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Abstract

There is an increasing expectation that advanced, computationally expensive

machine learning (ML) techniques, when applied to large population-wide neuroimag-

ing datasets, will help to uncover key differences in the human brain in health and

disease. We take a comprehensive approach to explore how multiple aspects of brain

structural connectivity can predict sex, age, general cognitive function and general

psychopathology, testing different ML algorithms from deep learning (DL) model

(BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connec-

tomes from UK Biobank using six different structural network weightings obtained

from diffusion MRI. Streamline count generally provided the highest prediction

accuracies in all prediction tasks. DL did not improve on prediction accuracies from

simpler linear models. Further, high correlations between gradient attribution coeffi-

cients from DL and model coefficients from linear models suggested the models

ranked the importance of features in similar ways, which indirectly suggested the

similarity in models' strategies for making predictive decision to some extent. This

highlights that model complexity is unlikely to improve detection of associations

between structural connectomes and complex phenotypes with the current

sample size.
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1 | INTRODUCTION

Recent advances in neuroimaging have made it possible to acquire

high-quality structural brain scans in large samples, which provides

opportunities for the development and application of novel machine

learning (ML) techniques geared specifically for analysing brain struc-

tural architecture. ML methods have the ability to uncover latent fea-

tures from high-dimensional imaging data which are not apparent

when using more conventional statistical methods. This is thought to

be particularly promising for better understanding important biological

and complex behavioural information.

The structural connectome is a comprehensive description of the

connectivity between different brain regions, defined by the structure

of white-matter fibre tracts (Bullmore & Sporns, 2009). The connec-

tome is a relatively recent development which holds promise for dis-

covery. One might expect deep learning (DL) methods to be well

suited for the analysis of connnectomes, given their complexity and

high-dimensionality. The structural connectome is based on informa-

tion from diffusion magnetic resonance imaging (dMRI), which mea-

sures the directional diffusion of water molecules in the brain to

identify connections between distal brain regions and enables estima-

tion microstructural properties in brain white matter. The measures

acquired through dMRI can be used to reconstruct individual partici-

pant connectomes in the form of adjacency matrices, where row and

column indices specify to each brain region and the matrix entries are

the connectivity strengths (which can be measured using various dif-

fusion parameters) between any two regions of interest (ROI). The

weighted networks constructed from different connectivity modalities

then represent different interpretations of connection strength

(Agosta et al., 2014; Buchanan et al., 2020; Collin et al., 2014;

Hagmann et al., 2008; Jiang, Li, et al., 2020; Robinson et al., 2010;

Rutland et al., 2019).

The most commonly used connectivity weightings are based on

streamline count (SC), fractional anisotropy (FA) and mean diffusivity

(MD). SC provides both intra-regional as well as inter-regional stream-

line densities (Hagmann et al., 2008), FA measures the degree of

directional dependence of the water molecular diffusion (Basser &

Pierpaoli, 2011; Robinson et al., 2010) and MD measures the average

magnitude of diffusion of water molecules in all directions (Agosta

et al., 2014; Alexander et al., 2007; Collin et al., 2014). In addition,

three newer network weightings are available thanks to the develop-

ment of Neurite Orientation Dispersion and Density Imaging (NODDI;

Zhang et al., 2012). NODDI estimates include neurite density (intra-

cellular volume fraction; ICVF), extra-cellular water diffusion (isotropic

volume fraction; ISOVF) and tract fanning/complexity (orientation dis-

persion; OD).

There is accruing evidence that differences in connectomic prop-

erties between people, particularly for global network measures, are

associated with basic demographic variables namely age and sex, both

of which are important predictors of brain health (Buchanan

et al., 2020; Madole et al., 2021; Ritchie et al., 2018). Connectomic

differences are also associated with psychiatric and neurological brain

disorders, and that some connectome alterations are shared across

multiple brain disorders (de Lange et al., 2019; Korgaonkar

et al., 2014; Ma et al., 2020). While univariate statistical methods

allow assessing relationships between measures of interest and brain

disorders, ML approaches allow combining information from different

features for diagnostic classification, prediction of symptom severity

levels and prediction of treatment response. More recently,

researchers have been exploring ways of applying ML to connectome

data. Some examples include the development of the connectome-

based predictive modelling approach and application of the support

vector machines (SVMs) for predicting cognitive ability, behavioural

measures and clinical outcomes (Finn et al., 2015; Gong & He, 2015;

Griffa et al., 2013; Jiang, Calhoun, et al., 2020; Payabvash

et al., 2019).

Although an individual connectome provides a lower-dimensional

representation of the brain when compared to a voxel-wise MRI

image, there are still thousands of features—connections between

brain regions—which may lead to over-fitting. To reduce dimensional-

ity, global graph-theoretic metrics are commonly derived from con-

nectomes and analysed as coarse representations of the participants'

brain networks (de Lange et al., 2019; Sun et al., 2017; Suo

et al., 2018). A popular alternative technique is subnetwork analysis,

where brain regions in the connectome are limited to those previously

shown as relevant to the clinical traits or conditions of interest (Chen

et al., 2016; Zheng et al., 2019). It is also common to employ feature

selection to reduce dimensionality (Shen et al., 2017). Some of the

common prediction models used with high-dimensional connectomic

data are LASSO regression (Madole et al., 2021; Taxali et al., 2021;

Wager et al., 2013), ridge regression (Gao et al., 2019; Siegel

et al., 2016), elastic-net (Rahim et al., 2017), multiple kernel learning

support vector machine (MKL-SVM; Xu et al., 2020), as well as rele-

vance vector regression (Gong et al., 2014). Most of these models

only consider linear interactions between ROIs and treat each connec-

tion independently. More recent studies, however, have shown that

brain regions interact nonlinearly, and thus these approaches may not

be optimal (Breakspear, 2017; Ocker et al., 2017; Wang et al., 2019).

Measures of cognitive ability and psychiatric symptoms, like imag-

ing data, can be high dimensional and have often been analysed as

general factors to reduce dimensionality (Cronbach & Meehl, 1955). A

general intelligence factor (g-factor) can be derived from a sufficiently

broad domain of cognitive tasks, and g-factors from different sets of

cognitive tasks have been shown to be highly correlated (Johnson

et al., 2004, 2008). Likewise, researchers have explored the possibility

of a single dimension (p-factor) to measure one's mental health (Caspi

et al., 2014; Caspi & Moffitt, 2018; Lahey et al., 2012). Empirical evi-

dence indicates a continuum of symptoms across multiple mental ill-

nesses and an overlap of symptoms across mental disorders (Kotov

et al., 2017), with some disorders sharing the same set of risk factors

and biomarkers (Goodkind et al., 2015; Pinto et al., 2017). While

molecular levels of analysis support the g-factor as a unitary construct,

less molecular evidence provides support for the unitary nature of the

p-factor (de la Fuente et al., 2021; Grotzinger et al., 2020, 2022).

Rather, the p-factor may represent an emergent phenomenon, arising

from the aggregation of varied mechanisms present across subsets of
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psychiatric conditions. Studies have found that both the g-factor and

the p-factor are highly heritable in adulthood (Allegrini et al., 2020;

Grotzinger et al., 2019; Harden et al., 2020), and associated with vari-

ation in the human brain connectome (Lund et al., 2020; Madole

et al., 2021). The measure of general intelligence and psychopathology

has been found to be strongly associated with long-term outcomes

(Calvin et al., 2011; Caspi et al., 2020; Deary, 2008; Plana-Ripoll

et al., 2019; Strenze, 2007). The discovery of ML models that can

accurately predict cognitive functioning and mental health will be ben-

eficial to advances in the application of ML to predict different types

of neurological disorders.

Rapid growth in availability of parallel computing in recent years

has enabled application of DL. DL is very effective in extracting latent

features and non-linear patterns from complex data (Vieira

et al., 2017). A 3D convolutional neural network (CNN) approach has

been used to investigate automated brain disease classification based

on or voxel-based morphometric (VBM) features derived from struc-

tural MRI scans (Cole et al., 2017; Hu et al., 2020; Zou et al., 2017).

