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Symmetry properties and bifurcations of viscoelastic thermovibrational
convection in a square cavity
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To fill a gap in the literature about the specific dynamics of thermovibrational flow in a square cavity filled
with a viscoelastic fluid when vibrations and the imposed temperature gradient are concurrent, a parametric
investigation has been conducted to investigate the response of this system over a relatively wide subregion
of the space of parameters (Prg = 10; viscosity ratio ξ = 0.5; nondimensional frequency � = 25, 50, 75, and
100; and Raω ∈ [Raω,cr, 3.3 × 104], where Raω,cr is the critical vibrational Rayleigh number). Through solution
of the governing nonlinear equations formulated in the framework of the finitely extensible nonlinear elastic
Chilcott-Rallison paradigm, it is shown that the flow is prone to develop a unique hierarchy of bifurcations
where initially subharmonic spatiotemporal regimes can be taken over by more complex states driven by the
competition of disturbances with different symmetries if certain conditions are considered. What drives a wedge
between the cases with parallel and perpendicular vibrations is essentially the existence of a threshold to be
exceeded to produce convection in the former case. Nevertheless, these two configurations share some interesting
properties, which are reminiscent of the resonances and antiresonances typical of multicomponent mechanical
structures. Additional insights into these behaviors are gained through consideration of quantities representative
of the kinetic and elastic energy globally possessed by the system and its sensitivity to the initial conditions.
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I. INTRODUCTION

Vibrations are ubiquitous in engineering as liquids or gases
are. These inertial disturbances can be produced by a variety
of possible causes such as imbalance, misalignment, wear or
looseness in machinery and other mechanical systems. More
in general, they can be regarded as the outcome of any kind
of external or internal force acting on a physical system that
is elastic in nature or consists of a network of non–infinitely
rigid parts or materials. When combined with fluids, these
disturbances give rise to a specific class of fluid motions
known as “vibrational flows.”

These phenomena have enjoyed considerable interest
since the early 2000s as they naturally complement other
forms of natural convection induced by standard forces
such as gravity or surface tension. Just as these forces
can produce in a nonisothermal fluid “thermogravitational”
or “thermocapillary” convective effects, vibrations can give
rise to a different branch of this tree generally known as
“thermovibrational” convection. This category of flows has at-
tracted appreciable attention since the early 2000s as a testbed
for the identification of universal principles in the dynamics
of nonisothermal systems undergoing convective instabilities.
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Indeed, the similarities between vibrationally induced flow
and other fluid-dynamic mechanisms has been the main driver
for an appreciable (still ongoing in many cases) attempt to
unify available information to general criteria. Relevant exam-
ples of this practice or tendency are existing books or treatises
on the subject [1,2].

As an extensive treatment of such aspects would not fit
the present Introduction, here we limit ourselves to recalling
the striking analogies, which have been found in the ability
of all these forces to produce a well-known “dichotomy” in
fluid dynamics. This duality concerns the direction of the
temperature gradient in relation to the considered force. Put
simply, if the direction of steady gravity, vibrationally induced
periodic accelerations, or the unit vector perpendicular the
free interface (where surface tension is active) has a com-
ponent perpendicular to the gradient of temperature, then the
tendency to produce fluid motion is an “intrinsic property” of
the considered fluid system (i.e., convection does not require
any threshold to be exceeded or bifurcation to be enabled);
vice versa, if they are parallel, then fluid motion is excited as
a result of an instability of a state, which would otherwise re-
main in static (quiescent) and thermally diffusive conditions.

Notably, the drive to understand the phenomena behind
the onset of fluid motion and related patterning behavior
in vibrated systems and their relationships or affinities with
other forms of convection has approached a sort of plateau
over the past 50 years after the realization that, besides the
influence of the direction of shaking, the modes of vibra-
tional convection also display a great sensitivity to the related
frequency. Indeed, this parameter represents an additional
degree of freedom with respect to the magnitude of steady

2470-0045/2023/108(6)/065101(14) 065101-1 Published by the American Physical Society

https://orcid.org/0000-0002-8603-0109
https://orcid.org/0000-0002-0835-3420
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.065101&domain=pdf&date_stamp=2023-12-01
https://doi.org/10.1103/PhysRevE.108.065101
https://creativecommons.org/licenses/by/4.0/


BOARO, MACDOWALL, AND LAPPA PHYSICAL REVIEW E 108, 065101 (2023)

gravity or the fixed (constant) value of the surface tension
derivative in classical thermogravitational or thermocapillary
flows. Together with the related amplitude, the frequency of
vibrations contributes to determine the dynamic response of
the fluid and two main regimes have been identified accord-
ingly: one attained for small frequencies and large amplitude
of the vibrations, where fluid motion follows in a more or less
synchronous way the evolution in time of the related driving
force (the acceleration induced by vibrations in this case),
and another when frequency is large and amplitude is small,
where a flow that is essentially “steady” in nature takes over.
Owing to the apparently counterintuitive mismatch between
the forcing (an acceleration varying periodically in time) and
the fluid response (steady flow), the latter has been the subject
of some additional investigations. These have clarified that the
steady (or time-averaged) velocity component can be properly
accounted for through a potential flow model theory (see, e.g.,
Refs. [1–3]).

Apart from supporting the early stages of research in this
field through significant computational simplifications, in par-
ticular, the greatest merit of the potential theory approach
resides in the insights it has delivered into the convection
mechanisms under investigation. As an example, it has been
clarified that for the case where the temperature gradient is
perpendicular to vibrations, the typical time-averaged pattern
consists of four steady rolls (the so-called quadrupolar state
[4]), while this steady flow reduces to a degenerate condition
with no flow at all in the situation where vibrations are parallel
to the prevailing temperature gradient [2,5–7]. In the latter
case, however, the patterning behavior of the instantaneous
flow becomes very complex and displays several textural tran-
sitions in the space of parameters as the assumption of large
frequency and the related potential flow theory cease to be
valid [8–10].

Although all these achievements might support the idea
that knowledge in this area is quite mature, unfortunately,
current theories still lack a comprehensive picture to predict
the flow behavior of such systems in conditions for which
the fluid itself is “elastic,” i.e., liquids are considered, which
besides being viscous have the ability to retain shear stresses
inside even if there are no gradients of velocity or the fluid
is in a completely motionless state. Current knowledge is
essentially limited (with a few exceptions) to Newtonian flu-
ids. Viscoelastic fluids remain a grand challenge problem for
the research community engaged in developing first-principles
models and simulations, as their flow response is intertwined
with some of math’s deepest unsolved questions about the
stability of certain equations [11–16].

Successful (available) efforts, however, have shown that
the typical outcomes of fluid elasticity are the so-called over-
stability and solution multiplicity concepts. The first refers to
the ability of elastic behaviors to cause a significant decrease
in the threshold to be exceeded for the onset of convection
(in the aforementioned “parallel” case, i.e., the situations in
which the temperature gradient is parallel to steady gravity
[17,18]). At the same time, it can render the transition from
an initial quiescent condition to a convective state a Hopf
(oscillatory) bifurcation (as opposed to the equivalent
stationary bifurcation for a Newtonian fluid [19–21]).
The companion concept of multiplicity relates to the

often-observed large number of solutions, which coexist in the
space of phases, differ with respect to the basin of attraction,
and can manifest at the same time on increasing certain pa-
rameters [22,23].

For vibrational flow, in particular, Boaro and Lappa
[24–26] could show that overstability in three-dimensional
liquid layers for the “parallel” case and relatively small
frequencies is always associated with solutions reminis-
cent of the superlattice structures typical of the so-called
“complex order” [27]. Such peculiar modes of convection are
due to the coexistence of two distinct spatial scales, each
displaying a different temporal dependence, driven by the
interplay of the time-varying (stabilizing or destabilizing) ac-
celeration induced by vibrations and the ability of the fluid
to store and release elastic energy. The only available results
for the companion “perpendicular” configuration are due to
Boaro and Lappa [28], who, however, concentrated on a sys-
tem as simple as a square cavity. Building on the intrinsic
ability of this configuration to reveal the hidden symmetries of
the different convective modes that can be excited in the space
of parameters, they pointed out that, apart from expanding
the set of possible solutions, elasticity can lead to complex
dynamics driven by the competition between the propensity
of polymer molecules to return to a relaxed position and the
external vibrations that stretch and shrink them on a regular
basis. The main outcome of such a competition is the exis-
tence of a nonmonotonic behavior in terms of flow amplitude
as the ratio between the characteristic time of the vibrations
and the relaxation time of the fluid is varied, which displays a
fascinating similarity with the resonances and antiresonances
typical of multicomponent mechanical structures [29,30]. As
research up until this point for the parallel case has been
limited to infinitely extended systems [24–26] and has not yet
branched out to finite-size systems leaving a void within the
physics surrounding it, an attempt is made here to bridge such
a gap by considering the square cavity in the parallel case.

