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Abstract: Recent studies on machinery anomaly detection only based on normal data training models 

have yielded good results in improving operation reliability. However, most of the studies have 

problems such as limiting the detection task to a single operating condition and inadequate utilization 

of multi-channel information. To overcome the above deficiencies, this paper proposes a new 

machinery anomaly detection method called full graph dynamic autoencoder (FGDAE) towards 

complex operating conditions. First, a full connected graph (FCG) is developed to obtain the global 

structure information by establishing structural connections between every two channels. Subsequently, 

a graph adaptive autoencoder (GAAE) model is constructed to aggregate multi-perspective feature 

information between channels by adapting changes of the operating conditions and to reconstruct the 

information containing the essential features of normal data. Finally, a dynamic weight optimization 

(DWO) strategy is designed to guide the model learning the generalization features by flexibly 

adjusting the data reconstruction loss weights in each condition. The proposed method performs multi-

condition anomaly detection under the challenge of training models with multi-condition unbalanced 

normal data and achieves better performance compared to other popular anomaly detection methods on 

the machinery datasets. 

Keywords: Machinery anomaly detection; Complex operating conditions; Multiple channels; Full 

graph dynamic autoencoder; Weight optimization strategy; Graph convolution network. 

1. Introduction

Health monitoring of machinery plays an essential role in sustaining industrial reliability due to

the wide use of machinery in various industries [1-3]. With the widespread use of sensors, machinery 

generates a large amount of data during operation, and how to effectively perform health monitoring 
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based on the data has become a hot research topic in recent years [4-6].  

Deep learning has become one of the mainstays for data-driven health monitoring with its 

simplicity in reducing domain experience [7], including convolutional neural network (CNN) [8, 9], 

long short-term memory (LSTM) [10, 11], autoencoders [12, 13], generative adversarial network 

(GAN) [14, 15] and so on. Sparse deep learning has been applied to identify machinery defection at 

constant [16] and varying speed [17, 18], which is putting the constraint on the activation of neurons. 

In the past three years, machinery anomaly detection only based on normal data to train model has 

gained increasing attention. Dai et al. [19] proposed an anomaly detection method for mechanical 

health monitoring using the advantages of autoencoder and GAN. Plakias et al. [20] achieved anomaly 

detection of machinery by integrating different types of autoencoders. Chen et al. [21] constructed a 

new deep residual shrinkage relation network to detect the anomaly state of rotating machinery. The 

above anomaly detection methods relax the requirement for faulty samples to some extent, but they are 

all performed with a single sensor channel and ignore the rich feature information contained in multi-

channel data. In 2022, Yan et al. [22] introduced a memory-augmented skip-connected autoencoder for 

anomaly detection of rocket engines with multi-channel data. In the same year, Yan et al. [23] 

suggested a robust convolutional autoencoder that exploits multi-channel information under noise to 

achieve anomaly detection of machine tools. They preliminarily explore the multi-channel information, 

but fail to mine the structural information between different channel data. 

Non-Euclidean graph (NEG) can establish structural connections between data, and further 

aggregate information of neighbor nodes through graph convolution network (GCN), which has been 

increasingly studied for health monitoring of machinery in the last two years. The NEGs can be 

broadly classified into two categories according to the method of constructing graphs: graph level and 

node level [24]. Graph-level NEGs can establish connections within the single sample, with one NEG 

representing one sample. Li et al. [25] framed the sensor network graph for each sample and mined 

spatial-temporal information by attentional GCN and LSTM for residual life prediction. Tang et al. [26] 

transformed a vibration sample into a symmetric snowflake image to identify motor states in transients 

by cardinality preserving graph attention network (GAT). Li et al. [27] constructed a sample into a 

weighted horizontal visibility graph and implemented fault diagnosis of bearings by GCN. Instead, 

node-level NEGs can establish connections between different samples, with multiple samples forming 

a NEG. Zhao et al. [28] designed an adaptive local graph learning method by constructing inter-sample 
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connections to achieve semi-supervised fault diagnosis of motor-bearing system. Yang et al. [29] 

introduced the k-nearest neighbor (KNN) algorithm and GCN to aggregate information between 

different samples for cross-domain machinery fault diagnosis. Yan et al. [30] designed a label 

propagation strategy for node-level graphs based on KNN algorithm and implemented semi-supervised 

machinery fault diagnosis by dynamic GAT.  

