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Abstract

The mean curvature (MC)-based image denoising and image deblur-
ring models are used to enhance the quality of the denoised images and
deblurred images respectively. These models are very efficient in remov-
ing staircase effect, preserving edges and other nice properties. However,
high order derivatives appear in the Euler-Lagrange equations of the MC-
based models which create problems in developing an efficient numerical
algorithm. To overcome this difficulty, we present a robust and efficient
Two-Level method for MC-based image denoising and image deblurring
models. The Two-Level method is consist of solving one small problem
and one large problem. The small problem is a nonlinear system, having
high order derivative, on Level-I (image having small number of pixels).
The large problem is one less expensive system, having low order deriva-
tive, on Level-II (image having large number of pixels). The derivation
of the optimal regularization parameter of Level-II is studied and formula
is presented. Numerical experiments on digital images are presented to
exhibit the performance of the Two-Level method.

Key words: denoising, deblurring, regularization, variational models, two-level
methods, ill-posed problem

1 Introduction

The mean curvature (MC) [3, 15, 22, 23] based regularization functionals are
widely use in all image processing problems. In image denoising and image
deblurring, the MC-based models are very effective. These models not only
preserve edges but also remove staircase effect in the recovery of digital images.
These models have other nice properties as well. However, high order deriva-
tives appear in the Euler-Lagrange equations of the MC-based models, which
create problems in developing an efficient numerical algorithm. Furthermore
MC-based models produce complicated nonlinear system of equations. The Ja-
cobian matrix of such system has a block banded matrix structure with large

Department of Mathematics and Statistics, King Fahd University of Petroleum & Miner-
als, Saudi Arabia (ffairag@kfupm.edu.sa).

Center for Mathematical Imaging Techniques, The University of Liverpool, UK
(k.chen@liv.ac.uk).

Computational Learning and Imaging Research Center, Autonomous University of Yu-
catán, Merida, Mexico, (carlos.brito@correo.uady.mx).

Department of Mathematics and Statistics, King Fahd University of Petroleum & Miner-
als, Saudi Arabia (shahbazahmad@kfupm.edu.sa).

1



2

bandwidth. The mean curvature-based models are effective, but due to high
nonlinearity and high order derivative, efficient numerical solution is a crucial
issue. To overcome these difficulties, in this paper we introduce a Two-Level
method.

The Two-Level method is widely studied in other research areas [7, 10, 11, 12,
13] beyond image processing. These methods are so attractive for ill-conditioned
and large nonlinear systems. The essence of these methods is that they need
the solution of only a small nonlinear system of equations on Level-I (coarse
mesh) and one linear system of equations on Level-II (fine mesh). For example,
Jintao Xu [19, 20] first introduced Two-Level method to solve semilinear PDEs.
Then the method have been examined for the Navier-Stokes (NS) equations in
[9, 10, 14]. Other works on Two-Level method can be found here [5, 6, 8]. In
these works, they used the coarse solution to find a best scaling between the
coarse mesh size H and the fine mesh size h in order to obtain same order
of convergence. In order to obtain a better quality solution on the fine mesh
(Level-II) a good quality solution at coarse mesh (Level-I) is required. This
requirement is the limitation of the Two-Level method.

In this paper, we will present and examine a Two-Level method for image
denoising and image deblurring problems. In this method, we solve the problem
at two different levels, one after the other. At Level-I we solve a nonlinear
integral differential equation (image denoising and image deblurring) on a coarse
mesh. At this level, the regularization functional is mean curvature functional.
It means we are solving computationally expensive problem just on a coarse
mesh at Level-I. Then the Level-I solution will be interpolated. At Level-II,
we need to solve an integral differential equation (image denoising and image
deblurring) which is linear with less computationally expensive regularization
functional. At Level-II, instead of using MC we will use either total variation
(TV) [16, 18] or Tikhonov [1, 17]. It means at Level-II, we have to do less
expensive work. Because expensive part of the work is already done at Level-I on
a coarse mesh of a small size. In our work, we have also used the coarse solution
to calculate the optimal regularization parameter for the Level-II. Moreover,
this optimal parameter is used to solve a linear system with low order derivative
regularizer such as Tikhonov and TV. At Level-II, the mean curvature term is
approximated using the coarse solution and kept in the right hand side.

The contributions of this paper include the following: (i) our work presents
a robust, effective and less expensive numerical method for MC-based image
denoising and image deblurring problems, (ii) presents a better treatment for
the computationally expensive mean curvature-based regularization function-
als. The proposed method will apply similarly to other image reconstruction
problems. The paper is organized in different sections. The first section in-
cludes introduction while the second section includes problem description of
image denoising and image deblurring models. In the third section, we present
primal-dual form of mean curvature-based image denoising and image deblur-
ring models. The cell descritization and cell-centered finite difference method
(CCFD) method are also presented in third section. In forth section, we present
One-Level method. In fifth section, we present our proposed Two-Level method
and the parameters selection procedure. The numerical results are in the sixth
section. The conclusions about the proposed Two-Level method is discussed in
the last section of the paper.
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2 Problem Description

The focus of the paper is on image denoising and image deblurring problems, so
we start by presenting their concise description. Mathematically, the relation-
ship between u (original image) and z (recorded image) is as follows;

z = ~Ku+ ε (1)

where ε is the noise function. In case of image denoising, ~K = I is an
identity operator but in case of deblurring, ~K is a Fredholm-integral operator
(first kind);

( ~Ku)(x) =

∫
Ω

k(x,y)u(y) dy, x ∈ Ω

known as the blurring operator. The kernel k(x,y) satisfies the property of
translation invariance i.e. k(x,y) = k(x − y). Let Ω denotes a square in R2.
u ∈ Ω is an image intensity function. x = (x, y) defines the position in Ω. Let

|x| =
√
x2 + y2 is an Euclidean norm and ‖.‖ is L2(Ω) norm.

