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Cloud removal from satellite imagery using multispectral 
edge-filtered conditional generative adversarial networks
Cengis Hasan , Ross Horne , Sjouke Mauw and Andrzej Mizera

Department of Computer Science, University of Luxembourg, Esch-sur-Alzette, Luxembourg

ABSTRACT
We propose a Generative Adversarial Network (GAN) based archi-
tecture for removing clouds from satellite imagery. Data used for 
training comprises of visible light RGB and near-infrared (NIR) band 
images. The novelty lies in the structure of the discriminator in the 
GAN architecture, which compares generated and target cloud-free 
RGB images concatenated with their edge-filtered versions. 
Experimental results show that our approach to removing clouds 
outperforms both visually and according to metrics, a benchmark 
solution that does not take edge filtering into account, and that 
improvements are robust when varying both training dataset size 
and NIR cloud penetrability.
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1. Introduction

Satellite imagery is pivotal for diverse areas such as environment monitoring, precision farm-
ing, or maritime applications. However, remote-sensing images are often covered by films of 
clouds. Due to the cloud cover, we face a loss of information leading to spatio-temporal 
discontinuity which degrades the quality and usefulness of satellite images. Benefits of cloud 
removal from satellite imagery and aerial photography is evident in various practical applica-
tions, e.g. building maintenance, surveying, natural forest management, etc. Thus, automatic 
techniques that replace cloud regions with adequate in-paintings are much sought-after.

Predicting the scene beneath a cloud is an under-constrained problem in the sense 
that it admits many different in-paintings. A possible solution is to impose additional 
constraints in the form of images of the same area captured by longer wavelengths, which 
yield cloud penetration capabilities. Two common sources of such information are near- 
infrared (NIR) and Synthetic Aperture Radar (SAR) images. We show that, despite lower 
penetrability compared to SAR, the information provided by NIR enables reconstruction of 
areas covered by filmy clouds.

We propose an approach based on Generative Adversarial Networks (GANs) 
(Goodfellow et al. 2014), which have demonstrated impressive capabilities in modeling 
the mapping function between input and output images belonging to target (Isola et al. 
2017). In particular, we extend the Multispectral conditional GANs (McGANs) method 
(Enomoto et al. 2017).
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Our approach, i.e. Multispectral Edge-filtered Conditional Generative Adversarial 
Networks (MEcGANs), is aimed at providing enhanced capabilities to reconstruct cloud- 
covered objects in built-up areas. The rationale for focussing on built-up areas is that we 
target applications where the interest is mainly in the correct identification of objects and 
not necessarily complete restoration of all the details, in particular the exact colors. We 
propose to extend McGANs by making the discriminator discern target and generated 
cloud-free images not only by considering them, but also by their edge-filtered versions. 
Experimental results show that the extension leads to improved structural similarity of the 
target and the generated optical images. Moreover, we condition the MEcGANs frame-
work on clouded NIR images, going beyond the work of Enomoto et al. (Enomoto et al. 
2017) considering only cloud-free NIR images. The use of clouded NIR makes our 
approach more realistic.

The rest of this study is organised as follows. First, related work is presented in 
Section 2. Next, data preparation is discussed in Section 3. Then, details on the proposed 
method are given in Section 4 and its evaluation is presented in Section 5. Finally, the 
work is concluded in Section 6.

2. Related work

A number of variants of GANs are introduced in the literature, including conditional GANs 
(cGANs) (Mirza and Osindero 2014) and Deep Convolutional GANs (DcGANs) (Radford, 
Metz and Chintala 2015). They are widely used for image restoration tasks related to ours, 
such as rain removal (Zhang, Sindagi and Patel 2020). McGANs are introduced for filmy 
cloud removal from RGB images with additional information provided by paired NIR 
images (Enomoto et al. 2017). This approach is modified to fuse SAR and optical multi- 
spectral images to generate cloud-free and haze-free multi-spectral optical images 
(Grohnfeldt, Schmitt and Zhu 2018). Further developments on deep neural network- 
based fusion of SAR and multi-spectral optical data for cloud removal are considered 
(Meraner et al. 2020; Gao et al. 2020).

Methods based on GANs along with a new redefined physical model of cloud distortion 
(Li et al. 2020) or dealing with masking of cirrus clouds (Schläpfer, Richter and Reinartz 
2020) are proposed. Furthermore, the Cloud-GAN approach (Singh and Komodakis 2018) 
utilises purely visible range images. Interestingly, it does not require any explicit dataset of 
paired cloudy/cloud-free images.