II. MATHEMATICAL MODEL

In line with the objective set at the end of the Introduction,
a two-dimensional (2D) square cavity having lateral no-slip
and adiabatic walls (∂T /∂n|wall = 0) and with a fixed differ-
ence of temperature between the top and bottom no-slip walls
is considered. The related reference system and the boundary
conditions are reported in Fig. 1. This figure also shows that
the direction of the vibrations (as uniquely defined through the
related unit vector n̂) is fixed and parallel to the temperature
gradient ∇T (“parallel configuration”).

Building on earlier efforts in this area [9,10,25,26,28,
31–36], here we model mechanical vibrations as a sinusoidal
displacement in time, i.e.,

s(t∗) = b sin(ωt∗)n̂, (1)

where b is the vibration amplitude and ω is the related an-
gular frequency (ω = 2π f ). Through simple mathematical
developments (a second derivative with respect to time), the
corresponding acceleration can be represented formally as

aω(t∗) = γ sin(ωt∗), (2)

where γ = −bω2n̂.
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FIG. 1. Sketch of the geometry and schematisation of the problem.

This is needed for the implementation of the Boussinesq
approximation, namely the widespread practice of modeling
the force term in the momentum balance equation as the
product of the body acceleration affecting the fluid and a linear
term accounting for the dependence of density on temperature,
while the density is considered constant in all the other terms
(valid for all liquids in particular and for all incompressible
fluids more in general). In such a framework, the balance
equations for mass, momentum, and energy in dimensional
form read

∇ · u∗ = 0, (3)

ρ
∂u∗

∂t∗ + ρ∇ · (u∗u∗) = −∇p∗ + ηs∇2u∗ + ∇ · τ̃∗

+ ρβT (T − Tref )aω(t∗), (4)

∂T ∗

∂t∗ = −∇ · (u∗T ∗) + α∇2T ∗, (5)

where t∗ is the time, u∗ is the velocity, T ∗ is the temperature,
p∗ is the pressure, τ̃∗ is the extra stress tensor due to the
viscoelastic effect, ρ is the (constant) density of the fluid,
ηs is the dynamic viscosity of the solvent (for Newtonian
fluids ηs = η simply represents the dynamic viscosity of the
liquid), βT is the thermal expansion coefficient (formally the
proportional constant linking density and temperature), and α

is the thermal diffusivity. The symbol (∗) is used to highlight
that the quantities are dimensional.

In addition to Eqs. (3), (4), and (5), an extra equation is
needed to provide the required relationship between the vis-
coelastic stress tensor τ̃∗ and the velocity. It is therefore
introduced separately. In particular, here, to allow direct
comparison of the present results with those obtained previ-
ously for the companion “perpendicular configuration”[28],
such equation is formulated according to the finitely exten-
sible nonlinear elastic Chilcott-Rallison (FENE-CR) [37,38]
paradigm.

In this regard, we wish to recall that, although the
Oldroyd-B model is commonly employed for the analysis of
the so-called Boger fluids (see, e.g., Refs. [20–22,24,39]),
i.e., a class of viscoelastic liquids that maintain a constant
viscosity over a wide range of shear rates [23], it is affected
by a well-known problem, that is, it has an infinite extensional

viscosity. This is the reason for which we rely here on a more
sophisticated variant where the linear (Hook) spring used for
the derivation of the Oldroyd-B model is replaced by a finite
extensible nonlinear one. In particular, the variant proposed
by Chilcott and Rallison (FENE-CR) is the only FENE-type
model that does not display shear-thinning or thickening be-
havior and therefore ideally suited to study the sole effect of
viscoelasticity on the dynamics of interest.

The related equation for the temporal evolution of the extra
stress tensor in its dimensional form reads

λ

(
∂ τ̃∗

∂t∗ + u∗ · ∇τ̃∗
)

+ f (tr(τ̃∗))τ̃∗

= ηp f (tr(τ̃∗))[∇u∗ + (∇u∗)ᵀ] + λ[τ̃∗ · ∇u∗

+ (∇u∗)ᵀ · τ̃∗], (6)

where f (tr(τ̃)) is a quantity related to the possible deforma-
tion of the polymeric molecules:

f (tr(τ̃∗)) =
L2 + λ

ηp
tr(τ̃∗)

L2 − 3
, (7)

where ηp is the dynamic viscosity of the polymer, λ is
the so-called relaxation time, and L2 is the so-called finite
extensibility parameter of the polymer molecule.

Other relevant physical parameters are the total dynamic
viscosity of the viscoelastic fluid η0 = ηs + ηp and the
solvent-to-total viscosity ratio ξ = ηs/η0.

Equations (3), (4), (5), and (6) can be put in nondimen-
sional form using the side � of the square cavity as reference
length, α/� for the velocity, �2/α for the time, α/�2 for the
frequency, ρα2/�2 for the pressure, T = Th − Tc for the
temperature, and ρνsα/�2 for the extra stress tensor τ̃∗. In
the last scaling factor νs is the kinematic viscosity of the
Newtonian solvent (νs = ηs/ρ).

Accordingly, the nondimensional balance equations in
their time-dependent nonlinear form can be finally cast in
compact form as

∇ · u = 0, (8)

∂u
∂t

= −∇p − ∇ · (uu) + Pr∇2u + Pr∇ · τ̃

− PrgRaωT sin(�t )n̂, (9)

∂T

∂t
= −∇ · (uT ) + ∇2T, (10)

ϑ

(
∂ τ̃

∂t
+ u · ∇τ̃

)
+ f (tr(τ̃∗))τ̃

= ζ f (tr(τ̃∗))[∇u + (∇u)ᵀ] + ϑ[τ̃ · ∇u + (∇u)ᵀ · τ̃].

(11)

The nondimensional groups that appear in these equations are
the Prandtl number for the Newtonian solvent Pr = νs/α,
the nondimensional frequency � = �2ω/α, the generalized
Prandtl number Prg = Pr/ξ , the elasticity number ϑ = λα/�2,
the viscosity ratio ζ = ηp/ηs = (1 − ξ )/ξ , and the vibrational
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Rayleigh number,

Raω = bω2βT T �3

ν0α
, (12)

where ν0 = η0/ρ is the total kinematic viscosity. This expres-
sion can be seen as an alternate form of the classical Rayleigh
number, where in place of the classical steady gravitational
acceleration, the amplitude of the considered monochromatic
periodic acceleration is used [28].

Following our preceding works [25,26,28], it is also worth
introducing another parameter, that is, the ratio of the relax-
ation time λ (the characteristic time of the polymer molecules
dynamics) and the period of the oscillations T ∗

ω (Tω = 2π/�,
i.e., the characteristic time of the external dynamic force):

� = λ

T ∗
ω

= ϑ�

2π
. (13)

The following expressions finally provide the definitions of
three quantities, which we will use later to characterize the
solutions provided by the numerical simulations, namely the
Nusselt number Nu(t ) (calculated on the heated boundary),
the global Kinematic energy K (t ), and the global elastic en-
ergy EE(t ),

Nu(t ) = 1

A

∫
A
∇T (t ) · nplate dA, (14)

K (t ) = 1

V

∫
V

u · u dV, (15)

EE(t ) = 1

V

∫
V

tr(τ̃) dV, (16)

where nplate in the unit vector normal to the boundary and A
is the area of the heated boundary, V is the volume of the
cavity, and tr(τ̃) is a quantity proportional to the elastic energy
stored by the polymer molecules (see Ref. [25] and references
therein). In addition to the instantaneous values of the three
quantities defined above, it is common practice to define their
time average counterpart Nu, K , and EE as

Nu = 1

TNu

∫
TNu

Nu(t ) dt, (17)

K = 1

TK

∫
TK

K (t ) dt, (18)

EE = 1

TEE

∫
TEE

EE(t ) dt, (19)

where TNu, TK , and TEE are the oscillation period of Nusselt
number, global kinematic, and elastic energy, respectively.

