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Abstract: This paper proposes a 2-D vehicular visible light positioning (VLP) system using existing
streetlights and diversity receivers. Due to the linear arrangement of streetlights, traditional position-
ing techniques based on triangulation or similar algorithms fail. Thus, in this work, we propose a
spatial and angular diversity receiver with machine learning (ML) techniques for VLP. It is shown
that a multi-layer neural network (NN) with the proposed receiver scheme outperforms other ML
algorithms and can offer high accuracy with root mean square (RMS) error of 0.22 m and 0.14 m
during the day and night time, respectively. Furthermore, the NN shows robustness in VLP across
different weather conditions and road scenarios. The results show that only dense fog deteriorates
the performance of the system due to reduced visibility across the road.

Keywords: visible light positioning; outdoor positioning; artificial neural network; receiver diversity;
receiver tilting; machine learning

1. Introduction

In the past decade, there has been high interest and development in the field of
intelligent vehicles. Numerous intelligent vehicles systems have been proposed to improve
road safety and reduce traffic congestion. The unremitting research outputs have led to
the development of various driver assistant systems such as cooperative adaptive cruise
control, lane changing, lane-keeping and highway driver assistant systems. The practicality
of these systems requires autonomous vehicles to have efficient control functionality,
communication, precise localisation and perception to identify their surroundings and
relevant obstacles [1]. The existing driver assistant systems are restricted to only assisting
the driver, knowing that the driver is responsible for the overall vehicle control or in some
cases fully autonomous under certain conditions. Several challenges arise in anticipation
of deploying fully autonomous vehicles. One of these challenges for fully autonomous
vehicles is to achieve absolute and accurate positioning.

Global navigation satellite systems (GNSS) are widely adopted due to its compati-
bility and coverage. However, GNSS signals suffers from outages in metropolitan areas,
under dense tree canopies, tunnels, bridges and near tall buildings where the line of sight
propagation path is blocked [2]. Furthermore, solar flaring activities in the ionospheric
layer of the earth’s surface, temperature, pressure, density or humidity changes within the
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tropospheric layer of the earth’s surface can affect the accuracy of GNSS [3]. This, in turn,
prompts the need for more accurate positioning techniques to co-exist with GNSS.

The wide availability and popularity of solid-state lighting (SSL) such as light-emitting
diodes (LEDs) for outdoor and indoor illumination, display, and traffic signalling, provides
the opportunity to utilise them for accurate positioning and high-speed communication [4].
The rapid deployment of LED street lights in compliance with the current energy-saving
schemes funded by the European Commission, opens a platform of opportunities for out-
door visible light positioning (VLP) especially in tunnels and underground roads. Generally,
VLP is based on received signal strength (RSS) [5–8], time of arrival (TOA), time difference
of arrival (TDOA) [9,10] or angle of arrival (AOA) algorithms [11]. Different methodologies
such as triangulation, proximity and fingerprinting are considered in these algorithms.
At least three spatially non-collinear distributed transmitters are required to predict the
position with these algorithms.

VLP has been shown to provide accurate positioning in indoor environments [7,8,12];
however, there are limited studies conducted on its application to outdoor environments. A
VLP technique using tunnel infrastructure and car tail lamp was demonstrated in [5]. The
study used a camera sensor receiver and image processing to extract information for posi-
tioning; however, it was based on the assumption that there is always a neighbouring car
on the road, several meters ahead, continuously sending its updated position information.
A TDOA approach to VLP is conducted in [6] for vehicle applications using traffic light and
two photodiodes (PDs). This TDOA application, however, required time synchronization
among traffic lights which may be difficult in heterogeneous environments. Furthermore,
the receivers required large separation (2 m in the aforementioned study, which is not
practical in all cases) for accurate positioning. Moreover, the algorithm is only applicable
if inbound and outbound vehicles are assumed to have a constant speed. The feasibility
of using streetlights for positioning using two rolling shutter CMOS sensors was shown
in [13]; however, the streetlight setup adopted in the study was a two-sided streetlight in a
single two-lane road, thus providing distributed transmitter setup. The ability to exploit
signal from both side of the road relaxed the collinearity condition and allowed the system
to exploit trilateration. Moreover, the accuracy of the system was affected by the blooming
effect, which causes the LED images to be less clear in real-life applications.

