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Evaluation of a hybrid pipeline 
for automated segmentation 
of solid lesions based 
on mathematical algorithms 
and deep learning
Liam Burrows1*, Ke Chen1*, Weihong Guo2, Martin Hossack4, Richard G. McWilliams3 & 
Francesco Torella4

We evaluate the accuracy of an original hybrid segmentation pipeline, combining variational and 
deep learning methods, in the segmentation of CT scans of stented aortic aneurysms, abdominal 
organs and brain lesions. The hybrid pipeline is trained on 50 aortic CT scans and tested on 10. 
Additionally, we trained and tested the hybrid pipeline on publicly available datasets of CT scans 
of abdominal organs and MR scans of brain tumours. We tested the accuracy of the hybrid pipeline 
against a gold standard (manual segmentation) and compared its performance to that of a standard 
automated segmentation method with commonly used metrics, including the DICE and JACCARD and 
volumetric similarity (VS) coefficients, and the Hausdorff Distance (HD). Results. The hybrid pipeline 
produced very accurate segmentations of the aorta, with mean DICE, JACCARD and VS coefficients 
of: 0.909, 0.837 and 0.972 in thrombus segmentation and 0.937, 0.884 and 0.970 for stent and lumen 
segmentation. It consistently outperformed the standard automated method. Similar results were 
observed when the hybrid pipeline was trained and tested on publicly available datasets, with mean 
DICE scores of: 0.832 on brain tumour segmentation, and 0.894/0.841/0.853/0.847/0.941 on left 
kidney/right kidney/spleen/aorta/liver organ segmentation.

Volumetric assessment of solid lesions has been revolutionised by modern cross-sectional imaging. Presently, 
such assessment is performed by radiologists using manual or semi-automated segmentation tools provided by 
various software packages. This process can be time-consuming, particularly when comparative analysis of serial 
scans is required. Fully automated segmentation could, potentially, greatly accelerate this process and improve its 
accuracy by removing the bias associated with operator dependency. Recent work into image segmentation has 
focused on two main types: model-driven1–3 and data-driven  methods4–6. Model-driven methods utilise math-
ematical (variational) formulations, which have been shown to provide a powerful framework for segmenting 
images. A variational method for segmentation can be composed of a number of terms, each hand crafted to 
achieve a desired result in the output; essentially image features desirable to a particular segmentation task can be 
built into the model (for example a desired segmented object may be found using a combination of a particular 
image intensity, shape, and/or location in the image), and the resultant algorithm is run independently on each 
image (for example: a computed tomography slice).

Data-driven methods have drawn attention in recent years due to the rise of deep learning and powerful 
computing hardware. Segmentation methods using deep learning methods such as convolutional neural networks 
(CNNs), are considered the gold standard, if provided with enough data.

One challenge for deep learning segmentation is the acquisition of an appropriately large dataset with ground 
truth labels, which can be both an expensive and time-consuming process. Ground truth labels are usually man-
ual segmentations of the region of interest performed by an expert. They are necessary for training deep learning 
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algorithms and for evaluating their performance. To address this problem, hybrid approaches to segmentation 
have been proposed, whereby variational methods are used to supplement manual ground truth  labels7–9, thus 
reducing the demand for manual hand drawn segmentation.

We have developed our own fully automated hybrid approach (a hybrid segmentation pipeline) for volumetric 
segmentation, which combines a recently developed variational  model10 with a deep learning algorithm. In this 
work, we tested the accuracy of this hybrid segmentation pipeline.

Methods
Reference standards. To test our pipeline, we chose contrast-enhanced computed tomography (CT) 
angiograms of patients being followed up after endovascular repair (EVAR) of abdominal aortic aneurysms 
(AAAs), as the stented aorta is an example of a solid lesion that requires serial follow-up with cross-sectional 
imaging. We chose post-EVAR CTs because serial comparison of scans is a common diagnostic problem, which 
can be time-consuming and labour intensive. The choice was also due, in part, with familiarity (three authors 
are vascular interventionists), and to the fact that our group had previously used and tested a reproducible 
manual segmentation technique on these  scans11,12. CTs were performed with a 64-slice Siemens Somatom scan-
ner (Siemens Healthcare, Frimley, UK). Manual segmentation was performed by one of the authors (MH) on 
reconstructed 2 mm thick slices with intervals of 2 mm, according to a previously described  technique11–13.

We acquired a total of 70 fully anonymised postoperative CTs, of which 50 were manually segmented to 
provide a “ground truth” for training the deep learning algorithm, and to provide useful evaluation metrics. 
The manual segmentation (“ground truth labelling”) was conducted between the lowermost renal artery and 
the aortic bifurcation, by hand, using an open source application called ITK-SNAP14. This segmentation was 
considered the reference standard.

We used a typical 60:20:20 ratio for training, validation, and testing the images: 30 sets to train the deep 
learning part, 10 sets to validate and prevent overfitting, and reserved the final 10 sets for evaluation purposes. 
Our pipeline also used 20 unlabelled datasets during the training phase, providing us with 50 volumes in total 
during training.