3. Data preparation

We consider a collection of three types of image associated with a geographic region: (i) 
clouded RGB, (ii) target (ground-truth) cloud-free RGB, and (iii) clouded NIR co-registered 
with the clouded RGB. We use the WorldView-2 European Cities data collection (European 
Space Agency (ESA) (2020)) which contains 8-band multispectral images of the most 
populated areas in Europe captured by the WorldView-2 earth observation satellite at 
0:4m=px resolution. To compile the datasets described in Section 5, we consider only the 
visible light and NIR bands, and crop the original images into pairs of co-registered RGB 

1882 C. HASAN ET AL.



and NIR images of size 256� 256. 1 We denote by xRGB and xNIR a clouded RGB and a co- 
registered clouded NIR image, respectively, while yτ

RGB and yτ
NIR stand for their target 

cloud-free RGB and NIR counterparts.
We synthesise xRGB and xNIR using a cloud insertion technique (Rafique, Blanton and 

Jacobs 2019). As shown in Figure 1, we generate a cloud mask, yCM, being a matrix of size 
256� 256 with values in ½0; 1�. The cloud mask is generated by first combining inner and 
outer masks which have uniformly random elliptic shapes with uniformly sampled loca-
tions, and then by multiplying the result by Perlin noise (Perlin 2002). The outer mask is 
used to create opaqueness gradually increasing toward the edges of a cloud, while the 
inner mask keeps the interior of the cloud mask white.

Next, a real cloud image, labeled ‘Clouds’ in Figure 1, is used. It is a four-band image 
extracted from a cloud image of the Landsat 8 Cloud Cover Assessment Validation Data 
(U.S. Geological Survey 2016) dataset obtained with the Landsat 8 Operational Land 
Imager (OLI) and Thermal Infrared Sensor (TIRS). The three RGB wavelengths are in the 
range 0.45–0.67 μm, while the NIR band wavelength is in the range 0.85–0.88 μm. The RGB 
and NIR bands are denoted cRGB and cNIR, respectively. The clouded RGB image is 
obtained by

xRGB ¼ ð1 � yð3ÞCMÞ � yτ
RGB þ yð3ÞCM � cRGB; (1) 

where � is the element-wise product and yð3ÞCM is comprised of three copies of yCM, i.e. 

yð3ÞCM ¼ ½yCM; yCM; yCM�. NIR wavelengths in 0.77–0.90 μm are longer than the optical RGB 
wavelengths in 0.45–0.69 μm and thus are known to have filmy cloud penetration 
capabilities. Therefore, the clouded NIR image is expected to carry additional information 
on the scenery beneath the cloud. To model this, we introduce the NIR cloud penetrability 
parameter denoted ηNIR 2 ½0; 1�, where ηNIR ¼ 0 corresponds to no auxiliary information 
being provided. We then adapt the cloud insertion technique to synthesise clouded NIR 
images as follows:

xNIR ¼ ½1 � ð1 � ηNIRÞyCM� � yτ
NIR þ ð1 � ηNIRÞyCM � cNIR: (2) 

Figure 1. Cloud insertion procedure.
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4. Proposed method

MEcGANs are aimed to provide enhanced object restoration capabilities in built-up areas 
covered by clouds. For this, they extend McGANs by considering edge-filtered clouded or 
target RGB images as additional input to the discriminator. Target RGB images of built-up 
areas are characterised by many edges in their edge-filtered counterparts, see Figure 2(a, 
b), while cloud-covered parts of these areas result in black, edge-free spots with edge-rich 
surroundings, see Figure 2(c,d). Thus, the generator is forced to exploit the extra informa-
tion contained in co-registered clouded NIR images to generate cloud-free RGB images 
and their edge-filtered versions that resemble the ones from the target domain, i.e. the 
edge-free parts need to be filled with edges.

MEcGANs consists of a generator G and a discriminator D schematically depicted in 
Figure 3. The generator is fed with x ¼ ðxRGB; xNIRÞ as in Enomoto et al. (2017), but here xNIR 

is clouded. G produces a pair ŷ ¼ ðŷRGB; ŷCMÞ of generated cloud-free RGB image (ŷRGB) and 
a corresponding cloud mask (ŷCM), i.e. ŷ :¼ GðxÞ.

Figure 2. Example of target and clouded RGB images with their corresponding edge-filtered variants.