The above graph structure methods can mine the structural information among data, but their 

model training all relies on faulty samples, which reduces the feasibility of the methods. Moreover, the 

existing studies on machinery anomaly detection are often limiting the detection task to a single 

operating condition. In the engineering practice, the operating conditions of machinery often change 

with different requirements, with significant differences in the number and distribution features of 

normal data under each operating condition. Therefore, it is valuable to study graph structure methods 

to aggregate information of muti-channels for machinery multi-condition anomaly detection under the 

challenge of training models with multi-condition unbalanced normal data. 

This study proposes a novel FGDAE, which can effectively aggregate multi-perspective feature 

information between channels and perform anomaly detection towards complex operating conditions. 

The main innovations can be summarized in the following four aspects. (1) The FCG is developed to 

obtain the global structure information by establishing structural connections between every two 

channels. (2) The GAAE model is constructed to aggregate multi-perspective feature information 

between channels by adapting changes of the operating conditions and to reconstruct the information 

containing the essential features of normal data. (3) The DWO strategy is designed to guide the model 

learning the generalization features by flexibly adjusting the data reconstruction loss weights in each 

condition. (4) The new graph structure method is proposed for machinery multi-condition anomaly 

detection under the challenge of training models with multi-condition unbalanced normal data. 

This paper is organized as follows: Section 2 introduces the related theories. Section 3 presents the 

proposed method, which includes the elaboration of three modules and overall steps of the proposed 

method. Section 4 provides a comprehensive experiment validation. Section 5 gives the conclusion of 

the paper. 

2. Related theories 

2.1. Spectral GCN 

The spectral CNN proposed by Bruna et al. [31] is considered as the prototype of spectral GCN, 

3

FGDAE: a new machinery anomaly detection method towards complex operating conditions

-



which extends the convolution from Euclidean space to irregular non-Euclidean graph data. It can be 

briefly expressed as below: 

 TZ σ UgU X                                                                (1) 

where X is the input data; Z is the output data; g is the graph convolution kernel; σ is the nonlinear 

activation function; U represents the Laplacian eigenvector of the graph, where UT is used for the graph 

Fourier transform of X and U is for the graph inverse Fourier transform. U is obtained by the Laplacian 

matrix eigen-decomposition, which can be expressed as follows: 

Λ TL U U                                                                   (2) 

where L is the graph Laplacian matrix; Λ  is the graph Laplacian eigenvalue matrix. Since the spectral 

CNN explicitly uses Laplacian matrix eigen-decomposition, it leads to large computational cost and 

non-localization of the convolution kernel. Defferrard et al. [32] parameterizes the convolution kernel g 

by polynomial approximation, which can be expressed as follows: 
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where θ are the learned model parameters; K is the hyperparameter, indicating the Chebyshev filter size. 

Then Eq. (1) can be expressed as follows: 
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where 0L I ; I is the unit matrix. Eq. (4) eliminates U well, thus avoiding the Laplacian matrix 

eigen-decomposition. 

2.2. Denoising autoencoder 

To overcome the limitation of the traditional autoencoder that has the risk of overfitting when 

reconstructing data features, Vincent et al. [33] proposed the denoising autoencoder (DAE). Its core 

idea is to learn the robust features by adding random noise into the input data, which can be briefly 

expressed as follows: 

NoiseX X                                                                     (5) 

where Noise is the added random noise and X   is the input data with noise. Then, the reconstruction 

loss can be expressed as follows: 

2Loss ( )X X                                                                   (6) 

where X   is the reconstructed data; Loss represents the reconstruction loss. In summary, the structure 
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of the DAE can be shown in Fig. 1. 

...
...

Noise Encoder Decoder

Loss

X X X 

 

Fig.1. The structure of the DAE. 

3. The proposed method 

This study proposes the FGDAE for machinery multi-condition anomaly detection under the 

challenge of training models with multi-condition unbalanced normal data, which consists of three 

parts: development of the FCG, construction of the GAAE model and design of the DWO strategy. 