III. NUMERICAL METHOD

The balance equations (3), (4), (5), and (6) are solved in
the framework of a segregated finite-volume method (in space
and time) using the computational platform OpenFOAM. This
time-marching algorithm is a well-known numerical realiza-
tion of the PISO method originally elaborated by Issa [40]
(see also Refs. [41,42]), with a collocated disposition for the
primitive variables and the Rhie and Chow [43] interpolation
scheme exploited to avoid pressure-velocity coupling prob-
lems [23].

Moreover, for the implementation of the viscoelastic
model, we have used rheoTool [44], a versatile instrument
to tackle problems involving complex fluids [45–47], relying
on a set of strategies by which the numerical integration pro-
cess of the viscoelastic stress transport equation can be made
more stable (thereby allowing exploration of a wider region
of the space of parameters). The advantages of this approach
with respect to the one implemented in our earlier works
(the both sides diffusion technique [25,26,28]) resides in its
log-conformation tensor nature [45,48], which gives it the
aforementioned improved stability properties and, at the same
time, makes it more accurate in capturing flow instabilities.
With the log-conformation approach the viscoelastic stress
tensor τ̃ is expressed as a function of the conformation tensor
A, i.e., a quantity proportional to the level of deformation of
the polymer molecules [49]. In particular, for a FENE-CR
fluid, the relationship between the two tensors reads [50]:

τ̃∗ = ηp f̃

λ
(A − I), (20)

where I is the unit tensor and f̃ = L2/[L2 − tr(A)].
In general, the conformation tensor is a positive defi-

nite quantity; however, in proximity to a critical point (a
“singularity” due to the hyperbolic nature of the viscoelastic
stress transport equation, see Refs. [11–15]) the positiveness
of A can drop thereby leading to divergence of the numerical
procedure. If, instead of considering A, its natural logarithm
is used, then � = ln(A) can remain definite positive and,
accordingly, the aforementioned singularity-related problem
can be strongly mitigated. Rewriting and solving (6) in terms
of �, rheoTool calculates the value of the stress tensor using
an exponential transformation and Eq. (20) (Ref. [45] and
references therein).

Moreover, we have used a second-order accurate backward
scheme to discretize the equations in time, a second-order
accurate central difference scheme for the spatial discretiza-
tion of the diffusive terms and a third-order CUBISTA scheme
for the analogous treatment of the convective terms. To avoid
nonphysical oscillations, the CUBISTA scheme is implemented
through a deferred correction approach and the nonscalar
quantities are handled in a component-wise way [45].

This approach has been validated in other works of
the present authors for thermogravitational, thermovibra-
tional, and thermocapillary flows. The reader is referred to
Refs. [23,25,28,51] for a complete treatment of the topic.

Mesh refinement study

A representative case for the mesh refinement analysis is
selected as follows. The Prandtl number and viscosity ratio
are set to Prg = 10 and ξ = 0.5, respectively (as these are the
fixed dimensionless values considered in this study); more-
over, in line with the conditions considered in the results
section, � = 100 (maximum value of angular frequency),
Raω = 2.8 × 104 (close to the maximum value of the vibra-
tional Rayleigh number), and ϑ = 0.1 (value located in the
center of the range explored in this study). The corresponding
variations of Nu, K , and EE on varying the mesh size are
reported in Table I. As quantitatively substantiated in this ta-
ble, an increase in numerical resolution from a mesh 80 × 80
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TABLE I. Mesh refinement study; case Prg = 10, ξ = 0.5, � =
100, Raω = 2.8 × 104, and ϑ = 0.1.

Mesh size Nu K EE %err Nu %err K %err EE

20 × 20 1.60 294.6 36.6
40 × 40 1.79 724.0 91.9 11.88 145.76 151.09
60 × 60 2.014 948.0 138.0 12.51 30.94 50.16
80 × 80 2.04 1001 149.2 1.29 5.59 8.12
100 × 100 2.04 1032 155 0 3.1 3.89

to 100 × 100 does not produce appreciable changes in the
Nusselt number. The corresponding variations of kinetic and
elastic energy are less than 4%, which is an acceptable com-
promise between accuracy ad time consumption. For these
reasons, a mesh having 80 divisions along the vertical and hor-
izontal side of the cavity is chosen for the analysis presented
in Sec. IV.

IV. RESULTS

As even a cursory glimpse into the earlier section would
immediately confirm, the considered problem is characterized
by a rich set of influential parameters, which lead naturally
to the need of a reasonable choice about those which have
to be fixed and those to be varied (not to make the scale of
the overall problem intractable). For consistency with Boaro
and Lappa [28], here, in particular, Prg and ξ are fixed to
Prg = 10 and ξ = 0.5, respectively. The angular frequency
and vibrational Rayleigh number, however, are allowed to
span relatively wide ranges, namely � = 25, 50, 75, and 100
and Raω ∈ [Raω,cr, 3.3 × 104], where Raω,cr is the critical vi-
brational Rayleigh number for the onset of thermovibrational
convection. Moreover, different values of the elasticity num-
ber, ϑ = 0.10, 0.15, and 0.20, are examined.

An experimentalist may determine relevant physical con-
ditions corresponding to all these nondimensional factors
in a relatively straightforward way. The considered fluids
(for which the FENE-CR paradigm is applicable) are indeed
the so-called Boger fluids, i.e., water-based polymer dilute
solutions at ambient or moderate temperatures, e.g., water
between 25◦C and 50◦C with limited amount of a polymer
such a PAM, PEG, PEO, PVP, xanthan gum, etc.

The Prandtl number of these liquids is very similar to that
considered in the present work (in this regard, we wish also
to highlight that the rheological characteristic ratios Prg and
ξ used here are almost identical to those examined by Li
and Khayat [21]). By assuming λ � 10−2 s (typical realistic
value for a relatively small polymer concentration) and α �

1.44 × 10−7 m2/s (e.g., for a water solution at 35◦C), the
corresponding characteristic cavity size, obtained by substi-
tuting these values into the expression of the elasticity number
(e.g., ϑ = 0.15), would read � � 10−4 m (microfluidics con-
ditions). The dimensional frequency of the vibrations can be
determined accordingly using the expression of the nondimen-
sional angular frequency, e.g., for � = 100, ω = �α/�2

�

1.4 × 103 rad/s (→ f � 2 × 102 Hz). The required T fi-
nally stems from the definition of the Rayleigh number. Using
Raω = 104 as a representative condition and solvent kinematic

FIG. 2. Evolution in time of the vertical velocity maximum for
the case of � = 50, ϑ = 0.15, and Raω = 8.89 × 103. Amplifying
disturbances. The angular coefficient of the orange line represents
the disturbance growth rate.

viscosity and thermal expansion coefficient (at 35◦C) ηs =
0.72 × 10−6 m2/s and βT = 4 × 10−4 K−1, respectively, this
would lead to a T � 75◦C for a vibration amplitude of a few
centimeters (b � 3 × 10−2 m).

A. Neutral curves

According to the principles of the classical linear stability
analysis (LSA), the basic (equilibrium) state of a dynamic
system becomes (locally) unstable against a certain class
of infinitesimal disturbances only if the set of parameters
describing the system belongs to a region of the space of
parameters where such disturbances can be amplified. Such
amplification is mathematically represented (in the framework
of the LSA approach) by an exponential behavior, which, in
turn can be directly put in relation with the eigenvalues of the
Jacobian of the linearized equations [19].

Although the present approach does not rely on LSA,
the above concepts still represent a useful basis on which
the (critical) conditions for the onset of convection can be
determined. Indeed, the required theoretical link is provided
by the realization that the numerical approach described in
the earlier section can provide information directly on the
amplitude of disturbances and the related evolution in time.
Backward extrapolation (to zero) of the disturbance growth
rate on a semilogarithm scale can be used to determine the
same value of the critical parameter, which would be provided
in principle by the LSA.