Figure 3. Network architecture of the MEcGans framework.
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The generated or target RGB image is processed by edge detection, i.e. application of 
a Canny edge detection filter, denoted eð�Þ (Canny 1986). The discriminator D takes three 
inputs, instantiated in two different ways, as we explain here. The first parameter x, is 
always the clouded pair of RGB and NIR images. The second two parameters are either 
instantiated as ŷ; ẑ or yτ; zτ . The former pair represents generated images and edge- 
filtered counterparts, i.e. ẑ :¼ eðŷRGBÞ. The latter pair is the corresponding target images: 
the ground truth yτ ¼ ðyτ

RGB; yτ
cloudÞ where yτ

cloud ¼ yCM � cNIR is a monochromatic cloud 
image, and zτ :¼ eðyτ

RGBÞ representing the ground truth after applying edge filtering. The 
novelty compared to Enomoto et al. (2017) is the introduction of the third edge-filtered 
parameter.

Given any D, generator G is trained to minimise its loss function 
Ex ½logð1 � Dðx; ŷ; ẑÞÞ� þ λLL1ðGÞ, where λ is a scaling factor and

LL1ðGÞ ¼ Ex ;y τ ½k yτ � ŷk1� (3) 

is an L1 loss which imposes less blurring. As Enomoto et al., we set λ ¼ 100. 
Simultaneously, the training criterion for D, given any G, is to maximise the loss function

LðG;DÞ ¼ Ex ;y τ ½logDðx; yτ; zτÞ� þ Ex ½logð1 � Dðx; ŷ; ẑÞÞ�: (4) 

Thus, D and G play a min-max game with the final objective to find an optimal 
generator

G� ¼ arg min
G

max
D
LðG;DÞ þ λLL1ðGÞ: (5) 

Apart from the modifications described above, we use the original McGAN architecture 
(Enomoto et al. 2017). In general, the layers of G and D are built as follows. They consist of 
a convolution (Conv) or a deconvolution (DeConv) component specified by four para-
meters: number of channels, kernel size, stride, and padding. The components are 
followed by a BatchNormalisation (BNorm) or a Dropout with ratio 0:5 (Drop) module. 
Finally, the ReLU or LeakyReLU (LReLU) activation function is applied. G has exactly the 
same encoder-decoder structure with skip connections as the generator of McGANs. Its 
input and output are x ¼ ðxRGB; xNIRÞ and ŷ ¼ ðŷRGB; ŷCMÞ, respectively. The architecture of 
D is provided in Table 1.

5. Evaluation

We evaluate MEcGANs against McGANs on two different datasets. For fairness of compar-
ison, the McGANs are supplied with clouded NIR images and not cloud-free ones as in the 
original study.

Our hypothesis is that with the additional edge-filtered input, the discriminator of 
MEcGANs can more easily distinguish between target and generated input and thus drive 
the generator toward more exact reconstruction of cloud-covered areas. To verify this, we 
consider a dataset of images mainly containing built-up areas with their edge-filtered 
versions having many edges as, for example, in Figure 2(b). The dataset consists of 2039 
training and 160 images obtained by cropping selected images of Berlin city from 
WorldView-2 European Cities. To assure that mainly images with built-up areas are 
included, we proceed as follows. First, we cluster the images with the uniformisation 
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approach of Enomoto et al. (2017) utilising AlexNet to extract for each image a 4096- 
dimensional feature vector, which is then mapped with t-SNE to 2D space for clustering 
on a 32� 32 grid. However, differently from Enomoto et al. (2017), we do not sample 
uniformly from this space. Instead, based on visual inspection of the placement of the 
images on the grid, we specify a rectangular region of the grid where the built-up area- 
intensive images are placed and we form the ‘Berlin dataset’ from all the images in this 
region. From the total number of 2199 images, we sample 160 test images and the 
remaining 2039 are used for training. The total size of the Berlin dataset is chosen to be 
similar to the size of the dataset used in Enomoto et al. (2017).