The problem (1) is not stable [1, 17, 18]. One remedy is to make a use of
regularization functionals. For example, the Tikhonov regularization functional
[1],

JTik(u) =

∫
Ω

u2 dx,

the total variation (TV) regularization functional [16],

JTV (u) =

∫
Ω

|5u| dx,

and mean curvature (MC) regularization functional [22],

JMC(u) =

∫
Ω

| 5 .
5u√

|5u|2 + β2

|dx.

The information of other regularization functionals can be found here [1, 3, 4,
15, 17, 18, 21, 23]. Then the problem (1) takes the form, find u that minimize
the

T (u) =
1

2
‖ ~Ku− z‖2 + αJ(u) (2)

where J is a regularization functional and α > 0 is a regularization parameter.
The problem (2) is well-posed [16, 18]. Then the Euler-Lagrange equations of
(2) are,

~K∗( ~Ku− z) + αL(u)u = 0 in Ω, (3)

∂u

∂n
=0 in ∂Ω, (4)

where ~K∗ represents the adjoint operator of ~K. In case of image denoising,
~K∗ = I is an identity operator. By Tikhonov regularization, L(u)u = I(u)u ,
where I(u) is the identity operator. By TV regularization,

L(u)u = −5 .(
1√

|5u|2 + β2

5 u),

A two-level method for image denoising and image deblurring models using mean curvature regularization
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where β > 0 is used to avoid non-differentiability at zero. By mean curvature
regularization, L(u)u has the complicated form, i.e.

L(u)u = 5.[ 5κ√
|5u|2 + β2

− 5κ.5 u

(

√
|5u|2 + β2)3

5 u]

where

κ(u) = 5. 5u√
|5u|2 + β2

,

and we also need κ(u) = 0 in ∂Ω. In case of TV and MC, (3) is a nonlinear
integral differential equation.

3 Primal-Dual Form of MC-Based Model

To avoid confusion between the Euler-Lagrange equations of MC-based image
denoising and image deblurring problems, from now to onward, we will treat
them as,

~Λ∗(~Λu− z) + αMC 5 .[
5κ√

|5u|2 + β2

− 5κ.5 u

(

√
|5u|2 + β2)3

5 u] = 0 in Ω, (5)

∂u

∂n
=0 in ∂Ω, (6)

κ(u) =0 in ∂Ω, (7)

where

κ(u) = 5. 5u√
|5u|2 + β2

,

and αMC is a parameter related to MC functional JMC . Here if Λ = I then (5)-
(7) are the Euler-Lagrange equations of image denoising problem and if Λ = K
then (5)-(7) are the Euler-Lagrange equations of image deblurring problem.

The above equations can be expressed as first order nonlinear system,

~Λ∗~Λu+ αMC 5 .−→p − αMC 5 .
−→
t =~Λ∗z, (8)

−w +5.−→v = 0, (9)√
|5u|2 + β2−→v −5u = 0, (10)√
|5u|2 + β2−→p −5w = 0, (11)√

|5u|2 + β2−→t − (5w.−→v )−→v = 0, (12)

where

−→v =
5u√

|5u|2 + β2

, w = 5.−→v ,−→p =
5w√

|5u|2 + β2

and
−→
t =

(5w.−→v )−→v√
|5u|2 + β2

.
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After discretization, it is possible to linearize the discrete system by fixing u =
um. The elimination of w,−→v ,−→p and

−→
t from (8)-(12), yield the following fixed

point iteration scheme,

(~Λ∗~Λ + αMCL(um))um+1 =~Λ∗z,m =0, 1, 2, ... (13)

where

L(um)um+1 = 5.[ 1√
|5um|2 + β2

(5(5. 5um+1√
|5um|2 + β2

))

− 1

(

√
|5um|2 + β2)3

(5(5. 5um+1√
|5um|2 + β2

).5 um+1)5 um+1].

3.1 Cell Discretization

The domain Ω = (0, 1)× (0, 1) of the problem is partitioned by δx × δy, where

δx : 0 = x1/2 < x3/2 < x5/2 < ... < xNx−1/2 < xNx+1/2 = 1,

δy : 0 = y1/2 < y3/2 < y5/2 < ... < yNx−1/2 < yNx+1/2 = 1.

The Nx is the number of equispaced partitions in the x or y directions. The
(xi, yj) denotes centers of the cells, where

xi = (i− 1

2
)h i = 1, 2, 3, ..., Nx

yj = (j − 1

2
)h j = 1, 2, 3, ..., Nx

where h = 1
Nx

. The (xi± 1
2
, yj) and (xi, yj± 1

2
) are representing midpoints of cell

edges, where

xi± 1
2

= xi ±
h

2
i = 1, 2, 3, ..., Nx

yj± 1
2

= yj ±
h

2
j = 1, 2, 3, ..., Nx.