Additionally, different graph-based neural network (GNN) models

have been developed for predictive modelling based on connectivity

matrices from diffusion MRI (dMRI) and resting state functional MRI

(rs-fMRI; Kawahara et al., 2017; Li et al., 2021). In a previous study

(Yeung et al., 2020), we have shown that the BrainNetCNN neural

network architecture proposed by Kawahara et al. (2017) was more

appropriate for sex classification based on brain connectome adja-

cency matrices compared with a naive image-based CNN architecture.

With the customised CNN layers, the BrainNetCNN could potentially

capture non-linearities in connectomic data that could be related to

complex phenotypes.

Although there are several theoretical merits in the application of

DL methods for understanding the neurobiological correlates of

important between-person differences, the use of promising cutting-

edge DL methods and its quantitative benefits beyond more conven-

tional statistical methods remain moot. He et al. (2020) reported that

Kernel Ridge Regression achieved comparable results with DL models

(He et al., 2020). Schulz et al. (2020) also showed that non-linear

models did not outperform simple linear models in predicting com-

mon phenotypes from brain scans (Schulz et al., 2020). In contrast,

Abrol et al. (2021) found in their study that DL models substantially

outperformed standard ML methods (Abrol et al., 2021). Large sample

sizes and appropriate image processing methods constitute a highly

valuable test-bed in which to directly address the challenge of asses-

sing the performance of DL methods in comparison to other

methods.

In this study, we directly compare the BrainNetCNN model

against four classical ML methods when applied to structural connec-

tomes in the UK Biobank (UKB), one of the largest structural connec-

tome samples to date, based on 6 different structural connectivity

modalities. Namely, the investigated modalities were the three com-

mon network weights—SC, FA and MD—discussed in many previous

studies, and three newer and less-well-studied network weights—OD,

ICVF and ISOVF—derived with NODDI. Our main aims were (i) to

compare the performances and feature robustness on prediction of

sex and age as benchmark tasks, as well as general cognition (g-factor)

and mental health (MHQ-factor) among the six different connectivity

modalities with the DL models, (ii) to test the effect of adding external

predictors to DL model, (iii) to investigate how the DL model used the

brain features for prediction, through the use of Gradient Attribution

Map and (iv) to compare the DL model's performance, feature robust-

ness and feature importance ranking with those of classical ML

methods, using prediction of sex and age as benchmark and then

extending to prediction of more complex phenotypes (cognition and

psychopathology).

2 | RESULTS

2.1 | Prediction performances for different tasks

We first applied the BrainNetCNN classification models to predict

sex. Table 1a shows the prediction accuracies and Figure 1 shows the

Receiver Operator Characteristic (ROC) curve for sex for the different

structural connectivity weightings. We found that SC attained the

best performance (Accuracy = 86.91%) of all modalities, on average

4.1% clear of the next best, OD. We then applied the BrainNetCNN

regression models to predict age. Table 1b shows the mean absolute

error (MAE) and correlation between the raw predicted age and the

true values for different connectivity weightings. Here the best per-

formance was again obtained with SC (MAE = 4.245 years).

We also assessed prediction of the g-factor and the MHQ-factor.

Table 1c shows the results for g-factor. Cognition and psychopathol-

ogy being complex phenotypes are more subtly reflected in brain phe-

notypes compared to age, and hence we expected much larger

prediction errors for these variables. This was indeed the case with

correlation between the raw predicted g-factor and the true values

being 60%–75% lower compared to those observed for age predic-

tion. Again, SC was the modality with best performance (g-factor:

MAE = 0.780, Correlation = 0.201, MHQ-factor: MAE = 0.790, Cor-

relation = 0.143). Table 1d shows the results for MHQ-factor, where

the correlations were 80%–85% lower compared to those observed

for age prediction.

We then investigated whether addition of age and sex covariates

to the DL model improved predictive performance. Age and sex were

both significantly associated with the g-factor and MHQ-factor, and

we considered that if these covariates were combined with the brain

connectivity matrix, this would improve predictive performance of the

DL model. Indeed, the DL model with additional covariates was able

to achieve better performance for g-factor where all modalities

achieved correlations around 0.238–0.251 (Table 2a). The additional

covariates also improved prediction of the MHQ-factor, with all

modalities achieving correlations around 0.202–0.245 (Table 2b).

Moreover, when trained with additional covariates, models based on

all modalities achieved comparable performances on predicting g-

factor and MHQ-factor. The training progress plots for the Brain-

NetCNN models are presented in Section B.4.4 of the Supporting

Information.
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2.2 | Mapping predictive SC and FA features

Since SC and FA are the most common weights used in previous stud-

ies, the remainder of the analysis focuses on the results obtained from

prediction models based on the SC and FA inputs. We computed the

gradient attribution maps, averaged across folds, for the DL models to

investigate how the deep neural networks made their predictive deci-

sions, and to estimate ROI predictive powers, see Section 4.2. Fig-

ures 2 and 3 show the circos plots of gradient maps for all the

prediction tasks based respectively on the SC and FA connectomes.

F IGURE 1 Area under the
curve (AUC) and ROC curve for
sex classification with
BrainNetCNN model. FA, fraction

anisotropy; ICVF, intracellular
volume fraction; ISOVF, isotropic
volume fraction; MD, mean
diffusivity; OD, orientation
dispersion; SC, streamline count

TABLE 1 Prediction performances with BrainNetCNN of four different prediction tasks based on different connectivity weightings

Weights MD FA SC OD ISOVF ICVF

(a) Sex prediction accuracies (mean percentage with standard deviation in brackets) with BrainNetCNN for different connectivity weightings

Validation 78.07 (0.54) 80.76 (0.70) 89.18 (0.60) 83.53 (0.51) 82.07 (0.75) 80.45 (0.89)

Training 87.17 (2.35) 89.44 (2.40) 94.10 (1.28) 91.60 (1.76) 91.49 (2.70) 91.58 (3.27)

Test 78.15 (0.86) 79.74 (0.82) 86.91 (0.72) 82.88 (0.95) 81.82 (0.22) 78.34 (1.03)

(b) Age prediction performance (mean absolute errors with correlations in brackets) with BrainNetCNN for different connectivity weightings

Validation 4.696 (0.640) 4.636 (0.645) 4.153 (0.727) 4.374 (0.691) 4.256 (0.703) 4.731 (0.625)

Training 3.797 (0.785) 3.669 (0.796) 3.634 (0.795) 3.550 (0.804) 3.538 (0.806) 3.941 (0.765)

Test 4.640 (0.644) 4.674 (0.636) 4.245 (0.706) 4.571 (0.655) 4.363 (0.678) 4.692 (0.626)

(c) g-factor prediction performance (correlations with mean absolute error in brackets) with BrainNetCNN for different connectivity weightings

Validation 0.151 (0.770) 0.168 (0.770) 0.227 (0.764) 0.185 (0.768) 0.168 (0.780) 0.169 (0.769)

Training 0.232 (0.764) 0.275 (0.761) 0.314 (0.745) 0.315 (0.753) 0.286 (0.758) 0.264 (0.763)

Test 0.138 (0.782) 0.168 (0.780) 0.201 (0.780) 0.132 (0.787) 0.155 (0.786) 0.160 (0.782)

(d) MHQ-factor prediction performance (correlations with mean absolute error in brackets) with BrainNetCNN for different connectivity weightings

Validation 0.100 (0.803) 0.089 (0.780) 0.117 (0.785) 0.118 (0.794) 0.095 (0.795) 0.073 (0.794)

Training 0.238 (0.797) 0.252 (0.768) 0.323 (0.751) 0.218 (0.785) 0.403 (0.785) 0.199 (0.787)

Test 0.116 (0.817) 0.112 (0.792) 0.143 (0.790) 0.130 (0.804) 0.112 (0.804) 0.103 (0.805)

Note: Use of connectomes based on streamline counts generally led to the best predictive performance results.