McGANs and MEcGANs are trained for 500K iterations with ηNIR ¼ 1% and evaluated in 
terms of LL1 on the test images after each 50K iterations. We compare the results obtained 
with the best models of McGANs and MEcGANs, which in both cases were the ones at 
500K iterations. Although both methods generate images of similar quality at first sight, 
a careful inspection reveals that MEcGANs outperforms McGANs. To see this, we visualise 
the differences as follows. First, we compute the difference images between the target 
cloud-free image and the generated images of McGANs and MEcGANs with the structur-
al_similarity function of the scikit-image Python package (Van der Walt et al. 2014). Next, 
with the OpenCV library (Bradski 2000), we compute the difference contours, i.e. contours 
of the regions where the McGANs- and MEcGANs-generated images differ with respect to 
the target image and the areas (in pixel) of these contours. Finally, we compute the 
bounding boxes of the contours for visualisation purposes. The obtained results for an 
example test image are shown in Figure 4, where the total difference contours area is 
reduced by MEcGANs from 3501 px (McGANs) to 2955 px (MEcGANs)2.

We perform a quantitative evaluation of the generated images. First, we consider the 
total difference contours area (TDCA) for the Berlin dataset test images with ηNIR ¼ 1%, 
which is 744490 px and 716115 px for McGANs and MEcGANs, respectively. MEcGANs 
provides an improvement of 3:8%. Notice that this result has to be interpreted in the light 
of the fact that MEcGANs is expected to provide improvement only in areas covered by 
filmy clouds, which usually constitutes a small portion of the total clouded area. Hence, 
we consider the improvement as significant. In terms of TDCA for individual test images, 
MEcGANs outperforms McGANs on 99 images.

Next, we consider in this study three commonly used metrics: Peak Signal-to-Noise 
Ratio (PSNR), Structural Similarity Index (SSIM), and Spatial Correlation Coefficient (SCC), 
where target images are used as reference. MEcGANs outperforms McGANs with respect 
to all of them. Specifically, MEcGANs is better in terms of PSNR on 82 test images. With 

Table 1. Discriminator architecture.
Discriminator D

In: ðx; ŷ ¼ ðŷRGB; ŷCMÞ; ẑÞ or
Layer Architecture
L0;0 Convð32; 4; 2; 1ÞðxÞ; LReLU
L0;1 Convð32; 4; 2; 1Þððŷ; ẑÞorðyτ ; zτÞÞ;

LReLU
L1 Convð128; 4; 2; 1Þ; BNorm; LReLU
L2 Convð256; 4; 2; 1Þ; BNorm; LReLU
L3 Convð512; 4; 2; 1Þ; BNorm; LReLU
L4 Convð1; 3; 1; 1Þ;
Out: Vector of values for image patches
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respect to SSIM and SCC, which are considered more reliable image quality indicators, 
MEcGANs is respectively better on 101 and 146 test images. The medians of the metrics 
are provided in Table 2, while the boxplot summaries of SSIM and SCC are shown in 
Figure 5. The median and the mean of the two metrics are consistently higher for 
MEcGANs, see Figure 5(a,b). The same remains true for the edge-filtered versions of the 
generated images, see Figure 5(c,d). MEcGANs gain higher SSIM and SCC values for 130 
and 128 edge-filtered test images, respectively.

Figure 4. Example of Berlin dataset test image results with ηNIR ¼ 1%. for the generated images (c)- 
(d), the differences w.r.t. the target image (b) are highlighted by the contours (white) and their 
bounding boxes (green).

Table 2. Medians of the metrics on the Berlin dataset for different values of ηNIR. McG. and MEcG. stand 
for McGans and MEcGans, respectively; 4 is the percentage increase obtained by MEcGans w.R.t 
McGans.

Medians ηNIR ¼ 0:1% ηNIR ¼ 0:5% ηNIR ¼ 1%

PSNR SSIM SCC PSNR SSIM SCC PSNR SSIM SCC

McG. 25.402 0.935 0.930 24.978 0.928 0.927 24.862 0.926 0.929
MEcG. 25.636 0.938 0.943 25.358 0.932 0.938 25.109 0.928 0.933
Δ½%� 0.92 0.38 1.48 1.52 0.43 1.25 0.99 0.25 0.37

Figure 5. Boxplot summary of SSIM and SCC results on the Berlin dataset test images (a)-(b) and their 
edge-filtered versions (c)-(d). the boxes extend from the lower to upper quartile values of the data, 
with an orange line at the median and a green triangle at the mean. the positions of whiskers and flier 
points are determined by Tukey’s original boxplot definition.
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Moreover, as can be seen in Figure 6 which presents the number of test images on 
which MEcGANs are better/worse compared to McGANs in terms of SSIM, SCC, and TDCA 
after each 50 K iterations, the better performance of MEcGANs is consistent throughout 
the whole training procedure, with two exceptions at 350K and 400K. The boxplot 
summaries of the SSIM and SCC metrics throughout the training are shown in Figure 7. 
Furthermore, the SSIM and SCC results obtained for edge-filtered versions of the gener-
ated images show full supremacy of MEcGANs throughout the training (data available 
online via Mizera (2021)).

