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Abstract—Hyperspectral imaging is a crucial tool in remote
sensing, which captures far more spectral information than stan-
dard color images. However, the increase in spectral information
comes at the cost of spatial resolution. Super-resolution is a pop-
ular technique where the goal is to generate a high-resolution
version of a given low-resolution input. The majority of modern
super-resolution approaches use convolutional neural networks
(CNNs). However, convolution itself is a linear operation and the
networks rely on the nonlinear activation functions after each
layer to provide the necessary nonlinearity to learn the complex
underlying function. This means that CNNs tend to be very deep
to achieve the desired results. Recently, self-organized operational
neural networks (ONNs) have been proposed that aim to overcome
this limitation by replacing the convolutional filters with learnable
nonlinear functions through the use of MacLaurin series expan-
sions. This work focuses on extending the convolutional filters of
a popular super-resolution model to more powerful operational
filters to enhance the model performance on hyperspectral images
(HSIs). We also investigate the effects that residual connections
and different normalization types have on this type of enhanced
network. Despite having fewer parameters than their convolutional
network equivalents, our results show that ONNs achieve superior
super-resolution performance on small HSI datasets.

Index Terms—Hyperspectral imaging, operational neural
networks (ONNs), super-resolution.

I. INTRODUCTION

HYPERSPECTRAL imaging is a key tool in remote sens-
ing applications, such as material classification, mineral
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exploration, environmental monitoring, etc. [1]. The reason it is
valuable is due to its additional spectral information that offers
insights into the materials within the image that standard color
images cannot provide. However, due to sensor limitations, it
is difficult to obtain a high-quality hyperspectral image (HSI)
with both high spectral and spatial resolution [2] and thus the
increased spectral resolution comes at the cost of decreased
spatial resolution [3]. Automated image processing tasks, such
as image segmentation, object detection, and classification can
improve the efficiency of remote sensing systems. However,
the reduction in spatial resolution can be detrimental to their
performance. It is therefore desirable to be able to recover the lost
spatial resolution to improve the performance of postprocessing
tasks on the resulting HSI. Single image super-resolution (SISR)
is a technique used to enhance the spatial resolution of the given
low-resolution HSI without any auxiliary information.

Most modern super-resolution (SR) approaches use convolu-
tional neural networks (CNNs) to produce an image-to-image
mapping operator, which converts the input low-resolution im-
age to a high-resolution image [4], [5], [6], [7]. These operators
are of a complex nonlinear nature and part of the reason that
CNNs have had so much success in this field is due to their
capacity to learn complex nonlinear operators. However, the
sole nonlinear elements of a CNN come from the activation
functions after each layer, meaning that CNNs often require
many layers to have the necessary nonlinear capacity and diver-
sity to learn the desired operator. Recently, operational neural
networks (ONNs) [8], [9] and their new variants, self-organised
operational neural networks (Self-ONNs) [10], have been pro-
posed to overcome this limitation by using the generative neuron
model that can customize the optimal nonlinear function during
training for each kernel element. To accomplish this, each kernel
element is extended with MacLaurin series expansions and
the terms of the series are made learnable. This means that
each kernel element can learn to approximate any nonlinear
function and thus similar theoretical nonlinear capacity of a
deep CNN can be achieved in a much shallower Self-ONN,
which is more computationally efficient. In this article, we take
the popular SR network, SRCNN [6], and extend it for use on
HSIs. We also make a Self-ONN equivalent model by replacing
the convolutional layers with operational layers. Furthermore,
we make a Self-ONN version with a reduced number of filters
to demonstrate the nonlinear capacity of operational layers
over convolutional layers. We train our models on the publicly
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available Pavia University, Cuprite, Salinas, and Urban
datasets [11], [12] and show that Self-ONNs can provide a
HSI SR performance improvement of over 0.5 dB PSNR even
when it has fewer parameters than a CNN with an equivalent
architecture.

Furthermore, this study investigates the effects residual con-
nections and various normalization types have on Self-ONN
performance, as, to the best of our knowledge, this has not been
previously investigated.

The novel and significant contributions of this study can be
summarized as follows:

1) Based on the SRCNN [6] configuration, novel Self-ONNs
have been proposed for the hyperspectral SISR task.

2) We incorporate residual connections and various normal-
ization layers into Self-ONN models, which to the best of
our knowledge, has never been done before, and present
our novel findings on the performance effects these layer
types have on our Self-ONN models.

3) With the proposed model and structural modifications, we
have achieved performance improvements with a reduced
number of overall network parameters compared to the
SRCNN model.

The rest of this article is organized as follows: Section II
briefly presents the related work with the conventional ONNs.
Section III details the proposed methodology for hyperspectral
SISR. We present the experimental setup and results in Sec-
tion IV along with detailed comparative evaluations in Section V.
Finally, Section VI concludes this article.

II. RELATED WORK

A. Super-Resolution

Most modern approaches to SR use CNNs in either a super-
vised or unsupervised manner [13], [14], [15], [16]. Supervised
training involves training a model on a dataset consisting of
low-resolution and high-resolution image pairs. One of the first
papers to adopt this approach was [6] where they proposed their
CNN model named SRCNN for the task of SISR.

SRCNN is a fairly shallow CNN consisting of only three
layers, so Kim et al. [17] proposed a much deeper CNN to
perform supervised SISR. The deeper network provides more
learning capacity but is also more difficult to train due to
the vanishing gradient problem. To overcome this issue, they
proposed a residual connection which sums the input of the
model directly to the output so that instead of learning the direct
input-to-output image mapping, the model learns the residual
between the input and output, which improved results and greatly
decreased training times.

