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Flow field disturbance due to point viscosity variations
in a heterogeneous fluid
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We derive the flow field disturbance produced by point viscosity variations in a het-
erogeneous fluid when subject to a background flow while neglecting fluid inertia. The
disturbance flow field is found to be identical to that generated by a force dipole called
a stresslet. Using a combination of theory and numerical simulations, we show how the
hydrodynamics of an active rigid particle is altered due to the presence of point viscosity
variations, and how this can be exploited to manipulate and steer them in microfluidic
environments.
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Fluids encountered in nature and industry are usually heterogeneous. For example, blood is
composed of plasma, red and white blood cells, and platelets. The plasma itself is heterogeneous as
it is an aqueous solution containing organic molecules, proteins, and salts [1]. Similarly, interstitial
fluid in solid tumors is a highly disordered environment when compared to normal tissues which
has significant consequences on nanomedicine delivery [2,3]. The cytoplasmic matrix is mostly
an aqueous environment but made heterogeneous due to the presence of various macromolecules.
More recently, it has been discovered that cells contain numerous membraneless compartments that
exhibit liquidlike behavior [4,5]. Examples include nucleolus and Cajal bodies in the nucleus, and
P-bodies, stress and germ granules in the cytoplasm [6]. It has also been reported that P-bodies dis-
persed within the cytoplasm have much higher viscosity, ∼1.0 Pa s, than their surroundings. Hence,
naturally the question arises: How do we model such heterogeneous fluids encountered frequently
in biology? Heterogeneous fluids are also abundantly found in various industrial settings. Many
manufacturing processes involve transportation and filling of polymeric materials in channels [7,8].
These processes usually require the fluid to remain homogeneous at all times but deviations occur
due to impurities, segregation of different polymeric constituents, or geometrical imperfections in
the transportation channel, making the effective fluid viscosity spatially heterogeneous.

A fluid can be heterogeneous in either its density or viscosity—its two basic material properties.
In this Letter, we focus on viscosity variations of the fluid while assuming that its density remains
unchanged in space and time. A few papers have considered the effect of variable viscosity on
flows in parallel [9–11], converging and diverging channels [12], and on the motion of a hot sphere
[13,14]. However, a fundamental fluid mechanical question has remain unaddressed: How is an
ambient flow field disturbed due to a point viscosity variation in the fluid? If we are able to answer
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FIG. 1. An illustrative example of a heterogeneous fluid with arbitrarily varying viscosity in space, μ(x),
modeled as discrete viscosity sources (blue, ⊕) and sinks (yellow, �) of appropriate strengths interacting with
a background flow v0. Viscosity sinks or sources may be created in an otherwise homogeneous fluid by locally
heating or cooling, respectively. An active rigid particle is shown whose motion is significantly altered due to
the presence of point viscosities as its translational, U , and rotational, �, velocity becomes coupled.

this question, we can create an arbitrary spatial distribution of viscosity discretely by placing
viscosity sources and sinks of appropriate strength, allowing us to model many heterogeneous
fluids such as those described above. Figure 1 shows an illustrative example where multiple point
viscosities may alter the motion of a rigid particle. In situations where an otherwise homogeneous
fluid is locally heated or cooled, for example, by the use of laser or spray freezing, the model
of point viscosities is directly applicable with the assumption that the timescales of interest are
smaller than the timescales at which these point viscosities diffuse, making the problem quasistatic.
It is noteworthy that the idea of locally heating fluid has been recently used to artificially create
cytoplasmic flows inside C. elegans zygotes [15,16].

We restrict ourselves to an inertialess fluid whose dynamics are governed by the Stokes equa-
tion [17–19],

− ∇p(x) + ∇ · [μ(x){∇v(x) + ∇vT (x)}] + Fδ(x − x0) = 0, (1)

together with the incompressibility condition ∇ · v = 0. Here, p, v are the fluid pressure and
velocity that need to be determined for a given spatial distribution of viscosity μ(x) and a point force
F acting at x = x0. The base flow v0 is generated by a point force or Stokeslet, however, it may also
include any background flow. We then prescribe the fluid to have a uniform viscosity μ0 everywhere
except at certain locations, x = xα , so that μ(x) = μ0 + ∑N

