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A B S T R A C T   

inverse Finite Element Method (iFEM) is a powerful tool for shape sensing and structural health monitoring of 
marine structures and has several advantages with respect to some other existing approaches. However, current 
iFEM formulation is not suitable for marine structures having pre-existing cracks due to stress singularities at the 
crack tip. In this study, a two-dimensional inverse crack tip element formulation is presented. The element is 
suitable for thin structures under in-plane loading conditions. The inverse crack tip element allows determination 
of Stress Intensity factor values at the crack tip. To validate the accuracy and demonstrate the capability of the 
inverse crack tip element, six different numerical cases are considered for different geometry, loading and 
boundary conditions. iFEM analysis results are compared with regular finite element analysis results as the 
reference solution and very good agreement is observed between the two solutions demonstrating the capability 
of the current iFEM approach.   

1. Introduction 

Marine structures are subjected to harsh environmental conditions 
which can cause catastrophic consequences, financial loses, and envi
ronmental pollution. In order to ensure safety of marine structures, 
shape sensing and structural health monitoring (SHM) are effective 
approaches to be utilised by utilising sensor systems, collecting sensor 
data, processing the data, and finally making decisions. 

According to Gherlone et al. (2012), a good SHM system should 
easily treat complicated structures and their boundary conditions. 
Moreover, the loading conditions, material properties, and even some 
inherent errors (which cannot be avoided during the process of 
measuring data) should not affect the stability and accuracy of the sys
tem. In addition, the SHM system must be fast enough to perform a 
real-time monitoring process (Gherlone et al., 2012). With the help of 
the SHM system, unusual behaviors, such as unhealthy conditions and 
structural failure, of the structure can be accurately detected. Further
more, additional management including inspection, maintenance, and 
repair of the structure can also be enhanced under the guidance of SHM 
systems (Lu et al., 2009). The process of maintenance can be scheduled 
in a more orderly manner, which will reduce unnecessary inspection and 
repair. SHM has been used in many different applications such as 

aerospace (Di Sante, 2015), composites (Kinet et al., 2014), rail systems 
(Chen et al., 2020), bridges (Kromanis and Kripakaran, 2016), batteries 
(Xiong et al., 2018), etc. 

There are various shape sensing approaches available in the litera
ture. Amongst these Ko’s Displacement Theory (Ko et al., 2007) is 
suitable for beam type structures. On the other hand, Model Method 
(Bang et al., 2012) can make predictions without material information 
and it is suitable for both beam and plate type structures. Another 
promising approach for shape sensing is inverse Finite Element Method 
(iFEM) developed by Tessler and Spangler (2003). iFEM is based on 
discretisation of the solution domain by using suitable inverse elements 
(beam, plate, shell or solid) and utilising collected strain data from 
sensors located on the structure. It is also robust and can be used for 
real-time monitoring for complex shapes. Moreover, there is no need to 
measure loading during the monitoring process. 

There has been a significant progress throughout the years on iFEM 
methodology. Various different types of inverse elements have been 
developed for different types of structures. For instance, Tessler and 
Spangler (2004) developed a three-node inverse shell element (iMIN3) 
which is based on variation of in-plane displacements and bending ro
tations linearly, and transverse displacements quadratically along with 
in-plane coordinates. Tessler et al. (2012) extended the capability of 
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iMIN3 element for large deformations. Gherlone et al. (2012) developed 
an inverse beam element based on Timoshenko beam formulation. Kefal 
et al. (2016) introduced a four node shell element with drilling 
degree-of-freedom (iQS4). This inverse element has been successfully 
utilised for monitoring of various marine structures (Kefal and Oterkus, 
2015) including a chemical tanker (Kefal and Oterkus, 2016a), 
containership (Kefal and Oterkus, 2016b), bulk carrier (Kefal et al., 
2018a), and offshore wind turbine (Li et al., 2023). By using First-order 

Fig. 1. (a) Quarter-point crack tip element and (b) quarter-point elements around the crack tip.  