Abbreviations: FA, fraction anisotropy; ICVF, intracellular volume fraction; ISOVF, isotropic volume fraction; MD, mean diffusivity; OD, orientation

dispersion; SC, streamline count.

1916 YEUNG ET AL.
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2.2.1 | Sex classification gradient maps

According to the SC gradient attribution map for sex classification

(SexGradient), many connections from right medial orbital–frontal,

right inferior temporal regions and right hippocampus are predictive

of being female (Figure 2a). Conversely, we saw that many connec-

tions from left superior temporal, right accumbens areas and left ven-

tral diencephalon regions were chosen as being predictive of being

male. In general, the precuneus, right superior temporal region, right

insula, right putamen and right thalamus were considered by the

model as being hubs of important connections for sex classification.

According to SexGradient based on FA, many connections from

the frontal pole, right inferior temporal and left occipital regions were

highlighted as being predictive of being female (Figure 3a). On the

other hand, we saw that many connections from right accumbens,

right putamen and left entorhinal were predictive of being male. In

general, right thalamus, right caudate, right putamen, left isthmus cin-

gulate and left superior frontal regions were considered by the model

as being hubs of important connections for sex classification.

2.2.2 | Age prediction gradient maps

According to the gradient attribution map for age prediction

(AgeGradient) based on SC, many connections from pallidum, tempo-

ral pole and medial orbital frontal regions are predictive of being older,

while connections from hippocampus, right ventral diencephalon and

right transverse temporal regions are predictive of being younger

(Figure 2b). In general, the right thalamus, right accumbens areas, right

ventral diencephalon, right medial orbital frontal and right precuneus

were considered by the model as being hubs of important connections

for age prediction.

According to AgeGradient based on FA, many connections from

accumbens, isthmus cingulate and right insula regions are predictive

of being older, while connections from pars opercularis, pars

traingularis, superior frontal and left lateral orbital frontal were predic-

tive of being younger (Figure 3b). In general, the thalamus, putamen,

right caudate, left ventral diencephalon and left isthmus cingulate

regions were considered by the model as being hubs of important

connections for age prediction.

2.2.3 | g-factor prediction gradient maps

It was found that adding covariates to the DL model helped to reduce

confounding effects as seen in classical methods. The correlation

between gradient attribution map for g-factor prediction without cov-

ariates (GGradient) and AgeGradient was �0.2722, while correlation

between gradient attribution map for g-factor prediction with covari-

ates (GCovGradient) and AgeGradient was �0.0996, averaged across

cross-validation folds. We hypothesised that the addition of age and

sex covariates to the model would have accounted for the effects of

these covariates on the g-factor and we here therefore report the g-

factor gradients for the DL model which includes these covariates.

We note that according to GCovGradient based on SC, many connec-

tions from thalamus, left superior temporal and right parahippocampal

regions were chosen as being predictive of higher g-factor, while most

connections from medial orbital frontal, right amygdala and left lateral

orbital frontal regions were predictive of lower g-factor (Figure 2c). In

general, right thalamus, left putamen, left hippocampus, right superior

parietal and right precuneus regions were considered by the model as

being hubs of important connections for predicting cognitive g-factor

(Figure 2c).

Adding covariates had similar effects for the models with FA as

what we saw for SC. The correlation between GGradient and AgeGra-

dient was �0.2581 while correlation between GCovGradient and

AgeGradient was �0.0852, averaged across folds. According to GCov-

Gradient based on FA, many connections from the left lingual, left ros-

tral anterior cingulate and right entorhinal regions are predictive of

higher cognitive g-factor, while most connections from left temporal

TABLE 2 G-factor and MHQ-factor prediction performance using BrainNetCNN model with age and sex covariates for different connectivity
weightings

Weights MD FA SC OD ISOVF ICVF

(a) g-factor prediction performance (correlations with mean absolute error in brackets) using BrainNetCNN model with age and sex covariates for different

connectivity weightings

Validation 0.247 (0.758) 0.251 (0.760) 0.264 (0.756) 0.255 (0.752) 0.242 (0.766) 0.247 (0.751)

Training 0.311 (0.746) 0.314 (0.744) 0.354 (0.731) 0.325 (0.737) 0.303 (0.748) 0.307 (0.738)

Test 0.247 (0.762) 0.251 (0.764) 0.244 (0.769) 0.242 (0.760) 0.238 (0.768) 0.249 (0.759)

(b) MHQ-factor prediction performance (correlations with mean absolute error in brackets) using BrainNetCNN model with age and sex covariates for

different connectivity weightings.

Validation 0.228 (0.773) 0.223 (0.757) 0.204 (0.758) 0.228 (0.758) 0.183 (0.768) 0.215 (0.768)

Training 0.254 (0.767) 0.269 (0.749) 0.335 (0.738) 0.274 (0.751) 0.376 (0.739) 0.262 (0.759)

Test 0.243 (0.778) 0.239 (0.763) 0.231 (0.763) 0.245 (0.764) 0.202 (0.772) 0.238 (0.771)

Note: After adding covariates as external regressors to the BrainNetCNN model, all network weightings had comparable performances on both g-factor

and MHQ-factor prediction.

Abbreviations: FA, fraction anisotropy; ICVF, intracellular volume fraction; ISOVF, isotropic volume fraction; MD, mean diffusivity; OD, orientation

dispersion; SC, streamline count.
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pole, right caudal anterior cingulate and left pallidum regions are pre-

dictive of lower cognitive g-factor (Figure 3c). In general, ventral dien-

cephalon, right insula, right inferior temporal, right caudate and right

isthumus cingulate regions were considered by the model as being

hubs of important connections for predicting cognitive g-factor.

2.2.4 | MHQ-factor prediction gradient maps

According to gradient attribution map for MHQ-factor prediction with

covariates (MHQCovGradient) based on SC, many connections from

right middle temporal, left entorhinal and left superior frontal regions

were chosen as being predictive of higher MHQ-factor score (higher

MHQ-factor score representing higher psychopathology), while most

connections from left pericalcarine, left superior temporal and right

caudate regions were predictive of lower MHQ-factor score

(Figure 2d). In general, superior temporal, left precuneus, left putamen,

right superior parietal and left lingual regions were considered by the

model as being hubs of important connections for predicting MHQ-

factor score.

According to PCovGradient based on FA, many connections from

left amygdala, left lateral orbital frontal and left pars triangularis

regions were chosen as being predictive of higher MHQ-factor score,

while most connections from left insula, right pallidum and right

F IGURE 2 The saliency maps based on SC connectomes for all prediction tasks. Blue represents negative gradients and red represents
positive gradients. The colour bar has interval of 0.1–99.9 percentile of the gradients. SC, streamline count

1918 YEUNG ET AL.

 10970193, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26182 by U
niversity O

f Strathclyde, W
iley O

nline L
ibrary on [08/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



amygdala regions were predictive of lower MHQ-factor score

(Figure 3d). In general, insula, left ventral diencephalon, left posterior

cingulate, left middle temporal and right inferior temporal regions

were considered by the model as being hubs of important connections

for predicting MHQ-factor score.

2.2.5 | Interpretation of edge importance for each
prediction task

In order to verify if small subsets of edges were predominantly

responsible for performance at each prediction task, kurtosis

measures of the edge-gradient distributions were examined to evalu-

ate whether the probability mass was concentrated around the mean.

This way we assessed the gradients for age, g-factor and MHQ-factor

prediction. It was found that the kurtoses of gradients for age, g-

factor and MHQ-factor predictions based on SC were respectively

43.67, 10.93 and 11.50 (Figure 4a), and were respectively 19.24, 4.36

and 5.16 based on FA (Figure 4b). This implies that there were more

edges having gradients close to the mean (zero) for age prediction

compared to the other two prediction tasks. This indicates that the

model mainly relied on a smaller but more robust subset of edges for

age prediction, but on wider ranges but less robust subset of edges

for g-factor and MHQ-factor predictions. Figure 4 shows the

F IGURE 3 The saliency maps based on FA connectomes for all prediction tasks. Blue represents negative gradients and red represents
positive gradients. The colour bar has interval of 0.1–99.9 percentile of the gradients. FA, fractional anisotropy
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histograms of gradients for each prediction task based on SC and FA

modalities.