Using a diffusive state (linear distribution of the tempera-
ture in y direction and stationary fluid) as an initial condition
and monitoring the global maximum of the y component of
the velocity over time [maxV (uy), where V is the volume
of the domain] it is easy to assess whether the disturbance
is amplifying. Specifically, since from LSA it is known that
the disturbance will grow exponentially at the onset of con-
vection, the best way to do so is to plot maxV (uy) in a
semilogarithmic plane (y axis having a logarithmic scale). In
Fig. 2 we report an example of an amplifying disturbance.

It is worth highlighting that the oscillations of the velocity
maximum present in such a figure between t = 0 and t �

80 with average value � 10−2 represent “numerical noise”
preceding the stage in which these “random”disturbances
are amplified through the aforementioned exponential growth
process (until their amplitude is saturated and the related
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TABLE II. Critical values of the vibrational Rayleigh number
Raω,cr as a function of the elasticity number and angular frequency.
Case Prg = 10, ξ = 0.5.

ϑ

0.1 0.15 0.2

� 25 5358 4545 4292
50 9280 8853 9023
75 14 061 14 785 15 634
100 20 432 22 087 23 563

average value attains a value as high as 10, i.e., three orders
of magnitude larger than that of the initial disturbances). The
physical mechanism driving the amplification of the distur-
bances is the same envisaged by the LSA approach. The
difference with respect to the LSA is represented by the fact
that, while with LSA the disturbances “must be added” to the
initial “basic solution” in the form of mathematical functions
of given shape (with some initial guesses on the wave number
which is thought to be the most critical), when the problem is
addressed through direct numerical solution of the governing
time-dependent and nonlinear equations (present case) small-
scale disturbances are naturally produced by the simulation in
the form of numerical noise. Only the components of such a
wideband noise with the “right” wave number are selected out
of the full spectrum of disturbances and amplified accordingly.
This approach has already enjoyed a widespread use in the
literature and it is the main reason for which any numerical
simulation of a very classical phenomenon such as standard
Rayleigh-Bénard convection can capture this form of convec-
tion even if no disturbances are artificially superimposed on
the initial quiescent state (see, e.g., Ouertatani et al. [52] and
Stella and Bucchignani [53] and references therein).

The orange line inclination (angular coefficient) represents
the growth rate (ε) of the instability. To calculate the criti-
cal value of the vibrational Rayleigh number, it is sufficient
to estimate the law ε(Raω ) in a region close to the critical
threshold. The critical value of the vibrational Rayleigh num-
ber (Raω,cr) is recovered by extrapolating ε to 0. The outcomes
of this process are reported in Table II, where Raω,cr is given
as a function of the couple (ϑ,�).

Figure 3 provides additional insights into such depen-
dencies by showing separately the effects of ϑ and �. In
particular, Fig. 3(a) makes evident that, in general, lower
frequencies are more destabilizing than the higher ones. This
result is in accordance with other studies involving Newtonian
[8,9] fluids. Indeed, in the limit � → 0 the thermovibrational
flow tends to the standard thermogravitational counterpart,
i.e., case where the acceleration has never a stabilizing role
(in the vibrational case, the acceleration tends to kill the flow
in the part of the period where it is directed from the hot to the
cold wall); vice versa, when � attains a high value, there is an
increase in the critical threshold (which would theoretically
become infinite in the limit as � → ∞, i.e., when the flow
enters the aforementioned potential flow regime).

Although the concept of overstability discussed by Boaro
and Lappa [25] is still valid in the present case (as an ex-
ample we could verify that no convection is produced in an

(a)

(b)

FIG. 3. Influence of ϑ (a) and � (b) on the critical vibrational
Rayleigh number.

equivalent Newtonian fluid with Pr = 10 subjected to vibra-
tions with � = 100 although a value of the Rayleigh number
as high as Raω = 2.5 × 104 is considered), providing a clear
picture about the effect of the elasticity number is less straight-
forward.

A destabilizing trend has been found for this specific value
of the angular frequency (� = 25), which essentially confirms
the earlier conclusions by Boaro and Lappa [25] (although
those results were obtained for the case of the infinite layer
and different conditions: Prg = 7, � = 26.5, ξ = 0.1). Like
in that study, here the critical Rayleigh number decreases
monotonically as the elasticity number is increased if rela-
tively small values of the angular frequency are considered.
This result is also in accordance with the classic literature
about Rayleigh-Bénard (RB) convection in viscoelastic fluid
[20,21].

Extension of the investigated range of angular frequencies
to much larger values (up to � = 102, main objective of the
present work) has revealed that this trend can be reversed. In
particular, the inversion seems to occur for � � 50 for which
the critical Rayleigh number remains almost constant over the
considered ϑ interval while displaying a barely appreciable
nonmonotonic dependence [see Fig. 3(b)]. For larger values
of �, however, a completely different scenario emerges, with
an increase in elasticity producing flow stabilization rather
than “overstability” (the critical threshold increases with ϑ),
which is the opposite of what one would expect in standard
RB viscoelastic convection.
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TABLE III. Different values of � as a function of ϑ and �.

ϑ

0.1 0.15 0.2

� 25 0.40 0.60 0.80
50 0.80 1.19 1.59
75 1.19 1.79 2.38
100 1.59 2.39 3.18

Notably, this scenario is reminiscent of that reported by
Boaro and Lappa [28] (see Figs. 20 and 21 in their work), for
the square cavity with vibrations “perpendicular” to the tem-
perature gradient. As already explained to a certain extent in
the Introduction, they found that, in analogy with the behavior
of certain multicomponent mechanical systems that undergo
resonances and antiresonances, vibrated viscoelastic systems
can also display regions of variable stability. More precisely,
they observed that for values of the parameter � smaller than
one, where � is the ratio between relaxation time and period
of the forcing vibrations as formally defined in Eq. (13), the
intensities of the mean and instantaneous viscoelastic stress
tensor components increase with �, whereas for � > 1 they
are inversely proportional to ϑ (and therefore �).

The corresponding variation of the parameter � for the
conditions considered in the present work can be gathered
from Table III, where it is reported as a function of ϑ and
�. It can be seen there that for � = 50, � varies in a
relatively restricted neighborhood of 1, which confirms that
the nonmonotonic evolution laws or dependencies are not
an exclusive prerogative of the perpendicular case. Just like
variations of � in a narrow range around to the value of 1 can
cause nonmonotonic changes in the flow amplitude in the case
with vibrations perpendicular to the temperature gradient, it
can produce similar variations in the critical threshold for the
onset of convection in the parallel case.

As illustrated further in the next section, changing the
vibrational frequency can also impact significantly the pat-
terning behavior (for brevity, we limit ourselves to considering
the cases � = 50, 75, and 100 for which the interesting behav-
iors reported above have been obtained).

B. Pattern selection and observed bifurcations

The simplest way to elaborate a relevant classification of
the emerging patterns in terms of symmetries and multiplicity
of the related cellular structure is to rely on the approach
originally implemented by Mizushima [54], where the set of
possible modes of convection in a square cavity was parti-
tioned into four fundamental classes (see Fig. 4), namely

(aa): The antisymmetric-antisymmetric mode, where both
the x and y symmetry are lost as a result a flow structure
featuring an odd number of rolls along both directions.

(sa): The symmetric-antisymmetric mode, where only the
symmetry with respect to the (vertical) y axis is retained by
virtue of an even number of rolls along the x direction (and an
odd number of rolls along y).

(as): The antisymmetric-symmetric mode, where only the
symmetry with respect to the (horizontal) x axis is retained by

FIG. 4. Categorization of possible solutions of buoyancy convec-
tion in 2D finite enclosures in terms of related symmetries.

virtue of an even number of rolls along y (and an odd number
of rolls along the x).

(ss): The symmetric-symmetric mode, where both sym-
metries are preserved by virtue of an even number of vortex
cells along both the x and y axes, this leading to a centro-
symmetric configuration when the number of rolls along both
the x and y directions is the same and to a columnar arrange-
ment if the number of rolls along y is larger.