Fig. 2. The displacements of the crack tip for the displacement extrapolation method (a) full model, (b) half (symmetrical) model.  

Table 1 
Cases for estimating the SIF at the crack tip.  

Case 1 Rectangular bar with two edge cracks 

Case 2 Rectangular bar with a central crack 
Case 3 Fine mesh for Case 1 for opening SIF case 
Case 4 Fine mesh for Case 2 for opening SIF case 
Case 5 In-plane shear SIF case 
Case 6 Mixed-mode SIF case  

Fig. 3. Flow chart of the analysis process.  
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Deformation Theory, Kefal (2019) developed an eight node curved shell 
element (iCS8). In another study, de Mooij et al. (De Mooij et al., 2019) 
presented a novel inverse solid element formulation by considering 
various benchmark problems. iFEM has also been applied for composite 
materials. Cerracchio et al. (2015) and Kefal et al. (2018b) developed 
plate and shell elements suitable for composite and sandwich structures. 
iFEM has also been used for damage prediction in structures (Colombo 

et al., 2019). In order to reduce number of required sensors for iFEM 
analysis, Kefal and Oterkus (2020) introduced isogeometric iFEM anal
ysis which was further explored in some other studies (Zhao and Bao, 
2021; Zhao et al., 2020). 

Contrary to this progress on iFEM methodology, there is currently no 
inverse crack tip element available in the literature. The crack tip ele
ments can achieve the requirement of singularity at the crack tip. 
Therefore, traditional iFEM elements cannot be applied to structures 
with pre-existing cracks. The development of the inverse plane crack tip 
element will fill this gap and extend the application range of iFEM. 
Additionally, with the generation of the inverse crack tip element, the 
SIF at the crack tip can also be monitored. With a given fracture crite
rion, the propagation of the crack can also be predicted. 

Therefore, in this study, a two-dimensional inverse crack tip element 
formulation is presented. The element is suitable for thin structures 
under in-plane loading conditions. To validate the accuracy and 
demonstrate the capability of the inverse element, six different numer
ical cases are presented by considering different geometry, loading and 
boundary conditions. iFEM analysis results are compared with regular 
finite element analysis results as the reference solution. 

2. Two-dimensional inverse crack tip element formulation 

The inverse 8-node crack tip element is developed by applying the 
weighted-least-squares approach to the plane crack tip element formu
lation which was introduced by Barsoum, 1976, 1977. The crack tip 

Fig. 4. (a) The geometry of the plate with two edge cracks and (b) the loading and symmetry boundary conditions of the quarter of the model for Case 1.  

Fig. 5. The fine mesh for Case 1. (a) FEM, (b) iFEM.  

Table 2 
The results for Case 1.  

Case 1 U (m) V (m) SIF- KІ 

(a) FEM 5.668E-03 4.329E-02 2.017E+09 
(b) iFEM 5.881E-03 4.371E-02 1.870E+09 
Differences between (a) and (b) 3.76% 0.97% 7.31%  
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element can capture singularity by shifting two mid-side nodes to the 
quarter of the line. Usually, the original quadrilateral element is 
degenerated into a kind of triangular element (see Fig. 1(a)). Nodes 3, 4, 
and 7 are transformed to overlap each other, and node 6 and node 8 are 
moved to the quarter of the line (Nikishkov, 2013). The length of the 
element is H in the x-direction and the height is 2L (Fig. 1(a)), which 
means that node 6 and node 8 are located at 

( H
4,

L
4
)

and 
( H

4 , − L
4
)
, 

respectively, in the local coordinate system. The parameters H and L can 
be calculated by the nodal distance. When defining the crack tip 
element, a transformation is required from the quadrilateral element in 
the normalized coordinate system to the degenerated triangular element 

in the local coordinate system. By doing so, it will contribute to another 
Jacobian matrix apart from the Jacobian which is used to link the shape 
functions between the global coordinate system and the normalized 
coordinate system. The Jacobian matrix can be obtained by the 
following relationship, according to the positional relation shown in 
Fig. 1(a) as 

x=
H(1 − η)2

4
(1a)  

