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Abstract. The Beltrami coefficient from complex analysis has recently been found to provide a robust constraint for obtaining
orientation-preserving and diffeomorphic transformations for registration of planar images. There exists no such a concept of
Beltrami coefficient in three or higher dimensions, although a generalized theory of quasi-conformal maps in high dimensions exists.
In this paper, we first propose a new algebraic measure in three dimensions (3D) that mimics the Beltrami concept in two dimensions
(2D) and then propose a corresponding registration model based on it. We then establish the existence of solutions for the proposed
model and further propose a converging generalized Gauss-Newton iterative method to solve the resulting nonlinear optimization
problem. In addition, we also provide another two possible regularizers in 3D. Numerical experiments show that the new model
can produce more accurate orientation-preserving transformations than competing state-of-the-art registration models.
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1. Introduction. Image registration, also called image matching, image wrapping or image fusion, has
become one of the most important tasks in the image processing domain. It aims to find an optimal geometric
transformation to align the corresponding image data, which are taken at different times, from different imaging
machineries, or from different perspectives. Nowadays, image registration has a wide range of applications, such
as computer vision, biological imaging, remote sensing and medical imaging [7, 27, 33, 35, 38, 44, 53]. For regis-
tering images which differ by small deformation or by a relative simple parametric (e.g., linear) transformation,
there exist many well-known and mature methods to be employed [39, 40]. Here, we consider image registration
in a variational framework to cope with the more challenging task of modelling large non-parametric deformable
problems, especially the question of preserving orientation in 3D.

In general, image registration involves two or more images. By convention, we define two related mono-
modality images R : Ω ⊂ Rd → R as the reference and T : Ω ⊂ Rd → R as the template, where R and T are
compactly supported in Ω and d is the dimension of the images. In this work, we are primarily concerned with
the case d = 3. The aim of image registration is to find a transformation y(x) : Ω ⊂ R3 → R3 such that

(T ◦ y)(x) = T (y(x))

is similar with R(x), where x = (x1, x2, x3) and y(x) = (y1(x), y2(x), y3(x)). In order to measure the difference
between T (y(x)) and R(x), under the mono-modality case, the most widely used fidelity term is the sum of
squared differences (SSD) [39, 40] defined by

(1) D(T ◦ y, R) :=
1

2

∫
Ω

(T (y(x))−R(x))2dx =
1

2
‖T ◦ y −R‖2,

where ‖ · ‖2 denotes the square of the L2-norm. For the multi-modality case, there are some other typical
distance measures, including normalized cross correlation, mutual information, normalized gradient fields [24,
26, 34, 39, 40], and especially the more recent model [45]. As the paper emphasizes more on quality of the
transformation y, the presentation is mainly for the mono-modality case but the results are applicable to the
multi-modality case after a change of fidelity terms.

Minimizing D(T ◦y, R) for image registration is ill-posed in the sense of Hadamard since it is not sufficient
to ensure the uniqueness and continuity of the solution [43]. In order to overcome this problem, regularization
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is indispensable. Combining the distance measure with the regularizer, we can obtain the variational model for
image registration:

(2) min
y
J (y) = D(T ◦ y), R) + αS(y),

where S(y) is the regularizer which can rule out the unwanted solutions and α > 0 is a positive parameter to
balance these two terms.

There exist many different regularizers which lead to many nonlinear registration models, such as elastic
model [6], fluid model [12], diffusion model [19], TV (total variation) model [22] , MTV (modified TV) model
[13], linear curvature model [20, 21], mean curvature model [14], Gaussian curvature model [28] and total
fractional-order variation model [51]. These models can produce different registration transformations since
they are inspired by different physical properties [44], each having advantages in its class of problems, though
not all of these models have been tested in registration of 3D images.

However, in all of these models, folding will appear when the deformation is large or the regularization
parameter is small if we impose no constraint on the transformation. Few models have built-in capabilities
to impose such constraints. A transformation with folding implies that the obtained transformation itself
is not a valid or acceptable solution. According to the inverse function theorem, the transformation y is
locally bijective when det∇y > 0, where det∇y is the Jacobian determinant of the transformation y. Hence,
constraining the Jacobian determinant of y larger than 0 is a key factor to reduce or avoid folding [8, 15, 23, 25].
We know that the geometric meaning of the Jacobian determinant of the transformation is the ratio of the
change of the volume. But for some applications, it is tough for users to decide the upper bound and lower
bound of the Jacobian determinant of the transformation. Only controlling the Jacobian determinant of the
transformation to approximate 1 sometimes will affect the accuracy of the registration [50]. Another effective
way to avoid the folding is to control the Beltrami coefficient [31, 50]. The quasi-conformal theory shows that if
the infinity norm of the Beltrami coefficient µ is smaller than 1, the corresponding mapping is homeomorphism,
i.e. |µ| < 1 ⇔ det∇y > 0. Normally, the Beltrami coefficient is defined in the complex space, and for 2D image
registration, we can consider the transformation as a complex mapping and control its Beltrami coefficient to
get an orientation-preserving transformation. However, since the Beltrami coefficient has no definition in 3D,
we cannot directly apply the notion of the Beltrami coefficient to 3D image registration. Although it is possible
to construct models [32] that are based on quasi-conformal maps [18, Ch.6] and [37], there is no such a definition
of |µ| that satisfies |µ| < 1 ⇔ det∇y > 0 and can be used in a minimization model.

In this paper, first, we propose a new measure in 3D that mimics the norm of the Beltrami coefficient in 2D
and study its properties. Second, combining with regularization, we propose the new registration model which
can cope with large deformation registration problems and generate orientation-preserving transformations. The
existence of the solution of the proposed model is established. In addition, we also provide another two possible
regularizers in 3D. Finally, an effective numerical scheme is presented and numerical experimental results also,
show that the new registration model can deliver good performances and accurate transformations and can be
competitive with the other state-of-the-art registration models.

The rest of the paper is organized as follows. In Section 2, we briefly review related works. In Section 3, we
propose our new regularizer and new registration model for 3D image registration. The existence of the solution
and numerical implementation are also illustrated. In Section 4, another two possible regularizers are given.
Numerical experimental results are shown in Section 5, and finally, a conclusion is summarized in Section 6.

2. Related Works. There exist several 3D variational models, though not as many as in 2D, which can
produce orientation-preserving transformations for image registration. In this section, we briefly review three
representative models, to highlight the outstanding challenges.

2.1. Hyperelastic Models. The hyperelastic regularizer in image registration was first used by Droske
and Rumpf [15] in 2004. Their formulation of type (2) takes the form

(3) S(y) = Shyper(y) :=

∫
Ω

W (∇y, cof∇y, det∇y)dx,

3D orientation-preserving variational models for accurate image registration
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where W : R3,3 × R3,3 × R → R is a convex function. Here, Shyper(y) is assumed that it penalizes volume

shrinkage, i.e., W (L, S, V )
V→0−→ ∞. This latter assumption (or choice) will enable us to successfully control

singularity sets. In [8], W (∇y, cof∇y, det∇y) is defined as follows:

(4) W (∇y, cof∇y, det∇y) := αlφl(∇y) + αsφs(cof∇y) + αvφv(det∇y),

where φl(X) = ‖X − I‖2F/2, φs(X) = max{‖X‖2F − 3, 0}/2, φv(x) = ((x − 1)2/x)2 and ‖ · ‖F denotes the
Frobenius norm. Here, since φv(x) goes to ∞ when v goes to 0 or ∞ and φv(x) = φv(1/x), φv(x) controls the
volume such that shrinkage and growth have the same price. Hence, Shyper restricts the Jacobian determinant
of the transformation y close to 1 which is suitable for certain applications (such as functional MRIs) but is too
strong as a constraint in other applications (e.g. [50] shows an example in 2D).

2.2. LDDMM. The variational formulation of large deformation diffeomorphic metric mapping (LD-
DMM) [4, 16, 36, 48] is a widely used technique for image registration, defined by:

min
T ,v
D(T (·, 1), R) + αS(v)

s.t. ∂tT (x, t) + v(x, t) · ∇T (x, t) = 0 and T (x, 0) = T,
(5)

where v : Ω× [0, 1]→ R3 is the velocity and T : Ω× [0, 1]→ R is a series of images. Here, LDDMM regularizes
the velocity v and we can compute its corresponding transformation y by using the information of v. When
v is sufficiently smooth, it can lead to a diffeomorphic transformation y, namely det∇y > 0. However, since
LDDMM involves the transport equation, the time t is introduced, and the dimension of the original problem
is increased. Hence, designing an efficient solver for LDDMM is highly non-trivial; this fact is also observed in
a more recent study [9].

2.3. LLL Model. Lee, Lam and Lui [32], denoted by LLL model below, proposed the notion of a standard
conformality distortion (see also [18, 37]) for a mapping in R2 to Rn(n ≥ 3) and used it to define a variational
model involving this distortion to deal with the landmark-matching problem in higher dimensional spaces.
Before presenting this notion of the conformality distortion in Rn, we first review the fundamental theory of
quasi-conformal mapping.

Definition 1. A complex map f(z) : C → C is quasi-conformal if it has continuous partial derivatives
and satisfies the following Beltrami equation:

(6)
∂f

∂z
= µ(z)

∂f

∂z
,

for some complex-valued Lebesgue measurable µ(z) : C→ C satisfying ‖µ‖∞ < 1, where µ is called the Beltrami
coefficient [5], 2∂f∂z = ∂f

∂x1
− i ∂f∂x2

and 2∂f∂z = ∂f
∂x1

+ i ∂f∂x2
at z = x1 + ix2.

Here f(z) = y1(x1, x2) + iy2(x1, x2) links a complex map to our transformation y.
Consider a simple linear map of the complex form f(z) = az + bz, with complex constants a and b.

If f is orientation-preserving, then the determinant is |a|2 − |b|2 > 0 and the formulae can be rewritten as
f(z) = a(z + µz), where the complex number µ = b/a is the Beltrami coefficient; |a|2 − |b|2 > 0 means that
|µ| < 1. In this form, f is the stretch map S(z) = z + µz post-composed by a multiplication of a (which is
conformal and consists of a rotation through the angle arg a and magnification by the factor |a|). The distortion
caused by f is expressed by µ and, from it, we can find that the angle of maximal magnification is (arg µ)/2
with magnifying factor 1 + |µ| and the angle of maximal shrinking is the orthogonal angle (arg µ − π)/2 with
shrinking factor 1− |µ|. Naturally, motivated by this simple example, we can define by Kd the dilatation:

(7) Kd(f) =
1 + |µ|
1− |µ|

to express the ratio of the largest singular value of the Jacobian of f divided by the smallest singular value.

3D orientation-preserving variational models for accurate image registration
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The dilatation Kd in (7) can not be directly used in nD (n ≥ 3) since the Beltrami coefficient is not
defined in nD (n ≥ 3). To find a quantity in nD resembling Kd of (7) in 2D, we start with the nD conformal
mapping. For nD, let f(x1, ..., xn) = (y1(x1, ..., xn), ..., yn(x1, ..., xn)) with ∇f its n × n Jacobian matrix. An
orientation-preserving condition [29] for mapping f to be conformal is

(8) ∇fT∇f = (det∇f)2/nI,

where I is the identity matrix. Suppose that λj ’s with 0 ≤ λ1 ≤ . . . ≤ λn are the eigenvalues of ∇fT∇f . Then
we have ‖∇f‖2F = λ1 + · · ·+ λn and det∇f = (λ1 · · ·λn)1/2. By the eigendecomposition of ∇fT∇f , we know
that (8) holds if and only if λ1 = · · · = λn.

In addition, by the inequality of arithmetic and geometric means and noting λj ≥ 0 (j = 1 . . . , n), we have

(9) (λ1 · · ·λn)1/n ≤ λ1 + · · ·+ λn
n

or
1

n

(
λ1 + · · ·+ λn
(λ1 · · ·λn)1/n

)
≥ 1 i.e.