α=1 μαδ(x − xα ), δ being the Dirac delta
function [20] and N being the total number of point viscosities in space. For an arbitrarily varying
viscosity in space, μ(x), regions that have higher or lower viscosities than the ambient fluid are
represented as concentrated viscosity sources (μα > 0) or sinks (μα < 0) of appropriate strengths,
respectively, as a first approximation. It is noted that since

∫ ∞
−∞ δ(x − xα )dr = 1, μα has units of

[µV ], where V is volume. It represents viscosity times the volume of a small region such that their
product remains finite. The point viscosity model circumvents the use of computationally expensive
volume-discretizing numerical simulations and gives physical insight into the effect of the spatial
variations in viscosity on the flow pressure and velocity.
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The flow field due to a point viscosity has physical meaning everywhere except at the
point where they are present. We use Fourier transforms to solve Eq. (1) by defining (p, v) =
(2π )−3/2

∫ ∞
−∞( p̂, v̂) exp (ik · x)dk, where p̂, v̂ are the Fourier transforms of p, v, respectively. After

some algebraic manipulations [see Supplemental Material (SM) [21]], the Stokes equation in the
Fourier space reads

− ik p̂ − μ0k2v̂ + F̂ + (2π )−3/2
N∑

α=1

[μαe−ik·xα ik · [∇ṽ(xα) + ∇ṽT (xα)]] = 0, (2)

together with ik · v̂ = 0. Crucially, we note that we have used the derivative shifting property of the
delta function to find Eq. (2) (see Lighthill’s monograph [20]). The Fourier transform of the point
force is F̂ = (2π )−3/2F exp (−ik · x0). If the velocity is to be evaluated at one of the locations of
the point viscosity, x = xα , the leading-order velocity will be due to the point force to which we
must add the disturbance velocities from all point viscosities except the one at x = xα . To make this
distinction, we have replaced v with ṽ. However, if the velocity is to be found at any other location,
x �= x0,α , then the net velocity will have contributions from all point viscosities. It is noted that
∇ṽ(x) + ∇ṽT (x) = 2Eα is twice the straining flow at the location of the point viscosity at x = xα .
Taking a dot product of Eq. (2) with k eliminates v̂, and we obtain an equation for p̂. The pressure
field is found by taking the inverse Fourier transform of p̂,

p = p0 −
N∑

α=1

3μα

2πr5
α

[rαrα : (∇ṽ)x=xα
], (3)

where rα = x − xα , r0 = x − x0, and p0 = F · r0/4πr3
0 is the pressure field due to a Stokeslet.

Following a similar procedure, we find the flow field due to a point force, perturbed by point
viscosities,

v = v0 −
N∑

α=1

3μα

4πμ0r5
α

rα[rαrα : (∇ṽ)x=xα
]. (4)

The forcing for Eqs. (3) and (4) is the velocity generated by a Stokeslet,

v0 = 1

8πμ0
F · G, (5)

where

G = I
r0

+ r0r0

r3
0

is the Oseen-Burgers tensor. The second terms on the left-hand sides of Eqs. (3) and (4) are the
disturbance fields arising from a point viscosity, identical to those arising from a stresslet [18,19].
It is instructive to note that the stresslet due to the point viscosity only acts upon the straining
part of the flow field, ṽ. For a single isolated point viscosity, Eqs. (3) and (4) are easily solved as
ṽ = v0. However, when multiple point viscosities are present, they interact with each other, and
either a coupled system of equations need to be solved numerically or a method of reflections
may be used to make analytical progress (see SM [21] for an illustrative example). Henceforth,
when considering multiple point viscosities, we only retain the leading-order effect and neglect
hydrodynamic interactions between them, i.e., ṽ = v0. This is a valid assumption when μα/μ0L3,
i.e. either the viscosity variations are small in magnitude compared with the background viscosity
and/or they are well separated from each other, L being the separation distance.

Remarkably, the flow field in Eq. (4) changes sign with μα . This may seem unphysical when
considering Taylor’s classic emulsion problem [23] of flow around drops suspended in a fluid.
However, the two problems are different. Taylor prescribes a sharp interface between two fluid
regions of different viscosity and applies a straining flow. The drop remains spherical at all times
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FIG. 2. (a) Schematic diagram of a spherical active particle surrounded by identical viscosity sinks. The
viscosity sinks may be generated due to the particle surface being hot, direct heating of the fluid by a laser, or
due to secretions from an organism that reduce the viscosity of the surrounding medium. (b) Angle made by
the translational velocity of a spherical particle placed next to viscosity sinks at various distances d∗

