06/
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comparable results in intensity correction, with both performing better than JM model.407

However, in registration, New model is better than the other competitive models MM and408

JM. We also show the resulting transformed grids for all models where there is no mesh409

folding.410

Test example 2: MRI images. In Fig. 3, we register two MRI images and display the411

transformed images T (u) using all tested models where the moving image T (synthetically412

enhanced) contains some bias field and varying illumination. In Fig. 4, we plot the variables413

s, ml and the corrected image Tc(u) using New, CV, JM and TS model. We see that all414

models except MI model perform well in most parts of the image, but in the middle of the415

images our New is the most advantageous and we can observe the zoomed details in Fig. 5.416

We can see visually a big difference in the recovered m and s because these quantities are not417

estimated from the same images. In fact, m and s are estimated from the initial image T in418

the first step of TS model where no information from R is used; in contrast, the other models419

estimate m and s using both T and R.420

We also compute the determinant of the Jacobians and find that there is no mesh folding421

in all cases i.e. the transformations are physically plausible. In other tests, we tabulate the422

run times for the different models and in different resolutions in Table 1. As seen, these are423

comparable. For the parameters tuning, we have added Table 2 to indicate the registration424

results for different parameters λi (i = 1, ..., 4). The table shows that the game approach is425

stable.426

In Fig. 8, we plot the relative residual errors for New, and JM for all variables as functions427

of iterations in Algorithm 1. For New, the errors of the three variables decrease very well428

for all variables in the same time, which explains the ability of this model to handle all the429

objectives jointly. However, the errors for the JM decrease slowly for all variables except the430

for the displacement u, where a convergence problem is clearly seen. This behaviour make431

clear the inability of JM in handling all objectives jointly, i. e., non-accurate in the registration432

task We also plot the curve representing the energies Er = ‖T (u)− expRl expml −s‖ for New433

and Er = ‖T (u)−mR− S‖ for JM.434

For the same pair of images, we consider the additive and multiplicative cases (not com-435

bined bias) separately:436

(1) First in Fig. 6, the template image T has additive bias field only. We give the results437

of the all compared models. The results show that New model outperforms the competitive438

models and gives better results mainly for registration. For the intensity correction task, all439

models give similar results.440

(2) Second in Fig. 7, the template image T has multiplicative bias field only. Again we com-441

pare 4 models as before and we see that New model either outperforms or performs equally442

well.443

The results underline the good performance of New model in solving both problems effec-444

tively.445

Test example 3: Application to Perfusion CT registration. In Fig. 10, we consider a446

pair of CT and Perfusion CT lung images. As we can see in the middle of the images images T447

and R, there is a big difference because the high contrast in T and which makes inefficient the448

use of classical mono-modal measures. We show the registered images using New, CV, JM,449
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(a) The reference R (b) The template T (c) The difference |T−R|

(d) New: T (u) only (e) New Tc(u),
NCC=0.99

(f) New: |Tc(u)−R| (g) New: The grid

(h) JM : T (u) only (i) JM: Tc(u),
NCC=0.98

(j) JM: |Tc(u)−R| (k) : The grid

(l) MM: T (u) only (m) MM: Tc(u),
NCC=0.98

(n) MM: |Tc(u)−R| (o) MM: The grid

Figure 1. Example 1: Comparison between New, JM and MM for registering a pair of synthetic images.
Here in both cases, displaying T (u) is for information only and we do not show the big difference |T (u) − R|
for the intermediate and uncorrected quantity T (u) which registers to mR+ s, not to R – see (1.3).
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(a) New: s (b) New: m = exp(ml) (c) New: Tc(u),
NCC=0.99

(d) JM : s (e) JM : m (f) JM : Tc(u), NCC=0.99

(g) MM: m (h) MM: Tc(u), NCC=0.98

Figure 2. Example 1 – The variables s, m = exp(ml) and Tc(u) obtained using —New, the variables s,
m and Tc(u) obtained using —JM and the the variables m and Tc(u) obtained using —MM.

(2019)
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(a) The reference R (b) The template T (c) New: T (u) only,
NCC=0.81

(d) JM: T (u) only,
NCC=0.78

(e) MI: T (u), NCC=0.77 (f) TS: Tc(u), NCC=0.6

(g) CV: Tc(u), NCC=0.79 (h) MM: Tc(u), NCC=0.79

Figure 3. Example 2: Comparison of 5 different models to register MRI T-1 and T-2 images. From this
figure and Figs.5-4, we see that New gives the best registration result.

