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A B S T R A C T   

This work provides a solution to the challenge of small amounts of training data in Non-Destructive Ultrasonic 
Testing for composite components. It was demonstrated that direct simulation alone is ineffective at producing 
training data that was representative of the experimental domain due to poor noise reconstruction. Therefore, 
four unique synthetic data generation methods were proposed which use semi-analytical simulated data as a 
foundation. Each method was evaluated for its performance in the classification of real experimental images 
when trained on a Convolutional Neural Network which underwent hyperparameter optimization using a genetic 
algorithm. The first method introduced task specific modifications to CycleGAN, a generative network for image- 
to-image translation, to learn the mapping from physics-based simulations of defect indications to experimental 
indications in resulting ultrasound images. The second method was based on combining real experimental defect 
free images with simulated defect responses. The final two methods fully simulated the noise responses at an 
image and signal level respectively. The purely simulated data produced a mean classification F1 score of 0.394. 
However, when trained on the new synthetic datasets, a significant improvement in classification performance 
on experimental data was realized, with mean classification F1 scores of 0.843, 0.688, 0.629, and 0.738 for the 
respective approaches.   

1. Introduction 

Composites such as Carbon Fibre Reinforced Polymer (CFRP) are 
constructed by layering multiple carbon ply sheets which are cured after 
the addition of a thermoset polymer. These composites are widely used 
in aerospace and other industries as they offer superior corrosion 
resistance, specific strength and stiffness to weight ratio, and their 
anisotropic nature can be engineered to correspond with structural load 
requirements [1–9]. Composites are susceptible to defects created dur
ing manufacturing [1,2,4,7,8,10,11]. These defects most commonly 
include delaminations, cracks, foreign object inclusions, fibre distor
tions (or marcels), and porosity [6,11]. The detection, characterization 
and quantification of these defects are essential to assess the quality of 
aerospace components before they enter their service life. With an 
increasing volume of composites becoming safety critical parts, the need 
for effective testing is of utmost importance [4]. 

Non-Destructive Testing (NDT) encompasses a range of techniques 
used to inspect components without causing damage. Some of the most 
common methods are Radiography, Thermography, Electromagnetic 
methods, and Ultrasound. 

Ultrasonic Testing (UT) has been widely adopted and standardized 
for testing in the aerospace industry due to its ease of implementation 
and ability to detect a wide variety of defects [2,6,9,10]. UT involves 
exciting sound waves on the surface of a component. These sound waves 
interact with anomalous scatterers or component features, providing 
valuable information about discontinuities or properties of the compo
nent. Commonly, phased arrays are used to generate the initial sound 
wave owing to their operational flexibility. Phased arrays combine 
independently controllable UT elements which allow for more complex 
electronic scanning and imaging such as beam steering, dynamic depth 
focusing and variable sub-apertures [8]. Depth wise sectional images 
(B-scans) can be produced from a single phased array by controlling 
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each individual element (or sub aperture of elements) to create a linear 
sweep (Fig. 1). By combining linear phased array probes with mecha
nized scanning in the 3rd dimension, UT can produce complete 3-dimen
sional volumetric data of components by stacking multiple individual 
B-scans together at known positions (Fig. 1). Most often the data is 
visualized as 2-dimensional B-scans or amplitude C-scans [12]; where 
the maximum response from a depth gating produces a section view 
across the component (examples can be seen in Fig. 5). 

The use of robotics in NDT has created the ability to automate large 
scale inspection processes efficiently [13]. However, despite the 
increased flexibility of robotic scanning and the drastic reduction in scan 
time seen by mechanized scanning compared to manual scanning, the 
interpretation of the results in industry remains a challenging and time 
intensive task that requires highly trained and qualified operators to 
interpret results according to existing standards [9,14–18]. 

The human operator interpretation of scan results introduces two key 
drawbacks: a lack of time efficiency and the introduction of human error 
[16]. Simple automation of data interpretation can be seen in 
mass-produced parts with precisely known geometries. However, this is 
often based on hard coded features such as amplitude thresholding or 
requires large amounts of feature extraction, which is unable to cope 
with more complex tasks; for example changes in manufacturing or 
geometry [18]. Therefore, if a Deep Learning (DL) approach could be 
created to automate the interpretation of complex results and work 
alongside the robotic inspection, the required inspection time and 
quality of large components could be improved significantly, allowing 
for shorter signal interpretation time and a faster uptake of UT auto
mation in aerospace and other industries. Furthermore, increased 
automation could lead to better defect detection capability, whilst 
improving consistency, traceability, and repeatability. DL is a subset of 
Machine Learning (ML) which makes use of neural networks to address a 
wide variety of complex challenges. It has been identified as a key 
requirement to enable transition to high levels of industrial automation 
within NDT [18]. 

However, despite the clear opportunity, ML has seen limited uptake 
in UT signal analysis, particularly for composite components, which 
present a more challenging case with additional structural noise 
compared to isotropic and homogeneous materials. A clear barrier to 
research developments is the lack of training data [18]. This combined 
with industrial questions over interpretability and compliance with 
standards has presented challenges for the use of DL. Modern 
manufacturing processes aim to reduce the production of defects, 
meaning large volumes of real defect responses are simply not available; 
especially ones that represent the full distribution of defect classes and 
wide variability within these classes that are present from in
consistencies in manufacturing. Furthermore, the manufacturing vol
umes of aerospace components can be small, and stringent protocols for 
data protection of civil and military components compounds the issue of 
data scarcity. Most commonly, previous works have aimed to experi
mentally increase their datasets using manufactured defects [5,19,20]. 

However, whilst these approaches can demonstrate research concepts, 
they are unlikely to give UT responses that accurately represent 
real-world responses especially not at the same variability seen within 
real defects. Other authors have demonstrated success using simulated 
data developed using Finite Element Analysis (FEA) software to model 
defects and ray-based models to create Plane Wave Capture, which uses 
a physics-based understanding of the wave propagation to produce ac
curate responses based on bulk material properties [21]. However, this 
is typically done for isotropic and homogenous steel samples which have 
very low attenuation and noise, and have less modelling complexity 
compared to composites, which are acoustically anisotropic and produce 
large amounts of UT wave attenuation and scattering noise. Further
more, this noise is often produced structurally from the internal ply/
fiber bundle interfaces of the composite material and is not random. 
Therefore, neglecting this structural noise component and merely 
addressing the random noise through the addition of randomly distrib
uted noise to the datasets may give unrealistic images or obscure defect 
responses. It is therefore important to understand what gives rise to the 
complete noise, how this can be modelled, and how this impacts our DL 
models. Most modern FEA software can account for ply interactions, but 
it needs intensive material acoustic property characterizations, model
ling effort, and very long time-transient simulations. Therefore, com
posites are often modelled using average bulk properties and not done at 
the individual ply level. As an alternative to full FEA software, 
semi-analytical physics based software has been shown to produce 
experimentally accurate defect responses [22,23]. This software is much 
less computationally expensive than full FEA and can be used for 
simulating composite responses based on bulk material properties [24]. 
This provides a great opportunity to simulate vast amounts of defect 
responses with low computational cost however, it does lack the com
plexities of structural noise response. 