α = dα/a =
1 − 2 and the effective viscosity gradient � plotted as a function of dimensionless time, t∗ = tU/a. All the
viscosity sinks are identical, of strength μα = −0.01μ0. Their number is kept fixed at 57 and their number
density n ranges from 1.1 to 4.5 as d∗

α varies. (c) Log-log plot of dimensionless angular velocity, �∗
y = �ya/U ,

as a function of dimensionless distance between the viscosity sink and sphere’s center, d∗
α , for various number

densities n.

due to strong surface tension. This causes a jump in the pressure across the interface. The final
expression for the velocity in that paper does not switch signs when the viscosity of the drop is
less or more than the surrounding fluid. In the point viscosity model, there is only one fluid and
hence a sharp fluid-fluid interface or surface tension do not exist. The equivalent result for the point
viscosity may be derived by prescribing continuity of radial stresses and discarding the kinematic
boundary condition. The velocity field obtained in this case is directly proportional to μα , which
is consistent with Eq. (4) (see SM [21]). Furthermore, the point viscosity model can be thought
of as the limiting case of a Gaussian viscosity profile as its width vanishes. The changing of sign
as the viscosity of the Gaussian profile is higher or lower than ambient fluid is also evidenced in
full numerical simulations (see SM [21]). Another key difference between the two problems is that
μα → ∞ is a singular limit in the point viscosity model while in the Taylor’s problem it represents
a solid sphere. Next, we consider the canonical case of a spherical active particle whose motion is
altered due to the presence of a viscosity sink or a source. We assume that the particle is torque free
and has a self-propulsion velocity generated by an internal mechanism. We place a viscosity sink(s)
next to one half of the translating sphere [see Fig. 2(a)]. The flow field due to a translating sphere of
radius a located at xc,

v0 = 3a

4
U ·

[(
I
rc

+ rcrc

r3
c

)
+ a2

(
I

3r3
c

− rcrc

r5
c

)]
, (6)

serves as the base flow, where rc = x − xc. In Eq. (6), we have only retained the leading-order
velocity flow field and neglected O(μαa/μ0d4) contributions, where dα = xα − xc, dα = |dα| and
d̂α = dα/dα . The first and second terms are associated with flows created by a Stokeslet and source
dipole, respectively. The flow due to the translating sphere interacts with the point viscosity sink and
creates a disturbance flow around the sphere itself given by the second term in Eq. (4), i.e., vd =
−(3μα/4πμ0r5

α )rα[rαrα : ∇v0(xα )]. The vorticity due to this disturbance flow is ω = [∇ × vd ]/2.
All calculations done, the vorticity at the center of the sphere reflected by the Stokeslet is found to
be zero (see SM [21]). Only the flow due to the source dipole creates a nonzero vorticity around the
sphere. The torque-free condition requires the angular velocity of the sphere � to be equal to the
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vorticity,

� = ω = − 9μαa3

16πμ0d7
α

d̂α × U + O(μ2
αa3/μ2

0d9), (7)

where the next correction comes from the vorticity of the flow field arising from reflection of the
Stokeslet. The translational velocity of the sphere is attached to the body and rotates with it while
the viscosity sink is fixed in space, representing a viscosity gradient in space or produced by local
heating of fluid. In the steady state, d̂α and U become antiparallel to each other. Hence, the active
particle performs positive viscotaxis, i.e., it translates towards regions of higher viscosity [24].

We then introduce multiple viscosity sinks arranged in a hemispherical shell at x = dα , around
one side of the sphere centered at the origin, so that dα = dα[sin θ cos φ, sin θ sin φ, cos θ ], where θ

and φ are the polar and azimuthal angles, respectively. We also define an effective viscosity gradient
∇μ making an angle with � with U [see Fig. 2(a)]. The individual contributions of the viscosity
sinks are easily summed to find the net rotational velocity of the sphere,

�y = −β sin �, (8)

where

β = 9a3μαU

16πμ0d7
α

[
1 + Nφ

2

(
cot

π

4Nθ

− 1

)]
, (9)

and Nθ,φ are the total number of viscosity sinks along the polar and azimuthal directions such that
θ ∈ [0, π/2) and φ ∈ [0, 2π ). The equation ∂t� = −�y is integrated in time to obtain

�(t ) = 2 tan−1 [tan{�(0)/2)} exp (βt )]. (10)