The streetlight design is heterogeneous and the previously mentioned VLP algorithms
require specific design. Most importantly, these algorithms will not work when the street-
lights are not distributed. Hence, for VLP to work universally in all the streets, an algorithm
must be developed, which works in the worst-case scenario, where the streetlights are lo-
cated in a linear array on only one side of the road. In our previous work [14], we proposed
the use of receiver diversity and supervised artificial neural network (ANN) to solve this
aforementioned issue. We extended the work in [14] by using spatial and angular diver-
sities with different machine learning (ML) approaches such as simple recurrent neural
network (sRNN), gated recurrent unit (GRU) and long short term memory (LSTM) [15] to
accurately estimate the position irrespective of the relative locations of the streetlights and
further explore the effect of different weather conditions. To the best of the authors’ knowl-
edge, this paper is the first study of VLP with a linear array of streetlights using receiver
diversity for autonomous vehicle and other outdoor applications. The contributions of this
paper are threefold. Firstly, we propose the use of spatial and angular receiver diversity to
mitigate the effect of collinearity in VLP. Secondly, this paper exploits the versatility of ML
algorithms to improve system performance in VLP and further compare their respective
performances on the same collinear scenarios. Finally, the effect of weather conditions on
VLP in the collinear scenario is studied.

The rest of the paper is organised as follows: the system description is provided in
Section 2. Section 3 describes the proposed application of ML for 2-D localisation. The
performance of the proposed system using ML is discussed in Section 4. Finally, conclusions
are drawn in Section 5.
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2. System Description

The proposed VLP system architecture with streetlights and the receiver system with
spatial and angular diversity is shown in Figure 1. Streetlights are installed at the side of the
road as transmitters. It is assumed that each transmitter transmits time division multiplex
(TDM) or frequency division multiplex (FDM) signals as outlined in [16]. The receivers are
located on a vehicle that moves along the x-axis and changes lane across the y-axis. The
vehicles are assumed to travel on a tarmac road with a gradient close to zero; therefore, the
vehicle’s motion along the x and y-axis are significantly larger than the displacement along
the z-axis. Consequently, we only consider two degrees of movement along the x-axis and
y-axis and hence focus on 2-D localisation. Figure 1 also shows the receiver system, which
consists of multiple photodiodes (PDs), pointed in different directions. Note that, tilting
angles are independent for each PD and optimised for vehicular VLP in Section 4.2. The
main parameters that was used for the simulation are shown in Table 1 [17,18].

Figure 1. Schematic of VLP using streetlight. Schematic of spatial and angular diversity receiver.

Table 1. Parameters used for simulation [17,18].

Parameter Value

Background current (Ibg) [mA] 5.1
FET channel noise factor (Γ) 1.5
FET trans-conductance (gm) [mS] 30
Fixed capacitance of PD (η) [pF/cm2] 112
No. of receiver (N) 4
Noise bandwidth factor (I2) 0.562
Noise bandwidth factor (I3) 0.0868
Noise bandwidth, (B) [MHz] 1
Number of transmitters (M) 3
Optical filter gain (G) 1
Receiver area, (A) [cm2] 1
Road parameters (L×W) [m] 60× 5
Temperature (Tk) [K] 295
Transmitter height [m] 7
Transmitter power (Pt) [W] 90
Transmitter semi-angle (φ1/2) [degree] 60
Transmitter spacing [m] 30
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Given that the innate parameters of the PDs such as the area and responsivity are
known, the received power Pr,i at various locations across the road can be calculated
as follows:

Pr,i = Hlos(0)Pt,iβλ (1)

where Hlos(0) is the line-of-sight (LOS) DC channel gain between the PD and the ith LED,
Pt,i is the transmitted power from the ith LED and βλ is the atmospheric attenuation due to
different weather conditions. As the receiver is pointing away from the road surface, the
non-LOS link is not considered in the study. The LOS channel DC gain is given as:

Hlos(0) =

{
(m+1)A

2πd2 cosm(φ)Ts(φ)g(ψ)cos(ψ)0 ≤ ψ ≤ Ψc

0, ψ > Ψc
, (2)

where A is the PDs physical area, Ts(ψ) is the filter gain, g(ψ) is the optical concentrator
gain, ψ is the angle of incidence, ψc is the PDs field of view, φ is the irradiance angle, d is
the distance between the receiver and the transmitter and m is the Lambertian emission
order given by:

m =
−ln2

ln(cosφ1/2)
, (3)

where φ1/2 represents the half-power angle of the LED. The optical concentrator gain is
calculated as:

g(ψi) =
n2

c

sin2Ψ
, (4)

where nc is the refractive index of the concentrator.
Furthermore, among the various atmospheric conditions that cause signal attenuation,

fog is considered to contribute the most severe attenuation [17]. The atmospheric attenuation
due to fog is related to the visibility V, in km, and wavelength λ. Using the empirical approach,
the relationship between V and the fog attenuation given by the Kim model [17] as:

V =
10log10Tth

βλ

( λ

λ0

)−w, (5)

where Tth is the 2% visual threshold, w is the particle size distribution coefficient and λ0 is
the solar band maximum spectrum, where λ0 = 550 nm in this paper. The fog attenuation
is estimated using Kims model from the w value and visible–NIR wavelengths, which is a
function and V and is defined as [17]:

w =



1.6 for V > 50 km
1.3 for 6 km < V < 50 km
0.16V + 0.34 for 1 km < V < 6 km
V − 0.5 for 0.5 km < V < 1 km
0 for V < 0.5 km

(6)

Table 2 shows the visibility range under different weather conditions [17].
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Table 2. Weather conditions and their visibility range values [17,19].

Weather Condition Visibility Range (m)

Dense fog [0, 50]
Thick fog [0, 200]

Moderate fog [0, 500]
Light fog [770, 1000]

Thin fog/heavy rain [1900, 2000]
Haze/medium rain [2800, 40, 000]

Clear/drizzle [18, 000, 20, 000]
Very clear [23, 000, 50, 000]

The atmospheric attenuation is given by Beer–Lambert law as [20]:

βλ =
ln I0

I
d

[km−1], (7)

where I0 [Wm−2] is the optical intensity at zero distance (d = 0), I is the optical intensity
at distance d.

The VLP is affected by thermal and shot noises, which are generally modelled as
additive white Gaussian noise (AWGN). The background light and the photo-current
generated by the desired signal is known as the shot noise and its variance is calculated as:

ω2
shot,i = 2qIbg I2B + 2qRpPr,iB, (8)

where Ibg represents the background current, I2 is a noise bandwidth factor of the current,
B represents the bandwidth, q is the electronic charge and Rp is the receiver responsivity.
The thermal noise that arises from the amplifier at the receiver is given as:

ω2
thermal =

8πkTk
G

ηAI2B2 +
16π2kTkΓ

gm
η2 A2 I3B3, (9)

where k represents the Boltzmann’s constant, Tk, G and η represent absolute temperature,
open-loop gain and fixed capacitance of the PD, respectively. gm and Γ represent FET
trans-conductance and FET channel noise factor, respectively.

Hence, the average signal to noise (SNR) ratio can be calculated as:

SNR =
1

MN

M

∑
i=1

N

∑
j=1

(Pr−i,jRp)2

ω2
shot,j + ω2

thermal,j
, (10)

where M and N are the number of transmitter and receivers, respectively.

3. Localisation Algorithms

The use of traditional localisation methods fails due to collinearity [21] caused by a
linear array of transmitters for straight roads. Hence, this paper proposes the use of angular
receiver diversity with ML algorithms to overcome these challenges [14], and map the
received signal from the transmitter to the vehicle’s positional coordinates. Note that this
research focuses on positioning in the sensor’s frame. We define the sensor’s frame as being
coincident with the sensor’s (streetlight or transmitter) axis with its origin as the coordinate
of the first street light Pr,1 as shown in Figure 1) and not the global (navigation frame).
The results are evaluated and compared against the Cayley Menger determinant (CMD).
The study in [12] uses trilateration based on CMD for positioning. The aforementioned
work achieves high accuracy using LEDs and PDs without the need for extra hardware,
hence making it a better model for comparison. CMD is a trilateration based algorithm that
extends the cost function for positioning using RSS as described in [12]. The positioning
algorithms are described in the following section.
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3.1. Cayley Menger Determinant (CMD)

Using receiver diversity, the receivers position can be estimated with CMD. The
received signal on the receivers are sorted from the highest to the lowest and the three
strongest signals are chosen and further used for calculations. This process is considered
as the localisation system covers a large area, see Figure 1. Let {dij : 0 ≤ i . j ≤ M} be a

set M(M+1)
2 of variables and consider the square (M + 2)× (M + 2) matrix where M is the

number of transmitters. The CMD is defined as [22]:

CMM :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 . . . 1
1 0 d2

12 d2
13 . . . d2

1M
1 d2

21 0 d2
23 . . . d2

2M
1 d2

31 d2
32 0 . . . d2

3M
...