Since then, many other deep CNN models have been pro-
posed for supervised SISR [13], [18], [19], [20], [21]. However,
the main challenge of this approach is acquiring the dataset.
Ideally, perfectly aligned images would be captured with a
low-resolution and a high-resolution sensor, but this is imprac-
tical to perform in many situations. What is more commonly
done is a dataset of high-resolution images is acquired and the
low-resolution image pairs are then synthetically generated by
blurring and downsampling the high-resolution images and then
adding noise.

To overcome this limitation, unsupervised methods using
generative adversarial networks (GANs) [22] have been pro-
posed, which utilize datasets of unpaired real high-resolution
and low-resolution images through the use of generator and
discriminator models. The generator produces high-resolution
versions of the low-resolution images and the discriminator
aims to distinguish between the true high-resolution images
and the generated high-resolution images. Over time, the gen-
erator learns to produce realistic high-resolution outputs of the
input low-resolution images which match the distribution of the
high-resolution image dataset. Thus, the model is more likely to
learn the true low-resolution to high-resolution image mapping
function. Many researchers have achieved impressive results
using this approach [4], [15], [23], [24], [25], [26]. However, the
unsupervised nature of this approach means that it is inherently
more difficult to train as the generator learns from feedback
provided by the discriminator and the discriminator has no prior
knowledge of the objective. In addition, it is also challenging to
measure the performance of a GAN objectively as typical image
quality metrics such as peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) [27] require a target image to
be evaluated. To overcome these problems it typically requires
a lot of training data to produce a realistic GAN [28], which is
not always available, particularly in the case of hyperspectral
imagery.

Attempts have been made to improve upon human-perceived
SR quality. [29] introduces a perceptual loss function generated
through a fixed loss network to create visually pleasing results
but at the cost of PSNR and SSIM, indicating that their per-pixel
accuracy is lower. [15] introduces a perceptual loss function to
train a GAN, which again focuses on learning mappings that
are perceptually pleasing to humans, rather than pixel-to-pixel
accuracy. These approaches improve how pleasing SR outputs
may be to a human observer, but do not necessarily provide any
performance improvement for postprocessing tasks to be done
on the resulting images.

It has been shown that SR performance can be improved by
utilizing multiple images captured in quick succession [30].
However, this approach is impractical when it comes to HSIs
due to the slow acquisition times. Data fusion techniques can be
applied to HSIs [31], [32]. However, these approaches rely on
the availability of a high-resolution multispectral image of the
same scene.

Transformers [33] are gaining popularity in the vision com-
munity and some researchers have utilized them for SR [34].
However, this approach suffers the same problem as the unsuper-
vised GAN methods in that that they require very large amounts
of data to be trained. Furthermore, the use of these techniques is
also known to be computationally expensive during the inference
process.

Given the limited availability of training data makes the use of
transformers, modern deep GANs, and CNNs difficult to apply
to HSI SR problems. Furthermore, we generally aim to improve
the quality of the hyperspectral data before inference tasks,
which means that an efficient SR network that can operate in
real-time is preferred. The large amount of data to be processed
in hyperspectral imaging presents a challenge to using deep
networks, so we propose a highly efficient SR neural network
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structure based on a new paradigm, self-operational neural
filtering.

B. Operational Neural Networks

Recent advances in deep learning have resulted in CNNs dom-
inating many computer vision fields, including super-resolution.
Part of the reason for their success is their ability to learn
complex nonlinear operators. However, convolution itself is a
linear operation and the nonlinear components of the networks
are solely provided by the activation functions used after each
convolutional layer in the network. This means that CNNs often
have to be very deep in order to have the necessary nonlinear
capacity and diversity to learn the complex function of the
learning problem.

Recently, ONNs [8], [9] were proposed to address this is-
sue by incorporating nonlinear nodal and pooling functions
that replace the sole convolution operation with any nonlinear
operator, which adds significantly more nonlinear components
to the network than a traditional CNN. However, these addi-
tional nonlinear operations are hard coded and thus cannot be
changed during training. This means that the functions need to be
searched for, which is computationally expensive, and the search
space is limited to the function set, which may not contain the
optimal function(s).

Kiranyaz et al. [8] then addressed these limitations by propos-
ing Self-ONNs [10], which aim to make the linear filters of a
standard CNN nonlinear through the use of MacLaurin series
expansions, rather than applying hard-coded functions. Such
nonlinear filters for each kernel element are learnable during
training, and thus, eliminate the need for an exhaustive search
to find the optimal functions. Furthermore, any function can
theoretically be approximated using MacLaurin series expan-
sions, which means that a Self-ONN is not limited to a specified
function set, allowing for an enhanced nonlinear search space.
These improvements mean that Self-ONNs are far more compu-
tationally efficient than their standard ONN counterparts, with
greater theoretical nonlinear capacity than both their ONN and
CNN counterparts. This additional complexity comes at the cost
of each filter requiring more parameters. However, the network
size of a Self-ONN can be much smaller than a CNN to have the
same or increased theoretical nonlinear capacity, allowing for the
overall model to have fewer parameters than a CNN despite each
individual filter containing more parameters. In many applica-
tions [35], [36], [37], [38], [39], [40] Self-ONNs outperformed
the deeper and more complex CNNs, while achieving an elegant
computational efficiency.