3.1. Development of the FCG 

Although some of existing studies for anomaly detection use multi-channel data, they all ignore 

the structural information between different channels. Therefore, the study develops the FCG to 

overcome the above deficiency, described as below. 

The FCG is a concise graph-level NEG, where one graph represents a sample under one operating 

condition. The structural connections between every two channels can be established by creating edges 

between every two nodes, which can be expressed as follows:  

 , 1  ,  , 1,2i j
ijA X X i j i j N      

                                            (7) 

where N represents the number of sensor channels; iX  is the original data of the i-th channel; [ ]  

represents the operation of constructing graph; Aij is the i-th row and j-th column value of the graph 

adjacency matrix, which can be used to calculate the graph Laplacian matrix L. It can be expressed as 

below: 

L D A                                                                    (8) 

1

N

ii ij

j

D A


                                                                   (9) 

where D is the degree matrix of the graph that is the diagonal matrix. For the simplicity and beauty of 

the presentation, the FCG of fusing 4-channel information can be visually presented as Fig.2, which 

can be interpreted as a global connection between channel data. It should be reminded that two 

experimental cases are FCGs of fusing 6 channels and fusing 8 channels respectively, but the 

construction principles are the same as the Fig.2. 
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Fig.2. The FCG of fusing 4-channel information. 

3.2. Construction of the GAAE model 

Existing anomaly detection models fail to aggregate multi-perspective feature information 

between sensor channels, and the general DAE cannot adapt changes of the operating conditions. This 

study constructs the GAAE model to overcome the above limitations. 

After obtaining the graph data constructed by FCG, adaptive Gaussian noise is added to the data, 

which can be expressed as follows: 

(0,1)X X C X N                                                             (10) 

where N(0,1) represents Gaussian noise of standard normal distribution; X  is the average value of the 

input data X; C represents the number of operating conditions within the input data. As the number of 

conditions increases, the noise level will increase as well, which can further reduce the domain 

distribution differences of the data in different conditions. 

Then the graph data containing adaptive noise is fed into the GCN with the autoencoder structure. 

Unlike the variational graph autoencoder [34] reconstructing graph structure, the constructed GAAE 

model is reconstructed from the perspective of node features. Multi-perspective feature information 

between channels is aggregated by GCN, and the information containing the essential features of 

normal data is reconstructed with the autoencoder structure. The visualization of the GAAE model is 

shown in Fig. 3, where the graph convolution encoder and graph convolution decoder can be expressed 

by the following equations. 
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where W and b are the weight parameter and bias parameter of the linear transform in the graph 

convolution encoder, which is used for the compression of high-dimensional features; θ is the learned 

parameter of the GCN in the encoder; H is the compressed graph data after encoder; W   and b  are the 

weight parameter and bias parameter of the linear transform in the graph convolution decoder, which is 
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used for the reconstruction of the feature dimension.; θ   is the learned parameter of the GCN in the 

decoder; X   is the reconstructed graph data after decoder; σ is chosen as the ReLU activation function. 

The structural parameters of the GAAE model are listed in Table 1. 

It is important to note that there are multiple operating conditions with normal graph data fed into 

the model training at the same time. In order to subsequent application of the DWO strategy, the 

reconstruction loss of the normal data under each operating condition needs to be calculated separately, 

which can be expressed as follows. 

2Loss ( )  ( 1,2, , )l l lX X l C                                                   (13) 

where Lossl is the reconstruction loss of the l-th operating condition; Xl is the input data of the l-th 

operating condition; lX   is the output data of the l-th operating condition.  
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Fig.3. The structure of the GAAE model. 

Table 1 

The structural parameters of the GAAE model. 

Layer GCN (K=2) 

Linear 

transform 

Input/output 

size 

Batch 

normalization 

Activation 

function 

Encoder1 Yes Yes 512/64 Yes ReLU 

Encoder2 Yes Yes 64/16 No \ 

Decoder1 Yes Yes 16/64 Yes ReLU 

Decoder2 Yes Yes 64/512 No \ 

3.3. Design of the DWO strategy 

Most of the studies on machinery anomaly detection are limiting the testing task to a single 

operating condition, and the model training does not consider the interference of multi-condition 

unbalanced normal data. Therefore, the study designs the DWO strategy for this challenging scenario. 