The set

eij =

{
(x, y) : x ∈ [xi −

1

2
, xi +

1

2
], y ∈ [yj −

1

2
, yj +

1

2
]

}
represents a cell with (xi, yj) as a center. Let

χi(x) =

{
1 x ∈ (xi − 1

2 , xi + 1
2 )

0 otherwise,

χj(y) =

{
1 y ∈ (yi − 1

2 , yi + 1
2 )

0 otherwise.

And

φi(xl +
1

2
) = δil,

φk(yj +
1

2
) = δjk.
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Approximation of u and w are

u(x, y) ∼= U(x, y) =

Nx∑
i=1

Nx∑
j=1

uijχi(x)χj(y)

and

w(x, y) ∼= W (x, y) =

Nx∑
i=1

Nx∑
j=1

wijχi(x)χj(y),

respectively, where uij = U(xi, yj) and wij = W (xi, yj). The representation of
the data z is

z(x, y) ∼= Z(x, y) =

Nx∑
i=1

Nx∑
j=1

zijχi(x)χj(y)

where zij can be calculated at cell averages. By applying midpoint quadrature
approximation, we have

(Ku)(xi, yj) ∼= [KhU ](ij).

Denote −→v = (vx, vy),−→p = (px, py) and
−→
t = (tx, ty) . The approximation of x

and y components of −→v are

V
x
(x, y) =

Nx−1∑
i=1

Nx∑
j=1

vxijφi(x)χj(y) and V
y
(x, y) =

Nx−1∑
i=1

Nx∑
j=1

vyijφi(y)χj(x)

respectively. V = [V
x
V

y
]t denotes the discretization of −→v . Similarly, approxi-

mation of the components of −→p and
−→
t are

P
x
(x, y) =

Nx−1∑
i=1

Nx∑
j=1

pxijφi(x)χj(y) , P
y
(x, y) =

Nx−1∑
i=1

Nx∑
j=1

pyijφi(y)χj(x)

and

T
x
(x, y) =

Nx−1∑
i=1

Nx∑
j=1

txijφi(x)χj(y) , T
y
(x, y) =

Nx−1∑
i=1

Nx∑
j=1

tyijφi(y)χj(x)

respectively. The P = [P
x
P

y
]t and T = [T

x
T

y
]t denote the discretization of

the vectors −→p and
−→
t respectively.

3.2 The Cell-Centered Finite Difference Method

Here, we consider the cell-centered finite difference (CCFD) method for MC-
based image denoising and image deblurring problems. With lexicographical
ordering of the unknowns,

U = [U11 U12 ... UNxNx ]t, W = [W 11 W 12 ... WNxNx ]t,

V = [V
x

11 V
x

12 ... V
x

Nx−1Nx−1 ... V
y

11 V
y

12 ... V
y

Nx−1Nx−1]t,

P = [P
x

11 P
x

12 ... P
x

Nx−1Nx−1 ... P
y

11 P
y

12 ... P
y

Nx−1Nx−1]t,

A two-level method for image denoising and image deblurring models using mean curvature regularization
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and

T = [T
x

11 T
x

12 ... T
x

Nx−1Nx−1 ... T
y

11 T
y

12 ... T
y

Nx−1Nx−1]t.

Now by applying CCFD method to (8)-(12) together with midpoint quadrature
for the integral term one obtains the following system,

Λ∗
hΛhU − αMCAhW + αMCB

∗
hP − αMCB

∗
hT =Λ∗

hZ, (14)

−IhW +B∗
hV = O, (15)

DhV +BhU = O, (16)

DhP +BhW = O, (17)

DhT − ChV = O. (18)

Here Λh, Ah and Ih are matrices of size N2
x ×N2

x . The Bh is of size 2Nx(Nx −
1)×N2

x . The Ch and Dh are matrices of size 2Nx(Nx − 1)× 2Nx(Nx − 1). So
we have the following system

Λ∗
hΛh −αMCAh O αMCB

∗
h −αMCB

∗
h

O −Ih B∗
h O O

Bh O Dh O O
O Bh O Dh O
O O −Ch O Dh



U
W
V
P
T

 =


Λ∗
hZ
O
O
O
O


For image denosing problem, the matrix Λh = Ih is the identity matrix. For
image deblurring problem, the matrix Λ∗

hΛh = K∗
hKh is symmetric positive

semidefinite matrix. The matrix Kh is block Toeplitz with Toeplitz blocks
(BTTB) matrix.

Kh = h



k(0) k(−h) . . . k(−(n− 1)h)
k(h) k(0) . . . k(−(n− 2)h)

. . .

k((n− 1)h) k((n− 2)h) . . . k(0)


The matrix Ah is a diagonal matrix having following structure,

Ah =
2

βh
(A1 +A2),

where both A1 and A2 are of size N2
x ×N2

x .

A1 = Ĩ ⊗ E and A2 = E ⊗ Ĩ

where ⊗ is a tensor product. The identity matrix Ĩ and E are of size Nx ×Nx.

E =



1
0

. . .

. . .

0
1


.
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The matrix Bh has the following structure,

Bh =
1

h

[
B1

B2

]
where both B1 and B2 are of size Nx(Nx − 1)×N2

x .