Fig. 6. The contour plots for Case 1. The displacements in x-direction, U: (a) FEM, (b) iFEM. The displacements in y-direction, V: (c) FEM, (d) iFEM.  
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y=
L(1 − η)2ξ

4
(1b) 

By differentiating the x and y against ξ and η, the following Jacobian 
matrix can be obtained: 

[J] =

⎡
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⎣
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(2) 

Then the [J] will be used in the process of generating the coefficient 
matrix. It should be mentioned that the order of the node is not fixed and 
the expressions of the [J] should also be updated correspondingly. 

For the plane inverse crack tip element, there are three membrane 
strains εxx, εyy, and γxy that need to be taken into account. The differ
ences between the analytical strains and the experimental strains which 
are collected from the geometric centre of the quadrilateral element can 
be expressed in the form of a functional as: 

φ(ue)=we
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2

(3) 

By differentiating the functional given in Eq. (3) with respect to the 
nodal displacements to minimize the difference between the analytical 
and experimental strains for every single element, the following equa
tion can be evaluated: 

∂φ(ue)

∂ue = keue − fe= 0 (4)  

where 

ke =

∫∫

A
we(Bm)

T Bm det(J)dxdy (5a)  

fe =

∫∫

A
we(Bm)

T

⎧
⎪⎪⎨

⎪⎪⎩

εinput
xx

εinput
yy

γinput
xy

⎫
⎪⎪⎬

⎪⎪⎭

det(J)dxdy (5b)  

where ue is the elemental displacement vector and for each node, there 
are two DOFs, i.e. horizontal displacement, U, and vertical displace
ment, V. we is the weighting constant that can be specified based on the 
existence of the experimental strain inputs. If the experimental data is 
available for an element, a value of 1 will be used. Otherwise, a rela
tively small value such as 10− 3 or 10− 4 can be selected. Additionally, 
another group of weighting coefficients (wxx, wyy, and wxy) is introduced 
to balance the relationship among the three strains and usually, 1 will be 
used for all of the coefficients. Bm is the matrix generated by the shape 
functions to link the membrane strains with the nodal displacements 
which are given in Appendix. 

After assembling the above single element equation to the global 
matrix system and applying the boundary conditions, the nodal dis
placements of the structure can be estimated. After obtaining the 
displacement field, the stress intensity factor (SIF) can be calculated by 
the Displacement Extrapolation Method (Zhu and Oterkus, 2020). For 
plane elements, only two types of SIF can occur, which are opening SIF 

Fig. 7. (a) The geometry of the plate with central a crack and (b) the loading and symmetry boundary conditions of the quarter of the model for Case 2.  

Table 3 
The results of Case 2.  

Case 2 U (m) V (m) SIF-KІ 

(a) FEM 6.589E-03 4.154E-02 2.089E+09 
(b) iFEM 6.466E-03 4.222E-02 1.924E+09 
Differences between (a) and (b) 1.87% 1.64% 7.91%  
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(KІ) and in-plane shear SIF (KІІ). Fig. 2 shows the nodes around the crack 
tip (r= 0). For the nodes at the crack surface (θ = 180◦), the relationship 
between the SIF and the nodal displacements can be expressed (Zhu and 
Oterkus, 2020): 

KІ =
̅̅̅̅̅
2π

√ G
1 + kb

|ΔV|
̅̅
r

√ (6a)  

KІІ =
̅̅̅̅̅
2π

√ G
1 + kb

|ΔU|
̅̅
r

√ (6b) 

Fig. 8. The contour plots for Case 2. The displacements in x-direction, U: (a) FEM, (b) iFEM. The displacements in y-direction, V: (c) FEM, (d) iFEM.  
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G is the shear modulus, and it can be calculated by the Elastic 
modulus, E, and the Poisson’s ratio, ν. kb is the bulk modulus, and under 
the plane strain conditions, kb = 3 − 4ν, and under the plane stress 
conditions, kb = 3− ν