. . .
1 d2

M1 d2
M2 d2

M3 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
ΓM, (11)

where ΓM is the multivariate polynomial. Therefore,
det(CMM) ∈ (Z)[d12, d13, . . . , d(M−1)M].
The CMD outputs a (1× 2) vector of (x̂, ŷ) for each receiver. Further details on the

application of CMD for VLP can be found in [12].

3.2. Machine Learning

In this study, four ML algorithms namely MLP, sRNN, LSTM and GRU are considered
for positioning. Each neural network (NN) when trained, outputs the predicted location
of the vehicle based on the input signal. The input to the NN is the received signal from
the transmitter as outlined in Equation (1), and has a vector size of (M × N). The NN
is trained to predict the 2-D received location. The NN has two output corresponding
to predicted x and y position coordinates. The NN models investigated in this paper are
briefly introduced in the following sub-sections.

3.2.1. Multi-Layer Perceptron (MLP)

MLP’s are characterised by an interconnected network of neurons capable of mapping
non-linear relationships from input (received signal from the transmitter) to output (ve-
hicle’s position coordinates). The input to the NN is computed from the bias vector and
the product of the input vector and the weight matrix. The output is, however, defined
by the nonlinear transformation of the sum of the neuron’s input through the use of an
activation function. NNs learn through the continuous back-propagation of the predicted
position errors, which consequently leads to the adjustment of the weight parameters until
an optimal model is found. An adjustable momentum and learning rate can be used to
prevent the MLP from becoming trapped in local minimum during back-propagation. The
operation of the feed-forward layer is defined by:

yt = σ(ΣxtW + b), (12)

where Σ is the summation operator, xt is the input feature vector (received power from
the transmitter) with vector size of M× N and yt is the predicted output vector (vehicle’s
position coordinate), σ is the sigmoid activation (non-linearity) function, W is the weight
matrix and b is the bias vector.

3.2.2. Simple Recurrent Neural Network (sRNN)

The RNNs differs from the MLP by their ability to learn relationships within sequences.
They use feedback loops, which help in connecting relationships learnt in the past. The
connections are sometimes called memory. Such information learnt within the sequential
dimension of the data are stored within the hidden state of the sRNN, which extends to the



Electronics 2021, 10, 3023 7 of 15

defined number of time steps and are mapped forward and continuously to the output.
The equations governing the operation of the sRNN are:

ht = tanh(Uhht−1 + Wxxt + bh), (13)

yt = σ(W0ht + bo), (14)

where Uh is the hidden weight matrix, bh is the hidden bias vector, bo is the output bias
vector, ht−1 is the previous state, Wx is the input matrix and W0 is the output weight matrix.
The detailed operation of the sRNN is described in [15,23].

3.2.3. Long Short-Term Memory (LSTM) Neural Network

LSTM’s are a variant of the sRNN. They were created to address the long-term depen-
dency problems of the RNNs. Through the use of gated architectures: input gate, forget
gate and output gate, LSTM can recall information from long periods of time. The gated
operations of the LSTM are shown by the following equations:

forget gate : ft = σ(W f xt + U f ht−1 + b f ), (15)

input gate : it = σ(Wixt + Uiht−1 + bi), (16)

current memory state : ĉt = tanh(Wcxt + Ucht−1 + bc), (17)

cell state : ct = ft ∗ ct−1 + it ∗ ĉt, (18)

output gate : ot = σ(Woxt + Uoht−1 + bo), (19)

final memory : ht = ot ∗ tanh(ct), (20)

where ∗ is the Hadamard product. Wi, W f and Wc are the weight matrices of the input gate,
forget gate and current memory state respectively, Ui, U f , Uc and Uo are the hidden weight
matrices of the input gate, forget gate, current memory state and output gate, respectively,
and bi, b f and bc are the bias vectors of the input gate, forget gate and current memory
state, respectively.