Synthetic datasets are widely used in ML to augment small training 
datasets [25] and they offer a potential solution to the lack of defect data 
in UT. This work looks at different novel methods of generating syn
thetic datasets from simulated data for composite UT. These novel 
synthetic data generation methods are comparatively evaluated on their 
experimental classification performance when used for training a Con
volutional Neural Network (CNN). Hyperparameter optimization (HPO) 
is used to select an appropriate CNN architecture that can represent the 
solution space for our task. Generative adversarial networks (GAN) [26] 
are one of the approaches investigated and have seen success in gener
ating and augmenting training data. They are often used to augment the 
distribution of a particular target case, relying on the variability within 
the GAN to provide a greater variability in training examples. The spe
cific GAN used in this work to tackle a data shortage challenge for the 
first time in the NDT domain is CycleGAN, which is a conditional GAN 
that has demonstrated good results in unpaired image-to-image trans
lation tasks [27]. This GAN approach aims to combine NDT data 
generated from physics-based simulations with GAN augmentation to 
create a dataset based upon physically accurate defect responses that 
better resemble experimental data. The approach uses a modified 
CycleGAN architecture to learn the mapping from simulated UT data to 
experimental UT data. Specific, novel modifications, integrally an 
additional loss function, help to encourage accurate defect signal 
reproduction whilst allowing for the addition of experimental noise. 
With this approach, large quantities of highly varied simulated defects 
can be produced in a relatively short time as compared to experiments or 
FEA, and using the GANs mapping, produce large quantities of experi
mentally representative synthetic data. The overall goal of this work is to 
identify the best methods for generating synthetic datasets in UT of 
composites to help unlock the potential of DL in NDT applications. 

This paper provides details on how experimental and simulated UT 
testing is gathered and processed into defective and non-defective image 
datasets (section 2.1). In section 2.2, information is provided on the use 
of a CNN architecture for evaluation of classification performance and 
details on the HPO method used for architecture selection. Comparison 

Fig. 1. Demonstration of how individual probe elements can make up a linear 
phased array which can produce B-scan and C-scan images. 
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is made with the experimental classification performance between 
simulated and experimental data in section 2.3. The different methods of 
synthetic data generation are then explored in section 2.4 with the ef
fects on classification performance evaluated. Section 3.1 provides a 
summary of the classification results. Finally, section 3.2 introduces 
Grad-CAM as a method to help with model interpretability when 
comparing synthetic data to experimental data and discusses the full 
results of this work. 

2. Methodology and results 

2.1. Data generation 

2.1.1. Experimental data collection 
Flat-Bottom Holes were used to imitate delamination defect re

sponses which are the most common defects in composites [28]. Such 
defects are simple to produce post-cure and give similar responses to 
delaminations which advanced composites are highly susceptible to and 
are one of the most important life limiting failure modes [29]. In addi
tion to this, their consistent geometry makes them simple to simulate. It 
was important that whichever defects were manufactured could easily 
be simulated to allow for the most direct comparison between simulated 
and real data; as the focus of this work was on the ability to create 
synthetic data for training of experimental classifiers, and not the dif
ferences between real and manufactured defects. However, once an 
effective method of synthetic data generation is realized, the modelling 
package used allows for a wide range of realistic defects to be simulated, 
such as ply waviness, wrinkles, porosity, and delaminations which can 
be extensively used for generating training data for NDT classification 
once the successful mapping is proven for simpler defect geometries. 

Three 254 × 254 × 8.6 mm (WxDxH) composite samples were pro
vided by Spirit AeroSystems. The samples were all manufactured to the 
BAPS 260 specification using a Resin Transfer Infusion Process, made 
using non-crimp fabric and Cycom 890 resin. In the first sample herein 
designated as “Test Sample”, 15 Flat-Bottom Holes were drilled from the 
backside to simulate defects. The defects were 3.0, 6.0 and 9.0 mm in 
diameter, with each individual defect size drilled to depths of 1.5, 3.0, 
4.5, 6.0, 7.5 mm from the front surface. The different defect sizes were 
spaced 30 mm apart with different depth defects spaced 35 mm apart. In 
the second sample herein designated the “Training Sample”, 25 Flat- 
Bottom Holes were drilled to the same depths as the test sample but 

with additional defect sizes of 4.0 and 7.0 mm as shown in Fig. 2. All 
defects were manufactured to tolerances in depth of ± 0.3 mm, and 
diameter of ± 0.2 mm. Another sample, known as the “Reference 
Sample,” was kept defect-free for generating defect-free images. 

The ultrasonic data was collected by linear phased array scanning 
using a 64-element 5 MHz ultrasonic roller probe, driven at 100 V and 
receiver gain of 22.5 dB controlled through a PEAK MicroPulse 6. 
Scanning of the parts was accomplished using a fully automated robotic 
scanning system at a scan speed of 10 mm/s, built around a KUKA KR 90 
R3100 extra HA industrial robot (Fig. 3) [30]. The robotically controlled 
scanning allowed for the concatenation of B-scans to produce C scan 
images. To ensure a steady coupling of the roller-probe to the compo
nent’s surface and the acoustic wave energy was consistently transferred 
into the sample at different scanning positions, a Force-Torque sensor 
was used between the robot’s flange and the roller-probe to maintain a 
constant 35 N scanning force. Water was used as an acoustic couplant 
due to its closely matched acoustic properties to the rubber of the roller 
probe tyre. This is a similar acquisition setup to that used in industry and 
has been used to collect data on large composite aerospace components 
[31]. 

2.1.2. Simulated data collection 
A simulated dataset of the experimental test sample discussed in 

section 2.1.1 was constructed using a semi-analytical, physics-based, 
commercial NDT simulation software – CIVA [32]. Flaw interaction in 
CIVA is made up of three computation stages: incoming transient ul
trasonic field arising on the defect, field-to flaw interaction according to 
the Kirchhoff approximation, and prediction of the sensitivity at 
reception using the Auld’s reciprocity theorem. The Kirchhoff approxi
mation assumes the wave does not propagate into the defect which is 
appropriate for the Flat-Bottom Holes modelled here [22,33]. As the 
software adopts a semi-analytical approach, it allowed for simulations to 
be completed with significantly reduced computational cost compared 
to Finite Element Analysis (FEA) methods. Since the focus of this work 

Fig. 2. The composite test sample showing 25 Flat-Bottom Holes.  

