
Abstract—Integrating with the signal processing, inverse Radon 
transform, and the variational model, the framework at least 
saving 83% data acquisition time for fast, smooth three-
dimensional (3D) reconstruction from the limited dataset is 
elucidated in the field of terahertz imaging applications. In hot 
pursuit, under the viewpoint of discrete geometry, the quantifiable 
comparison for 3D surfaces by computing the standard deviation 
of mean curvatures is also proposed to show the reconstructed 
effectiveness from less input with gaps.  

I. INTRODUCTION

ERAHERTZ (THZ) waves provide distinctive properties 
(e.g. spectral fingerprints, non-contact, and non-ionizing) 
with feasible applications in chemical identification, 

security screening as well as medical imaging. Based on its 
advantage, THz imaging has been recognized the necessity with 
the tool by THz time-domain spectroscopy (THz-TDS) system 
for visualizing object interior geometry and its material 
composition. In THz-TDS, its unique capability is to keep track 
of the rich features with the interaction between THz radiation 
and objects by the amplitude and the phase of the THz 
temporal/spectral signals [1]. Regrettably, the data acquisition 
by the THz-TDS system is highly time-consuming in 
accordance with the raster-scanning. Also, regarding the 
resolution of imaging applications associated with the THz 
wavelengths from around 100 μm to 3 mm, the majority of 
obtained surfaces in the visual sense is typically ladder-shaped 
rough by the direct stack from the collection of cross-sections 
(slices) under the low resolution or even image noise contained 
during the signal or image processing. Furthermore, for the 
higher resolution, the processing of image and signal is also low 
efficiency, and data storage capacity is over the level of 
gigabyte (GB). To overcome the above situations, the purpose 
of this work in the computational approach is to propose a new 
framework for getting a fast and smooth super-resolution 3D 
reconstruction from limited low-resolution sampling (collected 
data). Here, the framework integrating with the traditional 
approach of computed tomography from the signal processing 
to inverse Radon transform (IRT) and the core mathematical 
approach by the variational formulation is elucidated as follows. 
What is more, due to the results under the super-resolution, the 
quantifiable approach is unveiled under the viewpoint of 
discrete geometry by computing the standard deviation of mean 
curvatures for the triangular meshes of final surfaces to indicate 
the stable level of the global smoothness. 

II. PROCEDURES WITH EXPERIMENTAL DEMONSTRATIONS

For the fast signal processing of the raw dataset collected by
the ASynchronous OPtical Sampling (ASOPS) THz-TDS 
system (Menlo TERA ASOPS, Menlo Systems) [2], the first 
step (called Time-MAX) is to acquire the maximum peak of 

time-resolved signal with respect to the time sampling. Here the 

(a) (b) (c) (d)
Fig. 1. Illustrations of the fast-reconstructed framework: (a) Representative 
sinogram by Time-MAX; (b) Cross section (slice) by IRT; (c) Rough 
reconstruction by input total 218 slices; (d) Smooth result of (c) by the 
Willmore-based formulation.  

(a) (c) (e) 

(b) (d) (f) 
Fig. 2. Illustrations of (a) input 109 slices with 1 gap; (b) output from (a); 
(c) input 55 slices with 3 gaps; (d) output from (c); (e) input 37 slices with
5 gaps; (f) output from (e).

deer model is exemplified with the size 61×300×1000×300 
where 61 is the total number of angles from one revolution, 300 
is the horizontal spatial sampling, 1000 is the time sampling, 
and 300 is the vertical spatial sampling which is the 
corresponding cross-section (slice). And then, as Fig. 1(a) 
depicted, the representative sinogram can be obtained from the 
dataset (300×300×61) after the signal processing [3]. Following 
that, by inverse Radon transform (IRT), the slices can be 
procured as Fig. 1(b) demonstrated where the resolution and the 
number of the slice are set as 288 and 218 respectively for 
removing extra unnecessary portions of scanning to reduce the 
further processing time. For the better effect of reconstructed 
slices, the type of interpolation has opted as the cubic 
convolution. The filter is used by multiplying the Ram-Lak 
filter by a Hann window [4]. By now, the rough object can be 
constructed by the specified segmented threshold as most works 
did, and Fig. 1(c) is portrayed by stacking a total of 218 
informative slices under the low resolution with N = 288. 
Remark that all implementations are coded with the computer 
programming language: MATLAB_R2022a® in the operating 
system: macOS Monterey (Version 12.3) equipped with the 2.3 
GHz 8-Core Intel Core i9 processer and the 16 GB 2667 MHz 
DDR4 memory.   