2.3 | Comparing prediction performance with
classical ML approaches

In addition to BainNetCNN, we also applied Ridge Regression, LASSO

Regression, linear SVM and Kernel Ridge Regression (KRR) to predict

sex, age, g-factor and MHQ-factor. Without covariates, all four alter-

native prediction algorithms (Ridge regression, LASSO regression, lin-

ear SVM and KRR) performed the best with SC data on most

prediction tasks with some exceptions (Ridge Regression and KRR

performed best on ISOVF weights for age prediction). When predict-

ing g-factor and MHQ-factor with additional covariates, linear

methods (Ridge regression, LASSO regression, linear SVM) performed

better with FA and OD rather than SC data, while KRR performed the

best with SC data. The full results and the AUC ROC curves for sex

classification are included in Section B.3 of the Supporting Informa-

tion. Overall, we found performance of the classical ML methods to

be comparable to that of the BrainNetCNN. Table 3a–d shows the

predictive performance of the five models respectively on sex classifi-

cation, age prediction, as well as g-factor and MHQ-factor predictions

(both with age and sex covariates added), based on SCs.

For Ridge regression, LASSO regression and linear SVM models,

we additionally extracted feature beta weights in order to compare

them with the BrainNetCNN gradient attribution maps. This was not

possible for the KRR model due to non-linear transformation of the

feature space.

2.3.1 | Consistency of the gradients/betas across
folds as well as across different models

Beta weights in classical ML models were generally more stable across

folds compared to gradients from the DL models, likely due to the lin-

ear nature of the classical approaches. The betas for the ML models

from the three classical methods achieved correlations of >0.68 across

folds, for all prediction tasks and for each of the network weightings.

The betas were generally more stable for sex classification and age

prediction compared to prediction of g-factor or MHQ-factor. For DL

gradients, we saw that the gradients for age and sex prediction were

consistent across folds (correlations >0.74). The gradients were how-

ever not as consistent for g-factor prediction (correlations of 0.48–

0.6). A higher correlation between gradient maps implies a higher con-

sistency in feature ranking between the models across folds, which is

why we claimed that the features were more robust age prediction

than in g-factor and MHQ-factor prediction. Details of a cross-fold

gradient and beta weight correlations are presented in Section B.4.1

of the Supporting Information.

Regarding the consistency of the DL gradients with classical ML

betas, the betas from linear ridge regression were the most consistent

F IGURE 4 The histograms of gradients based on SC and FA for each prediction task. The kurtosis measures of gradient distributions for age,
g-factor and MHQ-factor predictions based on SC were 43.67, 10.93, and 11.50 respectively, and were 19.24, 4.36, and 5.16 based on FA. This
implies that there were more edges having gradients close to the mean (zero) for age predictions than in the other two prediction tasks. This
indicates that the model relied on a smaller subset of edges for age prediction, but relied on a wide range of edges for g-factor and MHQ-factor
predictions. FA, fraction anisotropy; SC, streamline count
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with the gradient attribution maps from BrainNetCNN across differ-

ent prediction tasks. Spearman correlations between the betas and

the gradient attribution maps based on SC and FA were 0.66–0.77

and 0.49–0.85 respectively for different prediction tasks, see Section-

B.4.2 of the Supporting Information.

The top brain regions predictive of g-factor and MHQ-factor

within BrainNetCNN and within linear Ridge Regression had a high

percentage (≥60%) of overlap, within both SC and FA modalities (see

Section B.4.3 in the Supporting Information). This implies that the DL

models and the linear ridge regression models rated features in highly

similar ways.

We additionally found that inclusion of covariates in linear models

had similar effects on the betas as on the gradients in BrainNetCNN,

when both models were based on SC matrices. Without the included

covariates, the betas for g-factor prediction (GBetas) and the betas for

age prediction (AgeBetas) had average correlation of �0.2592. With

covariates, the betas for g-factor (GCovBetas) and AgeBetas had aver-

age correlation of �0.0527.

3 | DISCUSSION

In the current study, we applied the BrainNetCNN DL model to con-

nectivity matrices derived from six different structural connectivity

modalities, MD, FA, SC and three other novel measures OD, ISOVF

and ICVF, to predict sex, age, as well as two other clinically relevant

behavioural measures, the cognitive g-factor and the mental health

MHQ-factor using structural connectome data. All connectome pro-

cessing and network construction steps were performed locally on dif-

fusion and structural MRI data from the UKB. This is one of the

largest structural connectome datasets to-date and offers unprece-

dented statistical power. The BrainNetCNN, which has a more custo-

mised design for connectome-based predictive modelling than

classical ML models, has novel E2E and E2N layers specifically

designed to capture non-linear combinations of brain connections that

could be related to complex phenotypes. Taken together, application

of BrainNetCNN on a large sample of locally derived connectomes

represents a substantial advantage of our study.

It was found that the best predictions were generally achieved

with SC matrices across all models, though these are likely more sus-

ceptible to the confounding effects of age and sex, probably via head

size. Adding age and sex as external regressors to the BrainNetCNN

model helped improve the prediction of both g-factor and MHQ-fac-

tor, which demonstrates utility of adding external predictors to the

BrianNetCNN model. This is consistent with the previous studies,

which have shown that adding relevant covariates to CNN models

may lead to better predictive performance (Yamamoto et al., 2020). In

our study, we found that the addition of external regressors (i.e. the

TABLE 3 Performances of the five tested algorithms on four different prediction tasks with connectivity measures based on streamline
counts

Model BrainNetCNN Ridge logistic regression LASSO logistic regression SVM KRR

(a) Performance of the five tested algorithms on sex classification (mean percentage with standard deviation in brackets) with connectivity measures based on

streamline counts.

Validation 89.18 (0.70) 89.67 (1.01) 88.22 (1.42) 89.77 (0.91) 86.44 (1.30)

Training 94.10 (1.28) 93.75 (1.40) 90,41 (0.29) 93.90 (0.89) 88.09 (0.36)

Test 86.91 (0.72) 87.54 (0.48) 85.90 (0.68) 87.27 (0.56) 84.28 (0.36)

Model BrainNetCNN Ridge regression LASSO regression SVM-R KRR

(b) Performance of the five tested algorithms on age prediction (mean absolute error with correlations in brackets) with connectivity measures based on

streamline counts.

Validation 4.153 (0.727) 4.221 (0.713) 4.238 (0.71) 4.318 (0.698) 4.402 (0.685)

Training 3.634 (0.795) 3.773 (0.779) 3.897 (0.763) 3.975 (0.738) 4.271 (0.707)

Test 4.245 (0.706) 4.258 (0.698) 4.282 (0.695) 4.357 (0.684) 4.434 (0.669)

(c) Performance of the five tested algorithms on cognitive g-factor prediction (correlation with mean absolute error in brackets) with connectivity measures

and common covariates based on streamline counts.

Validation 0.264 (0.756) 0.270 (0.748) 0.268 (0.749) 0.270 (0.745) 0.245 (0.759)

Training 0.354 (0.731) 0.330 (0.735) 0.335 (0.733) 0.316 (0.730) 0.354 (0.728)

Test 0.244 (0.769) 0.248 (0.764) 0.248 (0.765) 0.246 (0.763) 0.257 (0.768)

(d) Performance of the five tested algorithms on mental health MHQ-factor prediction (correlation with mean absolute error in brackets) with connectivity

measures and common covariates based on streamline counts.