We proceed with the evaluation by compiling a second, smaller dataset of approxi-
mately half the size of the Berlin dataset to investigate the robustness of MEcGANs with 
respect to training dataset size and to check how MEcGANs compares to McGANs in cases 
where no large training datasets are available. Again, we aim to focus on built-up areas, 
but we use a slightly different approach than for the Berlin dataset. We select satellite 
images of Paris from WorldView-2 European Cities that contain built-up areas to a large 
extent. We crop them into pairs of RGB and NIR images and apply the original uniformisa-
tion method of Enomoto et al. (2017) to uniformly sample 1000 positions in a 32 × 32 grid. 
This gives a total number of 1045 images (800 training and 245 test images) forming the 
‘Paris dataset’ mainly consisting of built-up area images plus a small portion of other types 
of images.

Figure 6. Number of Berlin dataset test images on which MEcGans performed better (blue bars) and 
worse (orange bars) with respect to McGans after each 50k iterations of training.

Figure 7. Comparison of MEcGans and McGans performance on the test images of the Berlin dataset 
throughout training.

1888 C. HASAN ET AL.



As before, we train the two methods for 500K iterations with ηNIR ¼ 1% . In both cases, 
the best fitted models in terms of LL1 are obtained at 500 K iterations. Example results are 
presented in Figure 8. The difference contours areas are reduced by MEcGANs from 2549.5 
to 1942.5 (top row) and from 3058.5 to 2497.5 (bottom row). Cumulatively on all the 245 
test images, TDCA is reduced from 1,084,694 (McGANs) to 1,015,855 (MEcGANs), which 
gives an improvement of 6.3%. Considering individual test images, MEcGANs outperforms 
McGANs on 215 of them. With respect to PSNR, SSIM, and SCC metrics, MEcGANs 
surpasses McGANs on 208, 233, and 244 test images, respectively. The medians of these 
metrics on the whole test subset are provided in Table 3. The boxplot summaries of SSIM 
and SCC are provided in Figure 9. Again, the median and the mean of the two metrics are 
consistently higher for MEcGANs both for the original and edge-filtered variants. In the 
case of edge-filtered test images, MEcGANs gained higher SSIM and SCC values for all 245 
images.

As in the case of the Berlin dataset, also for the Paris dataset the supremacy of 
MEcGANs is consistent throughout the training as shown in Figure 10 and 11.

Figure 8. Excerpt of Paris dataset testimage results with . for the generated images(c)-(d), the 
differences w.r.t. the target image (b) are highlighted by thecontours (white) and their bounding 
boxes (green).

Table 3. Medians of the metrics on the Paris dataset for different values of ηNIR. McG. and MEcG. stand 
for McGans and MEcGans, respectively; 4 is the percentage increase obtained by MEcGans w.R.t 
McGans.

Medians ηNIR ¼ 0:1% ηNIR ¼ 0:5% ηNIR ¼ 1%

PSNR SSIM SCC PSNR SSIM SCC PSNR SSIM SCC

McG. 23.790 0.926 0.933 23.755 0.925 0.928 23.610 0.922 0.928
MEcG. 24.645 0.943 0.947 24.299 0.937 0.946 24.010 0.929 0.945
Δ½%� 3.59 1.86 1.46 2.29 1.28 1.94 1.70 0.72 1.90
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Since we were unable to find any suitable physical model of NIR penetration of clouds 
in the literature, we introduced the ηNIR parameter to simulate the enhanced cloud 
penetrability by NIR. Being aware that the model is physically not fully accurate, we 
proceed to evaluate the robustness of MEcGANs in cases where the NIR information is 

Figure 9. Boxplot summary of SSIM and SCC results on the Paris dataset test images (a)-(b) and their 
edge-filtered versions (c)-(d). the boxes extend from the lower to upper quartile values of the data, 
with an orange line at the median and a green triangle at the mean. the positions of whiskers and flier 
points are determined by Tukey’s original boxplot definition.

Figure 10. Number of Paris dataset test images on which MEcGans performed better (blue bars) and 
worse (orange bars) with respect to McGans after each 50:k iterations of training.