B1 = F ⊗ Ĩ and B2 = Ĩ ⊗ F

where F is of size (Nx − 1)×Nx.

F =



1 −1
1 −1

. . .
. . .

. . . −1
1 −1

 .

The matrix Ch is a diagonal matrix and its entries are obtained by the dis-
cretization of the expression (5w.−→v ).

Ch =

[
Cx 0
0 Cy

]
where the size of Cx is (Nx−1)×Nx and the size of Cy is Nx×(Nx−1). The ma-
trix Dh is also a diagonal matrix with positive diagonal entries and the diagonal

entries are obtained by the discretization of the expression

√
|5u|2 + β2.

Dh =

[
Dx 0
0 Dy

]
where the size of Dx is (Nx − 1) × Nx and the size of Dy is Nx × (Nx − 1).
Note that on horizontal and vertical edges of each cell eij , the values of the all
unknowns are not available, so average operators can be used to approximate
their values.

Now if we eliminate W,V, P and T from (14)-(18), then we have the following
primal system,

(Λ∗
hΛh + αMCLh(U))U =Λ∗

hZ, (19)

where

Lh =(B∗
hD

−1
h Bh)2 +Ah(B∗

hD
−1
h Bh) +B∗

hD
−1
h ChD

−1
h Bh. (20)

The first and the last term in Lh is symmetric positive semidefinite [18] but the
middle term is not symmetric. By lexicographical ordering of the unknowns,
Lh is block pentadiagonal. The diagonal blocks are pentadiagonal matrices
and the off-diagonal blocks, just below and above the main diagonal blocks,
are tridiagonal matrices. The remaining blocks are diagonal matrices. Similar
primal forms exist for TV [16, 18] and Tikhonov [1, 17] based models. For TV
, we have

(Λ∗
hΛh + αTVB

∗
hD

−1
h Bh(U))U =Λ∗

hZ, (21)

A two-level method for image denoising and image deblurring models using mean curvature regularization
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and for Tikhonov, we have

(Λ∗
hΛh + αTikIh(U))U =Λ∗

hZ, (22)

where B∗
hD

−1
h Bh and Ih are the matrices arise from the discretization of JTV

and JTik respectively.
In the literature, one can find many numerical techniques which have been

applied to mean curvature-based nonlinear minimization image denoising and
image deblurring problems. Among them, Augmented Lagrangian method [23],
Time Marching scheme [22], Conjugate Gradient (CG) method [18] and Multi-
grid method [2], etc. However, these numerical techniques get quite slow con-
vergence due to ill-conditioned and large nonlinear system. Moreover the use of
MC functional in the image denoising and image deblurring problems adds more
complexity to the nonlinear systems. MC regularization functional is too much
computationally expensive, that is why, existing numerical methods performs
very poorly.

4 One-Level Method

Here, we will introduce an algorithm to solve primal form (19) of MC-based non-
linear image denoising and image deblurring problems. We call this procedure
One-Level method. First we apply discrete version of the fixed point iteration
to (19). So we have a following linear system;

(Λ∗
hΛh + αMCLh(Um))Um+1 =Λ∗

hZ. (23)

The properties of our system (19), mentioned in the previous section, suggest
that iterative method like Generalized Minimal Residual (GMRES) method,
is suitable for (23). Unfortunately, GMRES method can get quite slow con-
vergence rate due to ill-conditioned system. One remedy for this problem is
preconditioning. That is, we have to use Preconditioned Generalized Minimal
Residual (PGMRES) method. In order to make PGMRES method effective,
preconditioning matrix P , must be symmetric positive definite. For this , we
have used the following simple preconditioning matrix P ,

P = I + αMCdiag(L), (24)

where I is an identity matrix and diag(L) is a diagonal matrix whose entries
are the diagonal entries of matrix L. While applying PGMRES method to (23),
the inversion of P , will be required. Since our preconditioning matrix P , is a
diagonal matrix, so inversion can be done easily. Rapid convergence has shown
in PGMRES method due to our preconditioning matrix P , in the numerical
results below. We summarized the One-Level method, in Algorithm 1.

To make a more robust numerical method for MC-based nonlinear image
denoising and image deblurring problems, now we present a Two-Level method.

5 Two-Level Method

The Two-Level method consists of solving two different problems at two differ-
ent levels. At Level-I (coarse mesh) we solve a nonlinear integral differential

A two-level method for image denoising and image deblurring models using mean curvature regularization
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On mesh Ωh ,
Initial iteration U0,

for m = 1;max
Am = Λ∗

hΛh + αMCLh(Um),

bm = Λ∗
hZ,

Use PGMRES method to solve

AmUm+1 = bm,

with
Ph = Ih + αMCdiag(Lh(Um)),

end
The Lh is a matrix arise from the discretization of MC regularization functional
JMC and αMC is a parameter related to JMC .

Algorithm 1: The One-Level Method

equation (image denoising and image deblurring). At this level, the regular-
ization functional is mean curvature functional JMC . It means we are solving
computationally expensive problem just on a coarse mesh at Level-I. Then we
interpolate our solution for Level-II. For better results one can use spline in-
terpolation. Then at Level-II (fine mesh), we solve a linear integral differential
equation (image denoising and image deblurring). At Level-II, we will use less
computationally expensive regularization functional, that is, instead of using
MC we will use either TV or Tikhonov. It means at Level-II, we have to do less
expensive work. Because expensive part of the work is already done at Level-I
on a coarse mesh of a small size. Moreover, at Level-II, the mean curvature term
is approximated using the coarse solution and kept in the right hand side. The
effectiveness of Two-Level method is shown in the section of numerical results.
The Two-Level method is summarized in Algorithm 2. To simplify notation,we
drop the superscript representing fixed point iteration count.