Validation 0.204 (0.758) 0.223 (0.767) 0.226 (0.768) 0.224 (0.794) 0.207 (0.774)

Training 0.335 (0.738) 0.281 (0.753) 0.279 (0.755) 0.286 (0.750) 0.269 (0.758)

Test 0.231 (0.763) 0.244 (0.772) 0.237 (0.776) 0.230 (0.794) 0.229 (0.780)

Note: The linear ML models have comparable performance with the non-linear model (KRR) and the deep learning model (BrainNetCNN) on all four

evaluated prediction tasks.
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covariates) had similar effects on the performance of the DL model, as

it had on the performance of the classical linear regression models. A

recommendation which follows from our results is that researchers

should consider adding clinical and demographic covariates to DL

models to improve prediction results.

When comparing BrainNetCNN to the classical ML methods, we

found similar performance across all prediction tasks. The KRR model

did not outperform the other three linear predictive models. This

implies that models which simply consider ROI-to-ROI connections

individually and linearly can match state-of-the-art ML models when

applied to structural connectomes. We further found high correlations

between gradient maps from DL models and beta maps from linear

models, which indicates that BrainNetCNN estimated the connectivity

graph node and edge importance weights in similar ways as linear pre-

diction models. Moreover, inclusion of age and sex covariates had

similar effects in both BrainNetCNN and linear models. This poten-

tially implies that there is a lack of exploitable non-linearity in brain

scans for phenotype prediction, as previously suggested in Schulz

et al. (2020). Taken together, these results indicate that most of the

variation between phenotypes in weighted structural connectomes is

linear rather than non-linear in nature.

In the current study, we found that the models based on SC mea-

sures had the best predictive performance compared to other net-

work weightings. This is in line with the results of the previous studies

which showed that use of SC measures led to better performance

when predicting Autism Spectrum Disorders and paediatric Traumatic

Brain Injury (Payabvash et al., 2019; Raji et al., 2020). SC measures

might overall be more sensitive to phenotype and psychopathology-

related differences in brain connectivity (e.g., Oestreich et al., 2019).

We note that the entries in SC matrices followed log-normal distribu-

tions, while entries in other types of connectivity matrices followed

normal distributions, which might have been one reason for superior

predictive performance with SC matrices. Another possibility, as sug-

gested in Buchanan et al. (2020), could be that the confounding effect

of age and sex via head size on SC weightings was larger than on

other types of network weightings, which gave a possible explanation

for the disappearance of SCs superiority in predicting g-factor and

MHQ-factor after adding sex and age to the prediction models.

As expected, we found prediction of g-factor (r = .249) and the

MHQ-factor (r = .234) to be less accurate than prediction of age and

sex. We also found that the feature rankings were more robust in sex

and age prediction than in g-factor and MHQ-factor prediction. Pre-

dicting complex cognitive phenotypes from structural neuroimaging is

a difficult task. Existing studies conducted on large community sam-

ples found that structural neuroimaging measures tend to account for

only modest proportions of variance in intelligence (Cox,

Ritchie, et al., 2019; Deary et al., 2022). Prediction of case–control

status for specific mental illnesses or modelling of mental health con-

tinuum has been a similarly difficult task. While some recent studies

have had some success in predicting anxiety (Greening &

Mitchell, 2015; Wang et al., 2021) and depression symptom severity

(Yu et al., 2021) with functional and structural connectomes (achieving

correlations >0.24 between the predicted score and the actual score),

they generally had relatively small sample sizes with replication yet to

be achieved in larger cohorts. Our study extends these results and

suggests that brain regions and connections are differentially impor-

tant for prediction of behavioural and mental health phenotypes such

as the g-factor and MHQ-factor (Cox, Ritchie, et al., 2019; Dubois

et al., 2018).

Our analysis of SC gradient maps revealed the putamen, right pre-

cuneus, right thalamus and left superior temporal regions as hubs of

important connections for all prediction tasks. For FA gradient maps,

we found that the right isthmus cingulate, right ventral diencephalon

and right insula were selected as hubs of important connections for all

prediction tasks. The relative importance of the regions shown here in

the context of prediction modelling should not be interpreted from a

functional perspective. In other words, the estimated relative region

importance for g-factor prediction must not be taken to indicate

importance of that region for, for example, the cognitive processes

underpinning the g-factor. This is because the collinearity among

regional brain properties results in the selection of some predictors

that carry global information, with other predictors being used for fine

tuning of the prediction model. The low-to-medium correlations

between the beta coefficients (from ML models) and gradient maps

(from DL models) lends some credence to such hypothesis. In-depth

interpretations on drawing linkage between structural network

weights and behavioural measures will require a different type of

analysis technique.

Some limitations of the current study should be mentioned. First,

the UKB consists of healthier, highly educated and older individuals

(Fry et al., 2017), which may induce bias in model training and the der-

ivation of g-factor and MHQ-factor. Second, it is possible that the rep-

resentation of structural connectivity in the form of adjacency

matrices might have limited the DL model's potential to utilise the

latent non-linear properties of the brain networks, thus leading to

suboptimal performance on prediction of the g-factor and MHQ-fac-

tor. Another possibility, as described in both He et al. (2020) and

Schulz et al. (2020), is that a much larger sample size may be needed

for DL models to show superiority over classical ML methods. We

note that greater sample sizes will soon be feasible and it will be

advantageous for uncovering the relationship between prediction per-

formance and sample size as well as unlocking the potential of DL

models. Fourth, BrainNetCNN has novel layers designed for preserv-

ing the topology of adjacency matrices. However, the setup of the

E2E and E2N layers only allowed aggregating values in the 1-hop

neighbourhood (primary neighbours) and this might have limited its

ability to explore long-range connections. This could have limited the

DL model ability to learn complex non-linear relationships. A simple

adjustment could be to alter the network architecture by stacking a

number (e.g., k) of E2E layers, which would enable the model to

explore brain region connections to k-hop rather than 1-hop neigh-

bours. In this case, however, the simpler and shorter-range connec-

tions (i.e. 1-hop to [k � 1]-hop neighbourhood) may be ignored and

not used for prediction in the top layers. To overcome these limita-

tions, future studies could modify the BrainNetCNN architecture

according to the idea of residual connections in deep neural networks
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(He et al., 2016)—which would enable the model to take into account

both direct and indirect longer-range connections between brain

regions.

The MHQ-factor in this study was derived from online MHQ

items collected by the UKB and they were not clinical diagnoses.

While it might not be adequate to represent the general dimension of

psychiatric disorders, it can be interpreted as a measurement of gen-

eral mental health that is potentially more informative than binary

case–control distinctions (Coleman, 2021). We acknowledge that p-

factor derived from factor modelling is less well validated as in other

measures, for example, the g-factor, and results should be considered

accordingly (Cervin et al., 2020; van Bork et al., 2017; Watts

et al., 2020). Nonetheless, other studies do support the existence of

general dimensions to capture psychopathology (Caspi et al., 2020;

Lund et al., 2020; Plana-Ripoll et al., 2019; Sprooten et al., 2022), and

further investigate the polygenic p-factor derived from polygenic

scores for different psychiatric disorders (Allegrini et al., 2020; Selzam

et al., 2018). Most current derivations of p-factor rely on binary or

ordinal data which reduces variance and thus statistical power. Future

studies may explore p-factor derivations based on continuous

variables.

A further, more general limitation of our study is that there is not

yet an agreed methodology for constructing structural brain networks

from dMRI data (Qi et al., 2015). Connectomic measures are known to

be sensitive to the network construction methodology, and different

predictive modelling results might be achieved with network construc-

tion approaches other than those applied here. dMRI itself only

enables noisy and indirect measurement of water molecule diffusion,

and thus faithful reconstruction of brain connectivity remains chal-

lenging (Buchanan et al., 2020; Jones et al., 2013). These limitations

will be addressed in the future with further advances in both struc-

tural imaging and tractography methods.