Fig. 3. a) Overview of the experimental setup of KUKA KR90 and ultrasonic 
roller probe used for data acquisition. b) Close-up image of the experimental 
setup showing the assembly of the roller-probe and Force-Torque sensor as the 
robot end effector. 
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was the opportunity to produce large datasets for UT, this was a sig
nificant benefit of the semi-analytical software approach. 

CIVA simulation software is a physics based, and has been widely 
used for commercial UT simulation work, and experimentally validated 
for UT [22]. Therefore, we could be confident that the modelling of 
wave propagation and its interaction with defects were accurate, pro
ducing reliable defect responses as well as being computationally effi
cient. In addition, the simulated defect dimensions and positions were 
readily controlled, allowing us to duplicate the exact experimental 
setup. This allowed for efficient, complete annotations of the dataset to 
be generated at the point of simulation, which opens further opportu
nities beyond classification, such as segmentation where each pixel 
within the image is individually classified which could be beneficial for 
defect sizing etc. A significant downside of using a semi-analytical 
software as opposed to FEA is that the software was unable to model 
each distinct composite layer response leading to differences between 
the simulations and measured experimental responses. However, in 
creation of the model, the individual layers were still constructed but 
were only used to estimate equivalent homogeneous material properties. 
A single ply layer was constructed and alternated with 0, 45, − 45, and 
90◦ to match the experimental sample as closely as possible. The 
resulting multilayer structure was homogenized so that it was consistent 
with a homogeneous medium having mechanical properties equivalent 
to those of the multi-ply composite. The homogenization gives good 
bulk propagation characteristics but removes structural noise due to 
reflections from ply boundaries. This is a limitation of this simulation 
method but is a necessary trade off against the computational cost of 
FEA when producing large datasets. The fiber density was also set to 50 
% to give the density which best matched the experimental sample value 
of 1440 kg/m3. A parametric study simulation was setup which used the 
composite bulk properties previously calculated and varied the diameter 
and depth of defects. The study matched the experimental setup with 
3.0, 6.0 and 9.0 mm defects at depths of 1.5, 3.0, 4.5, 6.0, and 7.5 mm 
from the surface. Both the front and backwall surface reflections were 
included in the model. The full simulations took less than 6 h on a 
desktop computer with a 24-Core 3.79 GHz CPU and 128 Gb of memory. 

2.1.3. Signal processing and image dataset generation 
The UT image resolution was physically limited by the number of 

array elements to 64 pixels in the array dimension, with the second 
dimension matched to this by selecting the corresponding 64 B-scans to 
produce square images. The distance was 0.8 mm between elements and 
the robotic scanning speed was controlled to give 0.8 mm B-scan offset 
so that the images produce square pixels, which kept the dimensions 
consistent between the physical component and the ultrasonic data. 
Since ultrasound values are just echo amplitude responses received from 
within the inspected component by the array and presented in levels of 
voltage response, the images were kept in single channel grayscale as 
any colors did not have any physical significance. 

Both the experimental and simulated data collected were in the form 
of A-scans, also called amplitude scans (Amplitude vs time). Signal 
processing steps were taken to create amplitude C-scan images from the 
two sources of data. Firstly, the A-scans were zero centered and had a 
Hilbert transform applied. The Hilbert transform provides the analytical 
signal and is useful for calculating the instantaneous response of a time 
series. This is standard signal processing for image generation of time 
series ultrasonic data [34]. The experimental and simulated datasets 
were then normalized between 0 and 1 by dividing by their respective 
maximum values (example seen in Fig. 4). Normalization is not only a 
beneficial step in data processing for ML, but it also allowed for direct 
comparison of the different datasets as amplitudes from the simulations 
are relative to each other and are not reflective of experimental voltage 
values. 

Once the data was normalized, it was truncated to remove the front 
and back wall echoes across the full dataset. Then the maximum am
plitudes were taken at varying depths of 5 samples in the time domain to 

produce C scans (sampling rate of 100 MHz), refer to Fig. 1 (C scan depth 
gating) for visualization of the image extraction process. This enabled 
direct comparison for multiple different response images to be generated 
for each defect. From these C scans, the images which represented a 
defect response were collected. For the experimental samples, data was 
also collected from the reference sample to obtain defect free C scan 
images. In total this produced 334 defective images from the experi
mental training sample, 150 defective images from the experimental test 
sample and 640 defect free images from the reference sample. This was 
split into 334 clean training images and the rest were used for testing. 
From the simulated dataset, 154 defective images were produced. Fig. 5 
shows how the simulated responses were significantly different from the 
experimental data. The simulated responses have far greater signal to 
noise ratio than the experimental responses and lacked the background 
response that is typically seen in experimental scans from the composite 
ply interactions, with a mean signal to noise ratio of over 400 times the 
simulated defective datasets compared to the defective test dataset. A 
summary of the datasets generated from the experimental and simulated 
data is given in Table 1. 

Fig. 4. a) example of relative amplitude response from simulations. b) example 
of normalized signal and Hilbert transform performed to signal (a). 

Fig. 5. Example of simulated (a) and experimental (b) C scan responses of a 9 
mm diameter Flat-Bottom Holes. 
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2.2. CNN classification evaluation method 

2.2.1. How CNNs were used for comparison 
The aim of this work is to evaluate different methods of modifying 

simulated data to make them more effective at training Deep Learning 
models for experimental classification tasks. It is therefore important 
that we evaluate our synthetic datasets with respect to a classification 
metric. A Convolutional Neural Network (CNN) was used to evaluate 
and compare the classification performance of different synthetic and 
experimental datasets. CNNs have repeatedly demonstrated wide scale 
success in image classification and are appropriate for this task [35]. 

Since the focus of this work was to compare synthetic datasets and 
not on optimal classification accuracy, the CNN was kept constant for 
each dataset. Whilst the CNN should be kept lightweight to reduce the 
computational cost of testing each synthetic dataset, it was also 
important that the CNN had adequate complexity to learn the task. To 
make sure the CNN had enough complexity to represent the solution 
space, a genetic algorithm was deployed for hyperparameter optimiza
tion (HPO) of a CNN when trained on experimental data. A genetic al
gorithm is a heuristic search method that mimics natural selection seen 
in biological evolution. 

As the datasets used in the study are small, there was a degree of 
variability in the classification results. To negate this, when training the 
classifier, the CNN was re-trained for each synthetic dataset with a fresh 
initialisation 100 times and the average results were taken. Each CNN 
was evaluated on the same experimental dataset of 298 images, made up 
from the experimental clean and defective test dataset. Fig. 6 shows the 
methodology used for classification evaluation. 