Additionally, we evaluated the pipeline on two publicly available datasets: The Brain Tumour Segmenta-
tion challenge (BraTS)15–17, and the Abdomen data from the Multi-Atlas Labelling Beyond the Cranial Vault 
 challenge18. The BraTS dataset contains a range of MR modalities, but for our purposes we considered only the 
fluid attenuated inversion recovery (FLAIR) volumes. All sets have been labelled by one to four raters following 
the same protocol, and their annotations approved by experienced neuro-radiologists. We segmented only the 
tumour region in each volume. We used a total of 200 volumes for the BraTS data: 120 during training, 40 for 
validation and 40 for evaluation purposes. In addition to the BraTS, we used the Abdomen dataset, a collection of 
CT scans of the abdomen in which 13 organs have been segmented by two experienced undergraduate students 
and the segmentation verified by a radiologist. We evaluated our pipeline on five of the 13 organs: the spleen, the 
right kidney, the left kidney, the liver and the aorta. The Abdomen dataset contains 30 scans; of these, we used 
15 for training, 5 for validation and 10 for evaluation.

Pipeline tests. After windowing and selecting the uppermost and lowermost slice for segmentation on 
either a post-EVAR aneurysm or a selected organ from the BraTS or Abdomen datasets, we ran our variational 
 model10. This original model uses an enhanced method of edge detection, which allows for images containing 
low contrast to be segmented effectively. Following edge detection, the region of interest is segmented based on 
image intensity and pixel location in the  image10. The variational method provided us with a good but not perfect 
initial segmentation, as some regions may contain no contrast at the boundary. Furthermore, artifacts may result 
in poor definition in certain areas.

Although it is possible to obtain accurate segmentation by using the variational method only, this is a time-
consuming process, taking up to 20 min for a large volume. Further, each new volume would require a user to 
manually insert a set of markers to indicate the region of interest. We eliminated this step entirely by using image 
registration. In practice, we ran the variational segmentation model for one 3D volume (aneurysm, tumour or 
organ), obtaining an initial segmentation. For each subsequent scan we simply superimposed this segmenta-
tion to the new scan, thereby registering the saved segmentation onto the new image, rather than re-running 
the variational method on each new image. The overlapped images were then registered by a previously trained 
 network19, which, although not entirely accurate, produced an estimate that could be fed to the CNN, to produce 
an accurate final result. This image with the initial segmentation was not excluded, and maintained a place in 
the training set. This registration step removed the need for user interaction, making the method automatic.

The final stage involved feeding each estimated segmented volume to the CNN. Unlike in commonly used 
methods of segmentations by  CNNs4,6, ours received both the scan and the estimated segmented volume (the 
output of the variational model). This provided the CNN with supplementary information to produce an accurate 
final result. The CNN was trained in a standard way using backpropagation (see appendix for details).

“Unlabelled” scans (i.e., image volumes without manual segmentation) were also used to train our pipeline. 
The estimated volume from the variational method was used here in place of the reference standard. This allowed 
us to expand our training set, exposing the network to more data without needing more time-consuming manual 
labeling. This is commonly known as a semi-supervised approach to learning (see appendix).

Data analysis and presentation. The accuracy of an automated segmentation pipeline depends on its 
ability to correctly identify all voxels, hence volume, belonging to an organ/lesion in a scan, as well as those that 
lie outside said organ/lesion. To evaluate the accuracy of our pipeline against manual segmentation we reported 
true positives (TP) as the number of voxels correctly identified by a segmentation method; false positives (FP) 
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and false negatives (FN), as the number of voxels incorrectly identified/excluded by a segmentation method; 
sensitivity as the ability of a model to correctly identify all relevant voxels or volume, and false negative rate (the 
inverse of sensitivity). We did not report true negatives, as these are largely dependent on the total number of 
voxels included in a scan (usually a whole section of the body), hence values are always very high. Continuous 
variables were expressed as median and range, as they were generally not normally distributed. Correlation was 
evaluated by graphical methods and agreement with Bland–Altman  plots20.

We also used more commonly used segmentation metrics to evaluate the pipeline, including the DICE, the 
JACCARD and the volumetric similarity (VS) coefficients, which are defined as:

Finally, the Hausdorff Distance (HD) between a segmented volume X and a ground truth segmentation GT 
is defined as:

where h(X, GT) is the directed Hausdorff distance given by:

where |x − y| is the Euclidean distance between two points, where x is in X and y is in GT.
Both DICE and JACCARD scores range between 0 (where no overlap between output and reference occurs) 

and 1 (where the output is exactly the reference segmentation). VS represents how similar the volume of the 
segmented output is to the volume of the reference segmentation. This is not influenced by the overlap: two organs 
with the exact same volume but in different positions would result in a VS score of 1. Finally, HD describes the 
largest distance from one volume to the nearest point in the other. Unlike the other metrics described here, the 
ideal result of HD is a score of 0, as the voxels of an ideal segmentation would be in the same place as those of 
the reference standard.