III. METHODOLOGY

We take the SR model SRCNN [6] and modify it for use on
HSIs by extending the number of input and output channels of
the model from 3 (for RGB images) to the required number for
the relevant HSI depending on the number of wavelength bands
it contains. SRCNN, shown in Fig. 1, is a relatively compact
model consisting of three convolutional layers followed by
ReLU activation functions, except for the output layer, where no
activation function is used. Although there are many improved

Fig. 1. SRCNN model representation consisting of 3 convolutional layers with
filter sizes f1 × f1, f2 × f2, and f3 × f3.

Fig. 2. SRONN model representation consisting of three self-operational
layers with filter sizes (f1 × f1 × Q), (f2 × f2 × Q), and (f3 × f3 × Q). Note,
each filter element is a learnable non-linear function, enhancing its theoretical
learning capacity over a standard CNN where each filter element is a learnable
linear function.

variants of SRCNN, we select this model due to its simplicity
and wide use. Its simplicity allows us to easily and effectively
compare CNN and Self-ONN performance, so we can have a
high degree of certainty that the performance improvement is
solely due to the Self-ONN nonlinear filters and not influenced
by any other auxiliary network components. Furthermore, this
architecture allows us to examine the effects of incorporating
auxiliary components such as residual connections and normal-
ization layers into our Self-ONN models. A shallow model such
as SRCNN is also much less prone to overfitting, which is useful
for our datasets, which are very limited in size.

We propose a novel Self-ONN model, SRONN, that shares
the same configuration as SRCNN as shown in Fig. 2. A key
aspect of Self-ONNs is that data passed between layers must be
bounded between −1 and 1 in order to prevent exponentially
large values due to the nonlinear nature of the model. We,
therefore, use hyperbolic tangent (tanh) activation functions
after the first and second operational layers in our SRONN model
instead of the ReLU activation functions of SRCNN. The tanh
activation function is defined in (1) and it is output bounds are
between −1 and 1, making it an ideal activation function to
constrain the data passed between layers to the desired range

tanh(x) =
ex − e−x

ex + e−x
. (1)

A. Parametric Analysis

Self-ONNs gain their additional nonlinear complexity
through the use of MacLaurin series expansions:

f(x) =

∞∑
n=0

f (n)(0)

n!
xn. (2)
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In practice, the 0th term in the expansion is the bias. Therefore,
the 0th term can be disregarded from the filter approximation.
The order of the polynomial should be finite in practice so the
number of terms is supplied to the network by a parameter Q.
This makes the expansion for an ONN as follows:

f(x) =

Q∑
n=1

f (n)(0)

n!
xn. (3)

Note that when the Q value is 1, it is the exact equivalent of
a standard convolutional layer. Higher Q values yield more
accurate function approximations but at the cost of additional
parameters as the Q value directly equates to the multiplication
in parameters over a standard convolutional filter. The number
of parameters in the convolutional layers of a CNN can be
calculated using the following equation:

# parameters =
l−1∑
l=0

(nl ×ml × fl + 1)× fl+1 (4)

where l is the number of layers, nl,ml is the number of rows and
columns in the convolutional filters at layer l, f is the number
of filters and the constant 1 accounts for the bias for each filter.
Note, that on the first layer, i.e., l = 0, the number of filters from
the previous layer (l−1) is given by the number of channels of
the input image. To compute the number of parameters of a
Self-ONN, we simply multiply this by Q

# parameters =
l−1∑
l=0

(nl ×ml × fl ×Q+ 1)× fl+1. (5)

Our SRONN model will therefore have approximately Q times
more parameters than the SRCNN model. To ensure a fair com-
parison between CNN and Self-ONN, we choose a low Q value.
The minimum Q value is 2, as a Q value of 1 is the equivalent
of a CNN. However, a Q value of 2 would only add one nonlin-
ear term to (3), limiting the nonlinear function approximation
capacity. To enhance this capacity, we use a Q value of 3 in all
experiments, which introduces a second nonlinear term to (3),
significantly improving the nonlinear function approximation
while still keeping the parameter increase relatively low. It is also
worth noting that going much beyond this Q value will likely
have diminishing performance returns relative to the parameter
increase and may even be detrimental to performance due to
the increased training difficulty, especially on small datasets.
However, aQ value of 3 still means that each SRONN model has
around three times more parameters than its equivalent SRCNN
model. For a fair comparison, we also propose a Self-ONN
model with the same number of layers as SRCNN but with four
times fewer filters per layer. This model has between 26.5%
and 28.2% fewer parameters than SRCNN, depending on the
required input and output channels of the dataset. We refer to
this model as small SRONN or sSRONN.

To implement a Self-ONN layer in practice a standard con-
volutional layer can simply be extended by increasing the num-
ber of input channels by a factor of Q and passing the input
concatenated with the input raised to the power n up to Q.
The convolutional layer will then apply its weights to all the

Fig. 3. General model architecture. C represents the number of channels in the
HSI. Values in brackets represent the number of filters in the compact sSRONN
model. SRCNN and SRONN variants have C × 128, 128 × 64, and 64 × C
filters in each respective layer. sSRONN variant has C × 32, 32 × 16, and 16
× C filters in each respective layer. The normalization type depends on the
experiment and in some experiments, there is no normalization, in which case
the normalization layers are skipped. The residual connection is also removed
in experiments where it is not applied.