1+ν. |ΔV| and |ΔU| are the relative displacements in y- 
and x-directions for the nodes next to the crack tip. If the structure is 
modelled fully (Fig. 2(a)), |ΔVim| = |Vi − Vm| and |ΔUim| = |Ui − Um|. 
Otherwise, for the half model (see Fig. 2(b)), |ΔV| = |2Vi| and |ΔU| =

|2Ui|. 
|ΔV|̅̅

r
√ and |ΔU|̅̅

r
√ are assumed to be linear at the crack surface and they can 

be obtained by approaching r to 0 for the crack tip as: 

ForKІ :
|ΔV|

̅̅
r

√ =
|ΔVim|(d2)

3
2 −

⃒
⃒ΔVjn

⃒
⃒(d1)

3
2

̅̅̅̅̅̅̅̅̅
d1d2

√
(d2 − d1)

(7a)  

ForKІІ :
|ΔU|

̅̅
r

√ =
|ΔUim|(d2)

3
2 −

⃒
⃒ΔUjn

⃒
⃒(d1)

3
2

̅̅̅̅̅̅̅̅̅
d1d2

√
(d2 − d1)

(7b)  

where d1 is the distance between k and i (k and m) and d2 is the distance 
between k and j (k and n). 

3. Numerical examples 

As shown in Table 1, six numerical cases are considered to test the 
accuracy of the inverse crack tip element and demonstrate its capability 
in estimating the SIF. For all six cases, elastic modulus, E, is 210 × 109 Pa 
and Poisson’s ratio, ν, is 0.3. 

The initial four cases are prepared to compare with the reference 
results and investigate the effect of mesh size on the accuracy of the 
results for the opening mode. For Case 5 and Case 6, in-plane shear and 
mixed-mode SIF estimation are given to show the capability of the iPCT 
element. An in-house code written by using Matlab programming 

Fig. 9. Mesh for Case 3 (edge crack) and Case 4 (central crack).  

Fig. 10. The sensor locations for (a) Case 3 and (b) Case 4.  

Table 4 
The results for Case 3.  

Case 3 U (m) V (m) SIF-KІ 

(a) FEM 5.056E-03 4.097E-02 2.077E+09 
(b) iFEM 4.596E-03 4.072E-02 2.001E+09 
(c) iFEM-r 4.775E-03 3.983E-02 2.012E+09 
Differences between (a) and (b) 9.10% 0.61% 3.66% 
Differences between (a) and (c) 5.56% 2.78% 3.12%  
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language was developed for computer implementation of the present 
approach. A flow chart of the analysis process is given in Fig. 3. 

3.1. Case 1: rectangular bar with two edge cracks 

The first case is a rectangular bar with two edge cracks under plane 
strain conditions. The geometry of the plate is shown in Fig. 4(a). Since 
the plate is under tension (2000 MN and evenly distributed to the nodes) 
on the top and bottom edges, symmetry boundary conditions can be 
applied (see Fig. 4(b)). Therefore, only a quarter of the plate is modelled. 

For Case 1, a very coarse mesh, which has only 20 elements and 65 
nodes, is generated for the reference FEM analysis (see Fig. 5(a)). For the 
iFEM analysis, to avoid the general triangular elements, the mesh has 
been refined with entire quadrilateral elements (still 20 elements but 
with 69 nodes) except the 6 inverse crack tip elements around the crack 
tip (Fig. 5(b)). The results of Case 1 are collected in Table 2 and the 
contour plots of deformations are given in Fig. 6. 

By comparing major displacements, both U and V are in good 
agreement with FEM results and the percentages of the difference are 
smaller than 5%. Moreover, the contour plots of the iFEM are also 
similar to the FEM plots. The inverse crack tip elements combined with 
the inverse 8-node plane quadrilateral elements can provide accurate 
displacement results. For SIF, FEM provides a value of 2.017 × 109, and 
iFEM has slightly under-estimated the value and achieves a value of 
1.870 × 109, leading to a 7.31% error which is still in a reasonable 
range, proving that the inverse crack tip element can be used to monitor 
the SIF data. 