1

n

(
‖∇f‖2F

(det∇f)2/n

)
≥ 1

where the sign of equalities holds if and only if λ1 = · · · = λn. Combining these discussions, we can see that

f is a conformal mapping ⇐⇒ 1
n

(
‖∇f‖2F

(det∇f)2/n

)
= 1.

Here comes the key idea. Since we aim for a quasi-conformal mapping, minimizing the quantity
‖∇f‖2F

(det∇f)2/n

makes sense as it measures how far a mapping f is away from conformality. This idea is used in [32], where
this quantity motivates the definition of a (generalized) conformality distortion K(f) in nD:

(10) K(f) :=

{
1
n

(
‖∇f‖2F

(det∇f)2/n

)
, if det∇f > 0,

+∞, otherwise.

To connect K(f) to Kd in (7) for n = 2, note that the norm of the Beltrami coefficient µ for f is defined by

(11) |µ(f)|2 =
‖∇f‖2F − 2 det∇f
‖∇f‖2F + 2 det∇f

or |µ(f)|2 =
λ1 + λ2 − 2(λ1λ2)1/2

λ1 + λ2 + 2(λ1λ2)1/2
i.e. |µ(f)| = λ

1/2
2 − λ1/2

1

λ
1/2
1 + λ

1/2
2

where we assume all λj > 0. Hence (7) becomes Kd(f) = 1+|µ|
1−|µ| = (λ2/λ1)1/2 while (10) reduces to

K(f) =
1

2

(
λ1 + λ2

(λ1λ2)1/2

)
=

1

2

(
(λ1/λ2)1/2 + (λ2/λ1)1/2

)
.

Therefore, the new K(f) in (10) is equivalent to the dilatation Kd in (7) for n = 2, though not identical, with
the precise equivalence relationship from

(12) K(f) ≤ Kd(f) ≤ 2K(f).

Based on this generalized conformality distortion, the LLL model is defined by

min
y
‖K(y)‖1 +

α

2
‖∆y‖22 s.t. y(pi) = qi, 1 ≤ i ≤ m,(13)

where pi and qi are the prescribed m ≥ (n + 1) landmark points. In (13), to get a quasi-conformal map,
the first term controls the minimal conformality distortion and the second term keeps the smoothness of the
mapping with the constraints served as the data fidelity. To implement alternative minimization iterations in
the numerical solution [32], an auxiliary (matrix) variable v = ∇y is introduced. In 3D case, the LLL model
(13) takes the following equivalent form:

min
y

1

3

(
‖∇y‖2F

(detv)2/3

)
+
α

2
‖∆y‖22 s.t. v = ∇y, detv > 0 and y(pi) = qi, 1 ≤ i ≤ m.(14)

Then an alternating direction method with Lagrangian multipliers is applied to solve (14). Note that this model
is designed for landmark registration and has no intensity information. Shortly, we consider adapting (14) to
an intensity registration framework as an option for our main model.

3D orientation-preserving variational models for accurate image registration
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3. A New Registration Model for 3D Image Registration. The starting point of our idea is to
address the question of how to design a ‘Beltrami coefficient’ like quantity |µ|, linking to our transformation y,
such that a relationship |µ| < 1⇔ det∇y > 0 holds. Then building a new model minimizing how |µ| was used
in planar cases would be immediately feasible; such a model will produce a diffeomorphic map y.

However as stated before, no such quantity |µ| exists in 3D or for n > 3. To fill in this gap, we first propose
such a quantity in 3D and then show that it shares the same theoretical properties as a Beltrami coefficient in
2D has. Hence we shall call it a ‘Beltrami coefficient’-like distortion measure. We then employ it as a regularizer
to build the new 3D model before addressing other theoretical and numerical issues.

3.1. ‘Beltrami Coefficient’-Like Distortion Measure. Given a map f in 3D, we propose an algebraic
construction to measure its departure from a conformal map.

Definition 2. If the map f(x1, x2, x3) = (y1(x1, x2, x3), y2(x1, x2, x3), y3(x1, x2, x3)) is continuously dif-
ferentiable, then we define

(15) N (f) =
‖∇f‖F −

√
3(det∇f)1/3

‖∇f‖F +
√

3(det∇f)1/3

as a new algebraic measure for f , whenever ‖∇f‖F 6= 0.

We note that in (15), det∇f can take any sign while the condition ‖∇f‖F 6= 0 is usually satisfied in image
registration because det∇f = 1 where there are no deformations. Then, to see how N (f) could be related to
distortion of a conformal map, we have the following results.

Lemma 3. The quantity N defined by (15) for a map f possesses the following properties:
P1 If N (f) = 0, then all the singular values of ∇f are equal;
P2 N is non-negative: 0 ≤ N (f) ≤ ∞;
P3 The ‘Beltrami coefficient’-like equivalence holds: N (f) < 1⇔ det∇f > 0;
P4 The special case holds: N (f) = 1⇔ det∇f = 0;
P5 1 < N (f) ≤ ∞⇔ det∇f < 0;
P6 If the singular values of ∇f are equal, then N (f) = 0 when det∇f > 0, and N (f) is ∞ when det∇f < 0;

P7 The quantity N is invariant under the scalar multiplication and rigid-body motion actions.

Proof. For P1, if N (f) = 0, according to (15), ‖∇f‖F =
√

3(det∇f)1/3. Hence, det∇f is non-negative.

Let σ1, σ2 and σ3 be the singular values of ∇f . Then we have ‖∇f‖F =
√∑3

i=1 σ
2
i and det∇f = Π3

i=1σi.

By (9), we have
√∑3

i=1 λi ≥
√

3
√

(Π3
i=1λi)

1/3. Since λi = σ2
i for i = 1, 2, 3, we further have

√∑3
i=1 σ

2
i ≥√

3(Π3
i=1σi)

1/3. The equality holds if and only if σ1 = σ2 = σ3.
For P2, if det∇f is positive, then the denominator is obviously non-negative. By the application of (9) as

in P1, we have ‖∇f‖F ≥
√

3(det∇f)1/3 so the numerator is non-negative. Similarly, if det∇f is negative, the
numerator and denominator are both non-negative. Hence, we have 0 ≤ N (f) ≤ ∞.

P3 – P5 directly follow from (15).
For P6, if σ1 = σ2 = σ3, when det∇f > 0, we have ‖∇f‖F −

√
3(det∇f)1/3 = 0 and ‖∇f‖F +√

3(det∇f)1/3 = 2‖∇f‖F , then N (f) = 0. But when det∇f < 0, since det∇f = −Π3
i=1σi, we have

‖∇f‖F +
√

3(det∇f)1/3 = 0 and ‖∇f‖F −
√

3(det∇f)1/3 = 2‖∇f‖F , then N (f) =∞.
For P7, cσ1, cσ2, cσ3 are the singular values of ∇cf for any c > 0 since σ1, σ2, σ3 are singular values of

∇f . So we have ‖∇cf‖F = c
√∑3

i=1 σ
2
i and det∇cf = c3Π3

i=1σi and N (f) = N (cf). In addition, if O is an

orthogonal matrix and b is a translation, then the Jacobian of f(Ox + b) is OT∇f . Since the singular values
of ∇f and OT∇f are the same, we have N (f(x)) = N (f(Ox+ b)). Hence, the quantity N is invariant under
the scalar multiplication and rigid-body motion actions.

We remark that property P5 from Lemma 3 i.e. N (y) < 1 ⇔ det∇y > 0, is our expectation for N (y)
in 3D to inherent the key property of the Beltrami coefficient in 2D: |µ| < 1 ⇔ det∇y > 0. Hence, by

3D orientation-preserving variational models for accurate image registration
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analogue, we may view N (f) as a measure of distortion on conformality. The generalization given by [1] for
quasi-conformal maps in 3D is very interesting but their quasi-conformal dilatation is non-differentiable so it
cannot be easily adapted to a variational model. We can build a 3D variational model using N (y), in an
unconstrained optimization framework, similar to the 2D case [50]. In fact, we can apply this result to most
variational models [11] that do not yet guarantee a diffeomorphic map.

Another observation on N (y) is that controlling N (y) not only ensures the bijectivity, but also guarantees
the smoothness, which means that this new regularizer is more likely to produce a regular transformation.
PromotingN (y) < 1 does not restrict the range of the Jacobian determinant of the transformation. For example,
consider two simple and separate maps: y1(x) = 0.1x = 0.1(x1, x2, x3) and y2(x) = 10x = 10(x1, x2, x3). We
have N (y1) = N (y2) = 0, but det∇y1 = 0.001 and det∇y2 = 1000.

Finally, for completeness, we may extend our above measure (15) from 3D to f in nD (beyond n = 3):

(16) N (f) =


‖∇f‖F−

√
n(det∇f)1/n

‖∇f‖F +
√
n(det∇f)1/n

, if n is odd,
‖∇f‖F−

√
n(det∇f)1/n

‖∇f‖F +
√
n(det∇f)1/n

, if n is even and det∇f > 0,

∞, otherwise.

Now, we see the connection between the new measure (16) and the standard Beltrami coefficient |µ| from (11)
for n = 2 and det∇f > 0. First rewrite |µ|2 from (11) as

|µ(f)|2 =
‖∇f‖2F − 2 det∇f
‖∇f‖2F + 2 det∇f

= N (f)
(‖∇f‖F +

√
2(det∇f)1/2)2

‖∇f‖2F + 2 det∇f
.

Then we see the following relationship holds (noting the close resemblance to (12))

(17) N (f) ≤ |µ(f)|2 ≤ 2N (f)

which confirms that our new measure is equivalent to the Beltrami coefficient in 2D. Importantly, for n ≥ 2,
our new measure (16) shares the key property as |µ(f)|2 : N (f) < 1⇔ det∇f > 0.

3.2. A New 3D Image Registration Model. Here, we first formulate our new model to deal with 3D
image registration problems. Equipped with the knowledge of |µ| < 1⇔ det∇y > 0, we propose the following
new variational model for 3D image registration:

(18) min
y
J (y) :=

1

2

∫
Ω

(T ◦ y −R)2dx+
α1

2

∫
Ω

‖∇(y − x)‖2Fdx+
α2

2

∫
Ω

‖∇2(y − x)‖2Fdx+ β

∫
Ω

φ(N (y))dx,

where ∇2 denotes the Hessian operator and we define

(19) φ(v) =
v2

(v − 1)2 + 1
.

Other choices of φ e.g. φ(v) = v2 or φ(v) = v2/((v − 1)2 + 10−5) are also permitted as long as they promote
N < 1 (or det∇y > 0). The key message is that the resulting transformation y will be orientation-preserving
under the Dirichlet boundary conditions [2].

3.3. Mathematical Analysis of the Proposed Model (18). Registration models are usually non-
convex with respect to y and consequently there is no uniqueness. Here we address the solution existence of the
non-convex model (18). Since the proposed model (18) involves second order derivatives, the natural solution
space should be W 2,2(Ω).

We first consider the solution space where the determinant is essentially positive: A1 = {y ∈ W 2,2(Ω) :
|
∫

Ω
y(x) dx| ≤ |Ω| (C1 + diam(Ω)) , det∇y ∈ L2(Ω), det∇y > 0, a.e.}, motivated by [8, 15]. In fact, we shall

3D orientation-preserving variational models for accurate image registration
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now check if their analysis tools can be used to establish the solution existence of (18). To this end, using the
notation in [8, 15], we first rewrite model (18) in the following framework:

(20) J (y) =

∫
Ω

ϕ1(x,y,∇y,∇2y, det∇y)dx,

where ϕ1(x,y, ψ,Θ,Ψ) =
1

2
(T ◦ y − R)2 +

α1

2
|ψ − I|2 +

α2

2
|Θ|2 + βφ

(
‖ψ‖F −

√
3Ψ1/3

‖ψ‖F +
√

3Ψ1/3

)
. Although this ϕ1

is convex with respect to Θ = ∇2y, clearly, ϕ1 is non-convex with respect to = ∇y and Ψ = det∇y.
Consequently we cannot apply their analysis method by calculus of variations.