To quantitatively assess the performance of the classifiers, confusion 
matrices were generated, and precision, recall and F1 scores were 
calculated according to (1), (2) and (3). 

Precision=
TP

(TP + FP)
(1)  

Recall=
TP

(TP + FN)
(2)  

F1=
(2 × Precision × Recall)
(Precision + Recall)

(3)  

Where TP is true positive, FP is false positive, and FN is false negative, 
with positives being the presence of a defect. Each result was individ
ually averaged using a simple mean across the 100 training cycles. 

2.2.2. Hyperparameter optimization from experimental data 
A genetic algorithm was used to perform HPO on the experimental 

training (defective and clean) dataset to determine the parameters for 
the CNN. The model had at least 1 convolutional layer. Each convolu
tional layer had a fixed kernel size of 3 and used a Rectified Linear Unit 
(ReLU) as the activation function [36] followed by max pooling with a 
kernel size of 2. The number of convolutional layers was parameterised 
with the number of filters given by a constant out-channel ratio and the 
number of out channels from the previous layer. The out-channel ratio 
was also parameterised. The network always had at least one fully 
connected layer, from the flattened layer to the single output node, with 
a sigmoid activation function for binary classification. There were a 
variable number of fully connected layers and each hidden fully con
nected layer used ReLU activation. The number of nodes on each hidden 
layer was equally distributed by dividing the number of nodes in the 
flattened layer by the total number of layers and removing this from the 
previous hidden layer each time. The optimized hyperparameters also 
included batch size, early stop, learning rate, momentum, and number of 
epochs. The values for the HPO variables are given in Table 2. Fig. 7 
shows an example of the network with three convolutional layers, 2 
hidden layers, and an out-filter ratio of 2. 

The HPO was performed using the experimental train dataset, made 
up of 334 defect images and the same number of defect free images from 
the clean train dataset. The genetic algorithm used was a variant of 
Regularized Evolution (RE) [37], which was adapted for continuous and 
integer valued hyperparameters. The algorithm was initialized with a 
Population (P) of 128 configurations generated via a random search. At 
each iteration RE sampled 5 configurations from the population, the 
model with the highest evaluation score within this sample was selected 
and a new child configuration was generated by mutating one of the 
parents hyperparameters. This child model is then trained and pre
pended to the population with the ‘oldest’ model discarded. This assisted 
in avoiding the system becoming trapped in local minima, as high per
forming models relative to the population will be exploited for P itera
tions before being discarded and allowing the process to explore new 
areas of the search space. This method was run for 512 iterations. During 
each model evaluation, the dataset was randomly subsampled without 
replacement with 80% of the dataset used for training and 20% used for 

Table 1 
Summary of the datasets produced.  

Data source Dataset Number of 
images 

Experimental test sample (15 Flat-Bottom 
Holes) 

Defective test 150 

Experimental train sample (20 Flat-Bottom 
Holes) 

Defective train 334 

Experimental reference sample Clean test 148 
Clean train 334 

Simulated experimental test sample (15 Flat- 
Bottom Holes) 

Simulated 
defective 

154  

Fig. 6. Flow diagram showing the process used for HPO of the CNN architec
ture and the use of the optimal architecture for classification evaluation. 

Table 2 
HPO variables and their range of values.  

Variable Parameter Range 

Number of fully connected layers 1–6 
Number of convolutional layers 1–6 
Channel ratio for convolutional layer filters 1–3 
Batch size 16, 32, 64, 128, 256 
Early stop 0–5 
Learning rate 0.00001–0.5 (log scale) 
Momentum 0–1 
Number of epochs 100–500  
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testing. The F1 score was calculated over 10 iterations of training and 
testing data samples with the average F1 score used as the evaluation 
metric. The optimum final network had an average F1 score of 0.978. 
The optimum hyperparameters are outlined in Table 3. The network was 
implemented using the PyTorch framework [38]. 

2.3. Classification results for experimental and unprocessed simulated 
data 

2.3.1. Experimental results 
For comparison to the synthetic datasets, a model was trained on the 

experimental test dataset and the same number of clean images sampled 
from the clean test dataset with a train/test split of 80% and 20% 
respectively. This gave a total of 60 test images. The averaged results 
across 100 training iterations, gave a mean model accuracy of 89.8%, 
with average F1, precision and recall scores of 0.887, 0.974 and 0.826, 

respectively. The average confusion matrix for the experimentally 
trained model is given in Table 4. 

2.3.2. Unprocessed simulated results 
A model was also trained on the simulated, unmodified defect 

response data and the same real defect free images generated from the 
defective test sample which were used for the experimental results. This 
was made up of 154 simulated defect images and 154 real defect free 
images sampled from the clean train dataset. After 100 training itera
tions, the model gave an average accuracy of 62.8%, with average F1, 
precision and recall scores of 0.394, 1.00 and 0.252, respectively. The 
average confusion matrix for the model trained on simulated data is 
given in Table 5. 

2.4. Approaches for noise generation 

In this paper four separate methods were explored to map simulated 
data to more experimentally representative synthetic datasets by adding 
noise. The first approach uses a modified CycleGAN to learn the map
ping between simulated and experimental data. The second approach 
aims to utilize the fact that clean ultrasonic images are comparatively 
much more available than defect data, by combining both real clean 
images and defect simulations. The final two approaches studied the 
noise profiles seen in the experimental data and attempted to simulate 
these at both the C scan image level and the individual A scan level. 

2.4.1. Approach 1: CycleGAN for mapping from simulated to experimental 
ultrasonic C scans 

To learn the mapping between simulated and experimental data, an 
image-to-image translation GAN was used. CycleGAN was chosen as it 
has shown promising results in unpaired image-to-image translation, 
and works particularly well for style transfer tasks which this application 
is similar to Ref. [27]. Unlike conventional GANs that rely on adversarial 
loss alone, CycleGAN introduces an additional cyclic loss, which en
forces reconstruction for a full cycle; from source domain to target 
domain and crucially back to source domain. The addition of cyclic loss 
removes the necessity for paired training data, allowing for unsuper
vised domain transfer. Not requiring paired images in training was a 
significant advantage as it provided greater freedom in the images used 
in training. Furthermore, from an NDT perspective, if this approach was 
extended to naturally occurring defects, it would be impossible to 
accurately simulate the complexity of naturally occurring experimental 
defect responses to produce a completely paired dataset. 