To summarise, we verified that adding relevant external predic-

tors to the BrainNetCNN could potentially aid the prediction. The

BrainNetCNN DL model did not perform substantially better com-

pared to classical ML approaches when applied to predict age, sex, g-

factor or MHQ-factor from connectomic data. Comparison of gradient

maps from DL models and beta maps from linear ML models sug-

gested that these methods ranked the features in similar ways. Results

also showed that the BrainNetCNN model treated the additional cov-

ariates (age and sex) in a similar way as did the classical linear regres-

sion models. Overall, the results of our study imply that additional

model complexity may not improve prediction of complex phenotypes

from structural connectomic data.

4 | MATERIALS AND METHODS

4.1 | Materials

Participants were recruited and brain imaging was completed as part

of the UKB study. The UKB field IDs for the cognitive tasks and men-

tal health questionnaire (MHQ) items used in this study are presented

in Section A.1 of the Supporting Information. Details of the UKB data

can be found at https://biobank.ndph.ox.ac.uk/showcase/label.cgi?

id=100000. As a brief summary, four cognitive tasks were chosen for

deriving the g-factor and 14 MHQ items were chosen for derivation

of the MHQ-factor.

4.1.1 | Participants

A subset of the UKB participants underwent brain MRI at the UKB

imaging centre in Cheadle, Manchester, UK. N = 9858 participants

with compatible T1-weighted and dMRI data were collected from the

UKB for which we derived connectomes locally as described in the

following sections.

4.1.2 | MRI acquisition

All imaging data were acquired using a single Siemens Skyra 3T scan-

ner. 3D T1-weighted volumes were acquired using a MP RAGE

sequence at 1 � 1 � 1 mm resolution with 208 � 256 � 256 field of

view (FOV). The dMRI data were acquired using a spin-echo EPI

sequence (50 b = 1000 s/mm2, 50 b = 2000 s/mm2 and 10 b = 0 s/

mm2) resulting in 100 distinct diffusion-encoding directions,

FOV = 104 � 104 mm, imaging matrix = 52 � 52, 72 slices, slice

thickness = 2 mm. N = 831 (�8.4% of total N) participants with miss-

ing dMRI data or processing failure were excluded from the analysis.

Details of the MRI protocol and imaging data processing can be found

in (Alfaro-Almagro et al., 2018; Miller et al., 2016).

4.1.3 | Network construction

The network data and methods of network construction used in this

study have been published previously (Buchanan et al., 2020; Madole

et al., 2021) and are outlined below. All network construction steps

were performed locally on MRI data. Each T1-weighted image was

segmented into 85 distinct neuroanatomical ROI using volumetric seg-

mentation and cortical reconstruction (FreeSurfer v5.3.0), 34 cortical

structures per hemisphere were identified using the Desikan–Killany

atlas (Desikan et al., 2006). Brain stem, accumbens area, amygdala,

caudate nucleus, hippocampus, pallidum, putamen, thalamus and ven-

tral diencephalon were also extracted with FreeSurfer. Outputs were

visually inspected and those which failed to meet quality control

(QC) standards were removed (Cox, Lyall, et al., 2019). N = 842

(�8.5% of total N) participants with incomplete FreeSurfer output or

processing failure were excluded from the analysis. A cross-modal

nonlinear registration method was used to align ROIs from

T1-weighted volume to diffusion space [skull stripping (Smith, 2002),

initial alignment by affine transformation with 12 degrees of freedom

(FLIRT; Jenkinson & Smith, 2001) followed by a nonlinear deformation

method (FNIRT; Andersson et al., 2007)].

Networks were constructed by identifying connections between

all ROI pairs. The endpoint of a streamline was recorded as the first

ROI encountered when tracking from the seed location. Successful

YEUNG ET AL. 1923
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connections were recorded in an 85 � 85 adjacency matrix. In total,

six network weightings, FA, MD, SC, OD, ISOVF and ICVF, were com-

puted. For each weighting, an adjacency matrix was computed with

each element, aij, recording the mean value of the diffusion parameter

in voxels identified along all interconnecting streamlines between

nodes i and j. All matrices were made symmetric since afferent and

efferent connections are indistinguishable for tractography. Self-

connections were removed, setting diagonal entries to zero

(Buchanan et al., 2020). N = 2 participants with disconnected connec-

tivity matrices were excluded.

In total, 8183 participants (45.1–78.5 years of age, 3869 male)

remained after participants were excluded at QC stage or due to fail-

ure in processing. Although it was reported in Madole et al. (2021)

that N = 157 participants (<2%) might have dementias and neurologi-

cal syndromes, for example, stroke and brain injuries, they found that

excluding these participants from the sample did not result in signifi-

cant differences in their primary outcome measures (Madole

et al., 2021). We therefore kept the full sample for the following anal-

ysis. On average, 6.01 million streamlines were seeded per subject of

which 1.49 million (24.9%) were found to successfully connect

between nodes following the tracking procedure and removal of self-

connections. For each participant, networks were produced from the

same set of streamlines, where the range of values for MD is 0–

0.003 � 10�3 mm2/s, for FA is 0–0.9, for SC is 0–4.03 � 104, for OD

is 0–0.9, for ISOVF is 0–1 and for ICVF is 0–1. Before any threshold-

ing was introduced, the mean value of network density (percentage of

non-zero entries in an adjacency matrix) across subjects was 68.1%

(SD = 3.1). Proportional-thresholding was used to keep only connec-

tions present in at least 2/3 of subjects, which resulted in connection

density of �60% after thresholding.

4.1.4 | Cognitive tasks and g-factor

The cognitive tasks included the verbal numerical reasoning (VNR),

reaction time (RT, log-transformed), pairs matching (Pairs Match, log

[x + 1] transformed) and Prospective Memory (Fawns-Ritchie &

Deary, 2020; Lyall et al., 2016) tests. Table 4 shows participants char-

acteristics, demographic information and cognitive task scores. Miss-

ing values were imputed in R with the missMDA package (Josse &

Husson, 2016). Description of the cognitive tasks' scores is presented

in Section A.1.1 of the Supporting Information.

Principal component analysis (PCA) implemented in pcacov func-

tion in MATLAB 2020a was applied to the four cognitive tasks as an

intermediate step to derive the cognitive g-factor value for each par-

ticipant. The principal component score, g-factor, was computed as

the sum of z-normalised cognitive task scores multiplied by the

respective first unrotated component coefficients from pcacov. The g-

factor explained 34.55% of the variance. To avoid data leakage, the

principal component coefficients were computed with exclusion of

the test data (see below). Excluding the missing values and test data in

the cognitive tasks, 6558 samples were available for computing the

principal component coefficient. The g-factor was z-normalised based

on the training data. The resulting g-factor had a range [�4.3661,

2.7664]. The standardised loadings of scores for each task on the g-

factor are shown in Table 5.

4.1.5 | MHQ-factor

The derivation of the general mental health score, the MHQ-factor,

followed the same principles as described in Lund et al. (2020). Lund

et al. (2020) applied PCA to the 14 mental health questionnaire

(MHQ) items from the UKB which measured common forms of

depression, anxiety, psychotic experiences and substance abuse, and

took the first unrotated principal component score as the MHQ-fac-

tor. In this study, the same set of MHQ items was used to derive the

MHQ-factor. Out of 8183 participants, 6247 participants had fewer

than three missing values on these 14 MHQ items. The missing values

were imputed in R with the missMDA package (Josse &

Husson, 2016).

Since all MHQ items were categorical variables, the polychoric

correlation was more appropriate than Pearson's correlation for appli-

cation of PCA. We applied PCA on polychoric correlation of the

TABLE 4 Summary characteristics of
the UK biobank participants included in
the study

(a) Demographic information for the training and test sets of the UK Biobank participants

Sample characteristics Training set summary Test set summary Total data available (N)

Sex [F:M] 3647:3306 667:563 8183

Age (in years) [Mean (SD)] 62.10 (7.39) 62.49 (7.45) 8183

(b) Sample mean scores of the cognitive tasks completed by the UK Biobank participants included in the
study

Cognitive measures Sample mean score Data available (N)

VNR [Mean (SD)] 6.872 (2.103) 7806

RT (in log[x]) [Mean (SD)] 6.358 (0.168) 8090

Pairs Match (in log[x + 1]) [Mean (SD)] 1.285 (0.648) 8127

Prospective Memory [1:0] 7257:855 8112

Note: For the prospective memory test, 1 means recall at the first attempt and 0 otherwise.