Then, to overcome this non-convexity issue, we can rewrite the above (20) into the following form:

(21) J (y) =

∫
Ω

ϕ2(x,y,∇y,∇2y,N (y))dx,

where ϕ2(x,y, ψ,Θ,Ψ) =
1

2
(T ◦ y − R)2 +

α1

2
|ψ − I|2 +

α2

2
|Θ|2 + βφ (Ψ). It is evident that this new ϕ2

is convex with respect to ψ,Θ,Ψ. We now modify the solution set A2 = {y ∈ W 2,2(Ω) : |
∫

Ω
y(x) dx| ≤

|Ω| (C1 + diam(Ω)) ,N (y) ∈ L2(Ω),N (y) < 1, a.e.} and establish the coercivity of (21) with respect to the
product space X = W 2,2(Ω)× L2(Ω). Building the weak lower semi-continuity of (21), i.e.,

(22) (yk,N (yk)) ⇀ (y,V) =⇒ lim
k→∞

∫
Ω

ϕ(x,yk,∇yk,∇2yk,N (yk))dx ≥
∫

Ω

ϕ(x,y,∇y,∇2y,V)dx

is also fine. However verifying V = N (y) is highly non-trivial and it is not yet possible to do this, due to the
high nonlinearity of the new regularizer N from (15). We seek a different way to establish the existence.

We now consider an analysis method whereby it does not require convexity for all main variables. Our
starting point is the following result.

Lemma 4 ([52]). Let Ω ⊂ R3 be an open set and ρ : Ω×R3×R3×3×R3×32 → [0,+∞) satisfies the following
assumptions:

(i) ρ is a Carathéodory function:
1. ρ(x, ·, ·, ·) is continuous for almost every x ∈ Ω.

2. ρ(x,y, ψ,Θ) is measurable in x for every (y, ψ,Θ) ∈ R3 × R3×3 × R3×32

.
(ii) ρ(x,y, ψ,Θ) is quasi-convex with respect to Θ.

(iii) 0 ≤ ρ(x,y, ψ,Θ) ≤ a(x) + C(|y|2 + |ψ|2 + |Θ|2) for some a(x) ∈ L1(Ω), C > 0.
Then J (y) =

∫
Ω
ρ(x,y,∇y,∇2y)dx is weak lower semi-continuous (denoted by wlsc) in W 2,2(Ω).

When applying the above Lemma 4 to the proposed model (18), we see that the requirement on the convexity
of the highest order variable (Θ) can be satisfied but the boundedness of the objective functional with respect
to other variables has to be established. For this purpose, we rewrite the energy J (·) of (18) in the following
form that fits the setting of Lemma 4:

(23) J (y) =

∫
Ω

ρ(x,y,∇y,∇2y)dx,

where ρ(x,y, ψ,Θ) =
1

2
(T ◦ y −R)2 +

α1

2
|ψ − I|2 +

α2

2
|Θ|2 + βφ

(
‖ψ‖F −

√
3(detψ)1/3

‖ψ‖F +
√

3(detψ)1/3

)
. To proceed, define

the solution space W = {y ∈W 2,2(Ω) : y(x) = x on ∂Ω}. We assume that the images T and R are continuous
and compactly supported in Ω. Then, we have the following result:

Lemma 5. Assume that the images T and R are continuous and compactly supported in Ω. Then we have
(i). The functional ρ from (23) is bounded as follows (for some constants a,C > 0)

0 ≤ ρ(x,y, ψ,Θ) ≤ a+ C(|y|2 + |ψ|2 + |Θ|2);

3D orientation-preserving variational models for accurate image registration
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(ii). The energy functional J (·) in (23) is wlsc in W 2,2(Ω).

Proof. (i). T and R are bounded by c1 because they are compactly supported in Ω. Since φ(v) = v2/((v −
1)2 + 1) ≤ 2 for any v (more precisely ≤ 1 for v ≤ 0, ≤ 2 for 0 < v ≤ 2 and in (1, 2) for v > 2), we have:

ρ(x,y, ψ,Θ) =
1

2
(T ◦ y −R)2 +

α1

2
|ψ − I|2 +

α2

2
|Θ|2 + βφ

(
‖ψ‖F −

√
3(detψ)1/3

‖ψ‖F +
√

3(detψ)1/3

)
≤ 2c21 + c2 +

α1

2
|ψ|2 +

α2

2
|Θ|2 + 2β

≤ α

2
(|y|2 + |ψ|2 + |Θ|2) + 2c21 + c2 + 2β,

(24)

where α = max{α1, α2}. Then, the function ρ(·) satisfies 0 ≤ ρ(x,y, ψ,Θ) ≤ a + C(|y|2 + |ψ|2 + |Θ|2), i.e. it
fulfils the condition (iii) of Lemma 4 with a(x) ≡ a = 2c21 + c2 + 2β and C = α/2.

(ii). We now verify that the functional ρ(·) fulfils all the assumptions of Lemma 4:
• Since the T and R are continuous and y ∈ W , the function ρ(·) is a Carathéodory function;
• It is easy to check that ρ(x,y, ψ,Θ) is convex with respect to Θ, implying that it is also quasi-convex.

Then together with (1), by Lemma 4, the energy J (·), is wlsc in W 2,2(Ω).

We are now ready to prove the existence of a solution for the minimization model (18).

Theorem 6. Assume that images T and R are continuous and compactly supported in Ω. Then the mini-
mization problem (18) admits at least one solution in the space W.

Proof. Since J (y) has a lower bound 0, there exists a minimizing sequence (yn)n∈N ⊂ W of J (·) , i.e.,

J (yn) −→
n→∞

m1 := inf
y∈W

J (y).

In addition, since J (Id) = 1
2‖T ◦ y − R‖

2 is finite, we can assume that (J (yn))n∈N is bounded above by a
constant m2 > 0. Using the generalized Poincaré inequality and the boundary condition, there exist constants
C1, C2 ∈ R such that

(25) J (y) ≥ C1‖y‖2W 2,2 + C2.

The inequality (25) guarantees that the sequence (yn)n∈N is uniformly bounded in W, i.e.,

m2 ≥ J (yn) ≥ C1‖yn‖2W 2,2 + C2.

Since W 2,2 is a reflexive space, thus, there exists a subsequence, denoted (ynl
)l∈N, such that ynl

⇀
l→∞

y∗ weakly

in W 2,2. By wlsc from Lemma 5, we obtain

inf
y∈W

J (y) = lim
n→∞

J (yn) = lim
l→∞

J (ynl
) ≥ J (y∗) ≥ inf

y∈W
J (y).

Hence, y∗ is in the space W.

To explain that the positivity of the Jacobian determinant of the transformation does not intervene the
existence of the solution, we modify the admissible space W to a new space W = {y ∈ W 2,2(Ω) : y(x) =
x on ∂Ω, det∇y ≥ ε, a.e., for a small ε > 0}. Then we have the following theorem:

Theorem 7. Assume that images T and R are continuous and compactly supported in Ω. Then the mini-
mization problem (18) admits at least one solution in the space W.

Proof. Here, we just need to prove the space W is weakly closed with respect to W 2,2-topology. According
to Kondrachov embedding theorem, for any p such that 3 < p < 6, W 2,2 is compactly embedded in W 1,p.
Hence, yn ⇀

n→∞
y weakly in W 2,2 implies that yn →

n→∞
y strongly in W 1,p, which also shows that yn ⇀

n→∞
y

3D orientation-preserving variational models for accurate image registration
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weakly in W 1,p. By the weak continuity of determinants [17, §8.2.4 Lemma], we have det∇yn ⇀
n→∞

det∇y
weakly in Lq, q = p/3 > 1. Then the mapping F (y) = det∇y from W to Lq is continuous with respect to
the weak topology on both W 2,2 and Lq. Hence, W is the pre-image of the closed set {det∇y ∈ Lq : y(x) =
x on ∂Ω, det∇y ≥ ε, a.e., for any small ε > 0} under the weakly continuous mapping F with respect to the
weak topology on W 2,2. Thus, W is weakly closed with respect to W 2,2-topology.

Then similar to the proof of the above Theorem 6, there exists ynl
⇀
l→∞

y∗ weakly in W such that

inf
y∈W

J (y) = lim
n→∞

J (yn) = lim
l→∞

J (ynl
) ≥ J (y∗) ≥ inf

y∈W
J (y)

and y∗ is a minimizer in the space W.

Remark 1. In practice, we do not need this space W or to add the constraint det∇y > 0 since a suitably
large β in our model will ensure the one-to-one transformation.

3.4. A Convergent Numerical Algorithm. There are two possible approaches to solve a variational
model such as the proposed (18). One is the partial differential equation approach: first derive the Euler-
Lagrange equation and then solve it numerically. Here, we consider the other approach of optimization: first-
discretize-then-optimize method to solve our model (18).

First, we choose a suitable discrete scheme to discretize the variational model (18) to derive a finite-
dimensional optimization problem. Then, we choose an optimization method to solve the resulting unconstrained
optimization problem. Two popular methods are the alternating direction method of multipliers (ADMM) [49]
and the Gauss-Newton method [11]. Here we take the latter method (and briefly discuss the former later).

Discretization. We discretize our proposed model (18) on the spatial domain Ω = [0, ω1]× [0, ω2]× [0, ω3].
In the implementation, we employ the nodal grid (Figure 1) and define a spatial partition

(26) Ωnh = {xi,j,k ∈ Ω | xi,j,k = (xi1, x
j
2, x

k
3) = (ih1, jh2, kh3), 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, 0 ≤ k ≤ n3},

where hl = ωl

nl
, 1 ≤ l ≤ 3 and the discrete domain consists of n1n2n3 cells of size h1×h2×h3. We discretize the

transformation field y on the nodal grid, namely yi,j,k = (yi,j,k1 , yi,j,k2 , yi,j,k3 ) = (y1(xi,j,k), y2(xi,j,k), y3(xi,j,k)).
In order to simplify the presentation, we denote

(27) h = h1h2h3, N = n1n2n3, N1 = (n1 + 1)(n2 + 1)(n3 + 1)

and according to the lexicographical ordering, we reshape

X = (x0
1, ..., x

n1
1 , x0

2, ..., x
n2
2 , x0

3, ..., x
n3
3 )T ∈ R3N1 ,

and
Y = (y0,0,0

1 , ..., yn1,n2,n3

1 , y0,0,0
2 , ..., yn1,n2,n3

2 , y0,0,0
3 , ..., yn1,n2,n3

3 )T ∈ R3N1 .

For the fitting term in (18), according to the cell-centered partition and mid-point rule, we get the following
approximation:

(28) D(T ◦ y, R) :=
1

2

∫
Ω

(T ◦ y −R)2dx ≈ h

2
(~T (PY )− ~R)T (~T (PY )− ~R).

Here, ~R = ~R(PX) ∈ RN is the discretized reference image and ~T (PY ) ∈ RN is the discretized deformed
template image, where P ∈ R3N×3N1 is an averaging matrix from the nodal grid to the cell-centered grid
[23, 25].

Based on the forward difference and mid-point rule, for the first order regularizer in (18), we have the
following approximation:

(29) S1(y) :=
α1

2

∫
Ω

‖∇(y − x)‖2Fdx ≈ α1h

2
(Y −X)TATA(Y −X),

where A is derived in Appendix A.

3D orientation-preserving variational models for accurate image registration
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Fig. 1. Partition of the domain Ω. Nodal grid 2 and cell-centered grid ×.

Remark 2. For (29), we have used the forward difference ∂x1
yi,j,k1 ≈ (yi+1,j,k

1 − yi,j,k1 )/h1 in Appendix A.

Although the long stencil ∂x1y
i,j,k
1 ≈ (yi+1,j,k

1 − yi−1,j,k
1 )/(2h1) yields second order accuracy, it is not recom-

mended because for the high oscillatory input [0; 1; 0; 1; ...; 1; 0], this stencil will lead to a zero derivative [40].