3.2.4. Gated Recurrent Unit (GRU) Neural Network

Cho et al. in [24], introduced the GRU to address the vanishing gradient problem of
the sRNN giving it the ability to learn long-term dependencies. Similar to the LSTM, the
GRU cellular operation is characterised by gated operations; however, the GRU has its
hidden state and cell state merged to form a more computationally efficient model. The
operations of the GRU is governed by the following sets of equation:

update gate : zt = σ(Wzxt + Uzht−1 + bz), (21)

reset gate : rt = σ(Wrxt + Urht−1 + br), (22)

current memory state : ĥt = tanh(Whxt + rt ∗Uhht−1 + bh), (23)

final memory : ht = zt ∗ ht−1 + (1− zt) ∗ ĥt, (24)

where Wh, Wr and Wz are the weight matrices of the current memory state, reset gate and
update gate, respectively, Uh, Ur and Uz are the hidden weight matrices of the current
memory state, reset gate and update gate, respectively, and bh, br and bz are the bias vectors
of the current memory state, reset gate and update gate, respectively.

4. Results and Discussion

The performance of the CMD and the ML algorithms are evaluated in this section. The
VLP channel in this study is considered to be an outdoor environment. Hence the effect of
sunlight and weather in all the simulations are considered unless stated otherwise. In this
study, we assume that streetlights are turned on all the time. Considering the standardised
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illumination level of LED streetlights, the proposed VLP system is evaluated using root
mean square (RMS) error, confidence interval (CI) and cumulative distributive function
(CDF). The RMS error contributed independently by x and y axis are given, respectively, by:

RMSx =
√
(x− x̂)2, RMSy =

√
(y− ŷ)2, (25)

where (x, y) is the real position and (x̂, ŷ) is the estimated position of the receivers. Hence,
the combined RMS error is given by:

RMS error =
√
(x− x̂)2 + (y− ŷ)2. (26)

The CI of the RMS error is given by:

CI = x̄± z
s√
n

, (27)

where x̄ is the sample mean, z is the confidence level value, s is the sample standard
deviation and n is the sample size. A 60 m long and 5 m wide road illuminated by LED
streetlights 7 m high and 30 m apart, with transmitter coordinates of (0, 0, 7), (30, 0, 7) and
(60, 0, 7) is considered for the initial simulation [25].

4.1. Visible Light Positioning Using CMD

In this subsection, CMD is used to estimate the positioning error. Using a single
receiver, it is impossible to estimate the positioning error due to the collinear arrangements
of the streetlights. Hence, we adopt the concept of receiver diversity as shown in Figure 1.
The RMS error distribution across the road using 4 receivers is shown in Figure 2. It can be
seen that the localisation error is high reaching RMS error values > 12 m. The RMS error
is seen to increase at the part of the road where the signal from the third streetlight is not
received adequately. It reduces as the received signal ratio between the three transmitters
increases. It is noticed that the system is more accurate in the x-axis as compared to the y-
axis which yielded an average RMS error of 0.95 m and 6.77 m, respectively. This variation
in error magnitude is highly influenced by the collinearity of the transmitter. This high
RMS error is not useful for the target application such as autonomous driving; therefore, to
reduce the positioning error and improve the accuracy, NN-based VLP is proposed.
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Figure 2. RMS error of VLP across the road using CMD.
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4.2. VLP System Architecture Parameter Optimisation

Several steps are taken to optimise the NN-based VLP model ranging from the number
of receivers (receiver diversity), receiver tilt angle (angular diversity), receiver spacing
(spatial diversity), receiver FOV and the NN structure. First, we investigate the optimum
number of receivers in the model to demonstrate the need for receiver diversity in VLP.
Note that initial optimization of the VLP system structure is achieved using the MLP model
in [14]. Thereafter, the NN is re-optimised. Figure 3 shows the relationship between the
RMS error and the number of receivers. Here, all the receivers are facing upwards. We
observe that, the RMS error reduces as the number of receivers is increased. There is a
significant performance improvement when the number of receivers increases from 1 to 4;
however, there is a very limited improvement in performance beyond four receivers.