Step 1. Solve the problem (19);

(Λ∗
HΛH + αMCLH(UH))UH = Λ∗

HZ (25)

for UH on a coarse mesh ΩH by using Algorithm 1. The LH is a matrix arise
from the discretization of MC regularization functional JMC and αMC is a
parameter related to JMC .

Step 2. Obtain UHh by interpolating UH on a fine mesh Ωh.
Step 3. Solve the following problem;

(Λ∗
hΛh + α̃L̃h(UHh))Uh = Λ∗

hZ − αMCLh(UHh)UHh + α̃L̃h(UHh)UHh (26)

for Uh on a fine mesh Ωh. The L̃h is a matrix arise from the discretization of
regularization functional J (Tikhonov or TV) and α̃ is a parameter related to
J . The relation between coarse mesh size and fine mesh size is h = 2H.

Algorithm 2: The Two-Level Method

A two-level method for image denoising and image deblurring models using mean curvature regularization
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5.1 Parameter Selection Procedure

To gain a quality image, the optimum value of the parameters also play a vital
role in image denoising and image deblurring problems. So for optimal accuracy
in the numerical results, we also need optimum values of αMC of Level-I and α̃
of Level-II. For optimum value of αMC we refer the reader to [3, 22, 23].

In order to obtain an optimal α̃, we start by assuming that Two-Level solu-
tion Uh is close to the One-Level solution U1

h on Ωh. That is

Uh
∼= U1

h .

Then from (26), we have

(Λ∗
hΛh + α̃L̃h(UHh))−1(Λ∗

hZ − αMCLh(UHh)UHh + α̃L̃h(UHh)UHh) ∼= U1
h

⇒ Λ∗
hZ − αMCLh(UHh)UHh + α̃L̃h(UHh)UHh

∼= (Λ∗
hΛh + α̃L̃h(UHh))U1

h

⇒ Λ∗
hZ − αMCLh(UHh)UHh + α̃L̃h(UHh)UHh

∼= Λ∗
hΛhU

1
h + α̃L̃h(UHh)U1

h

⇒ Λ∗
hZ − αMCLh(UHh)UHh − Λ∗

hΛhU
1
h
∼= α̃L̃h(UHh)(U1

h − UHh). (27)

Now take a norm on both sides, so

‖Λ∗
hZ − αMCLh(UHh)UHh − Λ∗

hΛhU
1
h‖ ∼= α̃‖L̃h(UHh)(U1

h − UHh)‖.

So we have

α̃ ∼=
‖Λ∗

hZ − αMCLh(UHh)UHh − Λ∗
hΛhU

1
h‖

‖L̃h(UHh)(U1
h − UHh)‖

. (28)

In the above formula, practically it is not possible to use U1
h and (U1

h − UHh).
So their approximate values can be used. In this paper, we are also using their
approximating values. That procedure is summarized in Algorithm 3.

Step 1. Calculate the residual rh on a fine mesh Ωh

rh = Λ∗
hZ − (Λ∗

hΛh + αMCLh(UHh))UHh.

Step 2. On the coarse mesh ΩH , restrict rh for rH by using interpolation.
Step 3. Solve the error equation for EH on the coarse mesh ΩH

(Λ∗
HΛH + αMCLH(UH))EH = rH .

Step 4. Calculate α̃ by replacing U1
h by UHh and (U1

h − UHh) by EH in
formula (28);

α̃ ∼=
‖Λ∗

hZ − αMCLh(UHh)UHh − Λ∗
hΛhUHh‖

‖L̃H(UH)EH‖
. (29)

Algorithm 3: Algorithm for α̃
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6 Numerical Results

Here, we include numerical results obtained by Two-Level method. We are pre-
senting six examples. In Example 1, Example 2 and Example 4, we have applied
Two-Level method to image deblurring problem. In Example 3, Example 5 and
Example 6, we have applied Two-Level method to image denoising problem. In
all examples, the Level-I calculation were obtained with Nx

2 ×
Nx

2 grid points on
ΩH and Level-II calculation were obtained with Nx×Nx grid points on Ωh. So
h = 2H. In all experiment, we have taken different Nx and the resulting system
has N2

x unknowns. The optimum value of αMC is used according to [3, 22, 23]
and the optimum values of α̃ are calculated by Algorithm 3. In all examples, for
the stopping criteria of a numerical method we have used tolerance tol = 1e−7.

For numerical computations, we have used MATLAB software and numeri-
cal results are obtained using a Intel(R) Core(TM) i7-4510U CPU @ 2.00 GHz
2.60 GHz. All the results based on the data given in the images are analyzed
and presented in the tabular form.

Example 1
This example show the application of Two-Level method for image deblur-

ring problem. Here, we have compared the results of Two-Level method with
One-Level method. In this experiment Goldhill image is used. The different
aspects of Goldhill image have shown in Figure 1. The size of each sub-figure
is 512 × 512. These are (a) Blurry image (b) Deblurred image by One-Level
method (c) Deblurred image by Two-Level method (d) Local region deblurred
by One-Level method and (e) Local region deblurred by Two-Level method.
For numerical calculations, we have used the ke−gen(N, 300, 10) kernel. The
parameters β = 0.1 and αMC = 1e− 8.