For the considered problem, we have found two dominant
symmetries, namely the (aa) and (sa). Additional insights
into these modes of convection can be gathered from Fig. 5,
which quantitatively substantiates the relationship between
the considered value of the vibrational Rayleigh number
Raω ∈ [Raω,cr, 3.3 × 104] and the “global measures” defined
in Sec. II, i.e., Nu, K , and EE.

Following up on the previous point, the first column of
Fig. 5 provides a first glimpse of the effect of the vibrational
Rayleigh number on Nu. It can be seen that while for � = 50
the time average Nusselt number increases with a concave
down parabolic law at the onset of convection, for � = 75
and 100 the curve is concave upwards. Similar considerations
can be made for the K and EE graphs. This difference is due
to the fact that at � = 50 the flow emerging from the diffusive
state displays an (aa) symmetry. On the contrary, for the other
two values of the angular frequency, the dominant symmetry
is the (sa).

For � = 50 the (aa) configuration is stable in the range
Raω,cr � Raω � 1.575 × 104 for ϑ = 0.10, Raω,cr � Raω �
1.525 × 104 for ϑ = 0.15, and Raω,cr � Raω � 1.525 × 104

for ϑ = 0.20.
Instead, for � = 75 the (sa) configuration is stable

in the range Raω,cr � Raω � 1.515 × 104 for ϑ = 0.10,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. Variation of Nu (first column), K (second column), and EE (third column) for ϑ = 0.10 [(a)–(c)], ϑ = 0.15 [(d)–(f)], and ϑ = 0.20
[(g)–(i)] as a function of the vibrational vibrational Rayleigh number.

Raω,cr � Raω � 1.571 × 104 for ϑ = 0.15 and Raω,cr �
Raω � 1.652 × 104 for ϑ = 0.20 while for � = 100 the
corresponding intervals are Raω,cr � Raω � 2.630 × 104 for
ϑ = 0.10, Raω,cr � Raω � 2.490 × 104 for ϑ = 0.15, and
Raω,cr � Raω � 2.6148 × 104 for ϑ = 0.20.

By denoting by RaI
ω the right end of such a stability

interval, Fig. 5 is also instrumental in showing that on ex-
ceeding RaI

ω, a second bifurcation takes place. For � = 50,
the (aa) dominated solution is taken over by a (sa) symmetric
configuration, and vice versa, the (sa) configuration becomes
an (aa) flow when � = 75 and 100. The sudden change in
the solution comes with an abrupt variation of Nu, K , and
EE. In particular, on jumping from an (aa) to a (sa) solution
all these three quantities are lowered, whereas they abruptly
increase when going from a (sa) to an (aa) branch (it is worth
recalling here that similar phenomena have been observed in
other categories of viscoelastic flows, e.g., the transition from
traveling-wave to standing-wave solutions reported by Lappa

and Boaro [23] for RB flow in cylindrical configurations with
lateral stress-free conditions).

For � = 50 the (sa) configuration is stable in the range
RaI

ω < Raω � 3.3 × 104 for ϑ = 0.10, 0.15, and 0.20. There-
fore, in this case, the flow maintains the (sa) configuration
over a relatively wide range of vibrational Rayleigh numbers.

An increase in the frequency makes the system response
more involved. While for � = 75 and ϑ = 0.15, and � = 100
and ϑ = 0.20, the flow bifurcates directly from the (sa) to
(aa) mode of convection when Raω > RaI

ω; for all the other
cases there is a range of the control parameter for which the
flow displays an intermittent response. These solutions will be
analyzed in detail in Sec. IV C.

To summarize, for � = 75 the (aa) symmetry stability
range is 1.535 × 104 � Raω � 2.2 × 104 for ϑ = 0.10,
RaI

ω < Raω <� 2.2 × 104 for ϑ = 0.15, and 1.669 × 104 �
Raω � 2.35 × 104 for ϑ = 0.20 while for � = 100 the range
is 2.525 × 104 � Raω � 3.05 × 104 for ϑ = 0.10, 2.555 ×

065101-8



SYMMETRY PROPERTIES AND BIFURCATIONS OF … PHYSICAL REVIEW E 108, 065101 (2023)

FIG. 6. Pattern evolution for the case of Prg = 10, ξ = 0.5, ϑ = 0.10, � = 100, and Raω = 2.355 × 104. The streamlines are sampled
evenly over a period of the external vibration (half a period of the pattern dynamic evolution) [(a)–(h)]. The spatiotemporal map (i) represent
the vertical component of the velocity (uy) over the center-line orthogonal to the side-walls (0 � x � 1 and y = 0.5). The vertical dotted lines
show the interval over where the streamlines where sampled starting at t0 = 66.08. Cavity heated from below.

104 � Raω � 2.9 × 104 for ϑ = 0.15, and RaI
ω < Raω

� 2.9 × 104 for ϑ = 0.20.
By indicating with RaII

ω the next bifurcation point for the
(aa) symmetry stability interval related to the � = 75 and
� = 100 branches, the symmetry of the system changes again
as soon as it is exceeded, returning to a (sa) configuration.
For all the considered solutions, this symmetry is stable in the
interval RaII

ω < Raω < 3.3 × 104.
At this stage, we also wish to highlight that, in analogy to

thermovibrational convection in an infinite layer of viscoelas-
tic fluid [25,26], the temporal response of the system to the
application of vibrations in all these cases has found to be
subharmonic, i.e., the flow evolves in time with a frequency
that is half of the forcing frequency. The related patterning be-
havior is depicted for two representative cases, i.e., � = 100,
ϑ = 0.10, and Ra = 2.355 × 104 for the (sa) symmetry and

Ra = 2.55 × 104 for the (aa) symmetry in Fig. 6 and Fig. 7,
respectively. For both cases, the related spatiotemporal map
of the vertical component of the velocity (uy) over a horizon-
tal line passing through the center of the cavity (0 � x � 1,
y = 0.5) is also reported. The dashed vertical lines in the maps
represent the time interval where the streamlines were sam-
pled. These maps are a useful tool to represent in a compact
way the system dynamic evolution [10,25,26].

A detailed interpretation of the phenomena shown in these
figures can be provided as follows. For the (sa) case reported
in Fig. 6, at the beginning of the oscillation period [Fig. 6(a)]
the flow displays the typical two counter-rotating cells (com-
pare with Fig. 4), which occupy the whole available space and
the convective cell on the left (right) rotates clockwise (anti-
clockwise). The sense of rotation can be directly inferred from
the spatiotemporal map [Fig. 6(i)]. As the time progresses,
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FIG. 7. Pattern evolution for the case of Prg = 10, ξ = 0.5, ϑ = 0.10, � = 100, and Raω = 2.55 × 104. The streamlines are sampled
evenly over a period of the external vibration (half a period of the pattern dynamic evolution) [(a)–(h)]. The spatiotemporal map (i) represent
the vertical component of the velocity (uy) over the center-line orthogonal to the side-walls (0 � x � 1 and y = 0.5). The vertical dotted lines
show the interval over where the streamlines where sampled starting at t0 = 44. Cavity heated from below.

two small cells, rotating in the opposite direction with respect
to the initial ones, nucleate in proximity to the cold boundary
[Fig. 6(b)] and grow until their size becomes comparable to
the cavity height, thereby suppressing the two initial cells
[Fig. 6(c)]. The associated map is instrumental in showing that
the new cells rotate in the opposite direction. In the meantime,
the external vibrations have entered their “stabilizing” period,
as confirmed in the map by the sudden decrease in the velocity
intensity [Figs. 6(d) and 6(i)]. However, the system never
attains a motionless state (this is one of the main differences
from studies dealing with Newtonian fluids [9,10]). Rather,
by leveraging the elasticity accumulated in the fluid (i.e.,
the energy that was stored in the polymer molecules during
the destabilizing phase), the system is able to maintain the
ongoing unsteady flow. This conclusion is supported by both
the spatiotemporal map and the analysis of Nu, K , or EE
signals (omitted for the sake of brevity). Between frames 6(e)

and 6(h) there are two other inversions until, at the end of
the period of vibrations, the (sa) is recovered. However, the
sense of rotation is not the same as the initial one. This is the
manifestation of the aforementioned half-subharmonicity of
the spatiotemporal behavior. As evident from the map, before
recovering the initial situation another period of vibrations is
needed. During the second period, the evolution is mirror-
symmetric with respect to the one just analyzed (for the sake
of brevity, the description of the pattern evolution over the
second period is omitted).