1 2 3 4 5 6

Number of receivers

0.2

0.4

0.6

0.8

A
v
e

ra
g

e
 R

M
S

 e
rr

o
r 

(m
)

Figure 3. CDF of VLP as a function of the number of receivers.

The impact of receiver separation on VLP is also investigated to select a favourable
receiver spacing on the vehicle. We only consider receiver separations from 0.02 m to 0.4 m
due to their practicality for real application. Figure 4 shows the CDF of the RMS error for
the receiver separations of 0.02 m, 0.04 m, 0.1 m, 0.2 m and 0.4 m. At 0.95 CDF, the average
RMS errors are 2.5 m, 1.86 m, 1.83 m, 1.3 m and 0.8 m, respectively. Figure 4 illustrates
that the accuracy of the system increases as the receiver spacing is increased. It is noticed
that only a receiver separation of 0.4 m (out of the chosen values) provide an RMS error
below 1 m at 0.95 CDF. Hence, the separation between the receivers of 0.4 m is selected for
further simulations.

0 1 2 3 4 5
0

0.5

1

Receiver seperation = 0.02m

Receiver seperation = 0.05m

Receiver seperation = 0.1m

Receiver seperation = 0.2m

Receiver seperation = 0.4m

Figure 4. CDF analysis at different receiver separation.

Furthermore, we consider the concept of angular diversity to improve system per-
formance through better signal reception. In this study, the first two PDs are facing the
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direction of travel (forward-facing) with their angles represented as theta x (f) and the
last two PDs are facing away from the direction of travel (rear-facing) with their angles
labelled as theta x (b) as seen in Figure 5. The PDs are considered to have two degrees of
freedom namely ∠x and ∠y as illustrated in Figure 1. ∠x represents the rotation across
the x-axis, i.e., tipping the receivers towards and away from the direction of travel. ∠y
represents the rotation across the y axis, i.e., tilting the receiver towards and away from
the streetlight. ∠z is the rotation of the PD across the z-axis. This is ignored as it does not
introduce any difference to signal reception due to the circular nature of the PD. However,
this could change on non-circular PDs. Starting with the forward-facing PDs, their angles
are changed from 0◦ to 90◦ and the back facing PDs from 90◦ to 180◦ with a step size of 10◦.
∠y is kept constant for all the PDs so they face towards the streetlights.

(a)

0 50 100 150 200
0

0.5

1

1.5

2

Theta y

Theta x (f)

Theta x (b)

(b)

0 1 2 3 4

0.2

0.4

0.6

0.8

1
Single reciever

RD

RD+AD

Figure 5. (a) Average RMS error at different receiver tilt angle. (b) CDF analysis on the impact of receivers and
angular diversity.

Figure 5a shows the RMS error with respect to receiver angles. We start by considering
the forward-facing receivers. A rise in the error is first noticed when the receiver angles
are tilted from 0◦ to 20◦ (Note that the rear-facing receivers and ∠y are kept at 90◦). The
accuracy of the system is seen to improve between 30◦ to 60◦ with the optimum being at
40◦. Next, we consider the rear-facing receivers. The RMS error is seen to reduce from
90◦ to 140◦ with 130◦ being the optimum angle thus considering it for further simulations
as the accuracy of the system decreases thereafter. It was found the RMS error decreases
when ∠y is tilted from 0◦ to 50◦, where it reaches a minimum. The RMS error is seen to
increase beyond thereafter. Having optimised the number of receivers and their respective
angles, CDF analysis is performed and presented in Figure 5b. This is to observe their
respective impact to optimise the performance of the system. We start by analysing the
system using a single receiver with the optimum simulation parameters. At 0.95 CDF, an
RMS error of 1.8 m is noted. The value is seen to drop to 0.8 m when receiver diversity
is applied. Furthermore, when angular diversity is included, an RMS error of 0.72 m is
noted at 0.95 CDF. This reduction in RMS error shows that the proposed concepts can help
provide improved performance for positioning systems in outdoor applications.