In Two-Level method, at Level-II, we have solved the problem (26) with CG

(Conjugate Gradient) method. In (26), L̃h is a symmetric positive semidefinite
[18] matrix arise from the discretization of JTV (TV regularization functional)
and α̃ = αTV . To measure the quality of the restored images, we have used
PSNR (Peak Signal to Noise Ratio)[18]. The higher value of PSNR indicate
better quality. In this experiment, we have taken three values of Nx. These are
128, 256 and 512. The corresponding blurry images PSNR are 22.9784, 22.2335
and 21.4633 respectively. For convergence rate we have used the following for-
mula;

rate = log10(
e2Nx

eNx

)/log10(
2Nx

Nx
),

where eNx and e2Nx denote the errors of u atNx and 2Nx respectively, in discrete
norm. In Table 1, we have summarized all the information of this experiment.

A two-level method for image denoising and image deblurring models using mean curvature regularization
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(a)

(b) (c)

(d) (e)

Figure 1: Goldhill Image: (a) Blurry image (b) Deblurred image by One-Level
method (c) Deblurred image by Two-Level method (d) Local region deblurred
by One-Level method and (e) Local region deblurred by Two-Level method.
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One-Level Method Two-Level Method

Nx h Deblurred CPU- rate α̃ Deblurred CPU- rate
PSNR Time PSNR Time

128 1
128 40.2928 10.4733 0.0134 40.1985 4.2049

1.0775 1.0255
256 1

256 37.7598 58.6002 0.0366 37.5116 21.3622
1.1691 1.0001

512 1
512 35.0239 415.0476 0.0845 34.8626 136.3840

Table 1: One-Level Method vs Two-Level Method

Remarks

1. The Table 1 shows that the CPU-Time by Two-Level method is less than
the CPU-Time by One-Level method for all values of Nx. For Nx = 128
and Nx = 256 we save more than 60%. For Nx = 512 we save more than
70%. For Nx = 512, in One-Level method we have to solve a nonlinear
MC-based system of size 5122 equations. While for the same Nx = 512,
in Two-Level method, we first solve a nonlinear MC-based system of size
2562 equations at coarse mesh and then solve a linear TV-based system
of size 5122 equations at fine mesh. This is why, we are saving time in
Two-Level method. We expect the increase in savings as the mesh size
decreases.

2. From Figure 1(b) and Figure 1(c), one can notice the quality of deblurred
images produce by both methods. Both images are almost similar and
most of the blurry has been removed. This can also be seen in the local
images ( Figure 1(d) and Figure 1(e) ) deblurred by both methods. So
deblurred image quality by the Two-Level method is the same as by the
One-Level method.

3. The Table 1 shows that for all values of Nx the PSNR for both methods
are almost the same. This means that Two-Level method generates same
quality in less CPU-Time.

4. From the Table 1, it is clear that the convergence rate of Two-Level method
is almost same like One-Level method. For both methods convergence rate
is approximately 1.

A two-level method for image denoising and image deblurring models using mean curvature regularization
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Example 2
This example also show the application of Two-Level method for image de-

blurring problem. For this experiment the Cameraman image is used. The
different aspects of Cameraman image can be shown in Figure 2, each one is
having size 512 × 512. These are (a) Blurry image (b) Deblurred image by
One-Level method (c) Deblurred image by Two-Level method (d) Local region
deblurred by One-Level method and (e) Local region deblurred by Two-Level
method. This example is different from Example 1. Because here in Two-Level
method at Level-II, we have used Tikhonov regularization functional instead of
TV regularization functional. So here α̃ = αTik. All other parameters are same
like the Example 1. The 21.4242, 21.2064 and 21.1871 are the blurry PSNR
against the mesh size 1

128 ,
1

256 and 1
512 respectively. In Table 2, we have sum-

marized all the information of this experiment.

Remark
The Table 2 clearly shows that the Two-Level method is significantly reducing
the cost of time for all value of mesh size. The Two-Level method also producing
the almost same quality in the deblurred images (see Figure 2). So we have no
doubt in saying that in comparison the Two-Level method is faster than One-
Level method for MC-based image deblurring Problem.

One-Level Method Two-Level Method

Nx h Deblurred CPU- α̃ Deblurred CPU-
PSNR Time PSNR Time

128 1
128 41.7343 10.5387 6.9020e-05 41.3578 6.5197

256 1
256 42.6843 52.5101 3.3754e-05 42.5413 20.7124

512 1
512 43.2529 328.1486 9.5601e-05 43.3116 122.1332

Table 2: One-Level Method vs Two-Level Method
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(a)

(b) (c)

(d) (e)

Figure 2: Cameraman Image: (a) Blurry image (b) Deblurred image by One-
Level method (c) Deblurred image by Two-Level method (d) Local region de-
blurred by One-Level method and (e) Local region deblurred by Two-Level
method.
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Example 3
In this example we have used Two-Level method for image denoising problem.
Here we have presented comparison between our proposed Two-Level method
and Multigrid method by C. Brito-Loeza and K. Chen [2]. For this we have
used Brain image. The different aspects of Brain image have shown in Figure
3. The size of each sub-figure is 512 × 512. These are (a) Noisy image (b)
Denoised image by Multigrid method (c) Denoised image by Two-Level method
(d) Local region denoised by Multigrid method and (e) Local region denoised
by Two-Level method.