Based on the second order cell-centered difference and mid-point rule, for the second order regularizer in
(18), we have the following approximation:

S2(y) :=
α2

2

∫
Ω

‖∇2(y − x)‖2Fdx ≈ α2h

2
(Y −X)TBTB(Y −X),(30)

where B is derived in Appendix B.

V
5

V
1

V
6

V
7

V
2

V
3

V
8

V
4

Fig. 2. Partition of a voxel. V1, ..., V8 are vertices.

Since our new regularizer N (y) involves det∇y, we should choose a suitable discretization to ensure
det∇y > 0 when there is no mesh folding. Finite difference approximations using 6 neighbouring pixels cannot

3D orientation-preserving variational models for accurate image registration
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detect folding, namely, even when the mesh has folding, det∇y may still be positive. A good solution is to con-
struct local finite elements based on a large stencil and then compute det∇y, since (as pointed out in [26]) a tetra-
hedron cannot twist unless its volume changes sign. In addition, [8] ensures the regularity of various partitions of
a voxel. Hence, we divide each voxel into 6 tetrahedrons (V3V7V4V5, V3V1V4V5, V4V1V2V5, V7V4V5V8, V4V5V8V6,
V4V2V5V6) (see Figure 2) and in each tetrahedron, we use three linear interpolating functions to approximate
y1, y2 and y3 respectively.

According to this partition, we can get

(31) SNew(y) = β

∫
Ω

φ(N (y))dx = β

n1∑
i=1

n2∑
j=1

n3∑
k=1

6∑
m=1

∫
Ωi,j,k,m

φ(N (y))dx,

where Ωi,j,k,m represents a tetrahedron.

Let Li,j,k,m(x) = (Li,j,k,m1 (x), Li,j,k,m2 (x), Li,j,k,m3 (x)) be the linear interpolation for y in the Ωi,j,k,m, where

Li,j,k,m1 (x) = ai,j,k,m1 x1 + ai,j,k,m2 x2 + ai,j,k,m3 x3 + bi,j,k,m1 ,

Li,j,k,m2 (x) = ai,j,k,m4 x1 + ai,j,k,m5 x2 + ai,j,k,m6 x3 + bi,j,k,m2 ,

Li,j,k,m3 (x) = ai,j,k,m7 x1 + ai,j,k,m8 x2 + ai,j,k,m9 x3 + bi,j,k,m3 .

(32)

Then, in each tetrahedron Ωi,j,k,m, we have |∇y|2F ≈
∑9
l=1(ai,j,k,ml )2 and

(33)

∂x1L
i,j,k,m
1 = ai,j,k,m1 , ∂x1L

i,j,k,m
2 = ai,j,k,m4 , ∂x1L

i,j,k,m
3 = ai,j,k,m7 ,

∂x2
Li,j,k,m1 = ai,j,k,m2 , ∂x2

Li,j,k,m2 = ai,j,k,m5 , ∂x2
Li,j,k,m3 = ai,j,k,m8 ,

∂x3
Li,j,k,m1 = ai,j,k,m3 , ∂x3

Li,j,k,m2 = ai,j,k,m6 , ∂x3
Li,j,k,m3 = ai,j,k,m9 ,

det∇y ≈ ai,j,k,m1 ai,j,k,m5 ai,j,k,m9 + ai,j,k,m2 ai,j,k,m6 ai,j,k,m7 +

ai,j,k,m4 ai,j,k,m8 ai,j,k,m3 − ai,j,k,m2 ai,j,k,m4 ai,j,k,m9 −
ai,j,k,m1 ai,j,k,m6 ai,j,k,m8 − ai,j,k,m3 ai,j,k,m5 ai,j,k,m7 .

Here, we construct Dl, 1 ≤ l ≤ 9:

(34)
D1 = [M1, 0, 0], D4 = [0,M1, 0], D7 = [0, 0,M1],
D2 = [M2, 0, 0], D5 = [0,M2, 0], D8 = [0, 0,M2],
D3 = [M3, 0, 0], D6 = [0,M3, 0], D9 = [0, 0,M3],

where M1, M2 and M3 are the discrete operators of ∂x1 , ∂x2 and ∂x3 respectively and how to construct them
is shown in Appendix C.

Then we denote by DlY = (a1,1,1,1
l , ..., an1,n2,n3,6

l )T ∈ R6N , 1 ≤ l ≤ 9 and set

~q1(Y ) =
9∑
l=1

DlY �DlY,

~q2(Y ) = D1Y �D5Y �D9Y +D2Y �D6Y �D7Y +D4Y �D8Y �D3Y

−D2Y �D4Y �D9Y −D1Y �D6Y �D8Y −D3Y �D5Y �D7Y,

~r1(Y ) = (~q1(Y ))1/2 −
√

3(~q2(Y ))1/3,

~r2(Y ) = 1./((~q1(Y ))1/2 +
√

3(~q2(Y ))1/3),

~r(Y ) = ~r1(Y )� ~r2(Y ),

(35)

where � denotes the Hadamard product of two matrices and ./ denotes the component-wise division. Then we
have the following approximation:

(36) SNew(y) ≈ βh

6
φ(~r(Y ))eT ,

3D orientation-preserving variational models for accurate image registration
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where φ(~r(Y )) = (φ(~r(Y )1), ..., φ(~r(Y )6N )) and e = (1, ..., 1) ∈ R6N .
Finally, combining formulae (28), (29), (30) and (36), we get the discretized formulation for (18):

min
Y
J (Y ) =

h

2
(~T (PY )− ~R)T (~T (PY )− ~R) +

α1h

2
(Y −X)TATA(Y −X) +(37)

α2h

2
(Y −X)TBTB(Y −X) +

βh

6
φ(~r(Y ))eT ,

where h is as defined in (27).

Remark 3. (i) In the implementation, we impose the Dirichlet boundary condition, namely, y(x) = x when
x ∈ ∂Ω. This is a suitable assumption in image registration which means that we assume that the transformation
is deformed in the interior region. However if a Neumann’s boundary condition must be used, we could simply
modify our formulation to incorporate the changes at boundaries.

(ii) Since Y does not, in general, correspond to voxel points and the interpolation operator is active at all
steps (this is typical of an image registration model). Here we choose cubic-spline interpolation [40] to compute
~T (PY ). Linear interpolation cannot be applied because it is not differentiable at grid points.

In image registration, the number of variables is usually huge, and the dimension of the resulting optimiza-
tion problem is also huge. For example, when the size of the given images is 128 × 64 × 128, the number of
unknowns is over 3 million (3× 129× 65× 129). Hence, designing an efficient and converging solver is of crucial
importance.

A Search Method. The iterative scheme for solving an unconstrained optimization problem is

(38) Y k+1 = Y k + θkδY k,

where Y k is the current iterative point, Y k+1 is the next iterative point, θk is the step length obtained by
an Armijo strategy and δY k is the search direction. Here, for finding the step length θk, the Armijo strategy
with backtracking is [30] is crucial for energy reduction along a descent direction. However the equation
HkδY k = −dkJ with the exact Hessian Hk of (37) is not feasible due to lack of definiteness (here dkJ is the

gradient of J at Y k) and so guaranteeing that δY k is a descent direction is assured by our choice of Ĥk

(approximating Hk). In the numerical implementation, we choose a Gauss-Newton algorithm with a line search
method to solve the resulting unconstrained optimization problems (37).

Here we propose a generalized Gauss-Newton direction from solving the generalized Gauss-Newton system:

(39) ĤkδY k = −dkJ ,

where Ĥk is the generalized Gauss-Newton matrix of J at Y k. The key message is that the generalized Gauss-
Newton matrix Ĥk is some positive definite matrix, approximating the full Hessian matrix Hk of (37) (since
Hk is not symmetric positive definite). Construction of a suitable Ĥk is a key step.

Below we shall examine and approximate the three constituents of the exact Hessian separately.
Firstly, for the discretized SSD (28), its gradient and Hessian are respectively:

(40)

{
d1 = hPT ~TT

Ỹ
(~T (Ỹ)− ~R),

H1 = hPT (~TT
Ỹ
~TỸ +

∑N
l=1(~T (Ỹ)− ~R)l∇2(~T (Ỹ)− ~R)l)P,

where Ỹ = PY and ~TỸ = ∂ ~T (Ỹ)

∂Ỹ
denotes the Jacobian of ~T with respect to Ỹ. Since we cannot guarantee that

H1 is positive semi-definite, here, we omit the second-order term to obtain the approximated Hessian of (28):

(41) Ĥ1 = hPT (~TT
Ỹ
~TỸ)P,

which is positive semi-definite.

3D orientation-preserving variational models for accurate image registration
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Secondly, for the discretized first and second order regularizer (29) and (30), its gradient and Hessian are
in the following:

(42)

{
d2 = (α1hA

TA+ α2hB
TB)(Y −X),

H2 = α1hA
TA+ α2hB

TB.

Finally, for the discretized new regularizer (36), the gradient and Hessian are as follows:

(43)

{
d3 = βh

6 d~rTdφ(~r),

H3 = βh
6 (d~rTd2φ(~r)d~r +

∑6N
l=1[dφ(~r)]l∇2(~r)l),

where dφ(~r) = (φ′((~r)1), ..., φ′((~r)6N ))T is the vector of derivatives of φ at all tetrahedrons,

(44)

d~r = diag(~r1)d~r2 + diag(~r2)d~r1,

d~r1 = 1
2 diag(1./(~q1)

1
2 )d~q1 −

√
3

3 diag(1./(~q2)
2
3 )d~q2,

d~r2 = − diag(~r2 � ~r2)[ 1
2 diag(1./(~q1)

1
2 )d~q1 +

√
3

3 diag(1./(~q2)
2
3 )d~q2],

d~q1 = 2
∑9
l=1 diag(DlY )Dl,

d~q2 = diag(D5Y �D9Y −D6Y �D8Y )D1

+ diag(D6Y �D7Y −D4Y �D9Y )D2

+ diag(D4Y �D8Y −D5Y �D7Y )D3

+ diag(D8Y �D3Y −D2Y �D9Y )D4

+ diag(D1Y �D9Y −D3Y �D7Y )D5

+ diag(D2Y �D7Y −D1Y �D8Y )D6

+ diag(D2Y �D6Y −D3Y �D5Y )D7

+ diag(D4Y �D3Y −D1Y �D6Y )D8

+ diag(D1Y �D5Y −D2Y �D4Y )D9,

d~r, d~r1, d~r2, d~q1, d~q2 are the Jacobian of ~r, ~r1, ~r2, ~q1, ~q2 with respect to Y respectively, d2φ(~r) is the Hessian
of φ with respect to ~r, which is a diagonal matrix whose ith diagonal element is φ′′((~r)i), 1 ≤ i ≤ 6N . Here,
diag(v) is a diagonal matrix with v on its main diagonal.

To extract a positive semi-definite part, we again omit the second-order term and obtain the following
approximated Hessian:

(45) Ĥ3 =
βh

6
d~rTd2φ(~r)d~r.

So the generalized Gauss-Newton system is

(46) ĤδY = −dJ ,

where Ĥ = Ĥ1 +H2 + Ĥ3 and dJ = d1 + d2 + d3.

Remark 4. Here, by construction, Ĥ is indeed a positive definite matrix since H2 is positive definite under
the Dirichlet boundary conditions and Ĥ1 and Ĥ3 are both positive semidefinite.