Fig. 11. The plots for Case 3. The displacements in x-direction, U: (a) FEM, (b) iFEM, (c) iFEM-r. The displacements in y-direction, V: (d) FEM, (e) iFEM, (f) iFEM-r.  

Table 5 
The results of Case 4.  

Case 4 U (m) V (m) SIF-KІ 

(a) FEM 5.805E-03 4.067E-02 2.113E+09 
(b) iFEM 5.853E-03 4.041E-02 2.045E+09 
(c) iFEM-r 5.478E-03 4.005E-02 2.090E+09 
Differences between (a) and (b) 0.83% 0.64% 3.25% 
Differences between (a) and (c) 5.63% 1.52% 1.13%  
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3.2. Case 2: rectangular bar with a central crack 

For the second case, rectangular bar with a central crack problem is 
considered as shown in Fig. 7(a). As opposed to previous case, the 
constrained boundary condition on the right edge is moved to the left 
edge making it become a quarter of the model with a central crack (see 
Fig. 7(b)). Other parameters including the length of the crack keep un
changed. As can be seen from Table 3 and Fig. 8, the results including the 
contour plots match well with FEM analysis. The percentage of the 
difference between the two SIF values is about 7%. Although this is a 
reasonable difference, the difference between iFEM and FEM results can 
be further reduced by increasing the number of sensors especially 
around the crack tip region. 

3.3. Case 3: fine mesh for the rectangular bar with two edge crack case 

Increasing the number of elements for the iFEM analysis can improve 
accuracy. Case 3 and Case 4 are the fine mesh condition for Case 1 and 
Case 2, respectively, and there are 408 elements and 1321 nodes in the 
model (Fig. 9). For the fine mesh cases, the reduced-sensor condition is 

also considered to test the feasibility of the inverse crack tip element 
with limited number of strain inputs (iFEM-r). For Cases 3 and 4, 64 
sensors can be sufficient by collecting strain data from elements with red 
colour shown in Fig. 10(a) and (b). 

For Case 3, according to Table 4, it can be seen that both full-sensor 
and reduced-sensor conditions can give accurate displacements in the y- 
direction. But for U displacement, the percentages of the difference raise 
especially for the full-sensor condition, which is 9.10%. Please note that 
compared with the major displacements, V, the maximum U displace
ment is about 8 times smaller. Because of this reason, the displacements 
in the x-direction will not have a big impact on the SIF calculation. 
Hence, about 10% is still acceptable. The SIF from the full-sensor con
dition is only 3.66% less than the reference value and for the iFEM 
analysis with 64 sensors (iFEM-r), the value (3.12%) is even better than 
the full-sensor case. Concerning the contour plots of Case 3 (Fig. 11), the 
plots of the full-sensor condition are almost the same as the FEM plots. 
For the reduced-sensor condition, due to the reduction of sensors, some 
regions suffer loss of accuracy, especially for the plots of U. However, the 
main features like the locations of the large deformations can still be 
captured. 

Fig. 12. The contour plots for Case 4. The displacements in x-direction, U: (a) FEM, (b) iFEM, (c) iFEM-r. The displacements in y-direction, V: (d) FEM, (e) iFEM, (f) 
iFEM-r. 
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3.4. Case 4: fine mesh for the rectangular bar with a central crack case 

When it comes to the central crack case, the performance of the full- 
sensor condition becomes much better. All values (Table 5) together 
with the contour plots (Fig. 12) are highly close to the FEM results. When 
the number of sensors is dropped to 64 (iFEM-r), although the vertical 
displacement, V, is 5.63% less than the reference value, the other results, 
especially the desired SIF, are approximately the same as the FEM 
analysis. For the contour plots, they demonstrate similar trend as Case 3 
and some regions do not have the same accuracy as full-sensor plots. 
Considering the less importance of these regions and achieving sufficient 
reduction in number of sensors, current sensor locations can be appli
cable and even with a limited number of sensors, not only the de
formations but also the SIF can be captured accurately. 