Abbreviations: Pairs match, pairs matching; RT, reaction time; VNR, verbal numerical reasoning.
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14 items and took the first unrotated principal component score as

the MHQ-factor. A comparison of the two PCA methods (using poly-

choric and Pearson correlation) is presented in Section A.2.1 of the

Supporting Information. We checked the variance explained, factor

congruence between the two methods, and assessed correlations

between the principal component scores derived using the two

methods. This motivated selection of polychoric correlation for the

PCA. The derived MHQ-factor explained 49.60% for the variance.

Figure 5 shows the loadings of the individual MHQ items on the prin-

cipal components. We saw strong positive loadings of depressive/

anxiety items on the first PC and positive loadings of psychotic experi-

ences items on the second PC, which is similar to the results reported

in (Lund et al., 2020). It was also found that the MHQ-factor was not

significantly associated with the g-factor (Pearson's correla-

tion = .0025, p-value = .8483).

4.2 | Methods

4.2.1 | BrainNetCNN components

We chose the BrainNetCNN model as it is specifically designed for

connectomic data. While additional transformation to the graph data

TABLE 5 Standardised loadings of individual cognitive test scores
on the cognitive g-factor

Cognitive tasks Loadings

VNR 0.6914

RT �0.5514

Pairs Match �0.5186

Prospective Memory 0.5752

PropVar 0.3455

Abbreviations: Pairs match, pairs matching; PropVar, proportion of

variance explained by the g-factor; RT, reaction time; VNR, verbal

numerical reasoning.

F IGURE 5 Loadings of the 14 MHQ items in UKB on the principal components derived with PCA. We saw strong positive loadings of
depression/anxiety items on the first PC and positive loadings of psychotic experience items on the second PC. Refer to Table S1 in section A.2.2
for exact values of standardised item loadings on principal components. Q1: Ever addicted to any substance or behaviour; Q2: Ever felt worried,
tense, or anxious for most of a month or longer; Q3: Ever worried more than most people would in similar situation; Q4: Ever had prolonged loss
of interest in normal activities; Q5: Ever had prolonged feelings of sadness or depression; Q6: Ever heard an un-real voice; Q7: Ever believed in
an un-real conspiracy against self; Q8: Ever seen an un-real vision; Q9: Ever believed in un-real communications or signs; Q10: Ever self-harmed;
Q11: Ever sought or received professional help for mental distress; Q12: Ever suffered mental distress preventing usual activities; Q13: Ever had

period of mania/excitability; Q14: Ever had period extreme irritability

YEUNG ET AL. 1925
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is often needed for other methods (e.g., mapping connectomic data to

participant-wise similarity matrix using graph kernels or to n-

dimensional Euclidean space using graph embedding), the information

aggregation process within the custom layers within the Brain-

NetCNN model preserves the topological locality of connectivity adja-

cency matrices. Kawahara et al. (2017) provide clear formulations of

the special layers for the BrainNetCNN (Kawahara et al., 2017).

Briefly, the layers user in the network are the following:

Edge-to-edge (E2E) layer

This is a convolution layer with a cross-shaped filter where the (i,j)

entry output is given by the weighted sum of the ith row and

weighted sum of the jth column. This can be written as

Ak,n
� �

ij
¼
XFk�1

f¼1

Ak�1
i,: �wk�1,f,n

r þAk�1
:,j �wk�1,f,n

c ð1Þ

where Ak,n is the filtered adjacency matrix, Ai,: is the ith row of A and

A:,j is the jth column of A, and wr
k�1,f,n and wc

k�1,f,n are the learnt row

and column weights for the nth filter at the k � 1-th layer, respec-

tively. Fk�1 is the number of feature maps at the k � 1-th layer.

Edge-to-node (E2N) layer

An E2N layer is equivalent to adding a spatial one-dimensional convo-

lutional row filter of the adjacency matrix to a transposed spatial 1D

convolutional column filter of the adjacency matrix. Kawahara et al.

(2017), showed that combining the row and column filters does not

result in improvement of model performance when compared to using

only the row filter, and hence only the row filter was applied in the

current study.

4.2.2 | Network architecture

Architecture without covariates

The architecture of the deep neural network is presented in Figure 6a.

This is a simpler version of the original architecture described in

Kawahara et al. (2017). We were able to significantly reduce the

number of layers and filters while maintaining prediction performance.

Moreover, either increasing the number of filters per layer or the

number of hidden layers made the overfitting more severe. We have

also experimented with hyperparameter tuning for the E2E, E2N and

N2G layers, aiming to optimise scales for leaky rectified linear

unit and the dropout rate using Bayesian optimisation. The

F IGURE 6 Two
BrainNetCNN architectures. E2E,
edge-to-edge; E2N, edge-to-
node; FC, fully connected; leaky
ReLU, leaky rectified linear unit;
N2G, node-to-graph; prob,
probability

1926 YEUNG ET AL.
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hyperparameter optimisation in BrainNetCNN was performed on a

fixed predefined validation set (rather than through cross-validation)

to enable reasonable optimisation times. The accuracies were similar

to those without tuning and we therefore proceeded with fixed

hyperparameters (Figure 6) in our further investigations. Full results

with hyperparameter tuning are shown in Supporting Information

Section B.2.

Architecture with covariates

The g-factor and MHQ-factor are known to be significantly associated

with age and sex, and hence consideration of these factors in the pre-

dictive model can improve its performance. To take into account age

and sex covariates, the model was updated with additional layers.

Specifically, a concatenation layer was connected to the N2G layer to

include the covariates. Figure 6b shows the architecture of the

updated model.

The loss function for sex classification was cross entropy and the

loss function for the other three prediction tasks was mean square

error.

4.2.3 | Network input

The SC matrices were first made symmetric by the addition of the

transpose and division by 2. We then performed maximum value nor-

malisation on the symmetric SC matrices. The maximum value normal-

isation was performed on all modalities as we previously found this to

be the most effective normalisation (Yeung et al., 2020). Maximum

value normalisation is formulated as follows:

Amax ¼ A
max

1≤ i,j≤85
Aij

ð2Þ

Since it is known that the head size has a great influence on the SCs,

we computed the correlation between the intracranial volume (ICV)

and the total sum of entries in the SC matrices before and after nor-

malisation. We found that the correlation was 0.7405 (β = 0.7988,

p < 1 � 10�324) before normalisation and �0.0701

(β = �1.023 � 10�5, p = 3.784 � 10�11) after normalisation. There-

fore, we saw that the maximum value normalisation was able to

largely remove the effect of ICV. Figure 7 shows the mean connectiv-

ity matrices computed across all participants for different weightings

and histograms of edge weights pooled across participants. The SC

weights were shown in log-scale. The five network weightings except

for SC had similar distribution shapes. MD, FA, OD and ICVF had

skewness in the range [�0.3, 0.3]. ISOVF had a skewness of 1.36 and

SC has a skewness of 8.01.