MacLaurin series terms and perform the required summation of
the terms, providing the nonlinear learnable MacLaurin series
approximation. This practical implementation can be found in
the GitHub repository from [9]. More detailed information about
Self-ONNs is presented in Appendix A.

B. Normalization and Residual Connections

Due to the recent proposal of Self-ONNs [10], techniques
commonly applied to CNNs to improve results have been studied
little on Self-ONNs. We study the effects of incorporating var-
ious normalization layer types into our Self-ONN models after
each Tanh activation function including L1, L2, instance [41],
and batch [42] normalization. We also study the effects of adding
a residual connection to connect the output of the model directly
to the input of the model so that the model learns the residual
rather than the direct mapping as performed in [20]. To the best
of our knowledge, this is the first work to study the effects of
these techniques on Self-ONNs.

The proposed Self-ONN model is illustrated in Fig. 3.

IV. RESULTS

We first compare the SRCNN models against the SRONN and
sSRONN models without normalization for a fair comparison.
The results can be seen in Table II and example outputs on
the Pavia University dataset from the models with and without
residual connections can be seen in Figs. 4 and 5, respectively.
True SR outputs, i.e., where there is no target image and SR is
performed on the original data (no downsampling), on the Pavia
University dataset can be seen in Figs. 6 and 7.

We only apply normalization to the Self-ONN models, since
normalization has been widely studied in CNNs. We present the
results from adding various normalization types to the Self-ONN
models in separate tables for each dataset. Results for the Cuprite
dataset are shown in Table III, Pavia University in Table IV,
Salinas in Table V, and Urban in Table VI within Appendix D.

For the three training iterations of each model on each dataset,
we report only the results from the best iteration in each table of
results.
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Fig. 4. Output of models with no residual connection or normalization on the Pavia University dataset. The mean absolute error between the predicted and true
spectra across the patch is shown on the left. Slice 80 of the original HSI is shown in the middle. LR, predictions, HR and the absolute difference between prediction
and HR are shown on the right.

Fig. 5. Output of models with a residual connection on the Pavia University dataset. The mean absolute error between the predicted and true spectra across the
patch is shown on the left. Slice 80 of the original HSI is shown in the middle. LR, predictions, HR and the absolute difference between prediction and HR are
shown on the right.

A. Datasets

We evaluate our models on four different HSI datasets:
Pavia University; Salinas; Cuprite; Urban. Details for each
dataset [11], [12] can be seen in Table I.

We use the standard approach to generating a low-resolution
image pair from a given high-resolution target image by using
the following:

ILR = (IHR ∗ k) ↓s + n (6)

TABLE I
DATASET INFORMATION

where k ∈ R2 is a 2D degradation kernel, * is a spatial convolu-
tion, ↓s is a decimation operation with a stride s, and n is a noise
term. We use Gaussian blur with a sigma value of 0.8943 for k
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Fig. 6. True super-resolution output of models with no residual connection on slice 80 of the Pavia University dataset. Spectral plots of the center pixel of each
coloured image patch for each model output are shown on the left. The original HSI is shown in the middle. Test tiles bilinearly interpolated up to 2× their original
size and super-resolution results on the interpolated tiles are shown on the right.

Fig. 7. True super-resolution output of models with a residual connection on slice 80 of the Pavia University dataset. Spectral plots of the center pixel of each
coloured image patch for each model output are shown on the left. The original HSI is shown in the middle. Test tiles bilinearly interpolated up to 2× their original
size and super-resolution results on the interpolated tiles are shown on the right.
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TABLE II
RESULTS FROM STANDARD MODELS WITH NO NORMALIZATION

as is done in [43], 2× subsampling for ↓s. We do not add any
noise so the parameter n is ignored. Each generated LR tile was
then bilinearly interpolated back up to the size of the original tile
so the model could perform super-resolution by recovering the
information at the desired output resolution. The model would
then be trained with the LR tile as input and the original HR tile
as the target. We select a scale factor of 2× as the datasets we are
using are very small in size, making it infeasible to go beyond
this scale factor.

Each dataset was preprocessed with min–max normalization
and then divided into 64×64 pixel tiles, maintaining the entire
wavelength spectrum. We utilize 70% of the tiles for training,
15% for validation and reserve 15% for testing.

B. Training Details

Each model was trained for 50 000 epochs to guarantee
network convergence, and the weights from the epoch, which
produced the highest SSIM validation score were used for test-
ing. We use the Adam optimizer [44] with default parameters
except for the learning rate. Each model was initially trained
with a learning rate of 10−4, which was decreased by a factor
of 10 at epochs 5000 and 40 000. Two following runs were
then completed where the starting learning rate and the epoch
milestones—where the learning rate was decreased by a factor
of 10—were manually adjusted in an attempt to improve the
performance. We use mean squared error as our loss function.
We initialize our models’ weights with a normal distribution
with a gain of 0.02. All training LR tiles are fed to the model
in a single batch on each epoch. For all experiments, the entire
training dataset was forward propagated through the model at
once so there was no need to adjust the batch size.

V. DISCUSSION

The results from Table II reveal that the base SRONN models
without a residual connection generally offer a slight improve-
ment over the SRCNN model that also lacks a residual connec-
tion. However, an exception to this trend occurs specifically in
the Salinas dataset, where the SRCNN model without a residual
connection outperformed the corresponding SRONN models
across all metrics. It is essential to note that this outperformance
is confined only to the Salinas dataset and is not representative
of the overall trend observed across the other three experimental
datasets. We hypothesise that this may be due to the Self-ONN
models having a more complex search space to navigate and
optimise, owing to the nonlinear nature of the filters, thus causing
more difficulty in converging compared to the simpler SRCNN
model.