In Multigrid method we have used MC regularization functional with op-
timum parameters [2] αMC = 1

200 and β = 1e − 2. In Two-Level method, at
Level-I, we have solved the problem with Algorithm 1 with optimum parameters
β = 0.2 and αMC varies from 1e− 1 to 1e− 3. At Level-II, we have solved the
problem (26) with CG (Conjugate Gradient) method. In (26), L̃h is a matrix
arise from the discretization of TV regularization functional JTV and α̃ = αTV .
For comparison we have taken three values of Nx. These are 128, 256 and 512.
In this experiment, we have used Gaussian noise. The added Gaussian noise is
large so that all of the noisy images have SNR = 3.5 (Signal to Noise Ratio) [2].
In Table 3, we have summarized all the information of this experiment.

Remarks

1. The Table 3 shows that the CPU-Time by Two-Level method is less than
the CPU-Time by Multigrid method for all values of Nx. For Nx = 128
we save more than 30% of CPU-Time. For Nx = 256 we save almost 50%
of CPU-Time. For Nx = 512 we save more than 70% of CPU-Time.

2. From Figure 3(b) and Figure 3(c), one can notice the quality of denoised
images produce by both methods. Both images are almost similar and
most of the noise has been removed. This can also be seen in the local
images ( Figure 3(d) and Figure 3(e) ) denoised by both methods. This
means that Two-Level method generates same quality in less CPU-Time.
So in comparison the Two-Level method is faster than Multigrid method
for MC-based image denoising Problem.

Multigrid Method Two-Level Method

Nx h CPU-Time α̃ CPU-Time

128 1
128 10.9399 30.0108 7.5182

256 1
256 21.9365 10.0103 11.1275

512 1
512 81.7316 1.0090 23.4819

Table 3: Multigrid Method vs Two-Level Method
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(a)

(b) (c)

(d) (e)

Figure 3: Brain Image: (a) Noisy image (b) Denoised image by Multigrid
Method (c) Denoised image by Two-Level method (d) Local region denoised
by Multigrid Method and (e) Local region denoised by Two-Level method.
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Example 4
In this example we have consider different kinds of images. These are Pep-

pers, Kids and Moon images. The Peppers image is a nontexture image. The
Kids image is a complicated image, as it contains a large scale cartoon part
(face) and also a small scale texture part (shirt). The Moon image is real and
synthetic image. The different aspects of each image has shown in Figure 4.
The size of each sub-figure is 512× 512. (a), (d) and (g) are blurry images. (b),
(e) and (h) are deblurred images by One-Level method. (c), (f) and (i) are de-
blurred images by Two-Level method. This example also show the application
of Two-Level method for image deblurring problem. Here, we have also com-
pared the results of Two-Level method with One-Level method. For numerical
calculations, we have used the ke−gen(N, 300, 10) kernel. The parameters β
varies from 1e− 2 to 1 and αMC varies from 1e− 6 to 1e− 12.

In Two-Level method, at Level-II, we have solved the problem (26) with CG

(Conjugate Gradient) method. In (26), L̃h is a symmetric positive semidefinite
[18] matrix arise from the discretization of JTV (TV regularization functional)
and α̃ = αTV . To measure the quality of the restored images, we have used
PSNR and SSIM (Structural Similarity Index Measure). The SSIM value close
to 1 indicates that compared images have the almost same quality. In SSIM
calculation, we have used exact image as a reference image. The blurry PSNR
of Peppers, Kids and Moon images are 20.3400, 20.2170 and 26.6641 respectively.
All the information of this experiment is summarized in Table 4.
Remark
The Table 4 clearly shows that the Two-Level method is significantly reducing
the cost of time for all images. The Two-Level method is generating the almost
same PSNR and same SSIM in less CPU-Time as compared with One-Level
method. The Two-Level method also producing the almost same quality in
the deblurred images (see Figure 4). So Two-Level method is more efficient
algorithm for solving the mean curvature model.

One-Level Method Two-Level Method

Image Deblurred SSIM CPU- Deblurred SSIM CPU-
PSNR Time PSNR Time

Peppers 42.1928 0.9789 210.0256 40.7792 0.9717 129.3050

Kids 43.7508 0.8348 409.3115 43.1272 0.8270 317.6124

Moon 51.9372 0.9069 279.1825 51.6423 0.9024 223.8510

Table 4: One-Level Method vs Two-Level Method
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Peppers Image: (a) Blurry image (b) Deblurred image by One-Level
method and (c) Deblurred image by Two-Level method. Kids Image: (d) Blurry
image (e) Deblurred image by One-Level method and (f) Deblurred image by
Two-Level method. Moon Image: (g) Blurry image (h) Deblurred image by
One-Level method and (i) Deblurred image by Two-Level method.