In order to compare our pipeline to a more traditional method of automated segmentation, we trained a deep 
learning model in a typical fashion (using only the scan as input, without the input of our variational model). 
This method is referred as “standard” in our results.

As further experiments, we trained the hybrid method with a decreasing number of data in the training set 
in order to determine if the hybrid approach can perform better than the standard method when provided with 
less data. In addition we run the hybrid method on some simplified networks with lighter architectures (see 
appendix).

Ethical approval. The study was conducted in accordance with relevant institutional guidelines and regula-
tions.

Results and discussion
Results. Aortas. Figure 1 displays a 2D example output of both approaches, showing various cross-sections 
of a 3D volume. On manual segmentation, the median (range) thrombus volume was 185 (129–531) ml, cor-
responding to 179,303 (111,336–588,375) voxels, whereas the stent and lumen volume was 59 (45–88) ml, cor-
responding to 55,717 (36,117–102,904) voxels. The accuracy of the “standard” and hybrid pipelines is reported 
in Tables 1 and 2. Notably, the hybrid method had slightly more TPs, less FPs and more FNs, resulting in higher 
DICE, JACCARD and VS for the whole aneurysm and the thrombus. Correlation and agreement between the 
measurements of the two pipelines is displayed in Fig. 2.

Abdomen/BraTS. Results of the segmentation of abdominal organs are displayed in Tables 5 and 6. For all 
organs, the hybrid pipeline was more accurate than the standard, producing more true positives and fewer false 
positives or negatives than the standard one, except for the spleen, in whose segmentation the hybrid pipeline 
resulted in a higher median number of false negatives. Similarly, the hybrid pipeline also outperformed the 
standard one in the segmentation of brain tumours (Tables 3, 4).

Further experiments. Results from further experiments can be found in the appendix. Of particular note was 
the experiment which trained networks using the hybrid approach with the three databases, but with reduced 
data. Mean DICE values for the thrombus/stent and lumen/whole aneurysm were 0.877/0.927/0.903 when 20 
supervised volumes were in the training data (instead of 30 in the original experiments), outperforming the 
standard method with full data. Similar trends were seen with the BraTS dataset with only 60 volumes (instead of 
120) giving mean DICE values of 0.761 and in the Abdomen dataset trained with 10 (instead of 20) giving mean 
DICE values of 0.867/0.807/0.841/0.823/0.922 for left kidney/right kidney/spleen/aorta/liver segmentation.

Discussion. Our results suggest that the combination of a mathematical (variational) approach with a deep 
learning algorithm may improve the accuracy of automated segmentation of organs and tumours on CT.

For general purposes, variational and deep learning segmentation have been studied widely, though limited 
work has been conducted into hybrid  approaches7–9. Recently, deep learning has become the preferred approach 
to segmentation and can produce outstanding results on a wide variety of  applications21–23. Wang et al.24,25 used 
a similar approach to ours, albeit fully based on deep learning. In their proposed method, an initial network 

DICE =
2TP

2TP + FP + FN
, JACCARD =

TP

TP + FP + FN
, VS = 1−

|FN − FP|

2TP + FP + FN
.

HD(X,GT) = max
(

h(X,GT), h(GT ,X)
)

,

h(X,GT) = max
x∈X

min
y∈GT
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Figure 1.  An example of segmentation by the two pipelines, with axial cross-sections of an aneurysm at four 
different levels. The standard pipeline is shown on the top row, with the hybrid pipeline on the bottom row. Here 
the standard pipeline is unable to accurately follow the contour of the aneurysm. The hybrid pipeline appears 
accurate.

Figure 2.  Correlation (top row) and agreement (bottom row) between the proposed hybrid approach and the 
ground truth in voxel detection for the aortic data. Units are the number of voxels.
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produces an initial segmentation; if this is not desirable a second network is used to refine the result. Our pro-
posed method is similar, but, in place of a network, the first step is a variational algorithm, which we recently 
developed specifically to improve segmentation in the presence of low  contrast10.

Use of the variational method is innovative, and it allows us greater control over the initial segmentation 
when compared with the work by Wang et al.24,25. Further, a major weakness of deep learning methods is their 
heavy reliance on large, labelled datasets. As we can rely on the variational method to provide a reasonably good 
initial segmentation, we can also use unlabelled data in the training stage, thus expanding our training dataset. 
The output segmentation should therefore be more resilient to variation.

Table 1.  Standard and Hybrid pipeline accuracy in aneurysm segmentation. Units displayed are volume 
(mm3 ), given as median (range).