The angle �(t ) is plotted in Fig. 2(b) for varying d∗
α = dα/a = 1 − 2 with 57 identical viscosity

sinks of strength μα = −0.01μ0 arranged around the particle in a hemisphere. It matches exactly
with the numerical solution obtained by integrating U in time as it rotates with � (see SM [21] for
validation). For a given Nθ , and area density of viscosity sinks, n = [Nφ (Nθ − 1) + 1]/4πd∗2

α , we
plot �y as a function of d∗

α for a few different area densities in Fig. 2(c). Unsurprisingly, while �y

due to a single viscosity sink varies as 1/d∗7
α according to Eq. (7), integrating the contribution due

to multiple sinks arranged in a hemispherical shell results in �y ∝ 1/d∗5
α .

We compare the results from the point viscosity model with a paper that considered the ef-
fect of viscosity gradients, generated by temperature gradients, on the motion of rigid particles.
Oppenheimer et al. [14] showed that the translational and rotational velocities of a Janus hot
spherical particle get coupled due to the difference in viscosities around its surface. The hot
side of the particle heats the fluid surrounding it and decreases its viscosity, thereby creating
a viscosity gradient. The Faxen laws for a sphere in a fluid with a weakly varying linear vis-
cosity gradient, μ(x) = μ0 + εx · ∇μ, were found to be F = −6πμ0aU + ε2πa3∇μ × � and
L = −8πμ0a3� − ε2πa3∇μ × U . The angular velocity of a translating sphere is easily found from
the torque-free condition by substituting L = 0 to obtain

� = −(ε/4μ)∇μ × U + O(ε2). (11)

Equation (11) has the same functional form as Eq. (7) for μα < 0 and dα = −∇μ. Consequently,
it was shown that a torque-free translating sphere rotates such that its translational velocity vector
will align with the viscosity gradient vector in the steady state which is consistent with our findings.
Hence, we are able to obtain the same physics as Oppenheimer et al. [14] by modeling hot fluid
around the sphere as concentrated viscosity sinks. Remarkably, the method of point viscosities
can be used to create an arbitrary spatial viscosity distribution and applied to any arbitrary shaped
particle. This method may be applied to other problems such as a squirmer [25,26] or a phoretic
particle [27] in which case the leading flow field is that generated by a stresslet itself.
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FIG. 3. Log-log plot of the absolute value of the angular velocity |�∗
y | of a translating spherical particle in

the presence of a viscosity source (blue dashed) and sink (red circle) of strength μα = ±0.1μ0, solved using
the boundary element method as a function of the distance between the sphere center and the point viscosity,
denoted as d∗

α . The difference between the magnitude of the angular velocities due to the source and sink
(yellow cross) is seen to decrease as they move farther away from the sphere’s surface.

The effect of a single point viscosity on the angular velocity of a translating sphere may
appear weak due to its 1/d∗7

α dependency because the disturbance vorticity has been calculated
at the center of the sphere using the far-field assumption. In order to explore the effect of a
point viscosity accurately on the hydrodynamics of a rigid particle, including near-field effects,
we perform simulations based on the boundary element method [28,29]. The point viscosity now
interacts with the entire surface of the particle. The boundary integral equation relevant for a Stokes
equation with variable viscosity was derived by Pozrikidis using the reciprocal theorem [30]. The
area integral involving variable viscosity was solved numerically in two dimensions. For a point
viscosity in space, the equations simplify considerably (see SM [21]). The velocity field due to a
translating and rotating rigid particle in the presence of point viscosities is written succinctly in the
form of an integral equation,

v(x0) = − 1

8πμ0

∫∫
S

f (x, xα ) · Gmod(x, x0, xα )dS(x), (12)

where x0 �= xα is an evaluation point anywhere in the fluid domain, x ∈ S is the integration point on
the sphere’s surface, Gmod = G − Gv is the modified Green’s function, G is the Oseen-Burgers
tensor, Gv,l j = (μα/8πμ0)Ti jk (xα, x0)[∇y,iGlk (x, y)]y=xα

is the Green’s function due to a point
viscosity, and T (xα, x0) = −6ppp/p5 is the stresslet, with p = xα − x0. The surface velocity is
v(x) = U + � × (x − xc) and f is the hydrodynamic traction acting on the body.