The overall numerical solution scheme is summarized in Algorithm 1 below. Here, we choose the stopping
criteria consistent with the literature [40, 50], namely, when the change in the objective function, the norm
of the update and the norm of the gradient are all sufficiently small, the iterations are terminated. In each
iteration, we need to solve the generalized Gauss-Newton system (46) to find the search direction δU . Here, we
choose MINRES [3, 42] to solve this system and in the implementation, the tolerance for the relative residual
is set to 0.1. Except for the diagonal preconditioner, we also consider a preconditioner L, which is composed
of the diagonals of blocks of the approximated Hessian Ĥ shown in Figure 3 (b). This choice is motivated by
two aspects. On one hand, since the discretized optimization problem is usually large scale and the storage is

3D orientation-preserving variational models for accurate image registration
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Algorithm 1 Generalized Gauss-Newton scheme by using Armijo line search for Image Registration: Y ←
GNAIR(α1, α2, β, Y

0, T, R)

Step 1: Given Y 0;
Step 2: For (37), compute J (Y 0), d0

J and Ĥ0;
Step 3: Set k = 0;
while “the stopping criteria are not satisfied” do

— Solve ĤkδY k = −dkJ from (46);
— Update Y k+1 by an Armijo step via (38);
— k = k + 1;
— compute J (Y k), dkJ and Ĥk;

end while

limited, we can not explicitly formulate the approximated Hessian Ĥ. In the implementation, the approximated
Hessian Ĥ is stored implicitly and we just provide a matrix-free version to compute the matrix-vector product
Ĥv. In this way, it is easy to extract the diagonals of the blocks of the approximated Hessian Ĥ. One the other
hand, after a permutation E, the preconditioner L can be converted into ELE, a diagonal matrix of blocks
shown in Fig. 3(c). Hence, solving Lx = b in each iteration is very fast. The efficiency of this preconditioner
L is also illustrated in Section 5 numerically. In the Appendices D and E, we give the details about how to
compute the matrix-vector product Ĥv, the diagonal of Ĥ and the preconditioner L.

Remark 5. Here the generalized Gauss-Newton system is symmetric positive definite. Apart from pre-
conditioning, we choose MINRES rather than the standard conjugate gradient method (CG): this is based on
experimental performance where we find that MINRES is faster, leading to a more accurate transformation than
CG under the same stopping criteria. Alternatively we could use a restarted GMRES method as the inner solver.

(a) Ĥ (b) L (c) ELE

Fig. 3. The structure of the approximated Hessian Ĥ (left), the structure of the preconditioner L (middle) and the structure

of the preconditioner L after a permutation E (left). L is composed of the diagonals of blocks of the approximated Hessian Ĥ.
The size of the matrix is 14739 (3× 17× 17× 17).

For Algorithm 1, we have the following global convergence result.

Theorem 8. Let T and R be twice continuously differentiable. For (37), if choosing a sufficiently large β
and setting the discretized identity map as Y 0, then each iterate Y k generated by Algorithm 1 is in Y for some
small constant ε:

(47) Y = {Y | (~r(Y ))l ≤ 1− ε, 1 ≤ l ≤ 6N}.

3D orientation-preserving variational models for accurate image registration
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In addition, we have

(48) lim
k→∞

dJ (Y k) = 0

and hence any limit point of the sequence of iterates produced by Algorithm 1 is a stationary point Y ∗ in Y.
The stationary point Y ∗ is also a discretized one-to-one transformation.

Proof. Consider the following space

(49) Y = {Y | (~r(Y ))l < 1, 1 ≤ l ≤ 6N}.

If the kth iteration Y k is in Y, then by [10, Lemma 1], the Armijo line search can give the k + 1th iteration
Y k+1 that is also in Y. Since in the implementation, the initial iteration Y 0 is the discretized identity map
and we have ~r(Y 0) = 0, then by Algorithm 1, it can generate a sequence (Y k)k∈N, which are in the space Y.
Furthermore, by the sufficienty decreasing condition in the Armijo line search, we have

(50) J (Y 0) > J (Y 1) > · · · > J (Y k) > · · · .

Then with a sufficiently large β, we can ensure that the generated sequence (Y k)k∈N is in the following space:

(51) Y = {Y | (~r(Y ))l ≤ 1− ε, 1 ≤ l ≤ 6N, for some small ε}.

Since the Dirichlet boundary condition is applied, ‖Y ‖ is bounded and ~r(Y ) is a continuous mapping from a
compact set to R6N . Hence, for some small ε > 0, Y is compact.

Next, we need to verify that the following conditions are satisfied:
1). dJ is Lipschitz continuous;
2). For all k, Ĥk is symmetric and positive definite;
3). There exist constant κ and ζ such that the condition number κ(Ĥk) ≤ κ and the norm ‖Ĥk‖ ≤ ζ for all k;
4). J (Y ) has a lower bound.

Because T and R are twice continuously differentiable, (37) is twice continuously differentiable with respect
to Y ∈ Y and dJ is Lipschitz continuous.

We have remarked Ĥk is SPD by construction. In each iteration, Hk
2 = α1hA

TA + α2hB
TB is constant

and we can set ‖Hk
2 ‖ = ζ2. For Ĥk

1 = hPT (~TT
Ỹ
~TỸ)P , we get its upper bound ζ1 because T is twice continuously

differentiable and Y is compact. In addition, φ is twice continuously differentiable, then we have ‖Ĥk
3 ‖ ≤

βh
6 ‖d~r

T ‖‖d2φ(~r)‖‖d~r‖ ≤ ζ3. Hence, we have

(52) ‖Ĥk‖ ≤ ‖Ĥk
1 ‖+ ‖Hk

2 ‖+ ‖Ĥk
3 ‖ ≤ ζ1 + ζ2 + ζ3 = ζ

Let σ be the minimum eigenvalue of Hk
2 . Then the smallest eigenvalue λmin of Ĥk should be larger than σ. Due

to λmax ≤ ‖Ĥk‖, the largest eigenvalue λmax of Ĥk should be smaller than ζ. So set κ = ζ
σ and the condition

number of Ĥk is smaller than κ.
Finally, we can see that a lower bound of (37) is 0 since it is non-negative. Since the above listed four

conditions are satisfied, according to [30, Thm 3.2.4], we complete the proof.

In the above result, we assume that the initial guess Y 0 is an identity (or equally the deformation field is
zero). However, though such a zero start is enough for convergence, it is a common practice to adopt a multi-
level strategy to obtain a better initial guess and speed up image registration. Specifically, we first coarsen
the template and the reference by L ≥ 1 levels recursively and then, starting on the coarsest level, register the
coarsened images before interpolating to the next finer level till we are back to the finest level. There are two
issues to consider: i) L should be such that the images on the coarsest level still possess the large differences
in the pair of images in order for registration to be meaningful. ii) Coarse to fine level interpolation should
ensure that the interpolation Y 0 still remains in space Y (or diffeomorphic) on that level. The most important

3D orientation-preserving variational models for accurate image registration
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advantage of the multi-level strategy is that it can use less time to provide a good initial guess because there
are fewer variables on coarser levels than on the fine level.

As mentioned earlier, an alternative to a Gauss-Newton method is the ADMM, where one splits an original
problem into several subproblems. For the proposed model (18), we introduce one auxiliary variables v and
have the following equivalent formulation:

min
y,v

1

2

∫
Ω

(T ◦ y −R)2dx+
α1

2

∫
Ω

‖∇(y − x)‖2Fdx+
α2

2

∫
Ω

‖∇2(y − x)‖2Fdx

+ β

∫
Ω

φ

(
‖v‖F −

√
3(detv)1/3

‖v‖F +
√

3(detv)1/3

)
dx s.t. v = ∇y.

(53)

After discretization, we get the following constrained optimization problem:

min
Y,V

h

2
(~T (PY )− ~R)T (~T (PY )− ~R) +

α1h

2
(Y −X)TATA(Y −X) +

α2h

2
(Y −X)TBTB(Y −X)

+
βh

6
φ(~s(V ))eT s.t. V = DY,

(54)

where D = [DT
1 , ..., D

T
9 ]T is the first order discrete operator based on (34) and ~s is just defined following the

definition of ~r in (35).
To investigate the convergence of ADMM for (54), we first review a recent convergence result.

Theorem 9 ([49]). Consider the following problem:

(55) min
x,y

g(x) + h(y) s.t. Px+Qy = 0

where g : Rn → R ∪ {∞}, h : Rq → R, P ∈ Rm×n and Q ∈ Rm×q. If the following assumptions hold:
A1 (coercivity) Define the feasible set F := {(x, y) ∈ Rn+q : Px + Qy = 0}. The objective function

g(x) + h(y) is coercive over this set, that is, g(x) + h(y)→∞ if (x, y) ∈ F and ‖x, y‖ → ∞.
The assumption A1 can be dropped if the feasible set of (x, y) is bounded.

A2 (feasibility) Im(P ) ⊆ Im(Q), where Im(·) returns the image of a matrix.
A3 (Lipschitz sub-minimization paths)

(a) argminy{h(y) : Qy = u} has a unique minimizer. H : Im(Q) → Rq defined by H(u) :=
argminy{h(y) : Qy = u} is a Lipschitz continuous map.

(b) argminx{g(x) : Px = u} has a unique minimizer. F : Im(P ) → Rn defined by F (u) :=
argminx{g(x) : Px = u} is a Lipschitz continuous map.

A4 (objective-f regularity) g is Lipschitz differentiable with constant Lf .
A5 (objective-h regularity) h is Lipschitz differentiable with constant Lg.

Then, ADMM converges subsequently for any sufficient large penalty parameter, that is, starting from any initial
guess point, it generates a sequence that is bounded, has at least one limit point, and that each limit point is a
stationary point of its augmented Lagrangian function.

To apply Theorem 9, we convert (54) into the following form:

(56) min
Y,V

g(Y ) + h(V ) s.t. DY − V = 0,

where g(Y ) = h
2 (~T (PY ) − ~R)T (~T (PY ) − ~R) + α1h

2 (Y − X)TATA(Y − X) + α2h
2 (Y − X)TBTB(Y − X) and

h(V ) = βh
6 φ(~s(V ))eT .

For (56), the feasible set (Y, V ) is bounded and then A1 can be dropped, due to the Dirichlet boundary
conditions. A2 and A3 (a) are trivial because for (56), Q = −I. Again, by imposing the Dirichlet boundary
conditions, P = D is full column rank and then A3 (b) holds. Here, since we assume that T and R are twice
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continuously differentiable and the feasible set is bounded, A4 holds. However, since some components of ~s(V )
may be infinity, the gradient of h(V ) can be infinity and is not Lipschitz continuous. Hence A5 does not hold
and consequently Theorem 9 cannot be applied.

Alternatively, we could introduce two auxiliary variables v and w to build a three-block ADMM:

min
y,v,w

1

2

∫
Ω

(T ◦ y −R)2dx+
α1

2

∫
Ω

‖∇(y − x)‖2Fdx+
α2

2

∫
Ω

‖∇2(y − x)‖2Fdx+ β

∫
Ω

φ(w)dx

s.t. v = ∇y, w =
‖v‖F −

√
3(detv)1/3

‖v‖F +
√

3(detv)1/3
.

(57)

Clearly each resulting subproblem is more easily solved than for (54). However, since (57) contains a nonlinear
constraint, the convergence of ADMM still cannot be established. This can be one future research direction.

4. Other Possible Regularizers. In this section, we give another two possible 3D regularizers for the
orientation-preserving image registration.

Firstly, making use of (10) from the LLL work and extending it to beyond landmark registration, we could
consider the following regularizer for a 3D map f :

Definition 10. If the map f(x1, x2, x3) = (y1(x1, x2, x3), y2(x1, x2, x3), y3(x1, x2, x3)) is continuously dif-
ferentiable, then we define

(58) N1(f) =
1

3

(
‖∇f‖2F

(det∇f)2/3

)
as a new regularizer for a 3D map f .

Then, the following lemma shows some properties of (58):

Lemma 11. Regularizer N1 from (58) possesses the following properties:
P1 N1(f) = 1⇔ the singular values of ∇f are equal;
P2 1 ≤ N1(f) ≤ ∞;
P3 N1(f) =∞⇔ det∇f = 0.

Unfortunately N1 does not share all the properties of N .
Secondly, we consider another possible regularizer. Since (58) represents a dilatation in 3D according to

the LLL work (see (7)), we may use N1 to define the distortion in 3D by

(59) N2(f) =
N1(f)− 1

N1(f) + 1
.

Then, we can rewrite the above to define another new regularizer:

Definition 12. If the map f(x1, x2, x3) = (y1(x1, x2, x3), y2(x1, x2, x3), y3(x1, x2, x3)) is continuously dif-
ferentiable, then we define

(60) N2(f) =
‖∇f‖2F − 3(det∇f)2/3

‖∇f‖2F + 3(det∇f)2/3

as a new regularizer for a 3D map f .