3.5. Case 5: in-plane shear SIF case 

The previous four cases focus on the opening SIF. So, the following 
case will be related to the pure in-plane shear SIF condition. KІ still exists 
because of the Poisson’s ratio, but it is quite small and can be neglected. 

The geometry of the model is slightly updated (see Fig. 13) and the 
plane strain condition is changed to plane stress. Besides, because of 
change in loading (1000 KN for each node) and the boundary condition 
(fully constrained at the right edge), the symmetrical boundary condi
tion can no longer be used. Therefore, the whole plate is modelled and 
meshed with 616 elements and 1989 nodes. Around the crack tip, there 
are 12 finite/inverse crack tip elements. For the reduced-sensor condi
tion (iFEM-r), 98 elements are selected to provide strain data and these 
sensors can be categorized into three groups: the boundary sensors, the 

crack tip sensors, and the connection sensors to join the previous two 
types together. It should be highlighted that for the crack tip, it is rec
ommended that all 12 sensors should be chosen, otherwise, the accuracy 
of the SIF will be negatively influenced. For Case 5, the displacements in 
the x-direction become the major displacement and the in-plane shear 
SIF can be computed by Eq. (7b). Table 6 shows the errors of the major 
displacements that are less than 5% for both sensor conditions. 

Although the displacements in the y-direction are less for Case 5, the 
values are still in the acceptable range. The in-plane shear SIFs are 
slightly higher than the reference value, which fulfils the aim of the 
analysis. The contour plots of Fig. 14 can support the above standpoints, 
and the main features and tendency of the iFEM deformation field are 
identical to the FEM plots, apart from some regions in the plots of the 
reduced-sensor condition which are less accurate. The accuracy level in 
the reduced-sensor case can be improved by increasing the number of 
sensors. 

3.6. Case 6: mixed-mode SIF case 

The last case is generated based on Case 5 (see Fig. 15). The main 
difference is replacing the distributed forces on the left edge with two 
nodal forces at the upper right corner in both positive axes and forces 
have same values. Besides, the fully constrained boundary condition has 
been moved to the bottom of the plate. As a result of the relatively more 
complex loading and boundary conditions, the number of sensors in
creases to 156 by adding the boundary sensors along the right edge. 

The results of Case 6 are listed in Table 7. Even though the maximum 
V displacement is about 5.69% higher than the reference one, the errors 
of the displacements are held to a reasonable extent. For the SIF, since 
the in-plane shear SIF is relatively smaller than the opening SIF, it is 
expected that the error for KІІ may be higher than the error for KІ. For 
the full-sensor condition, the gap between the two errors is not far away 
from each other. For the in-plane shear SIF, the error value is 5.40% 
which is even better than the opening SIF (7.76%). However, for the 156 
sensors case (reduced-sensor condition, iFEM-r), the percentage error 
for the opening SIF is more than two times smaller than the percentage 
error for in-plane shear SIF. However, 10.61% is still within acceptable 
range. Please note that KІ is about 20 times larger than KІІ . The contour 

Fig. 13. (a) The geometry, loading, and boundary conditions for Case 5. (b) The mesh of both FEM and iFEM analysis for Case 5. (c) The sensor locations for Case 5 
for reduced-sensor condition. 

Table 6 
The results of Case 5.  

Case 5 U (m) V (m) SIF- KІІ 

(a) FEM 1.310E-04 6.126E-04 1.259E+07 
(b) iFEM 1.246E-04 5.576E-04 1.287E+07 
(c) iFEM-r 1.247E-04 5.512E-04 1.276E+07 
Differences between (a) and (b) 4.89% 8.98% 2.15% 
Differences between (a) and (c) 4.81% 10.02% 1.35%  
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plots of iFEM analysis for both with full sensors and reduced sensors are 
not distinguishable against the FEM reference solution, which also 
supports the above conclusions (see Fig. 16). Case 5 and Case 6 present 
that for different modes of SIF, the inverse crack tip element can esti
mate the SIF value with high accuracy. 