A. Effects of Residual Connections

The results from Table II show that adding a residual con-
nection provides significant improvement to both Self-ONN
models, resulting in both the SRONN and sSRONN models out-
performing the SRCNN models across all metrics on all datasets.
The addition of a residual connection improved all metrics across
all datasets for both sSRONN and SRONN except for PSNR on
the Urban dataset for the SRONN model, where a slight decrease
was observed. Furthermore, the addition of a residual connection
greatly increased convergence time which can be seen in the
model training loss and validation metric plots we have included
in Appendix A. The residual connection has a lesser impact on
the results of SRCNN, only offering improvement in some cases,
which is likely due to the model not being complex enough to
see any consistent performance improvement from a residual
connection. The residual connection performance improvement
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on the spectra can be very clearly observed in the mean absolute
error spectral plots in Figs. 4 and 5. In Fig. 4, the SRONN
model tends to have better spectral reconstruction at the higher
wavelengths while the SRCNN model is usually better at the
lower wavelengths, but from that plot, it is visually difficult to
say which is better overall except that they are both better than
the sSRONN model. However, when a residual connection is
added, the mean absolute error spectral plots in Fig. 5 quite
conclusively show that both ONN models provide superior
spectral reconstruction than the SRCNN model.

The improvement seen in the performance and convergence
times of our Self-ONN models when a residual connection
is added supports our convergence hypothesis. It could also
be indicative that Self-ONNs may suffer more from vanishing
gradients than CNNs. Interestingly, the sSRONN model gener-
ally saw greater performance improvements from the addition
of a residual connection than the SRONN model, which is
counterintuitive as the sSRONN optimization search space is
significantly smaller than the search space of the SRONN model.
One explanation for this could be that the sSRONN model
might be slightly under-parameterized for direct image-to-image
mapping. However, it may have sufficient parameters to learn the
residual, resulting in a bigger performance improvement when
the residual connection is added to the model. The larger SRONN
model, which may be well-parameterized for image-to-image
mapping but slightly over-parameterized for residual learning,
does not see as much of a performance improvement as the
smaller sSRONN model.

Since both SRONN and sSRONN outperform SRCNN, this
demonstrates the power of the nonlinear filters over the standard
linear convolutional filters. The nonlinear filters provide the
operational layer with an enhanced ability to produce sharper
edges and thus produce sharper contrast between pixels resulting
in a more detailed output image, which is evident in the resulting
images shown in Figs. 5 and 7.

B. Effects of Normalization

Our results in Tables III, IV, V, and VI show the effects of
incorporating normalization layers into our SRONN and sS-
RONN models are largely varied and highly dataset dependent.
It appears that normalization has a greater impact on the datasets
with larger spatial dimensions. We found L2 normalization to be
the most effective, providing a slight performance boost to the
SRONN model across all metrics on the Cuprite, Pavia Univer-
sity and Urban datasets while boosting the SAM on the Salinas
dataset. For the sSRONN model, the performance improvement
from adding L2 normalization is less significant, providing only
a performance boost to SSIM and SAM on the Cuprite dataset,
PSNR on the Pavia University dataset and SSIM on the Urban
dataset. No performance improvement was provided by using
L2 normalization over no normalization on the Salinas dataset.

Our results show that normalization is generally more effec-
tive when utilized in conjunction with a residual connection. This
is likely due to the fact the normalization layers will normalize
the data around a zero mean which makes it more difficult for
the models without a residual connection to map the zero mean

feature maps to the true mean of the output. However, when a
residual connection is introduced, the model learns the residual
between the input and the target, which should have a mean near
zero. Therefore, normalization may offer a greater benefit in this
scenario as it assists the model in transforming the data to the
target mean, rather than moving it away from the target mean.

Interestingly, we found instance normalization to be espe-
cially detrimental to all results. This could be because instance
normalization normalizes each channel individually which may
have an adverse effect on the channel dependencies.

VI. CONCLUSION

We show that Self-ONNs outperform equivalent well known
CNNs in the task of HSI SR, even when the Self-ONN models
have a lower number of parameters than the CNNs. The Self-
ONN results produced sharper images and contained more detail
which is likely a direct result of the enhanced nonlinear filters.

We found that adding a residual connection to our SRONN and
sSRONN models provided a significant performance improve-
ment and greatly increased convergence times. We hypothesize
that Self-ONNs suffer more from the vanishing gradient problem
than CNNs due to their more complex search spaces and thus the
residual connection helps mitigate this issue, even in relatively
shallow models.

We examined the effects of adding a residual connection
and various normalization layers to our Self-ONN models. Our
results show that L2 normalization layers in ONNs can offer a
moderate performance improvement when used in conjunction
with a residual connection, but the benefit of normalization
appears to be highly dependent on the dataset.

We show that the superior nonlinear capabilities of ONNs
compared to CNNs allow for sharper and more detailed HSI
SR results. This indicates that Self-ONNs can outperform CNN
models in such image-to-image mapping tasks. Finding the best
Self-ONN models with the right hyperparameters will be the
topic of our future work.