Thrombus: Standard Hybrid

As measured 180,651 (138,491–590,159) 202,160 (135,817–529,732)

TP 160,358 (120,456–493,880) 174,384 (119,911–503,438)

FN 11,708 (3631–167,718) 13974 (4484–56,037)

FP 21,378 (7768–96,279) 19994 (9306–46,248)

Stent and lumen

As measured 60,190 (45,333–74,340) 61,499 (41,540–79,582)

TP 56,863 (42,893–72,441) 56,187 (40,472–74,887)

FN 2074 (220–39,972) 2726 (1504–13,532)

FP 2868 (891–8112) 2680 (1045–9293)

Whole aneurysm

As measured 247,781 (183,816–662,998) 262,863 (177,255–600,584)

TP 220,060 (167,745–566,548) 233,612 (167,327–575,127)

FN 9329 (2283–206,380) 13,762 (4582–66,201)

FP 20,447 (7345–96,450) 17,912 (7500–50,589)

Table 2.  Performance on segmentation metrics of the variational method (VM) only, and standard and hybrid 
pipeline in aneurysm segmentation. Units given as mean ± standard deviation.

Thrombus VM Standard Hybrid

DICE 0.734 ± 0.088 0.873 ± 0.094 0.909 ± 0.054

JACCARD 0.587 ± 0.107 0.784 ± 0.132 0.837 ± 0.087

VS 0.866 ± 0.117 0.927 ± 0.095 0.972 ± 0.026

HD 41.0 ± 11.4 95.7 ± 81.5 60.4 ± 67.1

TPR 0.660 ± 0.104 0.893 ± 0.150 0.922 ± 0.048

TNR 0.999 ± 0.001 0.999 ± 0.0001 0.999 ± 0.0001

Time (s) 345 ± 31.5 11.6 ± 0.258 11.6 ± 0.258

Stent and lumen

DICE 0.923 ± 0.025 0.928 ± 0.082 0.937 ± 0.028

JACCARD 0.857 ± 0.044 0.875 ± 0.123 0.884 ± 0.045

VS 0.982 ± 0.012 0.955 ± 0.086 0.970 ± 0.022

HD 56.6 ± 68.2 60.7 ± 69.9 49.0 ± 60.4

TPR 0.942 ± 0.027 0.928 ± 0.134 0.935 ± 0.044

TNR 0.999 ± 0.0001 0.999 ± 0.0001 0.999 ± 0.0001

Time (s) 332 ± 38.7 11.6 ± 0.258 11.6 ± 0.258

Whole aneurysm

DICE 0.803 ± 0.058 0.902 ± 0.093 0.933 ± 0.041

JACCARD 0.674 ± 0.079 0.831 ± 0.133 0.877 ± 0.070

VS 0.903 ± 0.081 0.935 ± 0.092 0.976 ± 0.024

HD 55.8 ± 52.4 109 ± 80.0 52.4 ± 55.5

TPR 0.740 ± 0.075 0.918 ± 0.151 0.942 ± 0.043

TNR 0.999 ± 0.001 0.999 ± 0.0001 0.999 ± 0.0001

Time (s) 678 ± 58.5 11.6 ± 0.258 11.6 ± 0.258
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Table 3.  Standard and Hybrid pipeline accuracy in brain tumour segmentation. Units displayed are volume 
(mm3 ), given as median (range).

BraTS: Standard Hybrid

As measured 133,209 (2775–915,633) 95,233 (7253–315,035)

TP 82,413 (2775–215,828) 81,508 (7249–214,419)

FN 5480 (15–80,514) 5047 (594–57,515)

FP 14,077 (0–783,250) 8625 (5–231,803)

Table 4.  Performance on segmentation metrics of the variational method (VM) only, and standard and hybrid 
pipeline in brain tumour segmentation. Units given as mean ± standard deviation.

BraTS: VM Standard Hybrid

DICE 0.746 ± 0.148 0.596 ± 0.308 0.832 ± 0.130

JACCARD 0.614 ± 0.159 0.490 ± 0.314 0.730 ± 0.170

VS 0.792 ± 0.156 0.633 ± 0.316 0.863 ± 0.132

HD 28.3 ± 18.0 49.4 ± 29.5 36.8 ± 20.5

TPR 0.637 ± 0.165 0.800 ± 0.262 0.884 ± 0.141

TNR 0.999 ± 0.001 0.998 ± 0.001 0.999 ± 0.001

Time (s) 46.6 ± 6.76 3.71 ± 0.102 3.73 ± 0.123

Table 5.  Standard and hybrid pipeline accuracy in organ segmentation. Units displayed are volume (mm3 ), 
given as median (range).

Left kidney: Standard Hybrid

As measured 155,878 (70,294–222,822) 158,221 (107,374–220,349)

TP 131,585 (66,150–191,654) 123,870 (101,112–198,947)

FN 11,081 (965–52,481) 7518 (736–55,575)

FP 19,458 (4144–54,788) 15,512 (6262–46,373)

Right kidney

As measured 197,531 (14,369–236,772) 164,799 (79,980–222,058)

TP 132,750 (0–184,937) 132,802 (69,714–188,599)

FN 17,956 (1781–124,803) 14,531 (2098–59,380)

FP 41,861 (4039–99,438) 22,718 (4145–45,210)

Spleen

As measured 185,886 (100,546–352,992) 256,998 (94,334-1,001,976)

TP 171,358 (87,343–315,736) 177,268 (82,381–397,355)

FN 7786 (1176–159,828) 9748 (5203–98,193)

FP 20,012 (3848–43,048) 14,703 (5526–876,251)