When the training data is unbalanced between different operating conditions, the model tends to 
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ignore the feature information of the condition with less data, leading to the larger reconstruction loss. 

Inspired by applying dynamic weight averaging for multi-task learning in [35], the study designs the 

DWO strategy to flexibly adjust the data reconstruction loss weight under each condition, which can be 

expressed as follows: 

1

Loss

Loss

t
t l

l t
l

r C


                                                                   (14) 
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1 1Loss Loss Loss Losst t t t t t t
l l C Cw w w                                                (16) 

where t represents the number of iterations; Losst  represents the total reconstruction loss in t-th 

iteration; t
lr  is the training speed in t-th iteration under the l-th condition, and its smaller value means 

faster speed; when t = 0, 0
lr  is 1; t

lw  is the weight of the data reconstruction loss in t-th iteration under 

the l-th condition, which can be dynamically optimized based on t
lr  in each iteration. According to 

Eqs.(14-16), it can be easily found that if t
lr  is smaller, t

lw  will also be smaller, which can effectively 

balance the training speed of the GAAE model under each condition in order to guide the model 

learning the generalization features. 

Finally, the loss value obtained from Eq.(16) is back propagated through the Adam optimizer [36] 

to optimize the model parameters. 

3.4. Overall steps of the proposed method 

The overall steps of the FGDAE are shown in Fig.4 and elaborated below. 

Step 1: The multi-channel unbalanced data under multi-conditions (MCUD-MC) is acquired from 

the experimental bench and constructed as the graph data based on Eq.(7) of the FCG. The graph data is 

then divided into the training set only containing unbalanced normal graph data under multi-conditions 

and the test set containing both normal and faulty graph data under multi-conditions. 

Step 2: Set the model hyperparameters and randomly initialize the learning parameters. Adaptive 

noise based on Eq.(10) is added to the training set, and then fed into the constructed GAAE model to 

aggregate multi-perspective feature information between channels. The reconstructed graph data is 

obtained based on Eqs.(11, 12), and then the reconstruction loss of the graph data under each condition 

is calculated by Eq.(13). Finally, the total loss value is calculated by Eqs.(14-16) of the DWO strategy, 
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and the learning parameters are updated iteratively by the Adam optimizer. 

Step 3: Input the training set data without adaptive noise into the trained model to calculate the 

loss values of all normal graph data. In order to demonstrate the feature learning ability of the model, 

the maximum value is determined as the threshold for detecting faulty data, `which effectively avoids 

the manual adjustment of the threshold and the difficulty of percentage interval selection. 

Step 4: The muti-condition test set without adaptive noise is imported into the trained model, and 

the loss value is counted for every test sample to determine the normal or fault based on the threshold 

value. Finally, anomaly detection results are obtained by calculating the evaluation metrics. 
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Fig.4. Overall steps of the FGDAE. 

4. Validation of experiments 

4.1. Introduction to the datasets 

The superiority of the proposed method for muti-condition anomaly detection under the challenge 

of training models with multi-condition unbalanced normal data is validated on two machinery cases. 

Case 1: The dataset is derived from the high-speed aerospace bearings of the Politecnico di Torino 

[37], and the experimental setup is shown in Fig. 5. B1, B2, and B3 are three bearings; two triaxial 

acceleration sensors are installed at A1 and A2 to measure the vibration data of six channels 
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simultaneously; Table 2 lists the acceleration direction of each channel. The operating conditions are 

changed by varying the speed and load of the bearings. In each condition, data is collected for the 

normal state and six different levels of fault states with sampling frequency of 51,200Hz. 

Case 2: The dataset is derived from the gearbox of the Southeast University [38], with the 

experimental bench shown in Fig. 6 (a). There are 8 sensor channels measuring the torque and vibration 

of the motor, the x, y and z vibration of the planetary gearbox and the parallel gearbox, respectively, 

with sampling frequency of 5 kHz [39]. The conditions depend on the speed and load of the gearbox; 

the normal state and four gear fault states are measured for each condition, as shown in Fig. 6 (b). 