APPENDIX A
SELF-ONNS

Generalized Operational Perceptrons (GOPs) [45], [46], [47],
[48], [49] have recently been developed towards the goal of
modeling biological neurons with distinct synaptic connections.
GOPs have demonstrated a superior diversity, as encountered
in biological neural networks, which resulted in an elegant
performance level on numerous challenging problems where
conventional MLPs entirely failed. Following in the GOP’s
footsteps, ONNs [8], [9], [50] were developed as a superset of
CNNs. ONNs not only outperform CNNs significantly, but they
are also able to learn certain problems where CNNs fail entirely.
However, ONNs also exhibit certain drawbacks such as strict
dependability to the operators in the operator set library, the
mandatory search for the best operator set for each layer/neuron,
and the need for setting (fixing) the operator sets of the output
layer neuron(s) in advance. The operator diversity is also limited
since a single operator set is assigned one or usually more
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Fig. 8. Illustration from [9] of the nodal operations in the kernels of the ith CNN (left), ONN (middle), and Self-ONN (right) neurons at layer l+ 1.

neurons and this makes all (synaptic) connections have the same
operator.

Furthermore, the operator set for the “right” transformation
may or may not exist in the library. For this purpose, “Self-
Organizing” ONNs (Self-ONNs) [10] were recently proposed
with the generative neuron model that addresses this drawback
by customizing each nodal operator on the fly. This is in fact
the case for biological neurons where the synaptic connections
can exhibit any arbitrary form or pattern. In brief, a generative
neuron is basically an operational neuron with a composite
nodal operator that can be generated during training without
any restrictions. As a result, with such generative neurons, a
Self-ONN can self-organize its nodal operators during training,
and thus, it will have the nodal operator functions “optimized” by
the training process to maximize the learning performance. For
instance, in the sample illustration shown in Fig. 8, the CNN and
ONN neurons have static nodal operators (linear and harmonic,
respectively) for their 3×3 kernels, while the generative neuron
can have any arbitrary nodal function, Ψ, (including possibly
standard types such as linear and harmonic functions) for each
kernel element of each connection. This is a great flexibility
that permits the formation of any nodal operator function and
also allows the creation of the optimal nodal operators during
training to maximize the learning performance. As illustrated in
Fig. 8 (middle), for conventional ONNs the input map of the ith
neuron at the layer l + 1, x

(
il + 1), is composed in (7)

xl+1
i = bl+1

i +

Nl∑
k=1

(
oper2D(ylk, w

l+1
ik ,′ NoZeroPad′

)

xl+1
i (m,n)|(M−1,N−1)

(0,0) = bl+1
i

+

Nl−1∑
i=1

(
P l+1
i

[
Ψl+1

i

(
ylk(m,n), wl+1

ik (0, 0)
)
, . . . ,

Ψl+1
i

(
ylk(m+ r, n+ t), wl+1

ik (r, t)
)
, . . .

])

(7)

where ylk are the final output maps of the previous layer
neurons operated with the corresponding kernels, wl+1

ik , with

a particular nodal function, Ψl+1
i such as linear (multiplica-

tion), sinusoid, exponential, Gaussian, chirp, Hermitian, etc.
A close look at (7) reveals the fact that when the pool op-
erator is “summation”, P l+1

i = Σ, and the nodal operator is
“linear,” Ψl+1

i (ylk(m+ r, n+ t), wl+1
ik (r, t)) = ylk(m+ r, n+

t)× wl+1
ik (r, t), for all neurons, then the resulting homogenous

ONN will be identical to a CNN. Hence, ONNs are indeed a
superset of CNNs as the GOPs are a superset of MLPs.

Self-ONNs with generative neurons differ from ONNs by the
following two points:

1) Each “fixed-in-advance” nodal operator function
with a scalar kernel element, Ψl+1

i (ylk(m+ r, n+
t), wl+1

ik (r, t)), is approximated by the composite nodal
operator, Ψ(ylk(m+ r, n+ t),wl+1

ik (r, t)), as expressed
by the Maclaurin series.

2) The scalar kernel parameter, wl+1
ik (r, t), of the kernel of

an ONN neuron, is replaced by a Q-dimensional array,
wl+1

ik (r, t).
In this way, any nodal operator function can be approximated

with Maclaurin series near the origin as shown as follows:

Ψ(y,w) = w0 + w1y + w2y
2 + · · ·+ wQy

Q (8)

where wq = f(q)(0)
q! is the qth coefficient of the Qth order poly-

nomial. During the back-propagation (BP) training, each wq of
a kernel element is optimized for the learning problem at hand.
Thanks to this ability, there is no need for any operator search
for Self-ONNs and arbitrary nodal operators can be customized
by the training process as illustrated in Fig. 8 (right). This results
in enhanced flexibility and diversity over an operational neuron
where only a standard nodal operator function has to be used
for all kernels, each connected to an output map of a neuron
in the previous layer. With this ability, in various 1D and 2D
applications, Self-ONNs outperformed both conventional ONNs
and CNNs with a significant gap [10], [35], [36], [37], [51], [52],
[53], [54], [55], [56], [57].
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APPENDIX B
TRAINING PLOTS

A. Pavia University

Fig. 9. SRONN training and validation plots on the Pavia University dataset
with and without a residual connection. (a) Training loss plot. (b) Validation
SSIM plot. (c) Validation PSNR plot. (d) Validation SAM plot.