Similar considerations can be made for the evolution of the
pattern with (aa) symmetry. Starting from the initial situation
depicted in Fig. 7(a), a single cell occupying almost the whole
volume of the cavity and rotating anticlockwise can be seen.
Smaller eddies are located in the northeast and southwest
corners. As time passes, the size of these two eddies oscillates,
as visible in Figs. 7(b)–7(d) until at a certain stage they start
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growing [Fig. 7(e)], thereby compressing the main central cell
and merging with it [Fig. 7(f)]. As a result, another central
patch of fluid rotating clockwise is formed Fig. 7(g). In the
meantime, the direction of the vibrations has become stabiliz-
ing for the flow. However, since the intensity of convection is
now stronger [Fig. 5(a)], this indirectly confirms that the fluid
has stored more energy with respect the previous case [see
Fig. 5(b) and 5(c)]. At the end of the first period of vibrations,
the residual elastic energy allows the fluid to move clockwise
inside the cell. Even in this case, the half-subharmonicity is
evident from the map.

By cross comparison of Figs. 6(i) and 7(i), at this stage
the reader will have realized that the two symmetries produce
different behaviors in the spatiotemporal maps. Indeed, while
for the (sa) symmetry the maps display three streaks, this
number is reduced to two only for the (aa) symmetry. We
will come back to this observation in the next section. As a
concluding remark for this section, we discuss another effect
related to the average energies reported in Fig. 5.

In particular, we wish to highlight that, while for the elastic
energy, regardless of the value of ϑ , the inequality EE100 <

EE75 < EE50 holds, a similar relationship cannot be easily
deduced for Nu and (especially) for K . Indeed, while at the
onset of convection the inequality is true for all the averaged
quantities, for ϑ = 0.1, Nu75 > Nu50 in a certain subrange of
Raω, while Nu100 < Nu75 and Nu50, regardless of the con-
sidered value of Raω. Similar results were also reported by
Crewdson and Lappa [9] for Newtonian fluids in the range of
small frequencies (see Fig. 10 and 11 in Ref. [9]). Although
those authors analyzed the evolution of the maximum of the
Nusselt number (here it is the time-averaged value), trends
similar to that reported in the present study were obtained
(which may be regarded as a possible hint for the existence
of universality class in thermovibrational convection when it
is considered in square cavities at low frequencies).

For what concerns the average kinetic energy, producing
inequalities similar to the EE and Nu ones is not as straight-
forward as one would imagine. Indeed, this parameter is
particularly affected when the bifurcation takes place. More-
over, since for every combination of (ϑ,�) the transition to a
new solution occurs in different ranges of Raω, abrupt jumps
and intersecting lines are present in the graph in the central
column of Fig. 5, which make such an attempt almost impos-
sible. To elucidate further the significance of this observation,
one should keep in mind that K accounts for the overall fluid
field behavior, while Nu and EE consider only a subrange
of the component of temperature gradient and extra stress
tensor, respectively. Owing to this “component filtering,” Nu
and EE do not represent all the nonlinear effects that naturally
emerge in the fluid. For the sake of completeness, here we
wish to remark that a similar complexity in the trends of the K
parameter has also been detected in studies dealing with RB
convection, e.g., Zheng et al. [55].

C. Dynamic evolution of intermittent states

This subsection is finally devoted to the “intermittent”
response, which, as mentioned earlier, we have detected for
(ϑ,�) = (0.10, 75), (0.20,75), (0.10,100), and (0.15,100). In
order to do so, we analyze the signal of the velocity vertical

FIG. 8. Vertical component of the velocity probed in the center
of the cavity for � = 100, ϑ = 0.10, and Raω = 2.4 × 104.

component (uy) probed in the center of the cavity (x, y) =
(0.5, 0.5) for the characteristic case of � = 100, ϑ = 0.10,
and Raω = 2.4 × 104 reported in Fig. 8. Such a figure is useful
as it clearly shows that, in addition to the half-subharmonic
variation of the signal, another long-period disturbance is af-
fecting the flow evolution. The corresponding spatiotemporal
map over the long period is reported in Fig. 9. Building on
such plots and the observations about the patterning behavior
for the two different convective modes made in Sec. IV B,
we infer that, during the long period of oscillation (hereafter
simply called secondary oscillation) the flow intermittently
displays both a (sa) and (aa) symmetry (see the supplemental
material [56] for the intermittent state video animation). The
period of time in which a single mode is stable depends on
the control parameters. Moreover, between each secondary
oscillation, the flow becomes diffusive and stationary, i.e., the
convective instabilities are temporally suppressed.

Most interestingly, the (angular) frequency � of the sec-
ondary oscillation changes as a function of the vibrational
Rayleigh number. This is shown in Fig. 10 where the varia-
tion of the angular frequency of the secondary oscillation is
presented as a function of the reduced vibrational Rayleigh
number r(ϑ,�) = Raω/Raω,cr(ϑ,�), where Raω,cr(ϑ,�) is
the critical vibrational Rayleigh number for the onset of
thermovibrational convection reported in Table II [used to
represent all the four combination of (ϑ,�) in the same plot].

For � = 75, the smallest frequency of the signal behaves
as a linear function of r or, equivalently, Raω. Increasing the
vibrational frequency to 100 has the effect of producing a
nonmonotonic law for the secondary oscillation frequency.
Moreover, while for � = 75 we observe the intermittent
behavior only over a small range of Raω, this fascinating
mechanism is stable over a wider interval of the control pa-
rameter for � = 100.

FIG. 9. Spatiotemporal map of the vertical component of the
velocity (uy) over the center-line orthogonal to the side-walls (0 �
x � 1 and y = 0.5) for � = 100, ϑ = 0.10, and Raω = 2.4 × 104.
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FIG. 10. Angular frequency � of the secondary oscillation
as a function of the reduced vibrational Rayleigh number r =
Raω/Raω,cr.

Furthermore, a particular phenomenon shows up for the
specific combination (ϑ,�) = (0.20, 75), more specifically
between the region of stability of the solution with the (sa)
symmetry and the intermittent dynamics. A range of Raω

exists where the (aa) symmetry is stable. However, inspection
of the related case depicted in Fig. 11, and its comparison with
the “standard” symmetric (aa) state, lead to the conclusion
that the center of rotation of the main cell oscillates horizon-
tally with a low frequency. This state can be interpreted as
a precursor of the state with intermittent evolution. Indeed,
a relatively weak cell can be seen in the proximity of the
left side (x = 0), which is periodically suppressed by the
bigger and stronger central vortex. This solution is stable for
1.653 × 104 � Raω � 1.658 × 104.

In order to gain additional insights into the intermittent
state, we have repeated some simulations by initializing them
with the (sa) and (aa) solutions in place of the diffusive
conditions. Remarkably, these additional computations have
clarified that the unique regime in which the intermittent
behavior occurs does not depend on the initial conditions or
the specific path of evolution followed by the system. This
apparent innocuous observation is instrumental in filtering out
chaos-related aspects as possible root causes for the interpre-
tation of this regime. Thermal flows in the “parallel” case are
particularly prone to develop “multiple solutions,” i.e., differ-
ent states that can be entered for a fixed value of the control
parameter depending on the initial conditions [2]. Generalized
consensus exists in the literature that the competition among
these attractors (existing in parallel in the space of parame-
ters) can cause multifrequency states and ensuing transition to
chaos. Behaviors of such a kind become even more frequent

FIG. 11. Spatiotemporal map of the vertical component of the
velocity (uy) over the center-line orthogonal to the side-walls (0 �
x � 1 and y = 0.5) for � = 75, ϑ = 0.20, and Raω = 1.657 × 104.

when viscoelastic fluids are considered, relevant examples in
the case of of RB and MB convection being the works by
Lappa and Boaro [23] and Lappa and Ferialdi [22].

