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Abstract—Integrating with the signal processing, inverse Radon
transform, and the variational model, the framework at least
saving 83% data acquisition time for fast, smooth three-
dimensional (3D) reconstruction from the limited dataset is
elucidated in the field of terahertz imaging applications. In hot
pursuit, under the viewpoint of discrete geometry, the quantifiable
comparison for 3D surfaces by computing the standard deviation
of mean curvatures is also proposed to show the reconstructed
effectiveness from less input with gaps.

I. INTRODUCTION

ERAHERTZ (THZ) waves provide distinctive properties

(e.g. spectral fingerprints, non-contact, and non-ionizing)
with feasible applications in chemical identification,
security screening as well as medical imaging. Based on its
advantage, THz imaging has been recognized the necessity with
the tool by THz time-domain spectroscopy (THz-TDS) system
for visualizing object interior geometry and its material
composition. In THz-TDS, its unique capability is to keep track
of the rich features with the interaction between THz radiation
and objects by the amplitude and the phase of the THz
temporal/spectral signals [1]. Regrettably, the data acquisition
by the THz-TDS system is highly time-consuming in
accordance with the raster-scanning. Also, regarding the
resolution of imaging applications associated with the THz
wavelengths from around 100 pm to 3 mm, the majority of
obtained surfaces in the visual sense is typically ladder-shaped
rough by the direct stack from the collection of cross-sections
(slices) under the low resolution or even image noise contained
during the signal or image processing. Furthermore, for the
higher resolution, the processing of image and signal is also low
efficiency, and data storage capacity is over the level of
gigabyte (GB). To overcome the above situations, the purpose
of this work in the computational approach is to propose a new
framework for getting a fast and smooth super-resolution 3D
reconstruction from limited low-resolution sampling (collected
data). Here, the framework integrating with the traditional
approach of computed tomography from the signal processing
to inverse Radon transform (IRT) and the core mathematical

approach by the variational formulation is elucidated as follows.

What is more, due to the results under the super-resolution, the
quantifiable approach is unveiled under the viewpoint of
discrete geometry by computing the standard deviation of mean
curvatures for the triangular meshes of final surfaces to indicate
the stable level of the global smoothness.

II. PROCEDURES WITH EXPERIMENTAL DEMONSTRATIONS

For the fast signal processing of the raw dataset collected by
the ASynchronous OPtical Sampling (ASOPS) THz-TDS
system (Menlo TERA ASOPS, Menlo Systems) [2], the first
step (called Time-MAX) is to acquire the maximum peak of

time-resolved signal with respect to the time sampling. Here the
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Fig. 1. Illustrations of the fast-reconstructed framework: (a) Representative
sinogram by Time-MAX; (b) Cross section (slice) by IRT; (c) Rough
reconstruction by input total 218 slices; (d) Smooth result of (c) by the
Willmore-based formulation.

s

(b)

Fig. 2. Illustrations of (a) input 109 slices with 1 gap; (b) output from (a);
(c) input 55 slices with 3 gaps; (d) output from (c); (e) input 37 slices with
5 gaps; (f) output from (e).

deer model is exemplified with the size 61x300x1000%300
where 61 is the total number of angles from one revolution, 300
is the horizontal spatial sampling, 1000 is the time sampling,
and 300 is the vertical spatial sampling which is the
corresponding cross-section (slice). And then, as Fig. 1(a)
depicted, the representative sinogram can be obtained from the
dataset (300%300%61) after the signal processing [3]. Following
that, by inverse Radon transform (IRT), the slices can be
procured as Fig. 1(b) demonstrated where the resolution and the
number of the slice are set as 288 and 218 respectively for
removing extra unnecessary portions of scanning to reduce the
further processing time. For the better effect of reconstructed
slices, the type of interpolation has opted as the cubic
convolution. The filter is used by multiplying the Ram-Lak
filter by a Hann window [4]. By now, the rough object can be
constructed by the specified segmented threshold as most works
did, and Fig. 1(c) is portrayed by stacking a total of 218
informative slices under the low resolution with N = 288.
Remark that all implementations are coded with the computer
programming language: MATLAB_R2022a® in the operating
system: macOS Monterey (Version 12.3) equipped with the 2.3
GHz 8-Core Intel Core 19 processer and the 16 GB 2667 MHz
DDR4 memory.