TS model, MM and MI model. The main dissimilarity between all models is highlighted450

by zooming in the middle parts of the images in Fig. 12. We easy see that New gives a451

satisfactory result and the corrected part of the moving image is very similar to the middle452

part of the reference whereas the registration is not good. For New model, the result of both453

registration and correction is satisfactory and this underlines the performance of this model454

(2019)
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(a) New: s (b) New:
m = exp(ml)

(c) New Tc(u)
NCC=0.99

(d) New: The grid

(e) TS: s from Step 1 (f) TS: Step 1 m (g) TS: Tc(u)
NCC=0.6

(h) TS: The grid

(i) JM : s (j) JM: m (k) JM: Tc(u),
NCC=0.98

(l) JM: The grid

(m) CV: s (n) CV: m = exp(ml) (o) CV Tc(u)
NCC=0.99

(p) CV: The grid

(q) MM: m (r) MM: Tc(u)
NCC=0.97

(s) MM: The grid

(2019)
Figure 4. Example 2 – Comparison of New, JM, TS and MM in intensity correction
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(a) The reference R (b) The template T (c) New: T (u) (d) New Tc(u)
NCC=0.99

(e) JM: T (u) (f) JM Tc(u)
NCC=0.99

(g) MI : NCC=0.19 (h) TS Tc(u)
NCC=0.61

(i) CV T (u) (j) CV Tc(u) NCC=0.99 (k) MM T (u) (l) MM Tc(u)
NCC=0.99

Figure 5. Example 2: Compared zoom regions of 5 different models to register MRI T-1 and T-2 images.
Again New is the best in solving the registration and the intensity correction jointly, whereas JM and MM
cannot solve both problem jointly, only the image correction task is successful.

in solving both problems jointly and efficiently which is not the case for CV, JM and MI455

and MM as they only handle the correction task correctly and fail in registration. For this456

particular example, T (u) is very useful as clinicians like to where the contrasts from perfusion457

CT (‘artefacts’) would be located on the CT.458

Test example 4: Generalisation to three dimensional formulation. The work presented459

so far can be generalized to register images in three dimensions (3D). For a 3D registration460

problem, we have Ω ⊂ R3 and u = (u1, u2, u3). The four energy functionals in (2.2) still take461

(2019)
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(a) The reference R (b) The template T

(c) New: T (u) only,
NCC=0.92

(d) CV: T (u) only,
NCC=0.91

(e) JM: T (u) only,
NCC=0.91

(f) MM: T (u) only,
NCC=0.9

(g) New: Tc(u),
NCC=0.99

(h) CV: Tc(u), NCC=0.99 (i) JM: Tc(u), NCC=0.99 (j) MM: Tc(u),
NCC=0.97

Figure 6. Comparison of 4 different models to register MRI T-1 and T-2 images for only additive intensity
correction. From this figure, we see that New gives the best registration result.

the same forms and we apply Algorithm 3.1. Similar to the 2D case, a 3D multi-resolution462

technique is used as well in order to avoid local minima and to speed up registration.463

To demonstrate this generalization, in Fig. 13, we display the result of registering 3D CT464

and Perfusion CT images where the reference R and the template T have the same size of465

512× 512× 16. The perfusion images contain highly contrasted regions mainly in the middle466

of the images. This high contrast plays the same role of bias field (as in 2D) so we expect that467

(2019)



22 A. THELJANI AND K. CHEN

(a) The reference R (b) The template T

(c) New: T (u) only,
NCC=0.88

(d) CV: T (u) only,
NCC=0.87

(e) JM : T (u) only,
NCC=0.86

(f) MM: T (u) only,
NCC=0.84

(g) New: Tc(u),
NCC=0.99

(h) CV: Tc(u), NCC=0.99 (i) JM: Tc(u), NCC=0.99 (j) MM: Tc(u),
NCC=0.99

Figure 7. Comparison of 4 different models to register MRI T-1 and T-2 images for only multiplicative
intensity correction. From this figure, we see that New gives the best registration result.