Similarly, we can show that N2(f) has the following properties.

Lemma 13. Regularizer N2 from (60) possesses the following properties:
P1 N2(f) = 0⇔ the singular values of ∇f are equal;
P2 0 ≤ N2(f) ≤ 1;
P3 0 ≤ N2(f) < 1⇔ det∇f 6= 0;

3D orientation-preserving variational models for accurate image registration
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P4 N2(f) = 1⇔ det∇f = 0.

Clearly N2 seems better than N1 in sharing more properties of N .
Therefore, based on N1,N2, we can present two respective models as follows:

(61) min
y

1

2

∫
Ω

(T ◦ y −R)2dx+
α1

2

∫
Ω

‖∇(y − x)‖2Fdx+
α2

2

∫
Ω

‖∇2(y − x)‖2Fdx+ β

∫
Ω

φ(N2(y))dx,

where φ(v) = v2/((v − 1)2 + 1) is the same as used in the proposed model (18), and

(62) min
y

1

2

∫
Ω

(T ◦ y −R)2dx+
α1

2

∫
Ω

‖∇(y − x)‖2Fdx+
α2

2

∫
Ω

‖∇2(y − x)‖2Fdx+ β

∫
Ω

φ(N1(y))dx,

where φ(v) = v2 because we promote N1 < ∞. Here, (62) can be considered as a reasonable modified LLL
model under our framework, which is mainly used to make a comparison in the later test since the N1 comes
from LLL model.

Clearly, P2 from Lemma 11 and P3 from Lemma 13 show that if we just control N1 <∞ and N2 < 1, it is
not sufficient to ensure that the obtained transformation is orientation-preserving, since the term (det∇f)2/3 is
never negative. Adding an explicit constraint such as det∇y > 0 defeats the idea of unconstrained optimization.
Hence, it remains a problem to modify these two models (61) and (62) to achieve orientation-preserving trans-
formations. However, a practical strategy has to be using large parameters for α1, α2, β to balance accuracy
and mesh quality (towards quality).

5. Numerical Experiments. In this section, we demonstrate the performance of our new model (18) by
three 3D examples. Specifically we shall compare these models:

• NEW from (18) — the proposed new model;
• O1 from (61) — first alternative model (generalization of LLL);
• O2 LLL from (62) — second alternative model (generalization of LLL);
• Hyper from (3) — the hyperplastic model which assumes det∇y ≈ 1;
• LDDMM from (5) — the LDDMM model.

All the numerical experiments are run in Matlab 2019a on a MacBook Pro with 2.2 GHz Quad-Core Intel
Core i7 microprocessor and 16 GB of memory. As a comparison, we compare our model (18) with the state-of-
the-art methods, the hyperelastic model (Hyper [8]), LDDMM [36] and modified LLL model (O2). The codes of
Hyper and LDDMM are based on FAIR [40], which can be downloaded from https://github.com/C4IR/FAIR.m.
The implementation of O1 and O2 are similar to Algorithm 1, including discretization and deriving the approx-
imated Hessian. To measure the quality of the registration, we consider the following quantities:

• Relative SSD (Re SSD) defined by ‖T◦y−R‖
2

‖T−R‖2 to measure the relative residual;

• The minimum of the Jacobian determinant of the transformation (min det∇y) and the maximum of
the Jacobian determinant of the transformation (max det∇y) to measure the quality of the mesh;

• Dice similarity coefficient (DSC) defined by
2|ΩT◦y∩ΩR|
|ΩT◦y|+|ΩR| to evaluate the similarity of the volume. Here,

ΩT◦y is the interested volume part of the deformed template and ΩR is the interested volume part of
the reference.

5.1. Test 1 – Comparison of models for a pair of synthetic images. We construct a synthetic
example (a big ball and a small collapsed ball) to highlight the advantage of our model (18) over the other
models. A comparison task is a highly non-trivial matter because there are potentially unfair choices to favour
a certain method. To remedy this, we tried to use other colleagues’ codes whenever possible to reduce bias, and
tuned parameters of other compared methods to show only their most completive results.

Figure 4 shows the template and the reference. Here, the dimension of the given images is 64 × 64 × 64
and the domain of the images is [0, 64]3. In the implementation, we employ a four-step multilevel strategy for
all methods and discretize the images by using regular meshes with 8 × 8 × 8, 16 × 16 × 16, 32 × 32 × 32 and
64× 64× 64 respectively. On the finest level, the number of the unknowns in this example is 823875.

3D orientation-preserving variational models for accurate image registration
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For the choice of the parameters of Hyper, we use the (recommended) parameters αl = 100 (length reg-
ularizer), αs = 1 (surface regularizer) and αv = 10 (volume regularizer). For LDDMM, a suitable choice is
α = 1200 to control the smoothness of the velocity and Nt = 10 as the number of time step for computing the
characteristic [36]. For NEW, O1 and O2, we fix α1 = 100, α2 = 0.1 and choose β = 6200, β = 2000 and β = 50
respectively.

Figure 5 shows the deformed templates obtained by these five models and Table 1 gives the corresponding
measurements. Using the symbol > to denote ‘better than’, the comparisons may be summarized as follows:

• Visual differences. From Figure 5, we can see that NEW, O1 and O2 have all generated visually
acceptable deformed templates (similar to the reference) but LDDMM and Hyper have not. That is,

NEW, O1 and O2 > Hyper and LDDMM.

• Error (accuracy) differences. Column 2 of Table 1 shows the relative residuals of five models to
inform accuracies of this example. Clearly Hyper and LDDMM are less satisfactory than all others.
Precisely, we see that

NEW > O1 > O2 > Hyper and LDDMM.

We remark that det∇y ≈ 1 does not hold.
• Bijectivity differences. Columns 3− 4 of Table 1 show the minimum and maximum of the Jacobian

determinant of the transformation obtained by each model. Although we only require min det∇y > 0
to ensure an orientation-preserving transformation and in this regard all five models are satisfactory, we
can notice that the range of the Jacobian determinant of the transformations obtained by NEW, O1,
O2 and LDDMM are larger than Hyper since the latter explicitly aims for 1 which is not a reasonable
condition in this example.
• DSC differences. Columns 7 of Table 1 show the Dice similarity coefficient of these models. Again,

we can see that
NEW, O1, and O2 > Hyper and LDDMM.

• Solution speed differences. Columns 5 − 6 of Table 1 show the CPU times and iterations of these
five models. Clearly we see that

NEW, O1, and O2 > Hyper and LDDMM.

Here, for LDDMM, since the deformation is large, the main part of its computing time is spent on
computing the characteristic of the transport equation accurately.

Hence, for the large deformation problems where volume preservation is not required, our new model NEW
can show the advantages over other models.

Table 1
Test 1 – Comparison of the new models with Hyper and LDDMM.

Re SSD min det∇y max det∇y DSC time (s) Iter on each level

NEW 0.08% 0.3583 36.8403 0.9243 15.2 13, 5, 3, 4
O1 0.11% 0.3541 37.7971 0.9206 15.5 10, 4, 3, 4
O2 0.12% 0.3459 35.4774 0.9227 14.4 11, 4, 3, 4

Hyper 1.26% 0.1212 16.4666 0.8746 55.0 20, 6, 6, 7
LDDMM 1.31% 0.0001 38.1041 0.8717 797.7 4, 2, 2, 2

5.2. Test of the preconditioner, convergence and solver. Here, we use Test 1 to investigate the
preconditioner, convergence of the algorithm and the performance of the different solvers for our new models.

We first investigate the preconditioner mentioned in Section 3 for NEW, O1 and O2. From Figure 6,
MINRES with L preconditioner can give the best convergence performance among these solvers. Further, from
Table 2, we can still find that MINRES with L preconditioner uses least number of iterations and computational

3D orientation-preserving variational models for accurate image registration
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(a) Template T (b) Reference R

(c) Reference R in axial, coronal and sagittal views

Fig. 4. Test 1: the first row shows the template and reference. The second row shows the reference in axial, coronal and
sagittal views respectively. Since the template is a ball, its axial, coronal and sagittal views are same.

Table 2
The number of iterations needed to reach the termination for MINRES with different preconditioners in Test 1.

NEW O1 O2
No. of Iter Time(s) No. of Iter Time(s) No. of Iter Time(s)

MINRES 6 1.7 9 2.3 10 2.5
MINRESD 5 1.5 7 1.9 5 1.5
MINRESL 4 1.5 6 1.9 4 1.5

time to reach the termination in one iteration of NEW, O1 and O2. Hence, MINRES with L preconditioner is
an effective solver for solving the generalized Gauss-Newton system in the proposed new models.

We next illustrate the convergence of the algorithm for NEW, O1 and O2. Forcing the algorithm to run
until the relative norms of the gradients reach 10−6 (note the algorithm can satisfy the stopping criteria in only
several iterations with a large tolerance e.g. 10−2), Figure 7 shows the relative norm of the gradient from the
first order condition, as shown in Figure 7 (a), and the relative energy functional values (Figure 7 (b)). We
see that the relative norm of the gradient of NEW, O1 and O2 are reduced to 10−6. Clearly, the algorithm for
NEW, O1 and O2 is convergent, as predicted by Theorem 8. The convergence is not monotone, which is the
usual behaviour of an optimization approach for a non-convex problem [41].

We finally test the performance of different solvers for NEW, O1 and O2. Since the generalized Gauss-
Newton system is symmetric positive definite, conjugate gradient method (CG) seems to be the usual choice.

3D orientation-preserving variational models for accurate image registration
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(a) Template (b) Reference (c) Residual before registration

(d) T (yNEW) (e) relative volume change (f) Residual after registration (0.08%)

(g) T (yO1) (h) relative volume change (i) Residual after registration (0.11%)

(j) T (yO2) (k) relative volume change (l) Residual after registration (0.12%)

(m) T (yHyper) (n) relative volume change (o) Residual after registration (1.26%)

(p) T (yLDDMM) (q) relative volume change (r) Residual after registration (1.31%)

Fig. 5. The results of Test 1: in the first row, there are the template, reference and the residual before registration in axial,
coronal and sagittal views. The second row to the sixth row show the deformed template, its corresponding relative volume change
(det∇y) and residual after registration in axial, coronal and sagittal views obtained by NEW, O1, O2, Hyper and LDDMM
respectively. The percentage represents the relative residual.

In addition, although GMRES is designed for solving the unsymmetric system, the convergence theory is also
suitable for the symmetric system. However, according to Table 3, we can see that the performance of the
solver based on GMRES is similar with MINRES but GMRES spends more running time. In addition, the
performance of CG is similar with MINRES for NEW and O2 but worse than MINRES for O1. Especially for
MINRES with the L preconditioner, it has the best performance among these different solvers for NEW, O1
and O2, with respect to the accuracy and speed. If we apply a strict stopping criterium for CG in O1, from

3D orientation-preserving variational models for accurate image registration
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Fig. 6. Residual plots – performance of different preconditioners for one iteration of NEW, O1 and O2 in Test1. Here,
MINRES, MINRESD and MINRESL represent that the solver is MINRES without preconditioner, with diagonal preconditioner
and with L preconditioner respectively.
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Fig. 7. The relative norm of the gradient and relative function values of NEW, O1 and O2 in Test 1.

Table 4, their performances can also be comparable with MINRES but they need more iterations and hence
more computational time. Hence, for the key component, solving the generalized Gauss-Newton system, in the
proposed optimization method, we choose MINRES rather not CG or GMRES.

5.3. Test 2 – Comparison of models for a pair of brain images. We illustrate the performance of
our model NEW in registering a pair of 3D real life images. For completeness, we also compare it with the other
four models (O1, O2, Hyper and LDDMM). We choose the human brain images from the data accompanying
the software FAIR [40]. The template and the corresponding reference are shown in Figure 8. The size of the
given images is 128× 64× 128 and the domain of the images is [0, 20]× [0, 10]× [0, 20]. In the implementation,
for all five models, we employ a four-step multilevel strategy which is to discretize the images in the following
different resolutions: 16× 8× 16, 32× 16× 32, 64× 32× 64 and 128× 64× 128. The number of the unknowns
on the finest level in this example is 3244995.