Implementing the standard CycleGAN directly with the parameters 
given in the original paper [27], was unable to accurately reproduce 
ultrasonic images with the simulated defect responses present. 
Furthermore, the generated images suffered from significant mode 
collapse. Mode collapse occurs when the generator repeatedly outputs a 
single type of image, due to finding one image that is successful in 
fooling the discriminator. Fig. 8 shows an example of this, where 
different input simulated defect responses produce the same output. The 
original implementation was done in Pytorch and was trained for 200 
epochs, with a batch size of 4, 6 residual blocks, and an identity loss of 5 
(half the cycle consistency loss). 

2.4.1.1. Adjustments to CycleGAN – mid-cycle activation map. It has been 

Fig. 7. CNN architecture example with a convolutional channel ratio of 2.  

Table 3 
Optimized hyperparameters used for CNN.  

Variable Parameter Optimal value 

Number of fully connected layers 1 
Number of convolutional layers 3 
Channel ratio for convolutional layer filters 3 
Batch size 16 
Early stop 1 
Learning rate 0.014 
Momentum 0.176 
Number of epochs 264  

Table 4 
Average confusion matrix across 100 training iterations for a CNN trained on 
experimental data.   

Predicted 

Defect No defect 

Defect 29.95 0.98 
No defect 5.14 23.93  
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demonstrated that adjusting the loss function of CycleGAN can improve 
performance for specific tasks [39]. To improve the performance of the 
original CycleGAN [27] for this task a variety of adjustments were made, 
with the most significant being the introduction of a mid-cycle activa
tion map loss. 

Our model contains two mapping functions GExperimental (Gexp): 
Simulated → Experimental and GSimulated (Gsim): Experimental → 
Simulated and associated adversarial discriminators DExperimental (Dexp) 
and DSimulated (Dsim). DExperimental encourages GExperimental to translate 
experimental images into outputs indistinguishable from real experi
mental images, and vice versa for DSimulated and GSimulated. Both cycles 
include the cycle consistency loss that was introduced in the original 
paper Fig. 10 (b, c). To further encourage accurate defect reproduction, 
we introduce a mid-cycle activation map loss for the simulated image 
cycle Fig. 10 (b). 

The mid-cycle activation map loss aimed to give the algorithm 
freedom to alter the noise profile whilst retaining constraint over the 
original defect response. The need for this was clear from the original 
implementation as the defect response can easily be washed out (Fig. 8). 
To do this, the simulated input image was used to generate an activation 
map. This activation map was a normalized version of the original 
simulated input image to a range of 0 and 1. The simulated responses 
allowed for this unique implementation as the background responses 
were uniform. By normalizing the activation map, the effect of 

background response was zeroed, and only inaccurate reconstructions of 
defect responses were punished, whilst maintaining even weak defect 
responses. Next, a scale factor was calculated to allow for adjustments of 
defect size. This was calculated by taking all non-zero values (defect 
response) from the activation map and dividing by the total image area. 
The L1 unreduced absolute error between the generated image and the 
simulated image was then calculated. The activation map was then 
applied to focus the loss to the defect response and minimize the loss 
from the noise. This new loss map was then divided by the scale factor 
previously calculated from the activation map. This means that the loss 
function is indiscriminate of defect size and does not punish larger de
fects more significantly than smaller defects. Finally, the mean was 
taken to get the reduced value, which was fed into the combined 
generator loss function given by (4). Fig. 9 demonstrates this process 
with an examples image. 

Lactivmap
(
Gexp

)
=Esim∼P(sim)

[⃦⃦Gexp − sim
⃦
⃦

1 × Mactivation map [0→1]

Kscale factor

]

(4)  

Ltotal
(
Gexp,Gsim,Dexp,Dsim

)
=LGAN

(
Gexp

)
+

2
3
LGAN

(
Dexp

)

+ LGAN(Gsim)+
1
3
LGAN(Dsim)+

λ
3
(
2Lcyc

(
Gexp

)

+ Lcyc(Gsim)
)
+ 2λLactivmap

(
Gexp

)

(5)  

Where Ltotal is the total loss, LGAN and Lcyc represent the adversarial loss 
and cyclic loss given in the original paper [27], Esim∼P(sim) represents the 
expectation over the batch of simulated samples, Mactivation map [0→1] is the 
normalized activation map, λ is a coefficient to balance the relative 
importance of each loss function during training. 

The mid-cycle activation map loss is only applied in the direction 
going from simulated responses to generated experimental images, as it 
relies on the clean defect response of simulated images. This is demon
strated by Fig. 10 (b, c). 

For better images in this task, the cycle loss was also adjusted to give 
twice the weighting of the simulated input cycle compared to the 
experimental cycle, whilst the discriminator loss for identification of 
experimental images was weighted twice as much as the discriminator 
for simulated images. This was done to further remove restrictions on 
noise generation and further encourage accurate defect response, whilst 
focusing on generation of experimental images over simulated images. 
The cycle loss coefficient (λ, equation (5)) was set to 100, with the mid 
cycle activation loss set to double the cycle loss. To further improve the 
results, the CycleGAN model used was adjusted from the original 
implementation [27] to perform better on the lower resolution 64 × 64 
ultrasound images, by optimizing the size of the first generator con
volutional layers to 3 × 3 instead of 7 × 7, with 6 residual blocks used. 
The model was trained from scratch with a learning rate of 0.0002 which 

Table 5 
Average confusion matrix across 100 training iterations for a CNN trained on 
simulated data.   

Predicted 

Defect No defect 

Defect 150 0 
No defect 110.74 37.26  

Fig. 8. Example images of initial CycleGAN outputs.  

Fig. 9. Diagram showing how an example mid-cycle activation map loss 
is generated. 
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decayed linearly after 100 epochs to zero for the remaining training. For 
training, the GAN used the experimental defective train dataset of 334 
images, and the simulated defective dataset of 154 images. The GAN 
model was trained over 2300 epochs using a batch size of 128 using an 
NVIDIA GeForce RTX 3090 and took less than 8 h to train. All other 
parameters were unmodified from the original paper [27]. The GAN 
model was created using the Pytorch framework. 

Once trained, the learnt mapping from the GAN was used to convert 
the original 154 simulated images to a new synthetic dataset of defective 
images. The synthetic dataset produced high quality ultrasonic ampli
tude images which are visually comparable to experimentally obtained 
images, examples of images generated from their corresponding simu
lated input are shown in Fig. 11. 

2.4.1.2. Classification results. Training the CNN with GAN generated 
synthetic dataset and an equal number of clean images sampled from the 
clean train set, had a significant increase in classification performance 

compared to unprocessed simulated data when tested on the experi
mental clean and defective test datasets of 298 total images. After 100 
training iterations, the model gave an average accuracy of 87.0%, with 
average F1, precision and recall scores of 0.837, 0.926 and 0.775 
respectively. The average confusion matrix for the model is given in 
Table 6. 