Aorta

As measured 81,256 (38,618–200,230) 86,442 (33,559–216,247)

TP 70,117 (12,504–148,501) 64,838 (28,381–197,198)

FN 17,419 (4046–121,927) 9859 (1057–73,310)

FP 15,885 (2880–51,729) 7722 (2407–37,472)

Liver

As measured 1,697,921 (1,329,048–2,333,988) 1,654,217 (1,288,193–2,237,004)

TP 1,601,916 (1,024,422–2,182,113) 1,602,463 (1,025,609–2,150,051)

FN 78,860 (28,886–202,664) 65,631 (27,699–281,215)

FP 121,130 (39,374–314,559) 86,373 (40,837–262,584)
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Aortic segmentation. Automated segmentation of the abdominal aorta has been addressed before to some suc-
cess. Early approaches include variational model-based methods such as level set methods (a mathematical way 
of representing a shape) by Loncaric et al.26 and Subasic et al.27,28, whereas Zohios et al.29 used level sets and 
geometrical methods to segment the thrombus in the presence of calcifications. These models can be very time-
consuming, and susceptible to imprecision where low contrast is present.

More recently Lalys et al.30 proposed a fast 3D model based on the snakes model by Kass et al.31, capable of 
segmenting both the lumen and thrombus but requiring some user input. While quoting a mean DICE score of 
0.87 on post operative CTA scans, use of a shape based deformable model, using image registration to achieve 
segmentation, can suffer on unusual scans. Based on a similar idea, Lareyre et al.32 proposed a fully automated 
pipeline for segmentation of AAAs, obtaining both lumen and thrombus incorporating the Chan-Vese  model2. 
Evaluation of thrombus segmentation was performed on 525 selected slices from 40 CT scans, giving a mean: 
DICE of 0.88, Jaccard of 0.80 and Sensitivity of 0.91, which performs slightly worse than our pipeline’s mean 
results of 0.91, 0.84 and 0.92 respectively.

Deep learning methods include that by Lopez et al.33, who developed a fully automatic approach for segment-
ing the thrombus on CT scans of patients treated with Endovascular Aneurysm Repair (EVAR) using a new 

Table 6.  Performance on segmentation metrics of the Variational Method (VM) only, and Standard and 
Hybrid pipeline in organ segmentation. Units given as mean ± standard deviation.