B. Salinas

Fig. 10. SRONN training and validation plots on the Salinas dataset with and
without a residual connection. (a) Training loss plot. (b) Validation SSIM plot.
(c) Validation PSNR plot. (d) Validation SAM plot.
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C. Cuprite

Fig. 11. SRONN training and validation plots on the Cuprite dataset with and
without a residual connection. (a) Training loss plot. (b) Validation SSIM plot.
(c) Validation PSNR plot. (d) Validation SAM plot.

D. Urban

Fig. 12. SRONN training and validation plots on the Urban dataset with and
without a residual connection. (a) Training loss plot. (b) Validation SSIM plot.
(c) Validation PSNR plot. (d) Validation SAM plot.
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APPENDIX C
NORMALIZATION RESULTS

TABLE III
NORMALIZATION RESULTS ON CUPRITE DATASET

TABLE IV
NORMALIZATION RESULTS ON PAVIA UNIVERSITY DATASET
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TABLE V
NORMALIZATION RESULTS ON SALINAS DATASET

TABLE VI
NORMALIZATION RESULTS ON URBAN DATASET



ULRICHSEN et al.: ONNS FOR PARAMETER-EFFICIENT HYPERSPECTRAL SISR 1483

REFERENCES

[1] “Hyperspectral remote sensing,” Univ. Texas Austin. Accessed: Apr.
5, 2022. [Online]. Available: https://www.csr.utexas.edu/projects/rs/hrs/
hyper.html

[2] A. G. Villafranca, J. Corbera, F. Martín, and J. F. Marchán, “Limitations of
hyperspectral earth observation on small satellites,” J. Small Satell., vol. 1,
no. 1, pp. 19–29, 2012.

[3] D. J. Brady, Optical Imaging and Spectroscopy. Hoboken, NJ, USA: Wiley,
2009.

[4] X. Wang, L. Xie, C. Dong, and Y. Shan, “Real-esrgan: Training real-world
blind super-resolution with pure synthetic data,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2021, pp. 1905–1914.

[5] L. Wang and K.-J. Yoon, “Semi-supervised student-teacher learning
for single image super-resolution,” Pattern Recognit., vol. 121, 2022,
Art. no. 108206.

[6] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2016.

[7] A. Singh and P. Rai, “Semi-supervised super-resolution,” 2022,
arXiv:2204.08192.

[8] S. Kiranyaz, T. Ince, A. Iosifidis, and M. Gabbouj, “Operational neural
networks,” Neural Comput. Appl., vol. 32, no. 11, pp. 6645–6668, 2020.

[9] J. Malik, S. Kiranyaz, and M. Gabbouj, “Fastonn-”-Python based open-
source GPU implementation for operational neural networks,” 2020,
arXiv:2006.02267.

[10] S. Kiranyaz, J. Malik, H. B. Abdallah, T. Ince, A. Iosifidis, and M. Gabbouj,
“Self-organized operational neural networks with generative neurons,”
Neural Netw., vol. 140, pp. 294–308, 2021.

[11] “Remote sensing datasets,” Remote Sens. Lab. Sch. Surveying Geospatial
Eng., Accessed: Mar. 4, 2022. [Online]. Available: https://rslab.ut.ac.ir/
data

[12] “Hyperspectral remote sensing scenes,” Univ. Basque Country. Accessed:
Mar. 16, 2022. [Online]. Available: https://www.ehu.eus/ccwintco/index.
php/Hyperspectral_Remote_Sensing_Scenes

[13] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual
networks for single image super-resolution,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops, 2017, pp. 136–144.

[14] W. Shi et al., “Real-time single image and video super-resolution using
an efficient sub-pixel convolutional neural network,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 1874–1883.

[15] C. Ledig et al., “Photo-realistic single image super-resolution using a
generative adversarial network,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 4681–4690.

[16] M. Yamac, B. Ataman, and A. Nawaz, “Kernelnet: A blind super-resolution
kernel estimation network,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2021, pp. 453–462.

[17] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using
very deep convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 1646–1654.

[18] P. V. Arun, K. M. Buddhiraju, A. Porwal, and J. Chanussot, “CNN-based
super-resolution of hyperspectral images,” IEEE Trans. Geosci. Remote
Sens., vol. 58, no. 9, pp. 6106–6121, Sep. 2020.

[19] K. Zheng, L. Gao, B. Zhang, and X. Cui, “Multi-losses function based con-
volution neural network for single hyperspectral image super-resolution,”
in Proc. 5th Int. Workshop Earth Observ. Remote Sens. Appl., 2018,
pp. 1–4.

[20] T.-A. Song et al., “Super-resolution pet using a very deep convolutional
neural network,” in Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf. Proc.,
2018, pp. 1–2.

[21] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image
restoration with neural networks,” IEEE Trans. Comput. Imag., vol. 3,
no. 1, pp. 47–57, Mar. 2017.

[22] I. Goodfellow et al., “Generative adversarial nets,” Adv. Neural Inf. Pro-
cess. Syst., vol. 27, 2014.

[23] A. Ignatov, N. Kobyshev, R. Timofte, K. Vanhoey, and L. Van Gool,
“Wespe: Weakly supervised photo enhancer for digital cameras,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2018, pp. 691–700.

[24] G. Kim et al., “Unsupervised real-world super resolution with cycle gener-
ative adversarial network and domain discriminator,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops, 2020, pp. 456–457.

[25] Q. Huang, W. Li, T. Hu, and R. Tao, “Hyperspectral image super-resolution
using generative adversarial network and residual learning,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2019, pp. 3012–3016.