Building on the the insensitivity of the “intermittent” state
to the initial conditions and the fact that, on further increasing
the control parameter a more regular behavior is recovered,
however, we infer that this peculiar regime should be regarded
as a meta-stable (quasiperiodic) condition in which the system
continuously jump from one mode of convection to the other.
In this regard, the same analogy already developed by Boaro
and Lappa [25] with the resonant modes of convection identi-
fied by Rogers et al. [27] could be applied. Such peculiar mode
of convection is driven by the coexistence of two distinct
category of disturbances (each displaying a different temporal
dependence), which are allowed to interact in a resonant way
(Fig. 8).

V. CONCLUSIONS

Some general conclusions can be drawn as follows. Ther-
movibrational convection in the considered square cavity with
vibrations parallel to the imposed temperature gradient is en-
abled as a threshold is exceeded in terms of Rayleigh number,
which depends to a significant extent on the considered value
of the elasticity number and the frequency of the forcing
(the vibrations). While an increase in the frequency generally
leads to a larger value of this critical parameter, a variation
of the fluid elasticity can produce various trends depending
on the considered frequency. The frequency also determines
the emerging symmetry; in particular, two main categories of
concurrent disturbances are at play in the considered region of
the space of parameters.

On increasing the Rayleigh number, a unique hierarchy of
bifurcations is produced where the initial symmetry displayed
by the flow can be taken over by the concurrent one over a cer-
tain interval of the vibrational Rayleigh number. However, as
a second threshold is exceeded the flow returns to its original
symmetry.

Although this scenario applies to most of the situations
considered, a subregion of the space of parameters exists
where the competition of the two convective modes with
different symmetries can give rise to an intermittent spa-
tiotemporal behavior before a state with one or the other
symmetry is recovered.

Future studies shall be devoted to assess the response of
this flow in the three-dimensional case (cubic cavity) for
which the number of possible symmetries is significantly
enlarged and, therefore, more complex dynamics should be
expected.

Publicly available datasets were analyzed in this study.
These data can be found in the pure repository of the Uni-
versity of Strathclyde in Ref. [57].

ACKNOWLEDGMENTS

This work has been supported by the UK Space Agency
[Science and Technology Facilities Council (STFC)
Grants No. ST/S006354/1, No. ST/V005588/1, No.
ST/W002256/1, and No. ST/W007185/1] in the framework
of the PARTICLE VIBRATION (T-PAOLA) project.

065101-12



SYMMETRY PROPERTIES AND BIFURCATIONS OF … PHYSICAL REVIEW E 108, 065101 (2023)

[1] G. Z. Gershuni and A. V. Lyubimov, Thermal Vibrational Con-
vection Vol. 1 (Wiley, England, 1998).

[2] M. Lappa, Thermal Convection: Patterns, Evolution and Stabil-
ity (John Wiley & Sons, Ltd., Chichester, 2009).

[3] R. Savino and M. Lappa, Assessment of thermovibrational the-
ory: Application to g-jitter on the space station, J. Spacecr.
Rockets 40, 201 (2003).

[4] A. Mialdun, I. I. Ryzhkov, D. E. Melnikov, and V. Shevtsova,
Experimental evidence of thermal vibrational convection in a
nonuniformly heated fluid in a reduced gravity environment,
Phys. Rev. Lett. 101, 084501 (2008).

[5] G. Z. Gershuni and E. M. Zhukhovitskii, Free thermal convec-
tion in a vibrational field under conditions of weightlessness,
Sov. Phys. Doklady 24, 894 (1979).

[6] S. Bouarab, F. Mokhtari, S. Kaddeche, D. Henry, V. Botton,
and A. Medelfef, Theoretical and numerical study on high
frequency vibrational convection: Influence of the vibration
direction on the flow structure, Phys. Fluids 31, 043605
(2019).

[7] A. N. Sharifulin, S. A. Plotnikov, and T. P. Lyubimova, Influ-
ence of the directions of vibrations and gravity on the formation
of vortex structures of a nonuniformly heated fluid in a square
cavity, Microgravity Sci. Technol. 34, 97 (2022).

[8] K. Hirata, T. Sasaki, and H. Tanigawa, Vibrational effects on
convection in a square cavity at zero gravity, J. Fluid Mech.
445, 327 (2001).

[9] G. Crewdson and M. Lappa, The zoo of modes of convection in
liquids vibrated along the direction of the temperature gradient,
Fluids 6, 30 (2021).

[10] G. Crewdson and M. Lappa, Spatial and temporal evolution
of three-dimensional thermovibrational convection in a cubic
cavity with various thermal boundary conditions, Phys. Fluids
34, 014108 (2022).

[11] M. Renardy, High weissenberg number asymptotics and corner
singularities in viscoelastic flows, in IUTAM Symposium on
Non-linear Singularities in Deformation and Flow, edited by D.
Durban and J. R. A. Pearson (Springer Netherlands, Dordrecht,
1999), pp. 13–20.

[12] H. Demir, R. W. Willianms, and F. T. Akyıldız, The singularities
near the corner of a viscoelastic fluid in a 2d cavity, Math.
Comput. Appl. 4, 39 (1999).

[13] D. Siginer, Stability of Non-Linear Constitutive Formulations
for Viscoelastic Fluids, SpringerBriefs in Applied Sciences and
Technology (Springer, Berlin, 2014).

[14] R. G. Owens and T. N. Phillips, Computational Rheology
(Imperial College Press, London, 2002).

[15] A. Bonito, P. Clément, and M. Picasso, Viscoelastic flows with
complex free surfaces: Numerical analysis and simulation, in
Numerical Methods for Non-Newtonian Fluids, Handbook of
Numerical Analysis Vol. 16, edited by R. Glowinski and J. Xu
(Elsevier, Amsterdam, 2011), pp. 305–369.

[16] M. Lappa, On the nature of fluid-dynamics, in Understanding
the Nature of Science, Series: Science, Evolution and Cre-
ationism, edited by P. Lindholm (Nova Science Publishers Inc,
2019), Chap. 1, pp. 1–64.

[17] P. Kolodner, Oscillatory convection in viscoelastic dna suspen-
sions, J. Non-Newtonian Fluid Mech. 75, 167 (1998.

[18] M. Lappa, Thermally-driven flows in polymeric liquids, in
Encyclopedia of Materials: Plastics and Polymers, edited by
M. Hashmi (Elsevier, Oxford, 2022), pp. 724–742.

[19] J. Martinez-Mardones and C. Perez-Garcia, Linear instability in
viscoelastic fluid convection, J. Phys.: Condens. Matter 2, 1281
(1990).

[20] J. Martínez-Mardones and C. Pérez-García, Bifurcation analy-
sis and amplitude equations for viscoelastic convective fluids, Il
Nuovo Cimento D 14, 961 (1992).

[21] Z. Li and R. E. Khayat, Finite-amplitude rayleigh-bénard con-
vection and pattern selection for viscoelastic fluids, J. Fluid
Mech. 529, 221 (2005).

[22] M. Lappa and H. Ferialdi, Multiple solutions, oscillons, and
strange attractors in thermoviscoelastic marangoni convection,
Phys. Fluids 30, 104104 (2018).

[23] M. Lappa and A. Boaro, Rayleigh-bénard convection in vis-
coelastic liquid bridges, J. Fluid Mech. 904, A2 (2020).

[24] T. Lyubimova and K. Kovalevskaya, Gravity modulation effect
on the onset of thermal buoyancy convection in a horizon-
tal layer of the oldroyd fluid, Fluid Dyn. Res. 48, 061419
(2016).

[25] A. Boaro and M. Lappa, Competition of overstability and stabi-
lizing effects in viscoelastic thermovibrational flow, Phys. Rev.
E 104, 025102 (2021).

[26] M. Lappa and A. Boaro, Viscoelastic thermovibrational flow
driven by sinusoidal and pulse (square) waves, Fluids 6, 311
(2021).

[27] J. L. Rogers, W. Pesch, O. Brausch, and M. F. Schatz, Complex-
ordered patterns in shaken convection, Phys. Rev. E 71, 066214
(2005).

[28] A. Boaro and M. Lappa, Multicellular states of viscoelastic
thermovibrational convection in a square cavity, Phys. Fluids
33, 033105 (2021).

[29] D. X. Li, W. Liu, and D. Hao, Vibration antiresonance design
for a spacecraft multifunctional structure, Shock Vib. 2017,
5905684 (2017).