New is suitable for this case. We display the multiple image frames as rectangular montage.468

We see that the images are well aligned from the set of the difference images before and after469

registration.470

5. Conclusions. Image registration is a challenging modelling task with a broad range471

of applications, in particular in medical imaging. The work presented in this paper deals472

(2019)
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Figure 8. Display of relative errors (left) and the Fitting energies (right) for the New and JM. Evidently
the curve of the displacement u for JM does not decrease which could explain the non-accuracy in the registration
task.

with the problem of image registration under varying illumination and translation, which473

can be common in real life cases, such that MRI images. This work is beyond both single-474

modality and multi-modality image registration models, since a correction step is necessary475

but yet cannot be done separately. We analysed the proposed model and its the numerical476

algorithm employed. Numerical realisations have shown the proposed method out-performs477

the compared classical approaches.478
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Resolution
64× 64 128× 128 256× 256 512× 512

Time (s) for New 8.28 17.30 41.04 62.65

Time (s) for JM 6.49 14.82 37.13 57.42

Time (s) for MI 5.19 10.7 30.70 44.46

Time (s) for MM 5.67 13.11 34.54 49.59

Time (s) for CV 8.32 17.23 42.12 60.15
Table 1

Run time comparison for all models for the pair of MRI images in Fig.3.

Parameters

λ1 λ2 | NCC λ3 | NCC λ4 | NCC

100 05 |NCC=0.77 0.5 |NCC=0.78 01 |NCC=0.78

150 15 |NCC=0.79 01 |NCC=0.80 05 |NCC=0.80

200 20 |NCC=0.80 05 |NCC=0.80 20 |NCC=0.79

250 40 |NCC=0.79 10 |NCC=0.77 50 |NCC=0.78

λ3 = 1 and λ4 = 5 λ2 = 20 and λ4 = 5 λ2 = 20 and λ3 = 1
Table 2

Parameters tuning for the pair of MRI images in Fig.3 using New model. In the first column, we fix the
parameters λ3 and λ4 and we vary the parameters λ1 and λ2. In the third column, we vary λ1 and λ3 where
λ2 and λ4 are fixed, whereas, in the last column, we vary λ1 and λ34 for fixed λ2 and λ3. The NCC errors for
the different values of parameters are comparable.
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(a) The reference R (b) The template T (c) New: T (u) only,
NCC=0.93

(d) New: Tc(u),
NCC=0.98

(e) JM: T (u) only,
NCC=0.83

(f) JM: Tc(u),
NCC=0.97

(g) MI: T (u), NCC=0.86 (h) TS: T ∗(x) Step 1

(i) TS: Tc(u), NCC=0.82 (j) CV: T (u), NCC=0.91 (k) CV: Tc(u),
NCC=0.98

(l) MM: T (u),
NCC=0.86

(m) MM: Tc(u),
NCC=0.97

Figure 10. Example 4: Comparison of 5 different models in registering CT and perfusion CT images. New
performs the best.
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(a) New (b) JM (c) TS (d) MM

Figure 11. Example 4 – The deformed girds using New, JM, TS and MM models

(a) The reference R (b) The template T (c) New: T (u) only (d) New Tc(u)
NCC=0.99

(e) JM: T (u) only (f) JM Tc(u) NCC=0.99 (g) MI T (u) NCC=0.55 (h) TS Tc(u) NCC=0.84

(i) CV T (u) (j) CV Tc(u) NCC=0.98 (k) MM T (u)
NCC=0.55

(l) MM Tc(u)
NCC=0.98

Figure 12. Example 4 zoomed in: Comparison of 4 different models to register CT and perfusion CT
images. Again New is the best in obtaining both registration and intensity correction.
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(a) Set of reference images R (b) Set of template images T

(c) New: set of aligned images
T (u) only

(d) New: set of corrected images
Tc(u), NCC=0.98

(e) Set of the difference images
|T −R| before registration

(f) New: set of the difference im-
ages |T (u)−R|

(g) New: set of the difference im-
ages |Tc(u)−R| after registration

Figure 13. Example 5: Registration of 3D CT and Perfusion CT images of size 512 × 512 × 16. Note
T (u) ≈ mR+s so T (u)−R represents the genuine difference between T and R after alignment, while Tc(u) ≈ R
so Tc(u)−R is correctly shown as ≈ 0.
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