[26] S. Bell-Kligler, A. Shocher, and M. Irani, “Blind super-resolution kernel
estimation using an internal-gan,” Adv. Neural Inf. Process. Syst., vol. 32,
2019.

[27] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[28] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila,
“Training generative adversarial networks with limited data,” Adv. Neural
Inf. Process. Syst., vol. 33, pp. 12104–12114, 2020.

[29] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style
transfer and super-resolution,” in Proc. Euro. Conf. Comput. Vis., Springer,
2016, pp. 694–711.

[30] G. Bhat, M. Danelljan, L. Van Gool, and R. Timofte, “Deep burst super-
resolution,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2021, pp. 9209–9218.

[31] J. Xue, Y.-Q. Zhao, Y. Bu, W. Liao, J. C.-W. Chan, and W. Philips, “Spatial-
spectral structured sparse low-rank representation for hyperspectral image
super-resolution,” IEEE Trans. Image Process., vol. 30, pp. 3084–3097,
2021.

[32] J. Li, K. Zheng, J. Yao, L. Gao, and D. Hong, “Deep unsupervised blind
hyperspectral and multispectral data fusion,” IEEE Geosci. Remote Sens.
Lett., vol. 19, no. 4, pp. 649–665, Jun. 2022.

[33] A. Vaswani et al., “Attention is all you need,” Adv. Neural Inf. Process.
Syst., vol. 30, 2017.

[34] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, “Swinir:
Image restoration using SWIN transformer,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2021, pp. 1833–1844.

[35] M. Gabbouj et al., “Robust peak detection for holter ecgs by self-organized
operational neural networks,” IEEE Trans. Neural Netw. Learn. Syst.,
2022.

[36] J. Malik, O. C. Devecioglu, S. Kiranyaz, T. Ince, and M. Gabbouj,
“Real-time patient-specific ecg classification by 1D self-operational neural
networks,” IEEE Trans. Biomed. Eng., vol. 69, no. 5, pp. 1788–1801,
May 2022.

[37] O. C. Devecioglu, J. Malik, T. Ince, S. Kiranyaz, E. Atalay, and M.
Gabbouj, “Real-time glaucoma detection from digital fundus images using
self-onns,” IEEE Access, vol. 9, pp. 140031–140041, 2021.

[38] M. U. Zahid, S. Kiranyaz, and M. Gabbouj, “Global ECG classification
by self-operational neural networks with feature injection,” IEEE Trans.
Biomed. Eng., vol. 70, no. 1, pp. 205–215, 2022.

[39] T. Ince, S. Kiranyaz, O. C. Devecioglu, M. S. Khan, M. Chowdhury, and M.
Gabbouj, “Blind restoration of real-world audio by 1D operational gans,”
2022, arXiv:2212.14618.

[40] J. Malik, S. Kiranyaz, M. Yamac, and M. Gabbouj, “Bm3D vs 2-layer
ONN,” in Proc. IEEE Int. Conf. Image Process., 2021, pp. 1994–1998.

[41] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” 2016, arXiv:1607.08022.

[42] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[43] L. Wang, T. Bi, and Y. Shi, “A frequency-separated 3D-CNN for hyper-
spectral image super-resolution,” IEEE Access, vol. 8, pp. 86367–86379,
2020.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[45] S. Kiranyaz, T. Ince, A. Iosifidis, and M. Gabbouj, “Generalized model of
biological neural networks: Progressive operational perceptrons,” in Proc.
Int. Joint Conf. Neural Netw., 2017, pp. 2477–2485.

[46] S. Kiranyaz, T. Ince, A. Iosifidis, and M. Gabbouj, “Progressive operational
perceptrons,” Neurocomputing, vol. 224, pp. 142–154, 2017.

[47] D. T. Tran, S. Kiranyaz, M. Gabbouj, and A. Iosifidis, “Progressive opera-
tional perceptrons with memory,” Neurocomputing, vol. 379, pp. 172–181,
2020.

[48] D. T. Tran, S. Kiranyaz, M. Gabbouj, and A. Iosifidis, “Heterogeneous
multilayer generalized operational perceptron,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 31, no. 3, pp. 710–724, Mar. 2020.

[49] D. T. Tran, S. Kiranyaz, M. Gabbouj, and A. Iosifidis, “Knowledge transfer
for face verification using heterogeneous generalized operational percep-
trons,” in Proc. IEEE Int. Conf. Image Process., 2019, pp. 1168–1172.

[50] S. Kiranyaz, J. Malik, H. B. Abdallah, T. Ince, A. Iosifidis, and M.
Gabbouj, “Exploiting heterogeneity in operational neural networks by
synaptic plasticity,” Neural Comput. Appl., vol. 33, pp. 7997–8015,
2021.

[51] J. Malik, S. Kiranyaz, and M. Gabbouj, “Self-organized operational neural
networks for severe image restoration problems,” Neural Netw., vol. 135,
pp. 201–211, 2021.

[52] M. A. Yílmaz, O. Kelesş, H. Güven, A. M. Tekalp, J. Malik, and S.
Kíranyaz, “Self-organized variational autoencoders (self-vae) for learned
image compression,” in Proc. IEEE Int. Conf. Image Process., 2021,
pp. 3732–3736.

https://www.csr.utexas.edu/projects/rs/hrs/hyper.html
https://www.csr.utexas.edu/projects/rs/hrs/hyper.html
https://rslab.ut.ac.ir/data
https://rslab.ut.ac.ir/data
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes


1484 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024
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