Here, for the parameters of Hyper, we choose the default parameter provided by FAIR [40], αl = 100, αs = 10
and αv = 100. For LDDMM, we set α = 200 to control the smoothness of the velocity and Nt = 2 as the number
of time step for computing the characteristic [36]. For NEW, O1 and O2, we again fix α1 = 100, α2 = 0.1 and
choose β = 5000, β = 5000 and β = 70 respectively.

Figure 9 shows the deformed templates obtained by these models and Table 5 gives the corresponding
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Table 3
The performance of different solvers for NEW,O1 and O2 in Test 1 by using the same stopping criteria. Here, MINRES,

MINRESD and MINRESL represent that the solver is MINRES without preconditioner, with diagonal preconditioner and with L
preconditioner respectively. CG, CGD and CGL represent that the solver is CG without preconditioner, with diagonal precondi-
tioner and with L preconditioner respectively. And GMRES, GMRESD and GMRESL represent that the solver is GMRES without
preconditioner, with diagonal preconditioner and with L preconditioner respectively

NEW O1 O2
Iter on levels Re SSD Time(s) Iter on levels Re SSD Time(s) Iter on levels Re SSD Time(s)

MINRES 11,5,3,5 0.10% 21.9 10,5,3,4 0.11% 17.6 12,3,1,8 0.47% 50.6
MINRESD 11,5,4,3 0.22% 13.2 11,4,3,3 0.21% 12.9 12,5,4,4 0.13% 14.6
MINRESL 13,5,3,4 0.08% 15.2 10,4,3,4 0.11% 15.5 11,4,3,4 0.12% 14.4

CG 11,4,3,3 0.22% 15.9 11,4,3,3 0.22% 15.3 13,4,4,5 0.14% 32.3
CGD 11,3,3,5 0.11% 24.6 11,3,3,3 0.23% 13.6 14,4,4,5 0.12% 22.3
CGL 12,4,3,4 0.11% 17.2 12,4,3,3 0.21% 13.4 14,4,5,5 0.12% 21.1

GMRES 11,5,3,5 0.10% 22.4 10,5,3,4 0.11% 17.7 12,3,1,8 0.47% 53.7
GMRESD 12,4,3,4 0.19% 17.3 12,4,3,4 0.11% 18.0 13,5,4,3 0.23% 14.2
GMRESL 12,4,3,4 0.11% 17.6 10,4,3,4 0.11% 17.2 11,5,4,4 0.12% 18.3

Table 4
Performance of the solvers based on CG for O1 in Test 1 by using a strict stopping criterium.

NEW
Iter on levels Re SSD Time(s)

CG 11,5,4,4 0.14% 21.5
CGD 11,4,4,5 0.12% 22.4
CGL 12,4,3,4 0.14% 17.1

quantitative measurements. Similar to Test 1 results, we observe that although the deformed templates obtained
by these five methods are visually good and the resulting transformations are all orientation-preserving (since
the minimums of the Jacobian determinant of the transformations are positive), NEW gives the smallest relative
residual. In addition, NEW also produces the best Dice among these models. Specifically, NEW, O1 and O2
need much less iterations than Hyper and their total running times is about half or less of Hyper and LDDMM.

Table 5
Test 2 – Comparison of the new models with Hyper and LDDMM.

Resolution Re SSD min det∇y max det∇y DSC time (s) Itertions on each level

NEW 128× 64× 128 8.12% 0.0097 39.3644 0.8632 295.7 9, 11, 13, 16
O1 128× 64× 128 11.93% 0.0447 36.6370 0.8552 188.9 7, 11, 13, 10
O2 128× 64× 128 9.95% 0.0615 43.9114 0.8583 221.7 5, 9, 11, 14

Hyper 128× 64× 128 11.33% 0.0026 4.6357 0.8555 580.4 8, 9, 16, 24
LDDMM 128× 64× 128 18.59% 0.0032 17.8784 0.8422 773.6 3, 5, 7, 8

5.4. Test 3 – Comparison of models for a set of MR images. In this test, we use a set of 17 MR
images from the Internet Brain Segmentation Repository (IBSR) to test our new model New and the other
two models (Hyper and LDDMM). The data are downloaded from https://www.nitrc.org/projects/ibsr. Here,
we resize the images into 128 × 128 × 128. We fix one of the images as the template and take other images
as the references. Hence, we totally have 16 pairs of templates and references. The domain of the images
is [0, 1]3. In the implementation, for all three models, we employ a five-step multilevel strategy which is to
discretize the images in the following different resolutions: 8 × 8 × 8, 16 × 16 × 16, 32 × 32 × 32, 64 × 64 × 64
and 128 × 128 × 128. The number of the unknowns on the finest level in this example is 6440067, making the
task a large scale computing problem.

For the parameters of these three models, we test 6 different parameters respectively. For the parameters
of Hyper, we set αl = 1000 or 100, αs = 10 or 100 and αv = 10 or 100. For LDDMM (see [36] for similar choice
of parameters), we vary α from 100 to 1000 to control the smoothness of the velocity and set Nt = 2 as the
number of time step for computing the characteristic. For NEW, we fix α1 = 100 and set α2 = 0.01, 0.1 or 1
and β = 5000 or 10000.
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(a) Template T (b) Reference R

(c) Template T in axial, coronal and sagittal views

(d) Reference R in axial, coronal and sagittal views

Fig. 8. Test 2: the first line shows the template and reference. The second and third line show the template and the reference
in axial, coronal and sagittal views respectively.

Figure 10 shows the deformed templates, relative volume changes and residuals of one case obtained by these
three models. The corresponding measurements are shown in Table 6. Here to reflect results from these pairs of
images, we list the average and standard deviation of the Re SSD, min det∇y, max det∇y and computational

3D orientation-preserving variational models for accurate image registration
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(a) Template (b) Reference (c) Residual before registration

(d) T (yNEW) (e) relative volume change (f) Residual after registration (8.12%)

(g) T (yO1) (h) relative volume change (i) Residual after registration (11.93%)

(j) T (yO2) (k) relative volume change (l) Residual after registration (9.95%)

(m) T (yHyper) (n) relative volume change (o) Residual after registration (11.33%)

(p) T (yLDDMM) (q) relative volume change (r) Residual after registration (18.59%)

Fig. 9. The results of Test 2: in the first row, there are the template, reference and the residual before registration in axial,
coronal and sagittal views. The second row to the sixth row show the deformed template, its corresponding relative volume change
(det∇y) and residual after registration in axial, coronal and sagittal views obtained by NEW, O1, O2, Hyper and LDDMM
respectively. The percentage represents the relative residual.

time of different methods with respect to different values of the regularization parameters. All the methods
can guarantee the bijective transformations because all the minimums of the Jacobian determinant of the
transformations are positive. For Hyper, by choosing these parameters, the ranges of the Jacobian determinant
of the transformation are very similar. This is because Hyper has a potential to force det∇y ≈ 1. However,
compared with NEW and LDDMM, the relative SSD obtained by Hyper is worse, which shows that preserving
volume is not suitable in this application. Further, NEW can give better Re SSD than LDDMM. Especially,
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when the parameters are set (100, 0.1, 5000), NEW can generate the best Re SSD among all these choices.
Here, we note that when the parameters are set (100, 0.01, 5000), the generated Re SSD is slighter worse than
(100, 0.1, 5000), but the computational time is only about 50%. For LDDMM, by tuning the parameters, we
can get acceptable Re SSD but it needs much more running time than NEW.

In summary, the above three sets of examples demonstrate that our new model NEW can be more advan-
tageous than (and competitive to) the state-of-the-art models, Hyper, LDDMM and O2 (LLL) in terms of the
computational time and the accuracy.

Table 6
Test 3 of 16 pairs of MR images – Comparison of the new model NEW with Hyper and LDDMM. Average and standard

deviation of the Re SSD, min det∇y, max det∇y and computing time for different values of the regularization parameters.

Measurements by NEW
Parameters min det∇y max det∇y Re SSD time (s)

(100, 0.01, 5000) 0.1398± 0.0743 11.4426± 9.8745 12.59%± 4.61% 408.7± 130.9
(100, 0.01, 10000) 0.1864± 0.0682 9.0047± 7.2030 14.33%± 5.51% 430.5± 177.1
(100, 0.1, 5000) 0.1800± 0.1043 6.8892± 5.5417 12.24%± 5.99% 821.8± 1167.4
(100, 0.1, 1000) 0.2348± 0.0862 5.7243± 4.0364 13.18%± 6.68% 1323.6± 2551.4
(100, 1, 5000) 0.4060± 0.1813 1.7849± 2.6414 28.09%± 9.80% 417.4± 100.1
(100, 1, 10000) 0.4466± 0.1437 1.7761± 2.1036 28.87%± 9.92% 357.3± 101.7

Measurements by Hyper
Parameters min det∇y max det∇y Re SSD time (s)

(100, 10, 100) 0.3574± 0.0526 2.5507± 0.6171 17.44%± 8.59% 1197.7± 1243.5
(100, 100, 10) 0.2721± 0.0823 1.6649± 0.2513 25.39%± 14.04% 2920.7± 1686.1
(100, 100, 100) 0.4236± 0.0640 1.6509± 0.2680 25.89%± 14.04% 1662.1± 634.5
(1000, 10, 100) 0.4149± 0.0458 2.2362± 0.3953 21.20%± 9.75% 347.9± 216.7
(1000, 100, 10) 0.4143± 0.0983 1.5845± 0.1734 33.04%± 12.79% 262.7± 63.8
(1000, 100, 100) 0.4986± 0.0678 1.5788± 0.1700 33.18%± 12.77% 271.7± 67.5

Measurements by LDDMM
Parameters min det∇y max det∇y Re SSD time (s)

100 0.0659± 0.0632 45.6814± 61.2808 13.17%± 5.20% 2328.4± 1564.6
200 0.1162± 0.0861 13.6115± 13.7689 15.89%± 5.64% 1997.2± 1794.0
400 0.2024± 0.1099 5.7173± 3.8898 20.49%± 7.35% 1920.8± 2150.8
600 0.2834± 0.1198 4.0926± 2.2623 23.53%± 8.46% 1410.4± 1693.6
800 0.3438± 0.1282 3.3744± 1.5352 25.66%± 9.15% 1215.6± 1558.0
1000 0.4002± 0.1255 3.0326± 1.2210 27.40%± 9.67% 999.0± 1088.4

6. Conclusions. In image registration, visual comparison is not a reliable way to assess effectiveness
because our human eye cannot always tell if a transformed image is incorrect due to going through a folding
transformation. In order to ensure that the transformation has no folding, many models (including the state-
of-the-art registration models) control explicitly the Jacobian determinant of the underlying transformation.
However, for registration problems where larger deformations exist, controlling the Jacobian determinant of
the transformation and forcing it to be close to 1 are not always reasonable. To overcome this difficulty,
minimizing the modulus of Beltrami coefficient offers an indirect way of controlling the Jacobian determinant
of the transformation. However, since the Beltrami coefficient is defined in two dimensions and by complex
analysis, it cannot be directly extended to 3D. In this paper, we construct a quantity as a generalization of the
norm of Beltrami coefficient in three dimensions as a measure of distortion on conformal maps. Using it, we
propose our new model (18) and establish the existence of a solution. In order to solve the new model efficiently,
we present a converging generalized Gauss-Newton scheme. The numerical experiments illustrate that our new
model can be more advantageous than related models with respect to the computational time and the accuracy.