 

  

Fig.5. Experimental setup of Case 1. 

Table 2 

Acceleration direction of each channel in Case 1. 

Sensors A1 A2 

Channels Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 

Direction x-axial y-radial z-radial x-axial y-radial z-radial 

 
(a)                                                                  (b)                                      

Fig.6. Experimental setup of Case 2: (a) The experimental bench; (b) Fault Type. 

In this paper, the samples used in both cases are described in Table 3. It should be noted that the 
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multi-condition unbalance is for the normal samples in the training set, and there is no faulty sample in 

the training set; the test set contains both normal and faulty samples for multi-conditions. Case 1 

contains three different high-speed conditions and Case 2 contains two different lower-speed conditions, 

all of them with different speeds and loads. The maximum unbalanced ratio of normal samples in the 

training set between the conditions is up to 20 times (200/10) for both cases. In order to fully 

demonstrate the anomaly detection performance of each method, 50 samples for every fault type are 

randomly collected in the test set under each condition. Since there are 6 fault types in Case 1, the total 

number of faulty samples is 300 under each condition; Case 2 has 4 fault types, the total number of 

faulty samples is 200 under each condition. In addition, the normal samples are 200 in the test set under 

each condition. There are three conditions in Case 1, so the total number of samples in the test set is 

1500; Case 2 has two conditions, thus the total number of samples in the test set is 800. The training 

process is to feed all the training samples in Case 1 or Case 2 into the model; the testing process is to 

feed all the test samples in the corresponding Case into the model to complete the detection. 

Table 3 

Description of the data used in both cases. 

Cases Conditions Health states Training samples Test samples 

Case 1 

200Hz, 0N 

Normal 200 200 

Fault \ 300 

300Hz, 1000N 

Normal 100 200 

Fault \ 300 

400Hz, 1400N 

Normal 10 200 

Fault \ 300 

Case 2 

20Hz, 0V 

Normal 200 200 

Fault \ 200 

30Hz, 2V 

Normal 10 200 

Fault \ 200 

Fig. 7 visualizes the normal data of the six sensor channels for the three conditions in Case 1, and 

the six groups of signals from top to bottom correspond to the six channels in Table 2. It can be 

intuitively observed that the signal characteristics are different among the sensor channels, which 

record the data information under the corresponding channels respectively, so it is necessary to 
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aggregate multi-perspective feature information between them. In addition, although they are all 

normal data, the vibration data between the three conditions have a large difference, and the vibration 

amplitude is even several multiples different. Therefore, it is challenging to learn the generalization 

features under the multi-condition unbalanced normal data training model. 

In the experiments, all methods are repeated five times in order to reduce the effect of the 

randomness. Based on experience and the idea of greedy algorithm [40], the main hyperparameters are 

set as follows: the batch size is 64; the number of iterations is 200; the initial value of learning rate is 

0.01, which decays by 0.1 times at 10 and 100 iterations, respectively. The running configuration is 

described as follows: the software is Pytorch 1.7.1; GPU is GTX1650; CPU is i5-10400F. 

 

Fig.7. Multi-channel normal data for the three conditions in Case 1. 

4.2. Superiority of the proposed method 

In this subsection, we verify the superiority of the proposed FGDAE for anomaly detection 

towards complex operating conditions and compare it with the popular anomaly detection methods, 

including memory-augmented autoencoder (MAE) [41], variational autoencoder (VAE) [42], DAE [34] 

and SAE [43]. The anomaly detection evaluation metrics involved are calculated as follows: 

Accuracy = (TP + TN) / (TP + TN FP FN)                                         (17) 

Precision = TP / (TP FP)                                                   (18) 

Recall = TP / (TP FN)                                                     (19) 
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F-score = 2 (Precision Recall) / (Precision + Recall)                                  (20) 

where TP indicates correctly detected as faulty samples; TN indicates correctly detected as normal 

samples; FP means error detection as faulty samples; FN means error detection as normal samples. 