To smooth the surface, the variational model is considered as 
the Willmore-based formulation 
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where the rough object Du∈ℜ  (in this case D stands for three 
dimensions where this model works for D = 2 in the Euclidean 
space Dℜ ) with the linear obstacle restriction in exu u uε ε≤ ≤

formed by the interior restriction inuε  and exterior restriction exuε

is under the formulation with respect to the double-well 
potential 2 21

2( ) (1 )W u u u= −  with its first order derivative 
( ) ( 1)(2 1)W u u u u′ = − − , and the parameter ε  as the diffuse 

interface width, with Г-convergence and phase-field 
approximation to the Willmore-based functional energy 
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with the mean curvatures κ  on the boundary ∂Ω  and the 
Hausdorff measure 1DH −  in Dℜ . To approximate the numerical 
local minimum of above Willmore-based formulation, the 
algorithm called the projected gradient descent method using 
the Euler semi-implicit discretization scheme within fast 
Fourier transform from the corresponding Euler-Lagrange 
partial differential equation  
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is constituted in Alg. 1 [5][6]. After iterating step 2 and step 3 
of Alg. 1, Fig. 1(d) unveils the final smooth result by the 
Willmore-based formulation from total 218 slices. What is 
more, returning to the initial expectation, if only acquiring few 
slices with gaps (limited sampling), this framework is still 
available to reconstruct the smooth results as Fig. 2(a)-(f) 
shown. For the input 37 slices with 5 gaps, the data acquisition 
time can be at least saved 83% approximately.  

Alg. 1. Projected Gradient Descent Method 
1: Initialize the input u  by the phase-field function and to content with the 

interior and exterior restriction 
.in exu u uε ε≤ ≤  

2: Implement the restrictions to procure the orthogonal projection 
1
2 max(min( , ), ).d ex inu u u u+ =  

3: Compute the solution 1du +  by the numerical Euler semi-implicit 
discretization applying the fast Fourier transform scheme with the 
synthetic time step tτ  
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III. QUANTIFIABLE COMPARISONS

After presenting the reconstructed results by few input slices 
in Fig. 2, the specified gaps are assigned as 1, 3 and 5 so that 
the collected slices from smaller gaps can be covered by most 
of slices from larger gaps. To compare the results under the 
super resolution from at least same limited dataset of low-
resolution inputs, the quantifiable approach is proposed by 
computing the standard deviation (STD) of mean curvatures 
(MC) MCσ  to each vertex of triangular meshes for final surfaces 
[7][8]. As Tab. 1 reified, the results in the similar level around 
20 to 40 herald the effectiveness of reconstructions by less input 

slices, and also indicate the better smoothness for the lower 
value since more details will be lost from less input slices with 
more gaps.  
Tab. 1. Comparison of the standard deviation of mean curvatures for the 
smooth results with different input slices and gap(s).  

Input slices 
Gap(s) 

218 
0 

109 
1 

55 
3 

37 
5 

MCσ 44.7612 30.3103 20.1637 16.3767 

IV. SUMMARY WITH FUTURE CONCENTRATION

The reconstructed framework for fast, smooth THz 3D super-
resolution surface reconstruction under the costing time level of 
minutes from storing in the low-resolution limited data is 
instantiated in this paper by integrating with the traditional 
approach of computed tomography and the Willmore-based 
formulation. Moreover, the quantifiable approach by 
computing the standard deviation of mean curvatures is 
constituted to indicate the effectiveness of how many slices are 
input to improve the efficiency for fast, smooth reconstruction. 

For future concentration, some are in progress. To modify the 
framework blended with imaging denoising, imaging 
segmentation, and imaging registration to improve the further 
quality in THz imaging and other imaging fields (e.g. X-ray 
radiation, magnetic resonance imaging, and ultrasound imaging) 
is one of the realizable extensions. Especially for the properties 
of THz waves, the information of frequency domain associated 
with spectral fingerprints can be applied as signal processing to 
identify or even reconstruct different matters in the field of 
security sensing or sample analysis. Last but not least, together 
with the variational modelling, the crucial perspectives could be 
by adapting the appropriate functional energy with its 
corresponding partial differential equation and developing the 
rapid and high accurate numerical algorithm for solving the 
variational problems and other inverse imaging conundrums.  
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