4.3. Neural Network Modelling

Using the optimum vehicular VLP structure deduced in this work, we optimise
different ML models to select the best fit for this application as seen in Table 3 [15,23]. The
models considered are GRU, LSTM, sRNN and MLP. A total of 65,554 2-D positions were
considered in the simulation studies. A subset of 1500 positions was selected randomly to
tune the neural networks. 70% of these positions were used for training, 15% for validation
and 15% for testing. The GRU, LSTM and sRNN models were optimised using the Adam
optimiser with an initial learning rate of 0.01, 0.01 and 0.009, respectively, as shown in
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Table 3. The MLP model was, however, optimised with the Levenberg–Marquardt (LM)
optimiser with an initial learning rate of 0.1. The model’s parameters were initialised using
the Glorot uniform kernel initialiser for all models and the orthogonal recurrent initialisers
for the RNNs. The mean squared error was chosen as the loss function for the purpose
of training all the models investigated. During the training of the MLP, we selected two
hidden layers for regularisation purposes through the implementation of 25% dropout
of the units in the hidden layers. A 15% dropout rate was implemented on the recurrent
layers of the RNNs to prevent the models from over-fitting. We do, however, note that
we found no benefit computationally and estimation wise in increasing the size of the
hidden layers of all models investigated. Table 3 presents the full list of hyper-parameters
for the optimised models. Furthermore, as reported in Table 3, it can be seen that the
MLP outperforms the other models compared, with the lowest RMS error of 0.22 m. The
performance of the MLP compared to the other models examined suggests that the VLP is
not characterised by sequential dependencies (a characteristic not known before the start
of this study) and justifies the selection of the MLP for further simulations.

Table 3. Hyperparameters of the machine learning algorithms.

Training Parameters GRU LSTM sRNN MLP

Number of weights per hidden layer 16 32 32 32

Learning rate 0.01 0.01 0.009 0.1

Number of hidden layers 2 2 2 2

Activation function (hidden layers) tanh

Kernel initialiser Glorot Uniform

Recurrent initialiser orthogonal

optimiser Adam LM

Loss function Mean squared error

Time step 1 -

Batch size 64 32 32 0.1

Dropout rate - 0.25

Recurrent dropout rate 0.15 0.15 0.5 -

RMS error (m) 0.26 0.26 0.29 0.22

4.4. VLP Using Angular and Spatial Diversity Receiver

The performance of the proposed VLP system is first analysed during the day where
sunlight is present unless stated otherwise. The model is simulated on a laptop computer
(Intel(R) Core(TM) i7-6820HQ CPU of 2.70 GHz clock rate, 16 GB RAM and runs 64-bit
Windows 10 operating system) with a computational time of 75.9ms. Each analysis was
performed with over 65,554 test points. The RMS error analysis across the road is shown in
Figure 6. The plot reveals the RMS error values at each point across the road. Given that
the streetlights are on one side of the street (axis-y = 0), a rise in RMS error is noticed on
the other side of the road due to lower signal power reception. In the x-axis, an average
RMS error of 0.02 m is recorded. It is noticed that the average RMS error in the y-axis is
0.1743 m, see Figure 6. Hence, the results show that the RMS error is higher in the y-axis
than the x-axis. Unlike in the CMD technique, the RMS error is more evenly distributed
across the road due to the learning abilities of the NN.

Next, we compared the performance of the system during the day and at night when
solar radiation is absent. Figure 7 shows the RMS error distribution across the road during
the day and night. The average RMS errors are 0.22 m and 0.14 m during the day and
night, respectively. The RMS error at night is lower than the average RMS error during
the day due to reduced ambient light noise and hence improved SNR. For example, the
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average SNR across the road at night is 53 dB, which is 12 dB higher than the average SNR
of 41 dB for the day. Similar average SNR degradation is reported in other work including
simulation and measurement in [26] showing SNR degradation of 12.5 dB for VLC. In this
study, the analysis focused on the worst-case (during day) and the best case (at night);
however, the performance during daytime can be improved by using a blue filter at the
receiver [26], which can reduce the SNR degradation by at least 6 dB.

(a) (b)

Figure 6. (a) x-axis RMS error distribution and (b) y-axis RMS error distribution.