Table 4 shows the evaluation metrics and running times of each method in Case 1. Four evaluation 

metrics of the proposed method reach 94.64%, 92.28%, 99.53%, and 95.74%, respectively, which are 

better than the comparison methods and fluctuate in a reasonable range. The anomaly detection result 

of the MAE is second only to the proposed method, but all the metrics are still lower than the proposed 

method by 8.77%, 3.01%, 13.88%, and 8.34%, respectively. Although the offline training time of the 

proposed method is relatively high, its online time is the shortest, with only 0.9 s for 1500 test samples. 

Table 4 

Evaluation metrics and times of each method in Case 1. 

Unsupervised 

methods 

Evaluation metrics (%) Times (s) 

Accuracy  Precision Recall F-score Offline Online 

FGDAE 94.64±2.14 92.28±3.53 99.53±0.71 95.74±1.62 38 0.9 

MAE 85.87±1.19 89.27±0.37 85.65±2.59 87.40±1.24 14 1.1 

VAE 82.68±2.78 88.46±2.04 80.42±6.94 84.07±3.34 15 1.1 

DAE 80.27±2.28 89.26±0.27 74.56±4.54 81.19±2.68 15 1.1 

SAE 85.29±1.83 88.75±0.54 85.16±3.90 86.87±1.95 47 1.1 

Table 5 shows the evaluation metrics and running times of each method in Case 2. The proposed 

method achieves 96.95%, 98.60%, 95.25%, 96.90% for all evaluation metrics, respectively, which is 

much better than the comparison methods and has the best stability. In Case 2, the SAE achieves the 

second best result, but all the metrics are still 16.5%, 24.88%, 8.89%, and 17.36% lower than the 

proposed method, respectively. The proposed method also has the shortest online testing time, with 

only 0.5 s for 800 test samples. Meanwhile, we visualize the loss values of each method for all test 

samples in Case 2, as shown in Fig. 8. It should be noted that the threshold of each method is 

adaptively determined according to step 3 in section 3.4. Specifically, the maximum reconstruction loss 

value of 210 training samples under two conditions in Case 2 is taken as the threshold. The horizontal 

coordinate is the sample size; the first 200 samples are normal samples and the last 200 samples are 

faulty samples; the red and blue lines represent the two different conditions, respectively. The normal 

sample curves of the proposed method are highly overlapping under the two conditions, indicating that 
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the loss values are similar, and the distinction between normal and faulty samples is significant. It is 

proved that the proposed method can learn the generalization features towards complex conditions. 

However, the four comparison methods prefer to ignore the data features under the fewer training 

samples’ condition, so the reconstruction loss value will be higher, as shown as the red curves of 

normal samples being higher than blue curves. 

Table 5 

Evaluation metrics and times of each method in Case 2. 

Unsupervised 

methods 

Evaluation metrics (%) Times (s) 

Accuracy  Precision Recall F-score Off-line Online 

FGDAE 96.95±0.40 98.60±0.35 95.25±0.66 96.90±0.41 29 0.5 

MAE 79.27±1.61 73.62±0.75 82.39±4.35 77.73±2.32 10 0.7 

VAE 72.78±4.99 70.65±2.17 64.54±14.53 66.96±8.59 11 0.7 

DAE 74.57±2.35 71.30±1.18 70.51±6.34 70.82±3.79 11 0.7 

SAE 80.45±0.61 73.72±0.54 86.36±1.42 79.54±0.74 31 0.7 

(a) (b)

(c) (d)

(e)
 

Fig.8. The loss values of the methods in Case 2: (a) FGDAE; (b) MAE; (c) VAE; (d) DAE; (e) SAE. 
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4.3. Validity of each module 

In this subsection, we verify the validity of the FCG, adaptive Gaussian noise in Eq.(10), and the 

DWO strategy, respectively.  

First, we demonstrate the validity of the FCG and adaptive Gaussian noise towards complex 

operating conditions, comparing them with the commonly used KNN graph construction [29, 30] based 

on Euclidean distance measurement and ordinary Gaussian noise respectively. The number of neighbor 

nodes in KNN is 3, which can be understood as the local similar connection between channel data. Fig. 