Figure 11. Comparison of MEcGans and McGans performance on the test images of the Paris dataset 
throughout training.
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reduced. To this aim, we investigate the sensitivity of our method to ηNIR by repeating the 
experiments on the two datasets with ηNIR set to 0.5% and 0.1%. The TDCA values are 
provided in Table 4, while the medians for the PSNR, SSIM, and SCC metrics are given in 
Tables 2 and 3 for the Berlin and Paris datasets, respectively. The results show that 
MEcGANs provides a persistent improvement in terms of all the considered metrics across 
the two datasets for all the ηNIR values. In consequence, the performance of our method is 
robust with respect to different values of ηNIR and therefore we would expect MEcGANs to 
perform well for more physically accurate NIR penetrability models, too.

6. Conclusions and future work

We propose MEcGANs, a new framework for cloud removal in satellite imagery which 
extends the method of Enomoto et al. (2017) in two significant ways. Firstly, the new 
discriminator differentiates between target and generated cloud-free RGB images by 
additionally considering edge-filtered inputs. This drives the generator learning toward 
improved reconstruction of cloud-covered objects. Secondly, our approach is more 
realistic in that it takes as input clouded NIR images. The better translucency of NIR 
wavelengths with respect to the visible light spectrum is modeled by introducing an 
NIR cloud penetrability parameter.

We consider two datasets of synthesised clouded RGB and clouded NIR images: one of 
size 2199 and the other of size 1045. With respect to Enomoto et al. (2017), instead of 
simply generating Perlin noise, we employ an improved, state-of-the-art cloud insertion 
technique of Rafique, Blanton and Jacobs (2019), which provides more realistic clouded 
images by making fewer assumptions on the observation model and the physics of 
clouds. The datasets consists mostly of images of urban areas, since our focus is on object 
reconstruction.

We compare the performance of MEcGANs versus McGANs by computing the areas of 
the difference regions in the generated cloud-free images with respect to the correspond-
ing target images. The results demonstrate the superiority of MEcGANs in comparison to 
McGANs on two different datasets – a large dataset and a small dataset. It is evident that 
MEcGANs provides an improvement in the regions obscured by filmy clouds. These results 
are supported by quantitative comparison analysis, which is based on three metrics 
commonly considered in the context of image restoration, i.e. Peak Signal-to-Noise 
Ratio, Structural Similarity Index, and Spatial Correlation Coefficient. Furthermore, the 
obtained results show that MEcGANs are robust with respect to the training dataset size. 
Interestingly, the relative improvements, as measured by the relative decrease in the total 

Table 4. TDCA for the two datasets with different ηNIR values. McG. and MEcG. stand for McGans and 
MEcGans, respectively; 4 is the percentage decrease obtained by MEcGans with respect to McGans.

TDCA ηNIR ¼ 0:1% ηNIR ¼ 0:5% ηNIR ¼ 1%

Berlin Paris Berlin Paris Berlin Paris

McG. 698543.5 1058566.5 706482.5 1055105.0 744490.0 1084694.0
MEcG. 657507.5 907790.0 666663.5 929048.0 716115.0 1015855.0
Δ½%� 5.9 14.2 5.6 11.9 3.8 6.3
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difference area, and the average gains of the three considered metrics, are the greatest in 
the case of the small dataset. This suggests that MEcGANs are suitable when training data 
is limited.

Since we could not find a proper physical model for enhanced NIR cloud penetrability 
in the literature, we simulate it by introducing a NIR cloud penetrability parameter and we 
investigate the robustness of the performance of MEcGANs for various values of this 
parameter. Experimental results confirm that MEcGANs are robust and can capture and 
exploit even a weak NIR ‘signal’ providing information on the scene underneath the 
clouds. We therefore expect it to perform well in the case of more sophisticated and 
accurate models of NIR cloud penetrability.

We believe that MEcGANs are general in nature and can be applied to sources of 
auxiliary information other than NIR. As future work, we plan to consider datasets where 
clouds are not synthetic and to investigate the impact of replacing NIR with SAR images. 
That would involve evaluating MEcGANs on data consisting of aligned triplets of target 
RGB, clouded RGB, and NIR or SAR images. This is a separate problem requiring methods 
to properly align images of different types acquired at different times.

Endnotes

1. For reproducibility purposes, all cropped images are made available (Mizera 2021).
2. Due to space limitation, the full set of results is available online via (Mizera 2021).
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