Left kidney: VM Standard Hybrid

DICE 0.872 ± 0.021 0.856 ± 0.072 0.894 ± 0.077

JACCARD 0.773 ± 0.033 0.753 ± 0.104 0.815 ± 0.114

VS 0.886 ± 0.033 0.904 ± 0.074 0.954 ± 0.041

HD 5.89 ± 6.31 9.70 ± 3.04 7.47 ± 8.52

TPR 0.784 ± 0.042 0.867 ± 0.149 0.904 ± 0.114

TNR 0.999 ± 0.0001 0.999 ± 0.0001 0.999 ± 0.0001

Time (s) 26.7 ± 3.56 2.12 ± 0.160 2.13 ± 0.143

Right kidney

DICE 0.802 ± 0.107 0.721 ± 0.265 0.841 ± 0.078

JACCARD 0.680 ± 0.132 0.608 ± 0.239 0.732 ± 0.109

VS 0.832 ± 0.067 0.818 ± 0.226 0.893 ± 0.073

HD 12.0 ± 11.5 23.8 ± 18.6 12.3 ± 6.58

TPR 0.725 ± 0.073 0.797 ± 0.293 0.839 ± 0.163

TNR 0.999 ± 0.004 0.999 ± 0.001 0.999 ± 0.0001

Time (s) 30.5 ± 4.09 2.06 ± 0.093 2.05 ± 0.069

Spleen

DICE 0.890 ± 0.034 0.886 ± 0.065 0.853 ± 0.224

JACCARD 0.804 ± 0.051 0.801 ± 0.098 0.785 ± 0.239

VS 0.923 ± 0.031 0.922 ± 0.069 0.896 ± 0.236

HD 6.57 ± 5.08 14.2 ± 7.30 40.0 ± 52.4

TPR 0.828 ± 0.025 0.892 ± 0.130 0.922 ± 0.066

TNR 0.999 ± 0.001 0.999 ± 0.0001 0.999 ± 0.0001

Time (s) 29.7 ± 4.09 2.06 ± 0.010 2.08 ± 0.115

Aorta

DICE 0.731 ± 0.113 0.721 ± 0.169 0.847 ± 0.124

JACCARD 0.585 ± 0.121 0.587 ± 0.198 0.750 ± 0.160

VS 0.769 ± 0.077 0.879 ± 0.102 0.936 ± 0.067

HD 6.71 ± 9.20 38.4 ± 24.7 13.7 ± 14.9

TPR 0.646 ± 0.060 0.696 ± 0.200 0.821 ± 0.162

TNR 0.999 ± 0.003 0.999 ± 0.001 0.999 ± 0.0001

Time 30.9 ± 4.71 2.04 ± 0.085 2.05 ± 0.092

Liver

DICE 0.928 ± 0.027 0.930 ± 0.032 0.941 ± 0.028

JACCARD 0.867 ± 0.045 0.870 ± 0.055 0.890 ± 0.049

VS 0.966 ± 0.017 0.970 ± 0.034 0.975 ± 0.034

HD 13.8 ± 8.81 24.4 ± 15.2 11.8 ± 7.96

TPR 0.911 ± 0.015 0.947 ± 0.031 0.949 ± 0.037

TNR 0.996 ± 0.004 0.999 ± 0.0001 0.999 ± 0.0001

Time (s) 31.0 ± 3.29 2.04 ± 0.091 2.03 ± 0.092
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network architecture based on the proposed work by Xie et al.34. In a follow up  work35, the authors extended 
their work to segment 3D volumes, maintaining the fully automatic aspect. Notably, segmentation was per-
formed both on preoperative and postoperative CT scans, with a mean DICE score of 0.89 and Jaccard of 0.81 
on segmentation of the whole aneurysm on postoperative scans. Lu et al.36 proposed a 3D pipeline using a V-Net 
 architecture37 combined with an ellipse fitting to estimate the maximum diameter of the aorta. Both contrast 
and non-contrast enhanced scans were used, quoting DICE scores of 0.89 and 0.90 on preoperative scans with 
and without contrast respectively. More recently the work by Caradu et al.38 proposed a deep learning algorithm 
trained to segment preoperative infrarenal aortic aneurysm CT volumes effectively, with a mean DICE score of 
0.95 on 100 scans. Adam et al.39introduced an automated method named Augmented Radiology for Vascular 
Aneurysm (ARVA), trained on a large dataset of 489 CT volumes (a combination of both preoperative and post-
operative scans), dedicated to segmenting the entire aorta from the ascending portion to the iliac arteries, with 
a mean DICE score of 0.95 on preoperative scans and 0.93 on postoperative scans, thus comparable to ours, but 
achieved with fewer training data. This study nevertheless confirms that the use of an initial variational method 
can reduce the need for larger datasets.

BraTS. The BraTS dataset is a widely used imaging dataset in the  literature40–42. All scans include several MR 
sequences, including T1, post-contrast T1-weighted, T2-weighted and T2-FLAIR. Labels are also provided for 
the whole tumour, tumour core, and enhancing tumour regions. In order to simplify the experiments, we only 
segmented the T2-FLAIR sequence, which is commonly used in brain imaging. The BraTS dataset draws a 
fair amount of attention: for example, Jiang et al.40 developed a two-stage model using a U-Net4, utilising all 
sequences and using a post-processing thresholding technique. If the enhancing tumour region was less than a 
hand-tuned threshold, then the region was replaced with necrosis, which may cause significant improvement 
to the results . An average DICE of 0.888 for tumours was reported. Zhao et al.41 made use of a pipeline involv-
ing a CNN and a number of expedients including different methods of sampling, patch-based training and 
teacher-student models, resulting in a reported mean DICE score of 0.883. Ali et al.42 exploited multiple CNNs 
trained separately, with final predictions based on ensembling the probability maps from each CNN, with a 
mean DICE of 0.906 for the whole tumour. These works developed specific pipelines with a particular focus on 
brain tumour segmentation, making use of all available sequences. Our proposed pipeline, which was not brain-
specific, did not produce quite as good results but was only based on T2 FLAIR sequences. It is possible that its 
accuracy would have been greater if more sequences had been used. It is also possible that its performance on 
MR-acquired images and/or brain images may not as good as that on CT-acquired images and/or aortic ones.

Abdominal organs. Gibson et al.43 proposed a new network architecture for the purpose of multi-organ seg-
mentation in abdominal CT scans. A mean DICE of 0.93, 0.95, 0.95 was reported for the left kidney, the spleen 
and liver respectively. Another method was developed by Cai et al.44 who developed a novel shape learning net-
work architecture, building an expected shape for the organ into the model. A mean DICE score of 0.96 and 0.94 
was reported for the spleen and liver respectively. Weston et al.45 implemented a deep learning method aimed at 
segmenting the complete abdomen and pelvis using a locally collected dataset. A variation on the 3D UNet was 
implemented, and a mean DICE score of 0.93, 0.93, 0.88, 0.95 was reported for the kidneys(combined), spleen, 
aorta and liver respectively. These methods were developed specifically for abdominal segmentation. Although 
our pipeline was not quite as accurate, the quantitative results demonstrate the advantage of the hybrid pipeline 
over a conventional approach.

A summary of the discussed methods from the literature and the proposed method can be found in Table 7.
The main limitation of our study is the limited testing of the hybrid pipeline. It is possible that its accuracy 

may not be reproducible when applied to other organs, to scans performed with different settings (for example: 
inferior resolution), to patients with less well-defined boundary conditions between body structures on CT or 
MR, or in presence of artefacts. Notably, all the above issues would also interfere with manual segmentation, 
which is still considered the gold standard. More extensive training/testing of the pipeline would be necessary 
to clarify its generalisability.