2.4.2. Approach 2: experimental ultrasonic C scan noise superposition 
Out of the 334 clean experimental C scan images from the clean train 

dataset, 154 were randomly sampled to match the size of the simulated 
dataset. The simulated defect images were then combined with the real 
noise images by summation at an individual pixel level. To not exceed 
the normalized upper value limit of 1, if a pixel value exceeded 1 due to 
the addition of noise, it was clipped to remain within the limit. This was 
done instead of re-normalizing the dataset as this would have reduced 
the noise distribution from the experimental data. From the new dataset, 
the images where the noise was greater than the signal were removed. 
This left 83 final images. An example of this is demonstrated in Fig. 12. 

A considerable downside of the real noise approach is that it is not a 
fully simulated approach. This restricts its ability to scale as it requires 

Fig. 10. a) The model contains two mapping functions GExperimental: Simulated 
→ Experimental and GSimulated: Experimental → Simulated, to transfer between 
the respective domains and the associated adversarial discriminators DExper

imental and DSimulated. b) When completing the full cycle from the simulated 
domain, the mid-cycle loss is added along with the cycle loss. c) When 
completing a cycle beginning in the experimental domain, the cycle loss is 
solely used as the mid-cycle loss is not calculable for the simulated domain. 

Fig. 11. Example of synthetic generated images from their corresponding 
simulated defect input, along with real experimental images for comparison. 

Table 6 
Average confusion matrix across 100 training iterations for a CNN trained on 
GAN generated synthetic data.   

Predicted 

Defect No defect 

Defect 144.6 5.4 
No defect 33.25 114.75  
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an equal number of clean experimental images as simulated images. 
However, the experimental data required is from defect-free images 
which are more accessible and considerably easier to acquire than real 
defect responses. The computational complexity of scaling this approach 
to a large number of images would be low. Therefore, if adequate clean 
images were available this technique could be used to produce a large 
dataset. 

2.4.2.1. Classification results. Training the CNN with the experimental 
noise synthetic dataset and an equal number of clean images sampled 
from the clean training set had a significant increase in classification 
performance when tested on the experimental clean and defective test 
datasets compared to the simulated data but was unable to match the 
results from the GAN generated dataset. After 100 training iterations, 
the model gave an average accuracy of 77.4%, with average F1, preci
sion and recall scores of 0.688, 0.950 and 0.545 respectively. The 
average confusion matrix for the model is given in Table 7. 

2.4.3. Approach 3: simulated ultrasonic C scan noise 
To reduce the experimental demand of the real noise superposition 

approach requiring a unique experimental image for each simulation, a 
study was conducted to understand if it was possible to fully simulate the 
experimental noise profile. To do this, the noise distribution from the 
clean experimental C scan images of the defect free sample were 
analyzed by plotting a histogram. It can be seen from Fig. 13 that this 
noise profile is well aligned with an inverse gaussian distribution given 
by μ 0.410, loc − 0.003 and scale of 0.066, the distribution was imple
mented using SciPy, with details of the distribution given by Ref. [40]. 

The simulated defect images were then combined with a noise 
pattern which was randomly generated for each image from an inverse 
gaussian distribution, Fig. 13, with the previously determined parame
ters. The images were combined by summation at an individual pixel 
level. As per the real noise method, to not exceed the normalized upper 
value limit of 1, if a pixel value exceeded 1 it was clipped to remain 
within the limit. From the new synthetic dataset, the images where the 
noise was greater than the signal were removed, and we were left with 
80 C-scan final images. An example of this is demonstrated in image 
Fig. 14. 

The implementation of C scan noise at scale would be considerably 
easier than the real noise approach. This is as fully simulating the noise 

profile from an appropriate experimental distribution requires little 
additional experimental data acquisition after a suitable population has 
been sampled. Furthermore, the computational complexity of this 
implementation is as efficient as the real noise approach and could scale 
well to produce a large dataset. 

2.4.3.1. Classification results. Training the CNN with the C scan noise 
synthetic dataset and an equal number of clean images sampled from the 
clean training set produced poorer results than the superimposed real 
noise dataset but still improved significantly in classification perfor
mance over the simulated dataset when tested on the experimental clean 
and defective test datasets. After 100 training iterations, the model gave 
an average accuracy of 74.3%, with average F1, precision and recall 
scores of 0.629, 0.930 and 0.482 respectively. The average confusion 
matrix for the model is given in Table 8. 

2.4.4. Approach 4: simulated ultrasonic A scan noise 
An approach of fully generating a simulated noise profile at an A scan 

level was also investigated which is better aligned to how noise occurs 
from the physical response of ultrasonic signals. For each individual 
time trace signal, the complete noise profile is composed of both struc
tured noise and random noise. Structured noise consists of physically 
accurate responses, just not from a known feature. These are likely due 

Fig. 12. Example images showing the combination of real noise and simulated 
defect responses. 

Table 7 
Average confusion matrix across 100 training iterations for a CNN trained on 
real noise data.   

Predicted 

Defect No defect 

Defect 150 0 
No defect 67.3 80.7  

Fig. 13. Density histogram showing the distribution of data from the 
clean sample. 

Fig. 14. Example images showing the combination of C scan simulated noise 
and simulated defect responses. 

Table 8 
Average confusion matrix across 100 training iterations for CNN trained on 
simulated C scan noise data.   

Predicted 

Defect No defect 

Defect 150 0 
No defect 76.68 71.32  
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to the interaction of different composite plies and the component ge
ometry with the propagated ultrasonic waves. Whereas random noise is 
independent of the samples structure and could be due to random 
electrical noise for example. 

It was assumed that for a given B scan, the structural noise profile 
will remain constant, as for a given B scan the ultrasonic wave and ply 
layer interactions and therefore backscattering noise should be similar. 
Therefore, at a B scan level, it is possible to remove most of the random 
noise by mean averaging the individual A scans together at each sample 
interval leaving the structural noise component. For each A scan in each 
B scan, it is then possible to work out the random noise component from 
the differences between each A scan and the structural noise component 
on a per sample basis. These combined differences can be plotted on a 
histogram to represent the random noise population of a B scan. This 
process was completed for each individual B scan. The random noise 
profiles were combined to give a greater number of samples for the 
distribution. From Fig. 15, it can be seen that this distribution is 
approximated by a normal distribution with 0.000 mean and a standard 
deviation of 0.013. 