9 shows the confusion matrices for the three methods in Case 1, where GDAE represents the graph 

denoising autoencoder (with the addition of ordinary Gaussian noise). In here, the horizontal 

coordinates are the true labels and the vertical coordinates are the predicted labels, where coordinates 0, 

2, and 4 are the normal samples under the three conditions in Table 3; coordinates 1, 3, and 5 are the 

corresponding faulty samples. For the first condition with 200 training samples, all three methods show 

good anomaly detection results. In the second condition with 100 training samples, i.e. the yellow box, 

the KNN graph construction starts to perform worse compared to the developed FCG, because the FCG 

establishes global connection between channel data to guide model better obtaining multi-perspective 

feature information. In the third condition with only 10 training samples, i.e. the red box, although all 

the faulty samples are detected by FCG+GDAE+DWO, more than half of the normal samples are 

falsely detected as faulty samples. It reflects that the GDAE tends to fit the data features under other 

two conditions and fails to learn the data features under this condition well.  

Fig. 10 shows the 2D visualization of encoded features for the three methods in Case 2, where 

Normal 1 and Normal 2 represent the normal samples of the two conditions in Table 3, respectively; 

Fault 1 and Fault 2 are the corresponding faulty samples. The proposed method has the most significant 

degree of differentiation between normal and faulty samples for both conditions, while KNN and 

GDAE have partial overlap between normal and faulty sample features under the condition with only 

10 training samples. The results are consistent with those shown in Fig. 9. 
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(a) (b) (c)
 

Fig.9. Confusion matrices for the three methods in Case 1: (a) FCG+GAAE+DWO (The proposed 

method); (b) KNN+GAAE+DWO; (c) FCG+GDAE+DWO. 

(a) (b) (c)
 

Fig.10. 2D visualization of encoded features for the three methods in Case 2: (a) FCG+GAAE+DWO 

(The proposed method); (b) KNN+GAAE+DWO; (c) FCG+GDAE+DWO. 

Then, we demonstrate the validity of the DWO strategy towards complex operating conditions, by 

comparing the methods in Table 4 with or without adding the DWO strategy. Fig. 11 shows the 

accuracy and F-score of each method for anomaly detection, where FGAE represents FCG+GAAE 

without the DWO strategy. In Case 1, by adding the DWO strategy, the accuracy and F-score of FGAE 

is improved by 0.49% and 0.46%, respectively; MAE is improved by 2.37% and 2.42%; VAE is 

improved by 7.63% and 7.83%; DAE is improved by 9.6% and 10.32%; SAE is improved by 4.46% 

and 5.61%. Similarly in Case 2, the accuracy and F-score of FGAE is improved by 2.80% and 1.62%, 

respectively; MAE is improved by 1.25% and 1.40%; VAE is improved by 7.92% and 12.35%; DAE is 

improved by 3.95% and 5.57%; SAE is improved by 0.58% and 0.17% by adding the DWO strategy. In 

both cases, almost all methods show some reduction in volatility with the addition of the DWO strategy. 

This is because the DWO strategy can guide the model learning the generalization features between 

conditions by flexibly adjusting the data reconstruction loss weights in each condition. 

To further explore the efficacy of the DWO strategy for anomaly detection in each condition, we 

plot the confusion matrices of some methods in Case 2, as shown in Fig. 12. The meanings of the 
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coordinate axes are the same as Fig. 9; coordinates 0, 2 are the normal samples under the two operating 

conditions in Case2; coordinates 1, 3 are the corresponding faulty samples. The FGAE performs badly 

for anomaly detection under the condition with only 10 training samples, as a large number of normal 

samples are falsely detected as faulty samples. It is because FGAE fails to learn the data features of this 

condition well, so that the loss values of normal samples in the test set of this condition are relatively 

high. Similarly, the DAE performs worse for anomaly detection with 200 training samples, as a lot of 

faulty samples are undetected. It is also because the DAE fails to learn the data features of the few-

sample condition well, resulting in a high threshold for detecting faulty samples. 
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Fig.11. Evaluation metrics for the methods: (a) Case 1; (b) Case 2. 