In the future, we will consider a possible reformation by the game approach [46] to reduce the number of
model parameters and test the new model for multi-modal images. We also hope to develop an unsupervised
deep learning method following the approach of [11, 47], where the energy functional (18) in our proposed
registration model is used as a loss function (without using any ground truth data). Finally there is also a
recent development in hypercomplex analysis using Cifford analysis (to extend 2D complex analysis to higher
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(a) Template (b) Reference (c) Residual before registration

(d) T (yNEW) (e) relative volume change (f) Residual after registration (7.73%)

(g) T (yHyper) (h) relative volume change (i) Residual after registration (9.43%)

(j) T (yLDDMM) (k) relative volume change (l) Residual after registration (9.35%)

Fig. 10. The results of one case in Test 3: in the first row, there are the template, reference and the residual before
registration in axial, coronal and sagittal views. The second row to the fourth row show the deformed template, its corresponding
relative volume change (det∇y) and residual after registration in axial, coronal and sagittal views obtained by NEW, Hyper and
LDDMM respectively. The percentage represents the relative residual. Here, the parameters of NEW, Hyper and LDDMM are
(100,0.01,5000), (100,100,10) and 200 respectively.

dimensions). It would be of interest to consider how to generalize the 2D Beltrami coefficient in this framework.

Appendix A. Computation of A in (29).

(63) A = I3 ⊗

A1

A2

A3

 ,

where A1 = I(n3+1) ⊗ I(n2+1) ⊗ ∂1,h1
n1

, A2 = I(n3+1) ⊗ ∂1,h2
n2
⊗ I(n1+1), A3 = ∂1,h3

n3
⊗ I(n2+1) ⊗ I(n1+1) and

(64) ∂1,hl
nl

=
1

hl

−1 1
· ·
−1 1

 ∈ Rnl,nl+1, 1 ≤ l ≤ 3.

Here, ⊗ indicates Kronecker product.

Appendix B. Computation of B in (30).

(65) B = I3 ⊗
(
BT1 BT2 BT3 BT4 BT5 BT6 BT7 BT8 BT9

)T
,
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where B1 = I(n3+1)⊗ I(n2+1)⊗ ∂2,h1
n1

, B2 = I(n3+1)⊗ ∂2,h2
n2
⊗ I(n1+1), B3 = ∂2,h3

n3
⊗ I(n2+1)⊗ I(n1+1), B4 = B7 =

I(n3+1) ⊗ ∂1,h2
n2
⊗ ∂1,h1

n1
, B5 = B8 = ∂1,h3

n3
⊗ I(n2+1) ⊗ ∂1,h1

n1
, B6 = B9 = ∂1,h3

n3
⊗ ∂1,h2

n2
⊗ I(n1+1) and

(66) ∂2,hl
nl

=
1

h2
l


−2 1
1 −2 1

· ·
1 −2

 ∈ Rnl+1,nl+1, 1 ≤ l ≤ 3.

Here, ⊗ indicates Kronecker product.

Appendix C. Computation of M1, M2 and M3 in (34). We first investigate the linear approximation
L(x1, x2, x3) = a1x1 + a2x2 + a3x3 + b in the tetrahedron V3V4V5V7 (Figure 2). Denote these 4 vertices of this
tetrahedron by V3 = x1,1,1, V4 = x2,2,2, V5 = x3,3,3 and V7 = x4,4,4. Set L(x1,1,1) = y1,1,1, L(x2,2,2) = y2,2,2,
L(x3,3,3) = y3,3,3 and L(x4,4,4) = y4,4,4. Substituting V3, V4, V5 and V7 into L, we get

(67)


x1

1 x1
2 x1

3 1
x2

1 x2
2 x2

3 1
x3

1 x3
2 x3

3 1
x4

1 x4
2 x4

3 1



a1

a2

a3

b

 =


y1,1,1

y2,2,2

y3,3,3

y4,4,4

 .

Then eliminating b, we obtain

(68)

x1
1 − x4

1 x1
2 − x4

2 x1
3 − x4

1

x2
1 − x4

2 x2
2 − x4

2 x2
3 − x4

2

x3
1 − x4

3 x3
2 − x4

2 x3
3 − x4

3

a1

a2

a3

 =

y1,1,1 − y4,4,4

y2,2,2 − y4,4,4

y3,3,3 − y4,4,4

 .

Set

(69) C =

x1
1 − x4

1 x1
2 − x4

2 x1
3 − x4

1

x2
1 − x4

2 x2
2 − x4

2 x2
3 − x4

2

x3
1 − x4

3 x3
2 − x4

2 x3
3 − x4

3

 .

Then we have

(70)

a1

a2

a3

 =
1

det

C11 C21 C31

C12 C22 C32

C13 C23 C33

y1,1,1 − y4,4,4

y2,2,2 − y4,4,4

y3,3,3 − y4,4,4

 ,

where det is the determinant of C and Cij is the (i, j) cofactor of C. Since the domain Ω has been divided into
N voxels, in order to find all a1 in the tetrahedron with the same position of each voxel, we can make it as the
following way:

(71)

a1
1
...
aN1

 =
1

det
(C11(E3Y − E7Y ) + C21(E4Y − E7Y ) + C31(E5Y − E7Y )),

where El, l ∈ {3, 4, 5, 7} is a matrix which extracts the corresponding positions of the vertices. Set G1 =
1

det (C11(E3−E7) +C21(E4−E7) +C31(E5−E7)). For other 5 tetrahedrons, we can also build Gl, l ∈ {2, ..., 6}.
Then we get

(72) M1 =

G1

...
G6

 .
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Similarly, we can obtain M2 and M3.

Appendix D. Computation of the Matrix-Vector product Ĥv. Recall that Ĥ = Ĥ1 + H2 + Ĥ3

and we have Ĥv = Ĥ1v +H2v + Ĥ3v.
Firstly, for Ĥ1v = hPT ~TT

Ỹ
~TỸPv, we need to compute v1 = Pv, v2 = ~TỸv1, v3 = ~TT

Ỹ
v2 and Ĥ1v = PT v3.

Since P is an averaging matrix from the nodal grid to the cell-centered grid, then as an example, the first
component of Pv is

(Pv)1 =
1

8
((v)1 + (v)2 + (v)1+n1

+ (v)2+n1
+ (v)1+(n1+1)(n2+1)

+ (v)2+(n1+1)(n2+1) + (v)1+n1+(n1+1)(n2+1) + (v)2+n1+(n1+1)(n2+1)).
(73)

~TỸ has the following structure:

(74) ~TỸ = [diag(w1), diag(w2), diag(w3)].

Then we have ~TỸv1 = Σ3
l=1wl�v1l and ~TT

Ỹ
v2 = ((w1�v2)T , (w2�v2)T , (w3�v2)T )T , where v1 = (vT11, v

T
12, v

T
13)T .

Similarly, it is easy to implement PT v3.
Secondly, in order to compute H2v = (α1hA

TA+α2hB
TB)v, we just consider how Al and ATl , l ∈ {1, 2, 3}

multiply a vector and Bl and BTl , l ∈ {1, ..., 9} multiply a vector. According to (63) and (65), because of
∂2,hl
nl

= (∂2,hl
nl

)T , here we only need to investigate ∂1,hl
nl

v′, (∂1,hl
nl

)T v′ and ∂2,hl
nl

v′, l = {1, 2, 3}.
Finally, because Ĥ3 = βh

6 d~rTd2φ(~r)d~r and d2φ(~r) is a diagonal matrix, we only need to consider computing
d~rv and d~rT v′. According to the (35), substituting d~r1, d~r2, d~q1 and d~q2 into d~r, we have

(75) d~r =

9∑
l=1

ΛlDl,

where

Λ1 = 2Γ1 diag(D1Y ) + 2Γ2 diag(D5Y �D9Y −D6Y �D8Y ),

Λ2 = 2Γ1 diag(D2Y ) + 2Γ2 diag(D6Y �D7Y −D4Y �D9Y ),

Λ3 = 2Γ1 diag(D3Y ) + 2Γ2 diag(D4Y �D8Y −D5Y �D7Y ),

Λ4 = 2Γ1 diag(D4Y ) + 2Γ2 diag(D8Y �D3Y −D2Y �D9Y ),

Λ5 = 2Γ1 diag(D5Y ) + 2Γ2 diag(D1Y �D9Y −D3Y �D7Y ),

Λ6 = 2Γ1 diag(D6Y ) + 2Γ2 diag(D2Y �D7Y −D1Y �D8Y ),

Λ7 = 2Γ1 diag(D7Y ) + 2Γ2 diag(D2Y �D6Y −D3Y �D5Y ),

Λ8 = 2Γ1 diag(D8Y ) + 2Γ2 diag(D4Y �D3Y −D1Y �D6Y ),

Λ9 = 2Γ1 diag(D9Y ) + 2Γ2 diag(D1Y �D5Y −D2Y �D4Y ),

(76)

Γ1 = − 1
2 diag((~r1�~r2�~r2−~r2)./(~q1)

1
2 ) and Γ2 = −

√
3

3 diag((~r1�~r2�~r2 +~r2)./(~q2)
2
3 ). Furthermore, because

of (34), (75) can be reformulated into the following formulation:

(77) d~r = [Λ1M1 + Λ2M2 + Λ3M3,Λ4M1 + Λ5M2 + Λ6M3,Λ7M1 + Λ8M2 + Λ9M3].

Hence, we only need to compute Mlvk, where l, k ∈ {1, 2, 3} and v = (vT1 , v
T
2 , v

T
3 )T . For simplification, we only

consider M1v1. Recall that (72) and we can get

(78) M1v1 =

G1v1

...
G6v1

 .
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Since Gl, l ∈ {1, ..., 6} is just the linear combination of the matrix El, l ∈ {1, ..., 8}, finally we only compute
Elv1, l ∈ {1, ..., 8} which is very easy to be implemented.

Similarly, in order to compute d~rT v′, we only need to compute MT
l v
′, l ∈ {1, 2, 3} and it can be decomposed

to compute ETl v
′
k, l ∈ {1, ..., 8} and k ∈ {1, ..., 6}, where v′ = ((v′1)T , ..., (v′6)T )T .

Appendix E. The Diagonal of Ĥ and The Preconditioner L. According to the structure of Ĥ1,
the diagonal of Ĥ1 is h(PT � PT )ς, where ς is the diagonal of ~TT

Ỹ
~TỸ.

The diagonal of H2 is α1h(AT � AT )e + α2h(BT � BT )e, where e is a vector whose components are all
equal to 1.

From (77) and Ĥ3 = βh
6 d~rTd2φ(~r)d~r, the diagonal of Ĥ3 is βh

6 (ςT1 , ς
T
2 , ς

T
3 )T , where

ς1 = the diagonal of (Λ1M1 + Λ2M2 + Λ3M3)Td2φ(~r)(Λ1M1 + Λ2M2 + Λ3M3),

ς2 = the diagonal of (Λ4M1 + Λ5M2 + Λ6M3)Td2φ(~r)(Λ4M1 + Λ5M2 + Λ6M3),

ς3 = the diagonal of (Λ7M1 + Λ8M2 + Λ9M3)Td2φ(~r)(Λ7M1 + Λ8M2 + Λ9M3).

(79)

Now we only need to compute the diagonal of MT
i1

Λj1d2φ(~r)Λj2Mi2 , where i1, i2 ∈ {1, 2, 3} and j1, j2 ∈
{1, 2, 3}, {4, 5, 6} or {7, 8, 9}. Since Λj1d2φ(~r)Λj2 is a diagonal matrix and set ς as the diagonal of Λj1d2φ(~r)Λj2 ,
then the diagonal of MT

i1
Λj1d2φ(~r)Λj2Mi2 is (MT

i1
� MT

i2
)ς which is very easy to be implemented following

Appendix D.
The structure of the preconditioner L is

(80)

diag(Ĥ11) diag(Ĥ12) diag(Ĥ13)

diag(Ĥ21) diag(Ĥ22) diag(Ĥ23)

diag(Ĥ31) diag(Ĥ32) diag(Ĥ33)

 .

Since Ĥ is symmetric and we have got the diagonal of Ĥ, we only need to compute diag(Ĥ12), diag(Ĥ13) and
diag(Ĥ23). Actually, they are also computed easily just following the above mentioned steps.
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