We again consider the hydrodynamics of a torque-free translating sphere and find its rotational
velocity due to the presence of a point viscosity [see Fig. 3(a)]. The viscous force and torque acting
on the sphere are found by integrating the hydrodynamic tractions after solving Eq. (12) numer-
ically by discretizing the sphere’s surface into triangular elements [28,29], F = ∫∫

S f dS(x), L =∫∫
S (x − xc) × f dS(x). The sphere is centered at the origin, xc = 0, and the point viscosity is placed

at a distance d∗ = (0, 0, d∗
α ), scaled by the sphere radius a. The magnitude of the angular velocity

of the sphere, |�| = | − L/8πμ0a3|, is plotted for the case of a single isolated viscosity sink and
source in Fig. 3(b). Here, we make a curious observation. The angular velocities due to a viscosity
sink and source are found to be in the positive and negative y directions, respectively, as expected.
However, their magnitudes are not the same when d∗

α < 1.5. This is in contrast to both the results
of Oppenheimer et al. [14], Eq. (11), and the far-field result derived in this paper, Eq. (7), wherein
switching the direction of the viscosity gradient or changing a sink into a source simply changes
the direction of the angular velocity, while its magnitude remains unchanged. This difference arises
because both Eqs. (11) and (7) only consider the leading-order viscosity gradient and point viscosity
effects, respectively. In contrast, in the numerical simulations, the point viscosity interacts nonlin-
early with the sphere’s surface. As a result, the magnitudes of the angular velocities approach each
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other only when ||Gv|| becomes sufficiently small compared to ||G||, i.e., when the point viscosity
is far away from the surface or sufficiently weak in magnitude. This is easily seen by considering
two cases: the hydrodynamics of a sphere placed next to a viscosity source (subscript 1) and a sink
(subscript 2). The resulting system of linear equations arising from Eq. (12) for these two cases is
f 1 = (G − Gv )−1v, f 2 = (G + Gv )−1v, where the vectors v, f 1,2 denote the surface velocity and
traction values on the discretized sphere and G denotes the Green’s function matrix. Integrating
the tractions gives us the hydrodynamic torque L1,2 = ∫∫

S (x − xc) × [(G ± Gv )−1v]dS(x). Noting
that

∫∫
S (x − xc) × G−1v dS(x) = 0, and performing a Taylor series expansion of L1,2, we find

L1 → −L2, as G−1Gv becomes smaller, thereby explaining the conundrum.
In this Letter, we proposed a method to model viscosity heterogeneities in a fluid shrunk to a

point. We found the disturbance flow field due to these point viscosity variations to be the same as
that due to a stresslet, written as a singularity solution. A wide variety of physical problems such
as potential flow, electrostatics, linear elasticity, and wave propagation are amenable to theoretical
analysis because their governing equations admit singularity solutions. Hence, the ideas presented
here may be applied to these other physical phenomena as well when material heterogeneities are
present in the media. The modeling framework developed in this Letter opens up several different
avenues of research. One such avenue is modeling generalized non-Newtonian fluids relevant for
problems in biology [31] such as bacteria locomotion or beating cilia [32]. To solve such problems,
the point viscosities’ strength can be made to depend on time or the velocity gradients, while
avoiding discretization of the entire fluid domain. For example, it has been hypothesized that the
gastric pathogen H. pylori can propel itself through the mucus gel by reducing its viscoelasticity
and attach to epithelial cells [33]. Theoretical models to understand this phenomenon have been
developed based on Taylor’s swimming sheet in a phase-separated fluid [34] and in a layer of
Newtonian fluid bounded by a Brinkman fluid [35]. Using the point viscosity model, solving the
hydrodynamics of a three-dimensional model of a bacterium swimming [36,37] in a heterogeneous
fluid becomes feasible.

Recent papers have considered the effect of viscosity gradients on swimming microorganisms
such as green algae [38,39] and model active swimmers [40,41]. Incorporating the effect of point
viscosities in such model swimmers will yield further physical insight into how microorganisms
respond to viscosity variations in environments where they live. Also, the effect of nonlinear
interactions between multiple point viscosities on a particle’s motion has been neglected here, and
may have nontrivial consequences. Finally, the point viscosities may be made to diffuse in time and
advect with the velocity field, thereby relaxing the quasistatic assumption.

We thank D. Pritchard for helpful suggestions and comments.

[1] S. Chien, Biophysical behavior of red cells in suspensions, in Red Blood Cell, edited by D. M. Surgenor
(Academic, New York, 1975), Vol. 2, pp. 1031–1133.