Example 5
In this example we have used Two-Level method for image denoising problem.
Here we have used different levels of Gaussian noise and have presented a com-
parison between our proposed Two-Level method and One-Level method. For
this we have used Peppers, Cameraman and Rice images. The different aspects
of the images have shown in Figure 5. The size of each sub-figure is 512 × 512.
(a), (d) and (g) are noisy images. (b), (e) and (h) are denoised images by One-
Level method. (c), (f) and (i) are denoised images by Two-Level method. The
parameters β = 0.9 and αMC varies from 1e− 1 to 5e+ 1.
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In Two-Level method, at Level-II, we have solved the problem (26) with CG

(Conjugate Gradient) method. The L̃h is a matrix arise from the discretization
of TV regularization functional JTV and α̃ = αTV . To measure the quality of
the restored images, we have used SSIM (Structural Similarity Index Measure).
We have done SSIM calculation, between the restored images by both methods.
In Table 5, we have summarized all the information of this experiment.

Remarks

1. The Table 5 shows that the CPU-Time by Two-Level method is less than
the CPU-Time by One-Level method for all values of Nx. From Figure 5,
one can notice the quality of denoised images produce by both methods.
Both images are almost similar and most of the noise has been removed.
This can also be seen with SSIM calculations in Table 5. The SSIM value
is almost close to one for all images. This means that Two-Level method
generates same quality in less CPU-Time. So in comparison the Two-Level
method is faster than One-Level method for MC-based image denoising
Problem.

Gaussian Noise One-Level Two-Level
Image Mean (µ ), Method Method SSIM

Variance (σ2) CPU-Time CPU-Time

Peppers µ = 0.1 , 36.2887 21.1417 0.9715
σ2 = 0.015

Cameraman µ = 0.1 , 39.3454 25.0652 0.9935
σ2 = 0.1

Rice µ = 0.2 , 33.1571 20.5771 0.9402
σ2 = 0.01

Table 5: One-Level Method vs Two-Level Method

A two-level method for image denoising and image deblurring models using mean curvature regularization



22

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Peppers Image: (a) Noisy image (b) Denoised image by One-Level
method and (c) Denoised image by Two-Level method. Cameraman Image: (d)
Noisy image (e) Denoised image by One-Level method and (f) Denoised image
by Two-Level method. Rice Image: (g) Noisy image (h) Denoised image by
One-Level method and (i) Denoised image by Two-Level method.

Example 6
In this example we have used different types of noises (Poisson, Random and
Speckle) and have presented a comparison between our proposed Two-Level
method and One-Level method. Here we have also applied Two-Level method
to image denoising problem. For this we have used Kids, Brain and Moon
images. The different aspects of images have shown in Figure 6. The size of
each sub-figure is 512× 512. (a), (d) and (g) are noisy images. (b), (e) and (h)
are denoised images by One-Level method. (c), (f) and (i) are denoised images
by Two-Level method. The parameters β = 0.9 and αMC varies from 1e− 1 to
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5e+ 1.
In Two-Level method, at Level-II, we have solved the problem (26) with CG

(Conjugate Gradient) method. The L̃h is a matrix arise from the discretization
of TV regularization functional JTV and α̃ = αTV . To measure the quality of
the restored images, we have used SSIM (Structural Similarity Index Measure).
We have done SSIM calculation, between the restored images by both methods.
In Table 6, we have summarized all the information of this experiment.

Remark
The Table 6 clearly shows that the Two-Level method is significantly reducing
the cost of time for all images. The Two-Level method is generating the same
image quality (see Figure 6) in less CPU-Time as compared with One-Level
method. This can also be seen with SSIM calculations in Table 6. So Two-Level
method is robust and more efficient algorithm for solving the mean curvature
model.

One-Level Two-Level
Noise Image Method Method SSIM

CPU-Time CPU-Time

Poisson Kids 41.3401 24.8889 0.9459

Random Brain 30.0051 19.6381 0.9875

Speckle Moon 35.7097 23.6052 0.9699

Table 6: One-Level Method vs Two-Level Method
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Kids Image: (a) Noisy image (b) Denoised image by One-Level method
and (c) Denoised image by Two-Level method. Brain Image: (d) Noisy im-
age(e) Denoised image by One-Level method and (f) Denoised image by Two-
Level method. Moon Image: (g) Noisy image (h) Denoised image by One-Level
method and (i) Denoised image by Two-Level method.

7 Conclusion

A Two-Level method for mean curvature-based image denoising and image de-
blurring problems is discussed. Six examples are tested using our technique.
In Example 1 and Example 2, we have applied Two-Level method to image
deblurring problems. In both examples, we have compared the results with
One-Level method by using different kinds of images. In Example 3, we have
applied Two-Level method to image denoising problem and we have compared
our results with Multigrid method. In Example 4, we have applied Two-Level
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method to image deblurring problem and we have compared our results with
One-Level method by using different kinds of images. In Example 5, we have ap-
plied Two-Level method to image denoising problem and we have compared our
results with One-Level method by using different kinds of images and different
levels of Gaussian noise. In Example 6, we have also applied Two-Level method
to image denoising problem and we have compared our results with One-Level
method by using different kinds of images and different kinds of noises (Poisson,
Random and Speckle). All examples designate that the Two-Level method is
faster and more efficient for MC-based image denoising and image deblurring
problems. In this paper, we have developed a more efficient algorithm for solving
the mean curvature model. The proposed Two-Level algorithm is not intended
for enhancing the quality of reconstruction of the model but for finding a fast
solution. This technique can also be extended to other image reconstruction
problems.
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