Conclusion
Our fully automatic segmentation pipeline combining elements from both mathematical modelling and artificial 
intelligence has been shown to be an accurate method for segmenting aortic 3D volumes and performed well 
also when applied to MR images of brain tumours and abdominal organs.

We plan to test and refine the pipeline further on similar but not identical clinical tasks, such as segmenta-
tion of preoperative CT scans of the aorta. This could be achieved by using the current pipeline as a baseline 
and potentially modifying it to suit preoperative scans. Our segmentation pipeline provides the groundwork for 
developing a method for serial comparison of images, potentially reducing operator time and bias.

Ultimately, further testing on larger datasets will be necessary before attempting clinical experimentation 
and translation.
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Data availability
The BraTS dataset is publically available from https:// www. med. upenn. edu/ cbica/ brats 2020/ data. html. The 
Abdomen datset is publically available from https:// www. synap se. org/# Synap se: syn31 93805/ wiki/ 217789. The 
aortic data that support the findings of this study are available from Royal Liverpool and Broadgreen University 
Hospitals but restrictions apply to the availability of these data, which were used under license for the current 
study, and so are not publicly available.

Received: 7 March 2022; Accepted: 5 August 2022

References
 1. Mumford, D. B. & Shah, J. Optimal approximations by piecewise smooth functions and associated variational problems. Commun. 

Pure Appl. Math. 25, 25 (1989).
 2. Chan, T. F. & Vese, L. A. Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001).
 3. Cai, X., Chan, R. & Zeng, T. A two-stage image segmentation method using a convex variant of the mumford-shah model and 

thresholding. SIAM J. Imag. Sci. 6, 368–390 (2013).
 4. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Confer-

ence on Medical Image Computing and Computer-Assisted Intervention, 234–241 (Springer, 2015).
 5. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L. Deeplab: Semantic image segmentation with deep convolu-

tional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2017).
 6. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder-decoder with atrous separable convolution for semantic 

image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), 801–818 (2018).
 7. Tang, M., Valipour, S., Zhang, Z., Cobzas, D. & Jagersand, M. A deep level set method for image segmentation. In Deep Learning 

in Medical Image Analysis and Multimodal Learning for Clinical Decision Support 126–134 (Springer, 2017).

Table 7.  Recently published segmentation experiments on cross-sectional images of solid organs or lesions.

Region Data DICE JACCARD

Aortic

Lalys et al.30
Whole Aneurysm 92 preop CT scans 0.86 ± 0.06 0.82 ± 0.07

15 postop CT scans 0.87 ± 0.03 0.83 ± 0.04

Lareyre et al.32
Lumen 40 preop CT scans 0.93 ± 0.04 0.87 ± 0.07

Thrombus 0.88 ± 0.12 0.80 ± 0.15

Lopez et al.35
Thrombus 12 preop CT scans 0.84 ± 0.07 0.73 ± 0.10

Thrombus 16 postop CT scans 0.89 ± 0.04 0.81 ± 0.07

Lu et al.36 Whole Aneurysm 57 preop CT scans 0.89 ± 0.05 –

Caradu et al.38 Whole Aneurysm 100 preop CT scans 0.95 ± 0.01 0.91 ± 0.02

Adam et al.39 Thoracic Aorta, Whole Aneurysm, Iliac Sections 22 postop CT scans 0.93 –

Proposed

Thrombus 10 postop CT scans 0.91 ± 0.05 0.84 ± 0.09

Stent and Lumen 0.94 ± 0.03 0.88 ± 0.05

Whole Aneurysm 0.93 ± 0.04 0.88 ± 0.07

BraTS

Jiang et al.40 Whole tumour 125 MRI scans 0.89 –

Zhao et al.41 0.88 –

Ali et al.42 0.91 –

Proposed 40 MRI scans 0.83 ± 0.13 0.73 ± 0.17

Abdomen

Gibson et al.43

Left Kidney 90 CT scans 0.93 –

Spleen 0.95 –

Liver 0.95 –

Cai et al.44
Spleen 10 CT scans 0.96 ± 0.01 –

Liver 32 CT scans 0.94 ± 0.03 –

Weston et al.45

Left and right kidneys 18 CT scans 0.93 –

Spleen 0.93 –

Aorta 0.88 –

Liver 0.95 –

Proposed

Left kidney 10 CT scans 0.89 ± 0.08 0.82 ± 0.11

Right kidney 0.84 ± 0.08 0.73 ± 0.11

Spleen 0.85 ± 0.22 0.79 ± 0.24

Aorta 0.85 ± 0.12 0.75 ± 0.16

Liver 0.94 ± 0.02 0.89 ± 0.05

https://www.med.upenn.edu/cbica/brats2020/data.html
https://www.synapse.org/#Synapse:syn3193805/wiki/217789


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14216  | https://doi.org/10.1038/s41598-022-18173-0

www.nature.com/scientificreports/

 8. Chen, X. et al. Learning active contour models for medical image segmentation. In Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 11632–11640 (2019).