To learn the variation of the structural noise components across B 
scans, the average B scan structural noise was first calculated by aver
aging each individual B scan noise profile on a mean sample basis. The 
difference between the mean and each individual B scan structural noise 
profile was calculated on a per sample basis and again plotted on a 
histogram (Fig. 16). This can be approximated by a normal distribution 
with mean 0.000 and standard deviation 0.003. 

To generate a new noise pattern for a B scan, a new structural noise 
pattern was generated by taking the overall mean structural noise 
pattern and adding variation based on the normal distribution previ
ously calculated. To make this signal more representative of the Hilbert 
transformed A-scan data, a Savitzky–Golay filter [41] was applied to 
smooth the data (Fig. 17). Afterwards, a random noise profile was added 
to the generated A-scan baseline signal, following the previously 
determined normal distribution for each A scan in Fig. 15. Fig. 18 helps 
to illustrate this process at A-scan and B-scan levels. The simulated re
sponses were then combined with the generated combined noise profiles 
using a per sample summation. As per previous methods, to not exceed 
the normalized upper amplitude value limit of 1, pixel values exceeding 
1 were clipped to remain within the limit. From the new dataset, the 
images where the noise was greater than the signal was removed 
resulting in 126 C scan final images. An example of the final images is 
demonstrated in Fig. 19. 

Whilst implementing the A scan noise profile does require experi
mental analysis and characterization, the application to simulated data 
is a fully simulated approach. In addition, by adding noise at an A scan 
level, it allows for the potential of three-dimensional volumetric anal
ysis, or analysis of B scan images, which is not possible with any of the 
other methods. However, it requires a greater level of analysis compared 
to the C scan level noise method before implementation. Furthermore, as 

Fig. 15. Density histogram showing the random noise distribution from the 
total A scans. 

Fig. 16. Density histogram showing the distribution of deviation for strucural 
noise from the mean structural noise pattern. 

Fig. 17. a) An example of how a structural noise profile is generated from the 
mean. b) A cleaner example of the final generated noise profile. 

Fig. 18. An example of how structural and random noise profiles are combined 
at a B scan level. 

S. McKnight et al.                                                                                                                                                                                                                               



NDT and E International 141 (2024) 102978

11

the generation of the noise pattern is required on a per B scan level, an 
additional computational step is required to cover the number of B 
scans. This is therefore less computationally efficient than both the real 
noise and C scan noise implementation. 

2.4.5. Classification results 
Training the CNN with the A scan noise synthetic dataset and an 

equal number of clean images sampled from the clean training set, gave 
the second-best classification performance when tested on the experi
mental test datasets after the GAN generated dataset. After 100 training 
iterations, the model gave an average accuracy of 80.0%, with average 
F1, precision and recall scores of 0.738, 0.970 and 0.598 respectively. 
The average confusion matrix for the model is given in Table 9. 

3. Discussion 

3.1. Comparison of classification results 

Fig. 20 shows examples of C-scan images produced by the different 
synthetic data generation methods. The classification results are sum
marized in Fig. 21 and Table 10, which show the mean (μ) and standard 
deviation (σ) accuracy and F1 scores, and full evaluation metrics 
respectively for each dataset investigated. 

Simulated UT data of defect responses in composites lacks the 
complexity of experimental noise. In this work, it was demonstrated that 
when CNN classifiers are trained on purely simulated data and tested on 
real experimental data a significant adverse impact on classification 
performance is observed, with an average F1 score of 0.39. However, 
four novel strategies were proposed and explored in this research for 
creating synthetic datasets to reduce this effect with the aim to better 
simulate real experimental data. According to the results of this study, 
all four methods showed significant increases in classification perfor
mance compared to the original simulated dataset. Among these, the 
modified CycleGAN generated synthetic dataset produced significantly 
better classification results than the other methods, with an average F1 
score of 0.84. This neared the classifier trained on a subset of the 
experimental dataset, but due to the reduction in available experimental 
training and test data due to the train/test split this should not be 
considered a direct comparison. 

Superimposed experimental noise, simulated C scan noise, and 
simulated A scan noise produced similar mean accuracy results, but the 
simulated A scan noise synthetic dataset produced the best average F1 

score of the three, with 0.74. It is interesting that the simulated A scan 
noise dataset outperformed the real noise synthetic dataset. This may be 
due to the fact the real noise obscures the defect response features too 
much. Alongside the ability to accurately simulate noise response, a 
further reason for improved classification results for GAN and A scan 

Fig. 19. Example images showing the combination of A scan simulated noise 
and simulated defect responses. 

Table 9 
Average confusion matrix across 100 training iterations for a CNN trained on 
simulated A scan noise data.   

Predicted 

Defect No defect 

Defect 150 0 
No defect 59.48 88.52  

Fig. 20. Comparison of different real and synthetically generated C-scan 
image examples. 

Fig. 21. Comparison of classification results for each dataset.  
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synthetic datasets may be their ability to account for depth wise signal 
attenuation and adjust the noise levels with respect to depth and signal 
response. This produces more appropriate noise levels for deeper and 
weaker defect responses and allows for the preservation of many more 
simulated responses. Unlike simulated C scan and real noise approaches 
which are defect depth agnostic and therefore result in the rejection of 
more images due to the concealment of low-level responses with noise 
profiles that are not depth matched. These methods could be extended to 
include a finer depth wise noise implementation, but this is outside the 
scope of this paper and is left for further work. 

These results demonstrate that in scenarios where noisy experi
mental environments can cause real data to vary greatly from simulated 
data, synthetic methodologies for noising data provide an opportunity 
for generating more effective training data. This is particularly benefi
cial as we retain the accuracy and fully labelled nature of physics-based 
simulations, which allow us to fully control the simulation of different 
defect class types and the variability within them. 

When considering the broader aim of generating large synthetic 
datasets that could be used to create a database of realistic training 
examples, it is important to consider the ease and robustness of synthetic 
data generation. Training of the CycleGAN is a delicate process and 
whilst it has been able to produce realistic images for Flat-Bottom Holes, 
it may struggle to generalize to other defects without significantly 
broader examples of defects in training. This would largely defeat the 
point of the synthetic data generation in this instance. Furthermore, the 
training of an effective GAN model is still extremely challenging and the 
process of hyperparameter selection is not robust. It is therefore favor
able to consider an approach that is robust to different defect types and 
can be scaled. For scalability, a fully simulated method is preferable over 
a method which still requires significant collection of experimental data. 
Therefore, the real noise approach is superseded by both the A scan and 
C scan synthetic approaches. The C scan noise approach is slightly easier 
to implement than the A scan as it requires less experimental data 
analysis and can be done at the C scan image level instead of the A scan 
level. However, the A scan noise approach allows for noising of the full 
volumetric data, which could provide opportunities in three- 
dimensional data analysis. Further work could be done to explore the 
distribution of C scan noise at different depths to enable maintenance of 
a larger number of simulated responses in a simpler way than the 
complex A scan noise simulation method. This could potentially 
combine some of the benefits of both the A scan and C scan noise ap
proaches but would remove the opportunity for volumetric data analysis 
if done at an image level. In certain scenarios, gathering clean experi
mental data may not be a limiting factor and in this case, it could be 
beneficial to expand the real noise superposition method to align the 
images depth wise between the experimental and simulated domains. 
This would help to better account for localized structural noise, and 
likely give improved classification performance similar to the A scan 
noise approach. 