4.2.4 | Gradient attribution map

Gradient attribution maps were computed to check which connectiv-

ity matrix entries influenced prediction the most (Simonyan

et al., 2013). This is similar to computing the partial derivative of the

class score with respect to each entry of the An matrix, where the

magnitudes of the derivatives represent the degrees of influence on

the final class score, yn, for some participant n. This means that the

magnitudes of gradients approximately tell us how the model ranks

F IGURE 7 Top: 85 times 85 mean connectivity matrices of inter-region connection weights averaged across all participants (N = 8183) for six
network weightings after performing maximum value normalisation. The two blocks along the diagonal in each case correspond to the left and
right hemispheres. Bottom: The corresponding histograms of nonzero edge weights pooled across all participants for each weighting (SC is log-
scaled). The SC weights were shown in log-scale. Apart from the SC weights, the other five network weightings had similar distribution shape.
MD, FA, OD and ICVF had skewness in the range [�0.3, 0.3]. ISOVF had a skewness of 1.36 and SC has a skewness of 8.01. FA, fraction
anisotropy; ICVF, intracellular volume fraction; ISOVF, isotropic volume fraction; MD, mean diffusivity; OD, orientation dispersion; SC, streamline
count

YEUNG ET AL. 1927
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the structural connectome feature importance with respect to the

evaluated prediction task. The sign of the gradient indicates whether

the connectome feature is positively or negatively predictive of the

target variable. Gradients thus partly inform us of the model's strategy

in making its predictive decisions. By computing correlations between

gradient maps for different models (i.e., trained for different predic-

tion tasks), it is thus possible to assess similarity in the model strate-

gies for completing these tasks.

Due to the stochastic nature of the neural network training pro-

cess, the gradient maps may be different across different training runs

and across different parameter initialisations. In our study, the Brain-

NetCNN models were therefore trained 20 times for each cross-

validation (CV) partition with randomised parameter initialisations.

Since we used 5-fold cross-validation, there were 100 BrainNetCNN

models trained in total. We then took the average of the gradient

maps from the 100 models for each modality and each prediction task.

Since An is symmetric, we expected that
∂An

ij

∂yn ¼
∂An

ji

∂yn . However, in

reality, since the column weights and row weights within the filters

were trained independently, it was found that not only An
ij and An

ji

had different magnitudes, but some of the pairs even had opposing

signs. To solve this issue, we summed each gradient map with its

transpose, thus getting a single gradient estimate for each ROI-to-ROI

connection.

Predictive power of each node (ROI) was defined as the sum of

the gradients of the node's edges. This enabled determining whether

the node was generally predictive of higher or lower outcome values.

Importance of each node was defined as the sum of the absolute

values of the node edges’ gradients This was used to determine

whether a node was a hub of important connections for prediction.

We report the top regions relevant for each prediction task based on

these two measures (predictive power and importance) in Section-

B.4.3 of the Supporting Information. We should note that our assess-

ment of node importance was purely based on the magnitudes and

directions of the gradient map entries. We thus do not claim that the

regions defined as important for prediction in this study were the only

ones related to (or responsible for) the evaluated phenotypes.

4.2.5 | Model hyperparameters

For both models we used Adam optimiser (Kingma & Ba, 2014) for

weight updates, with the same set of hyperparameters used in train-

ing: learning rate = 0.001, gradient decay factor = 0.9, squared gradi-

ent decay factor = 0.9, mini batch size = 128, validation

frequency = 50, training epoch = 200. The training stopping points

corresponded to the best validation accuracy.

4.2.6 | BrainNetCNN validation and testing

The participants were first sorted according to their participant ID in

ascending order. The test set consisted of the first 15% of the total

sample (�1230 participants for prediction of sex, age and cognitive

functioning, �940 participants for MHQ-factor—a slightly smaller

number because only 6247 participants had both structural connec-

tomes data and responses to MHQ items available). Five-fold CV was

performed on the rest of the data. The same set of CV fold splits was

used across the imaging modalities to enable direct comparisons. In

each iteration of the 5-fold CV, a BrainNetCNN model was trained on

the corresponding training folds for 200 epochs and the DL weights

at each epoch were recorded. This resulted in 200 sets of weights

representing different phase of learning within the training process.

Each set of weights (or epoch weights) gave a corresponding valida-

tion accuracy/correlation, and the set of weights that yielded the best

validation accuracy were taken as the optimal weights for the itera-

tion and were used for performance evaluation on the test data. Test

accuracies were averaged across the folds to get performance

estimates.

4.2.7 | Classical ML approaches

We compared the DL models with linear versions of three common

classical methods: Ridge Regression, LASSO Regression, and linear

SVM. The beta weights can be efficiently extracted from these three

types of models and therefore enabled comparison with the Brain-

NetCNN gradient attribution maps. We also applied Kernel Ridge

Regression (KRR). Multiple studies suggest that KRR may have compa-

rable performances with DL methods (He et al., 2020; Mihalik

et al., 2019; Schulz et al., 2020). Input features to these models were

the individual ROI-to-ROI connections specified in the normalised

adjacency matrices (i.e., the upper/lower triangular entries of the

matrices).

In addition to the predictive analyses based on the connectomic

data we also tested using only age and sex to predict the g-factor and

p-factor. The models were underfit and we therefore did not examine

them further.

Ridge regression

Ridge regression is very similar to ordinary least squares regression

except for the fact that it has an extra regularisation term:

Y¼Xβþe ð3Þ

where Y is the response variable, X is the input feature vectors, β are

the learnt feature weights, subjected to the following cost function,

min
β

square lossþλβTβ

where square loss = (Y � Xβ)T(Y � Xβ). The L2 regularisation term

(λβTβ) is added to prevent overfitting. For logistic regression, the

equation is the following,

ln
p

1�p
¼Xβþe

where p = P(Y = 1), and square loss is replaced by logistic loss:

1928 YEUNG ET AL.
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logistic loss¼�
XN

i¼1

� ln 1þeXi,:β
� �þYi Xi,:βð Þ� �

where N is the number of observation, Xi,: is the feature vector for

observation i, Yi is the response for observation i.

LASSO regression

LASSO regression is similar to Ridge regression except that the L2

regularisation term is replaced by L1 regularisation term, with the

same regression equation, but subject to a different constraint:

min
β

square lossþλ βk k1

Similarly to logistic Ridge regression, square loss is replaced by logistic

loss in logistic LASSO regression.

Support vector machine

SVM is one of the most popular ML techniques applied in the neuro-

imaging literature. For classification, SVM constructs hyperplanes

between two classes such that the distance between them is as large

as possible. The larger the hyperplane margin between classes, the

lower the out-of-sample error. SVM regression (SVM-R) is similar to

the “soft margin” concept in SVM classification. More details can be

found in (Boser et al., 1992) for support vector classification and

(Drucker et al., 1997; Ho & Lin, 2012; Vapnik et al., 1997) for support

vector regression. Linear kernel was used in this study. The epsilon

parameter for linear SVM-R was estimated using the interquartile

range of response variable Y.

Kernel ridge regression

Kernel regression is a non-parametric ML algorithm (Murphy, 2012).

Instead of taking the original features as predictors, it takes the sub-

ject pairwise-similarities as the predictors for the ML model. Let

Xtrain = {x1,x2,…,xn} be the set of feature vectors and Ytrain = {y1,y2,…,

yn} be the set of responses in the training set. For a test subject x', y' is

estimated through the following equation:

y0 ¼
Xn

i¼1

βiK xi, x
0ð Þyi

where the K(xi,x') is the similarity between x' and each feature vector

xi in the training set. βi are the learnt feature weights, subjected to the

cost function similar to the one stated in the section on Ridge regres-

sion. With this setup, the dimension is basically equal to the number

of observations in the training set in each fold. Similar to He et al., the

similarity K(�,�) was chosen to be the Pearson's correlation between

the upper triangular entries of matrices (He et al., 2020).

Classical ML methods validation and testing

LASSO regression, Ridge regression and linear SVM methods have

single regularisation hyperparameter λ. Search range for optimal λ

consisted of 300 different values ranging from 1 e�6 to 1 e�1

equally spaced on the logarithmic scale. The validation process for

the classical ML models was similar to that used with BrainNetCNN.

After separating the test set from the rest of the data, a 5-fold CV

was performed on the rest of the data. In each iteration of the 5-fold

CV, a model was trained on the training fold data with each of the

300 λ values, resulting in 300 models. The λi that optimised the vali-

dation accuracy/correlation was chosen for that iteration, so the λs

are different for each fold, each model and each connectivity

weight.
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