[2] C.-H. Heldin, K. Rubin, K. Pietras, and A. Östman, High interstitial fluid pressure—an obstacle in cancer
therapy, Nat. Rev. Cancer 4, 806 (2004).

[3] R. K. Jain and T. Stylianopoulos, Delivering nanomedicine to solid tumors, Nat. Rev. Clin. Oncol. 7, 653
(2010).

[4] C. P. Brangwynne, C. R. Eckmann, D. S. Courson, A. Rybarska, C. Hoege, J. Gharakhani, F. Jülicher,
and A. A. Hyman, Germline P granules are liquid droplets that localize by controlled dissolu-
tion/condensation, Science 324, 1729 (2009).

[5] C. P. Brangwynne, T. J. Mitchison, and A. A. Hyman, Active liquid-like behavior of nucleoli determines
their size and shape in Xenopus laevis oocytes, Proc. Natl. Acad. Sci. USA 108, 4334 (2011).

[6] A. A. Hyman, C. A. Weber, and F. Jülicher, Liquid-liquid phase separation in biology, Annu. Rev. Cell
Dev. Biol. 30, 39 (2014).

L051301-7

https://doi.org/10.1038/nrc1456
https://doi.org/10.1038/nrclinonc.2010.139
https://doi.org/10.1126/science.1172046
https://doi.org/10.1073/pnas.1017150108
https://doi.org/10.1146/annurev-cellbio-100913-013325


DEBASISH DAS

[7] L. G. Leal, The motion of small particles in non-Newtonian fluids, J. Non-Newtonian Fluid Mech. 5, 33
(1979).

[8] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics
(Wiley, New York, 1987).

[9] J. R. A. Pearson, Variable-viscosity flows in channels with high heat generation, J. Fluid Mech. 83, 191
(1977).

[10] H. Ockendon and J. R. Ockendon, Variable-viscosity flows in heated and cooled channels, J. Fluid Mech.
83, 177 (1977).

[11] H. Ockendon, Channel flow with temperature-dependent viscosity and internal viscous dissipation,
J. Fluid Mech. 93, 737 (1979).

[12] A. Hooper, B. R. Duffy, and H. K. Moffatt, Flow of fluid of non-uniform viscosity in converging and
diverging channels, J. Fluid Mech. 117, 283 (1982).

[13] S. Morris, The effects of a strongly temperature-dependent viscosity on slow flow past a hot sphere,
J. Fluid Mech. 124, 1 (1982).

[14] N. Oppenheimer, S. Navardi, and H. A. Stone, Motion of a hot particle in viscous fluids, Phys. Rev. Fluids
1, 014001 (2016).

[15] M. Mittasch, P. Gross, M. Nestler, A. W. Fritsch, C. Iserman, M. Kar, M. Munder, A. Voigt, S. Alberti,
S. W. Grill, and M. Kreysing, Non-invasive perturbations of intracellular flow reveal physical principles
of cell organization, Nat. Cell Biol. 20, 344 (2018).

[16] W. Liao, E. Erben, M. Kreysing, and E. Lauga, Theoretical model of confined thermoviscous flows for
artificial cytoplasmic streaming, Phys. Rev. Fluids 8, 034202 (2023).

[17] H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, UK, 1932).
[18] J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate

Media (Springer, Berlin, 2012).
[19] S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications (Courier Corporation,

North Chelmsford, MA, 2013).
[20] M. J. Lighthill, An Introduction to Fourier Analysis and Generalised Functions (Cambridge University

Press, Cambridge, UK, 1958).
[21] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.8.L051301 for the

detailed derivation of Eqs. (3), (4), (6), (10), and (11) and an illustrative example of how to capture the
hydrodynamic interaction between point viscosities, which includes Ref. [22].

[22] M. Lisicki, Four approaches to hydrodynamic Green’s functions—the Oseen tensors, arXiv:1312.6231.
[23] G. I. Taylor, The viscosity of a fluid containing small drops of another fluid, Proc. R. Soc. London, Ser.