[30] M. P. Asir, A. Jeevarekha, and P. Philominathan, Multiple vi-
brational resonance and antiresonance in a coupled anharmonic
oscillator under monochromatic excitation, Pramana J. Phys.
93, 43 (2019).

[31] M. Lappa, The patterning behaviour and accumulation of spher-
ical particles in a vibrated non-isothermal liquid, Phys. Fluids
26, 093301 (2014).

[32] M. Lappa, Numerical study into the morphology and formation
mechanisms of threedimensional particle structures in vibrated
cylindrical cavities with various heating conditions, Phys. Rev.
Fluids 1, 064203 (2016).

[33] M. Lappa, On the multiplicity and symmetry of parti-
cle attractors in confined non-isothermal fluids subjected
to inclined vibrations, Int. J. Multiphase Flow 93, 71
(2017).

[34] M. Lappa, On the formation and morphology of coherent par-
ticulate structures in non-isothermal enclosures subjected to
rotating g-jitters, Phys. Fluids 31, 073303 (2019).

[35] M. Lappa and T. Burel, Symmetry breaking phenomena in ther-
movibrationally driven particle accumulation structures, Phys.
Fluids 32, 053314 (2020).

[36] G. Crewdson and L. Lappa, Thermally-driven flows and tur-
bulence in vibrated liquids, Int. J. Thermofluids 11, 100102
(2021).

[37] R. B. Bird, P. J. Dotson, and N. Johnson, Polymer solution rhe-
ology based on a finitely extensible bead-spring chain model, J.
Non-Newton. Fluid Mech. 7, 213 (1980).

065101-13

https://doi.org/10.2514/2.3954
https://doi.org/10.1103/PhysRevLett.101.084501
https://doi.org/10.1063/1.5090264
https://doi.org/10.1007/s12217-022-10016-x
https://doi.org/10.1017/S0022112001005651
https://doi.org/10.3390/fluids6010030
https://doi.org/10.1063/5.0078270
https://doi.org/10.3390/mca4010039
https://doi.org/10.1016/S0377-0257(97)00095-5
https://doi.org/10.1088/0953-8984/2/5/019
https://doi.org/10.1007/BF02451680
https://doi.org/10.1017/S0022112005003563
https://doi.org/10.1063/1.5040562
https://doi.org/10.1017/jfm.2020.608
https://doi.org/10.1088/0169-5983/48/6/061419
https://doi.org/10.1103/PhysRevE.104.025102
https://doi.org/10.3390/fluids6090311
https://doi.org/10.1103/PhysRevE.71.066214
https://doi.org/10.1063/5.0041226
https://doi.org/10.1155/2017/5905684
https://doi.org/10.1007/s12043-019-1802-7
https://doi.org/10.1063/1.4893078
https://doi.org/10.1103/PhysRevFluids.1.064203
https://doi.org/10.1016/j.ijmultiphaseflow.2017.03.015
https://doi.org/10.1063/1.5098438
https://doi.org/10.1063/5.0007472
https://doi.org/10.1016/j.ijft.2021.100102
https://doi.org/10.1016/0377-0257(80)85007-5


BOARO, MACDOWALL, AND LAPPA PHYSICAL REVIEW E 108, 065101 (2023)

[38] M. D. Chilcott and J. M. Rallison, Creeping flow of dilute
polymer solutions past cylinders and spheres, J. Non-Newton.
Fluid Mech. 29, 381 (1988).

[39] W. M. Yang, Stability of viscoelastic fluids in a modulated
gravitational field, Int. J. Heat Mass Transf. 40, 1401 (1997).

[40] R. I. Issa, Solution of the implicitly discretised fluid flow equa-
tions by operator-splitting, J. Comput. Phys. 62, 40 (1986).

[41] D. S. Jang, R. Jetli, and S. Acharya, Comparison of the
piso, simpler, and simplec algorithms for the treatment of the
pressure-velocity coupling in steady flow problems, Numer.
Heat Transf. 10, 209 (1986).

[42] F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume
Method in Computational Fluid Dynamics: An Advanced Intro-
duction with OpenFOAM and Matlab, Fluid Mechanics and Its
Applications, Vol. 113 (Springer, Cham, 2015), pp. XXIII, 791.

[43] C. M. Rhie and W. L. Chow, Numerical study of the turbulent
flow past an airfoil with trailing edge separation, AIAA J. 21,
1525 (1983).

[44] F. Pimenta and M. Alves, rheotool https://github.com/
fppimenta/rheoTool (2016).

[45] F. Pimenta and M. A. Alves, Stabilization of an open-source
finite-volume solver for viscoelastic fluid flows, J. Non-
Newtonian Fluid Mech. 239, 85 (2017).

[46] F. Pimenta and M. A. Alves, Conjugate heat transfer in the
unbounded flow of a viscoelastic fluid past a sphere, Int. J. Heat
Fluid Flow 89, 108784 (2021).

[47] R. van Buel and H. Stark, Active open-loop control of elastic
turbulence, Sci. Rep. 10, 15704 (2020).

[48] R. Fattal and R. Kupferman, Constitutive laws for the matrix-
logarithm of the conformation tensor, J. Non-Newton. Fluid
Mech. 123, 281 (2004).

[49] R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager,
Dynamics of Polymeric Liquids Vol. 2, 2nd ed. (John Wiley &
Sons, Chichester, 1987), pp. 1397–1398.

[50] M. A. Alves, P. J. Oliveira, and F. T. Pinho, Numerical methods
for viscoelastic fluid flows, Annu. Rev. Fluid Mech. 53, 509
(2021).

[51] A. Boaro and M. Lappa, On the competition of transverse
and longitudinal modes of marangoni convection in a three-
dimensional layer of viscoelastic fluid, Phys. Fluids 34, 123103
(2022).

[52] N. Ouertatani, N. Ben Cheikh, B. Ben Beya, and T.
Lili, Numerical simulation of two-dimensional Rayleigh-
Bénard convection in an enclosure, C. R. Mec. 336, 464
(2008).

[53] F. Stella and E. Bucchignani, Rayleigh-Bénard convection in
limited domains: Part 1—Oscillatory flow, Numer. Heat Transf.
A 36, 17 (1999).

[54] J. Mizushima, Onset of the thermal convection in a finite two-
dimensional box, J. Phys. Soc. Jpn. 64, 2420 (1995).

[55] X. Zheng, F. Hagani, M. Boutaous, R. Knikker, S. Xin, and
D. A. Siginer, Pattern selection in rayleigh-bénard convection
with nonlinear viscoelastic fluids, Phys. Rev. Fluids 7, 023301
(2022).

[56] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.108.065101 for the video animation of the
intermittent state reported in Figs. 8 and 9.

[57] A. Boaro and M. Lappa, Supplementary material for: “The
symmetry properties and bifurcations of viscoelastic ther-
movibrational convection in a square cavity” (University
of Strathclyde, 2023), Sq_cavity_parallel_file_for_Pure(.zip),
doi:10.15129/f6e78c9e-9a43-467f-a4db-3dbfbfece700.

065101-14

https://doi.org/10.1016/0377-0257(88)85062-6
https://doi.org/10.1016/S0017-9310(96)00194-9
https://doi.org/10.1016/0021-9991(86)90099-9
https://doi.org/10.1080/10407788608913517
https://doi.org/10.2514/3.8284
https://github.com/fppimenta/rheoTool
https://doi.org/10.1016/j.jnnfm.2016.12.002
https://doi.org/10.1016/j.ijheatfluidflow.2021.108784
https://doi.org/10.1038/s41598-020-72402-y
https://doi.org/10.1016/j.jnnfm.2004.08.008
https://doi.org/10.1146/annurev-fluid-010719-060107
https://doi.org/10.1063/5.0131461
https://doi.org/10.1016/j.crme.2008.02.004
https://doi.org/10.1080/104077899274877
https://doi.org/10.1143/JPSJ.64.2420
https://doi.org/10.1103/PhysRevFluids.7.023301
http://link.aps.org/supplemental/10.1103/PhysRevE.108.065101
https://doi.org/10.15129/f6e78c9e-9a43-467f-a4db-3dbfbfece700