Moreover, the system’s performance is analysed over the various weather conditions,
and results are presented in Figure 8a. Four representative weather conditions are selected,
which are (a) sunny day time when the shot noise due to the sunlight is the strongest,
(b) night when there is very low ambient noise, (c) thick fog with visibility of 200 m
and (d) dense fog with visibility of 50 m when signal attenuation is very severe. The
resulting average SNR across the road for these conditions are 41 dB, 53 dB, 43 dB and
36.9 dB. Figure 8a illustrates the CDF analysis of the respective weather conditions, which
reveals the best performance is obtained at night with clear weather when the noise is
the minimum, followed by thick fog, sunny day time under the sun and dense fog with
average RMS errors (RMS error at 0.95 CDF) of 0.14 m (0.49 m), 0.19 m (0.70 m), 0.22 m
(0.72 m) and 0.29 m (0.98 m), respectively. As expected, the best performance is obtained
at night when the received signal strength is the highest and the noise level is the lowest.
The worst performance is obtained under dense fog condition when the RSS is low due
to attenuation of 78.2 dB/km. Whilst the RSS is higher for sunny days than the thick fog
condition with an attenuation of 39.1 dB/km, the performance is better with thick fog
condition. This is because, in this condition, the absence of shot noise due to sunlight
outweighs the attenuation due to fog. Figure 8b shows the respective RMS error analysis
at different SNR values starting from 30 dB to 70 dB during the day. The model yields
RMS error values above 0.4 m until it reaches 46 dB. Further drop in RMS error is noticed
from 46 dB to 60 dB where an average RMS error below 0.19 m is achieved. Thereafter,
no significant change in the gradient is noticed until an average RMS error of 0.13 m is
recorded at 70 dB.

CI is used to display the upper and lower boundaries of the given RMS error. Given
that z is 95% and n is 100, Figure 9 shows the error boundaries for the same vehicle position
per point taken over 100 different data sets, which was conducted during the day. It can
be seen that most of the estimated value falls under 0.3 m with an upper error boundary
averaging 0.4 m; however, a few points have an upper error boundary higher than 0.6 m
(see Figure 9). This is caused by the lower SNR values across the road.
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(a) (b)

Figure 7. RMS error across the road: (a) during the day and (b) during the night.
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Figure 8. (a) CDF of VLP at different weather conditions and (b) average SNR versus average RMS error.

Finally, the performance of the VLP model is investigated with five different road
scenarios and LED streetlight setup as presented in most urban cites shown in Table 4 [27].
Note that case I is the dimension the initial study is based on. All the scenarios are analysed
based on average RMS error and (RMS error at 0.95 CDF). By comparing Case I and Case
II, reducing the transmitter spacing and the road width improves system performance. In
Case III, streetlights are located on both sides of the road. Though the transmitter setup
is distributed, the link distance is still long with 20 m transmitter spacing and 15 m wide
road. When a 5 m reduction is made on both the transmitter spacing and road width and
despite increasing the transmitter height by 1 m as seen in Case IV, the performance of the
system increases by 67%. Using the same transmitter height but increasing the transmitter
spacing to 30 m in Case V provides similar performance in Case III. The system performs
better on smaller roads and providing a distributed transmitter (double-sided) enhances
system performance.
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Figure 9. CI analysis over 100 positions across the road.

Table 4. Different road dimensions in urban cities.

Height Spacing Road
Width

Transmitter
Position

Average
RMS Error

RMS Error
at 95% CI

Case I 7 m 30 m 5 m Single sided 0.22 m 0.72 m
Case II 7 m 15 m 5 m Single-sided 0.16 m 0.67 m
Case III 7 m 20 m 15 m Double-sided 0.27 m 0.97 m
Case IV 8 m 15 m 10 m Double-sided 0.09 m 0.29 m
Case V 8 m 30 m 10 m Double-sided 0.27 m 1.21 m

5. Conclusions

This paper has presented a novel vehicular VLP solution based on MLP using the
spatial and angular diversity receiver. Detailed system optimisation is presented ranging
from the number of receivers, receiver angles and receiver separation. By using four PDs
at the receiver end, their combined received signal is used to calculate their respective
distances to the transmitter. Using CMD, the model yielded an average RMS error of 6.84 m
under direct sunlight condition. ML algorithms were later investigated with MLP offering
the best performance with an average RMS error of less than 0.27 m. Furthermore, the
system performance was tested under different weather conditions to show the capability
of the system in adverse weather conditions. In clear weather, dense fog and at night, the
system yielded an average RMS error of 0.22 m, 0.29 m and 0.14 m, respectively. This work
proves that MLP with spatial and angular diversity receiver can overcome the collinearity
condition in VLP. Future work includes the practical implementation of the proposed
system and the investigation of different techniques to further improve its performance.
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