A 138, 41 (1932).
[24] M. G. Petrino and R. N. Doetsch, ‘Viscotaxis’, a new behavioural response of Leptospira interrogans

(biflexa) strain B16, J. Gen. Microbiol. 109, 113 (1978).
[25] M. J. Lighthill, On the squirming motion of nearly spherical deformable bodies through liquids at very

small Reynolds numbers, Commun. Pure Appl. Math. 5, 109 (1952).
[26] J. R. Blake, A spherical envelope approach to ciliary propulsion, J. Fluid Mech. 46, 199 (1971).
[27] J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Self-Motile

Colloidal Particles: From Directed Propulsion to Random Walk, Phys. Rev. Lett. 99, 048102 (2007).
[28] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge

University Press, Cambridge, UK, 1992).
[29] C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library BEMLIB

(Chapman & Hall/CRC, Boca Raton, FL, 2002).
[30] C. Pozrikidis, Reciprocal identities and integral formulations for diffusive scalar transport and Stokes flow

with position-dependent diffusivity or viscosity, J. Eng. Math. 96, 95 (2016).
[31] E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Rep. Prog. Phys. 72,

096601 (2009).
[32] N. Pellicciotta, D. Das, J. Kotar, M. Faucourt, N. Spassky, E. Lauga, and P. Cicuta, Cilia density and flow

velocity affect alignment of motile cilia from brain cells, J. Expt. Biol. 223, jeb229310 (2020).

L051301-8

https://doi.org/10.1016/0377-0257(79)85004-1
https://doi.org/10.1017/S0022112077001141
https://doi.org/10.1017/S002211207700113X
https://doi.org/10.1017/S0022112079002007
https://doi.org/10.1017/S0022112082001633
https://doi.org/10.1017/S0022112082002389
https://doi.org/10.1103/PhysRevFluids.1.014001
https://doi.org/10.1038/s41556-017-0032-9
https://doi.org/10.1103/PhysRevFluids.8.034202
http://link.aps.org/supplemental/10.1103/PhysRevFluids.8.L051301
http://arxiv.org/abs/arXiv:1312.6231
https://doi.org/10.1098/rspa.1932.0169
https://doi.org/10.1099/00221287-109-1-113
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1007/s10665-015-9783-0
https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1242/jeb.229310


FLOW FIELD DISTURBANCE DUE TO POINT VISCOSITY …

[33] J. P. Celli, B. S. Turner, N. H. Afdhal, S. Keates, I. Ghiran, C. P. Kelly, R. H. Ewoldt, G. H. McKinley, P.
So, S. Erramilli, and R. Bansil, Helicobacter pylori moves through mucus by reducing mucin viscoelas-
ticity, Proc. Natl. Acad. Sci. USA 106, 14321 (2009).

[34] Y. Man and E. Lauga, Phase-separation models for swimming enhancement in complex fluids, Phys. Rev.
E 92, 023004 (2015).

[35] S. A. Mirbagheri and H. C. Fu, Helicobacter pylori Couples Motility and Diffusion to Actively Create a
Heterogeneous Complex Medium in Gastric Mucus, Phys. Rev. Lett. 116, 198101 (2016).

[36] D. Das and E. Lauga, Computing the motor torque of Escherichia coli, Soft Matter 14, 5955 (2018).
[37] D. Das and E. Lauga, Transition to bound states for bacteria swimming near surfaces, Phys. Rev. E 100,

043117 (2019).
[38] M. R. Stehnach, N. Waisbord, D. M. Walkama, and J. S. Guasto, Viscophobic turning dictates microalgae

transport in viscosity gradients, Nat. Phys. 17, 926 (2021).
[39] S. Coppola and V. Kantsler, Green algae scatter off sharp viscosity gradients, Sci. Rep. 11, 399 (2021).
[40] B. Liebchen, P. Monderkamp, B. ten Hagen, and H. Löwen, Viscotaxis: Microswimmer Navigation in

Viscosity Gradients, Phys. Rev. Lett. 120, 208002 (2018).
[41] C. Datt and G. J. Elfring, Active Particles in Viscosity Gradients, Phys. Rev. Lett. 123, 158006 (2019).

L051301-9

https://doi.org/10.1073/pnas.0903438106
https://doi.org/10.1103/PhysRevE.92.023004
https://doi.org/10.1103/PhysRevLett.116.198101
https://doi.org/10.1039/C8SM00536B
https://doi.org/10.1103/PhysRevE.100.043117
https://doi.org/10.1038/s41567-021-01247-7
https://doi.org/10.1038/s41598-020-79887-7
https://doi.org/10.1103/PhysRevLett.120.208002
https://doi.org/10.1103/PhysRevLett.123.158006