4. Conclusions 

In this study, a new two-dimensional inverse crack tip element was 
presented for shape sensing and structural health monitoring purposes. 
Based on the six numerical cases, it can be concluded that the newly 
developed inverse crack tip element can increase the capability of the 
iFEM methodology by not only predicting the full-field deformation but 
also eliminating the limitation of iFEM when dealing with structures 
with cracks and monitoring the SIF around the crack tip. If the strain 
data for the inverse crack tip elements are all available, even if the 
number of sensors for the other regions are reduced, SIF values together 

with the displacements can still be accurately predicted. 
The developed iPCT element can accurately represent the deforma

tion and stress fields, including stress singularity, around the crack tip 
which cannot be easily done by using traditional elements without uti
lising large number of elements. Therefore, the required number of 
sensors can be significantly reduced. By accurately determining the SIF 
values at the crack tip can allow crack propagation predictions by using 
suitable failure criteria. The developed approach can be utilised in many 
applications which cracks can occur such as aerospace, marine, and civil 
engineering applications. 
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Fig. 14. The plots for Case 5. The displacements in x-direction, U: (a) FEM, (b) iFEM, (c) iFEM-r. The displacements in y-direction, V: (d) FEM, (e) iFEM, (f) iFEM-r.  
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Fig. 15. (a) The geometry, loading, and boundary conditions for Case 6. (b) Mesh and the sensor locations for Case 6 for reduced-sensor condition.  
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Table 7 
The results of Case 6.  

Case 6 U (m) V (m) SIF-KІ SIF-KІІ 

(a) FEM 5.357E-03 8.839E-04 3.181E+07 1.691E+06 
(b) iFEM 5.501E-03 9.342E-04 3.428E+07 1.600E+06 
(c) iFEM-r 5.159E-03 8.612E-04 3.045E+07 1.512E+06 
Differences between (a) and (b) 2.68% 5.69% 7.76% 5.40% 
Differences between (a) and (c) 3.70% 2.57% 4.29% 10.61%  

Fig. 16. The plots for Case 6. The displacements in x-direction, U: (a) FEM, (b) iFEM, (c) iFEM-r. The displacements in y-direction, V: (d) FEM, (e) iFEM, (f) iFEM-r.  
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Appendix 

In this section, the details of the Bm matrix included in Eq. (5a,b) is given. Bm is the matrix formed by the shape functions of each node for a two- 
dimensional eight-node quadrilateral inverse element (see Fig. A1(a)) as Bm = [Bm

1 Bm
2 Bm

3 Bm
4 Bm

5 Bm
6 Bm

7 Bm
8 ]

T. The master element has a 
square shape and defined in the natural coordinate system (ξ, η) as depicted in Fig. A1(b).

Fig. A1. (a) Two-dimensional eight-node quadrilateral inverse element, (b) the master element in (ξ, η) space.  

Every single Bm
i matrix can be defined as 

Bm
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂Ni

∂x
0

0
∂Ni

∂y
∂Ni

∂y
∂Ni

∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A1)  

where the bilinear isoparameteric shape functions, Ni(ξ,η), are defined as 

N1 =
(1 − ξ)(1 − η)(− 1 − ξ − η)

4
(A2a)  

N2 =
(1 + ξ)(1 − η)(− 1 + ξ − η)

4
(A2b)  

N3 =
(1 + ξ)(1 + η)(− 1 + ξ + η)

4
(A2c)  

N4 =
(1 − ξ)(1 + η)(− 1 − ξ − η)

4
(A2d)  

N5 =
(1 − ξ)(1 + ξ)(1 − η)

2
(A2e)  

N6 =
(1 + ξ)(1 + η)(1 − η)

2
(A2f)  

N7 =
(1 − ξ)(1 + ξ)(1 + η)

2
(A2g)  

N8 =
(1 − ξ)(1 + η)(1 − η)

2
(A2h)  
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