(a) (b) (c) (d)
 

Fig.12. Confusion matrices for the four methods in Case 2: (a) FGDAE; (b) FGAE; (c) DAE+DWO; (d) 

DAE. 

4.4. Discussion of the single condition data 

Finally, we discuss the anomaly detection results of each method in Table 4 under the single 

condition with different numbers of training samples. Since the DWO strategy is not required for the 

single condition, the proposed method is the FGAE. Table 6 shows the accuracy and F-score of each 

method for anomaly detection under the single condition in Case 1. The proposed method achieves 

optimal results in all three conditions, with accuracy and F-score of 98.80% and 99.01% under the 
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condition with 200 training samples, 96.84% and 97.44% under the condition with 100 training 

samples, 60.00% and 75.00% under the condition with 10 training samples, respectively. The DAE 

performs second only to the proposed method in three conditions, but the accuracy and F-score are still 

lower than the proposed method by 10.32% and 9.57% under the condition with 200 training samples, 

9.36% and 8.81% under the condition with 100 training samples, and 4.96% and 6.71% under the 

condition with 10 training samples, respectively. All the methods perform relatively poor under the 

condition with very few training samples, as the models are prone to overfitting, resulting in the low 

thresholds.  

Fig.13 shows the ROC curves of each method under the single condition in Case 2. The area under 

the curve (AUC) can indicate the anomaly detection performance with the range between 0.5 and 1. 

Higher AUC values represent better performance, and the AUC values for all the methods are listed in 

the bottom right corner in brackets. Similar to Case 1, the proposed method achieves optimal results in 

both conditions with AUC values of 99.81% and 99.43%, respectively. The SAE achieves the second 

best result under the condition of 200 training samples with the AUC value of 85.25%, which is 

14.56% lower than the proposed method. The DAE achieves suboptimal results with the AUC value of 

76.90% under condition of 10 training samples, which is 22.53% lower than the proposed method. The 

proposed method still has high AUC value under the condition with very few samples, indicating that it 

has potential for application in anomaly detection with few training samples, but the way of threshold 

determination needs to be optimized in depth. 

Table 6 

Evaluation metrics of the methods under the single condition in the Case 1.  

Unsupervised 

methods 

200Hz, 0N  

(200 training samples) 

300Hz, 1000N 

(100 training samples) 

400Hz, 1400N 

(10 training samples) 

Accuracy  F-score Accuracy F-score Accuracy F-score 

FGAE 98.80±0.58 99.01±0.47 96.84±0.50 97.44±0.39 60.00±0.00 75.00±0.00 

MAE 88.28±0.11 89.28±0.09 86.92±0.59 88.19±0.47 54.44±1.47 68.06±0.67 

VAE 88.24±0.61 89.25±0.49 84.44±1.30 86.26±0.99 55.00±1.49 67.93±0.45 

DAE 88.48±0.11 89.44±0.09 87.48±0.11 88.63±0.09 55.04±0.96 68.29±0.53 

SAE 87.92±0.18 88.99±0.14 84.28±1.51 86.14±1.13 50.16±0.91 66.20±0.41 
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Fig.13. ROC curves for the methods under the single condition in Case 2: (a) 20Hz, 0V (200 training 

samples); (b) 30Hz, 2V (10 training samples). 

5. Conclusions 

To overcome the problems of limiting the detection task to a single operating condition and 

inadequate utilization of multi-channel information in machinery anomaly detection, this study 

proposes a new anomaly detection method named FGDAE towards complex operating conditions. The 

effectiveness of the proposed method is verified using two multi-condition anomaly detection tasks 

under the challenge of training model with multi-condition unbalanced normal data. The comparison 

results show: (1) The proposed method can achieve better results towards complex operating conditions 

compared with other popular anomaly detection methods based on autoencoder structure. (2) The 

developed FCG and the constructed GAAE can aggregate multi-perspective feature information among 

channels by establishing global structural connection between channel data from the graph structure 

perspective. (3) The designed DWO strategy is universal for anomaly detection methods under the 

challenge of training models with multi-condition unbalanced normal data. In future work, we will 

further explore the potential of GCN in non-Euclidean graph spaces to investigate their possibilities for 

anomaly detection with few training samples. 
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