To smooth the surface, the variational model is considered as
the Willmore-based formulation
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where the rough object ue®R” (in this case D stands for three
dimensions where this model works for D = 2 in the Euclidean
space ®” ) with the linear obstacle restriction u” <u<u®
formed by the interior restriction »" and exterior restriction u”
is under the formulation with respect to the double-well
potential w(u)=1u’(1-u)® with its first order derivative
W'u)=u@-1)Q2u-1) , and the parameter ¢ as the diffuse

interface width, with T'-convergence and phase-field
approximation to the Willmore-based functional energy
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with the mean curvatures x« on the boundary a0 and the
Hausdorff measure #°" in ®”. To approximate the numerical
local minimum of above Willmore-based formulation, the
algorithm called the projected gradient descent method using
the Euler semi-implicit discretization scheme within fast
Fourier transform from the corresponding Euler-Lagrange
partial differential equation
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is constituted in Alg. 1 [5][6]. After iterating step 2 and step 3
of Alg. 1, Fig. 1(d) unveils the final smooth result by the
Willmore-based formulation from total 218 slices. What is
more, returning to the initial expectation, if only acquiring few
slices with gaps (limited sampling), this framework is still
available to reconstruct the smooth results as Fig. 2(a)-(f)
shown. For the input 37 slices with 5 gaps, the data acquisition
time can be at least saved 83% approximately.

Alg. 1. Projected Gradient Descent Method

1:  Initialize the input u by the phase-field function and to content with the
interior and exterior restriction
u" <u<u.
2:  Implement the restrictions to procure the orthogonal projection

1 .
1’ = max(min(u, u®),u").

d+1

3: Compute the solution u by the numerical Euler semi-implicit
discretization applying the fast Fourier transform scheme with the
synthetic time step 7,
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III. QUANTIFIABLE COMPARISONS

After presenting the reconstructed results by few input slices
in Fig. 2, the specified gaps are assigned as 1, 3 and 5 so that
the collected slices from smaller gaps can be covered by most
of slices from larger gaps. To compare the results under the
super resolution from at least same limited dataset of low-
resolution inputs, the quantifiable approach is proposed by
computing the standard deviation (STD) of mean curvatures
(MC) o,,. to each vertex of triangular meshes for final surfaces

[7][8]. As Tab. 1 reified, the results in the similar level around
20 to 40 herald the effectiveness of reconstructions by less input

slices, and also indicate the better smoothness for the lower
value since more details will be lost from less input slices with
more gaps.

Tab. 1. Comparison of the standard deviation of mean curvatures for the
smooth results with different input slices and gap(s).

Input slices 218 109 55 37
Gap(s) 0 1 3 5
Ouc 44.7612 30.3103 20.1637 16.3767

IV. SUMMARY WITH FUTURE CONCENTRATION

The reconstructed framework for fast, smooth THz 3D super-
resolution surface reconstruction under the costing time level of
minutes from storing in the low-resolution limited data is
instantiated in this paper by integrating with the traditional
approach of computed tomography and the Willmore-based
formulation. Moreover, the quantifiable approach by
computing the standard deviation of mean curvatures is
constituted to indicate the effectiveness of how many slices are
input to improve the efficiency for fast, smooth reconstruction.

For future concentration, some are in progress. To modify the
framework blended with imaging denoising, imaging
segmentation, and imaging registration to improve the further
quality in THz imaging and other imaging fields (e.g. X-ray
radiation, magnetic resonance imaging, and ultrasound imaging)
is one of the realizable extensions. Especially for the properties
of THz waves, the information of frequency domain associated
with spectral fingerprints can be applied as signal processing to
identify or even reconstruct different matters in the field of
security sensing or sample analysis. Last but not least, together
with the variational modelling, the crucial perspectives could be
by adapting the appropriate functional energy with its
corresponding partial differential equation and developing the
rapid and high accurate numerical algorithm for solving the
variational problems and other inverse imaging conundrums.
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