3.2. Model interpretability with Grad-CAM 

A key barrier to the uptake of Machine Learning in NDT is a lack of 
model interpretability [18] and the use of synthetic data has the 

potential to further mystify this process. To help tackle this issue, Guided 
Gradient-weighted Class Activation Mapping (Guided Grad-CAM) was 
implemented for a randomly selected model trained from each dataset 
and evaluated on experimental data. Guided Grad-CAM is a technique 
for producing ‘visual explanations’ of CNNs with the goal of making 
them more transparent and explainable [42]. Guided Grad-CAM gives a 
visual indication of what inputs are used for positive class prediction. 
Whilst it does not give any information about how or why the inputs are 
used for the prediction within the model it has been shown to help users 
place greater trust in a model. The method combines Guided back
propagation and Class Activation Maps (CAM) to create visualizations 
which indicate relevant image regions for class-discriminative pre
dictions. Guided Grad-CAM is not a complete solution for model inter
pretability; however, the goal is to visually compare if the models 
trained on synthetic data are using similar inputs for prediction 
compared to models trained on experimental data, in the hope that this 
provides trust in the viability of using synthetic datasets. Fig. 22 shows 
the defective experimental test image, and both the associated Guided 
Grad-CAM image which gives a visual indication of significant regions 
contributing to defective predictions, and a mixed image which com
bines the Guided Grad-CAM and the input image with a respective 
weighting of 1.5. 

It has been identified in literature that model interpretability is a key 
limiting factor in the uptake of DL in NDT. Guided Grad-CAM was 
implemented to try and minimize the obscurity that using synthetic data 
could produce. Whilst model interpretability is a complex field of 
research and interpretability is challenging to quantify, we believe that 
the Guided Grad-CAM results at least indicate that models trained on 
synthetic data are learning similar features compared to models trained 
on purely experimental data. This is demonstrated since each Grad-CAM 
image correctly highlights defect pixels only for defect detection. This is 
very encouraging as it helps to give confidence over the use of synthetic 
data when training DL models for NDT. 

4. Conclusion 

Deep learning provides an attractive solution for helping to automate 
the interpretation of ultrasonic testing NDT data results in quality 
assurance processes. A barrier to implementation is that DL approaches 
typically demand large quantities of representative training data to 
allow accurate and reliable predications to be established. However, 
since modern manufacturing processes strive to reduce the incidence of 
defect formation, there is a paucity of real-world defect data available 
for ML training. By employing physics-based simulations of ultrasonic 
response to defects, it is possible to generate large sets of defect data, 
corresponding to different defect types, sizes, and orientations. A 
drawback in such simulation is in replicating the same noise distribu
tions encountered in experimental measurements, and this is chal
lenging without increasing model complexity to the point of 
computational intractability. In this study, 4 techniques to map the noise 
distribution of experimental data onto our simulated data were pre
sented to improve the performance of subsequent ML based classifica
tion of defects. A generative network was used to learn the mapping 
between simulated and experimental images, this resulted in a mean F1 
score of 0.843. A method of combining clean experimental images with 
simulated images was introduced which resulted in a mean F1 score of 
0.688. To remove the requirement for clean experimental images, two 
methods of fully generating synthetic noise profiles, C scan and A scan 
noise, were presented; the latter being based on a closer physical rep
resentation of how noise is produced experimentally. These methods 
produced mean F1 classification results on experimental data of 0.629 
and 0.738, respectively. Whilst each method produced a significant 
improvement in classification over the purely simulated data, with a 
modified loss function to encourage accurate defect response, CycleGAN 
showed the greatest improvement in classification performance, allow
ing us to maintain the utility of simulating data from physics-based 

Table 10 
Summary of classification results for each dataset.  

Training dataset Evaluation metric 

Accuracy F1 Precision Recall 

Experimental 89.8% 0.887 0.974 0.826 
CIVA 62.8% 0.394 1.00 0.252 
Modified CycleGAN Synthetic Data 87.0% 0.837 0.925 0.775 
Real Noise Superposition 77.4% 0.688 0.950 0.545 
C Scan Simulated Noise 74.3% 0.629 0.930 0.482 
A Scan Simulated Noise 80.0% 0.738 0.970 0.598  
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models and convert them to more experimentally realistic synthetic 
datasets. However, it was identified that other synthetic data generation 
methods may be more appropriate for generating large datasets, such as 
A scan noise due to their greater robustness. 

Model interpretability is a significant challenge for the uptake in use 
of Deep Learning in UT, with the use of synthetic data likely to further 
add ambiguity. To help minimize this, Guided Grad-CAM was imple
mented which visually indicated that models trained on synthetic data 
were learning similar features to models trained on experimental data 
for classification. This aids in providing confidence that the methods of 
generating synthetic data are appropriate for training experimental 
classifiers. 

Whilst classification results for individual synthetic datasets had 
room for improvement, this work demonstrates that the synthetic data 
generation methods were able to successfully transfer the simulation 
domain closer to the experimental domain. This demonstrates a viable 
approach to training DL models when experimental data is unavailable, 
as with many NDT applications. 

Future work will look to maximize the classification accuracy of 
specific models. This could be done by combining this work with addi
tional domain adaption techniques, which have shown promise in pre
vious literature [43]. Further investigation will also be conducted to 
optimize individual model classification accuracy by performing HPO 
directly using synthetic datasets. This would demonstrate the effects of 
performing HPO on a model trained on a synthetic dataset and whether 
this improves its classification in the experimental domain. This would 
also eliminate the need for experimental data entirely when training a 
deep learning classifier as both the parameter optimization and training 
could be conducted in the fully synthetic domain. This would require 
only a small amount of experimental data for testing. Additionally, the 
next steps in this work will look to see if the style transfer can be 
extended across the full range of defect types and tested on naturally 
occurring experimental defects. It would also be beneficial to identify if 
it is possible to detect more challenging defects such as superficial de
fects using similar methods or if the UT approach would require modi
fication. If successful, large, fully annotated, synthetic datasets could be 
efficiently produced, opening the potential for further use of Deep 
Learning in NDT. 
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