 9. Burrows, L., Chen, K. & Torella, F. On new convolutional neural network based algorithms for selective segmentation of images. 
In Annual Conference on Medical Image Understanding and Analysis, 93–104 (Springer, 2020).

 10. Burrows, L., Guo, W., Chen, K. & Torella, F. Reproducible kernel hilbert space based global and local image segmentation. Inverse 
Probl. Imaging 15, 1 (2021).

 11. Shaikh, U. et al. Changes in aortic volumes following endovascular sealing of abdominal aortic aneurysms with the nellix endo-
prosthesis. J. Endovasc. Ther. 22, 881–885 (2015).

 12. Yafawi, A. et al. Aneurysm growth after endovascular sealing of abdominal aortic aneurysms (evas) with the nellix endoprosthesis. 
Eur. J. Vasc. Endovasc. Surg. 60, 671–676 (2020).

 13. Yafawi, A. et al. Stent frame movement following endovascular aneurysm sealing in the abdominal aorta. J. Endovasc. Ther. 26, 
54–61 (2019).

 14. Yushkevich, P. A. et al. User-guided 3d active contour segmentation of anatomical structures: Significantly improved efficiency 
and reliability. Neuroimage 31, 1116–1128 (2006).

 15. Menze, B. H. et al. The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34, 1993–2024 
(2014).

 16. Bakas, S. et al. Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. 
Sci. Data 4, 1–13 (2017).

 17. Bakas, S. et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall 
survival prediction in the brats challenge. arXiv: 1811. 02629 (arXiv preprint) (2018).

 18. Landman, B. et al. Segmentation outside the cranial vault challenge. https:// repo- prod. prod. sageb ase. org/ repo/ v1/ doi/ locate? id= 
syn31 93805 & type= ENTITY. https:// doi. org/ 10. 7303/ SYN31 93805 (2015).

 19. Theljani, A. & Chen, K. An unsupervised deep learning method for diffeomorphic mono-and multi-modal image registration. In 
Annual Conference on Medical Image Understanding and Analysis, 317–326 (Springer, 2019).

 20. Bland, J. M. & Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327, 
307–310 (1986).

 21. Soltaninejad, M. et al. Supervised learning based multimodal mri brain tumour segmentation using texture features from super-
voxels. Comput. Methods Programs Biomed. 157, 69–84 (2018).

 22. Chen, C. et al. Deep learning for cardiac image segmentation: A review. Front. Cardiovasc. Med. 25, 25 (2020).
 23. Hesamian, M. H., Jia, W., He, X. & Kennedy, P. Deep learning techniques for medical image segmentation: Achievements and 

challenges. J. Digit. Imaging 32, 582–596 (2019).
 24. Wang, G. et al. Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. 

Imaging 37, 1562–1573 (2018).
 25. Wang, G. et al. Deepigeos: A deep interactive geodesic framework for medical image segmentation. IEEE Trans. Pattern Anal. 

Mach. Intell. 41, 1559–1572 (2018).
 26. Loncaric, S., Subasic, M. & Sorantin, E. 3-d deformable model for aortic aneurysm segmentation from ct images. In Proceedings 

of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No. 00CH37143), vol. 1, 
398–401 (IEEE, 2000).

 27. Subasic, M., Loncaric, S. & Sorantin, E. Region-based deformable model for aortic wall segmentation. In 3rd International Sym-
posium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the, vol. 2, 731–735 (IEEE, 2003).

 28. Subašić, M., Lončarić, S. & Sorantin, E. Model-based quantitative aaa image analysis using a priori knowledge. Comput. Methods 
Programs Biomed. 80, 103–114 (2005).

 29. Zohios, C., Kossioris, G. & Papaharilaou, Y. Geometrical methods for level set based abdominal aortic aneurysm thrombus and 
outer wall 2d image segmentation. Comput. Methods Programs Biomed. 107, 202–217 (2012).

 30. Lalys, F., Yan, V., Kaladji, A., Lucas, A. & Esneault, S. Generic thrombus segmentation from pre-and post-operative cta. Int. J. 
Comput. Assist. Radiol. Surg. 12, 1501–1510 (2017).

 31. Kass, M., Witkin, A. & Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1, 321–331 (1988).
 32. Lareyre, F. et al. A fully automated pipeline for mining abdominal aortic aneurysm using image segmentation. Sci. Rep. 9, 1–14 

(2019).
 33. López-Linares, K. et al. Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative cta images 

using deep convolutional neural networks. Med. Image Anal. 46, 202–214 (2018).
 34. Xie, S. & Tu, Z. Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision, 

1395–1403 (2015).
 35. López-Linares, K., García, I., García-Familiar, A., Macía, I. & Ballester, M. A. G. 3d convolutional neural network for abdominal 

aortic aneurysm segmentation. arXiv: 1903. 00879 (arXiv preprint) (2019).
 36. Lu, J.-T. et al. Deepaaa: clinically applicable and generalizable detection of abdominal aortic aneurysm using deep learning. In 

International Conference on Medical Image Computing and Computer-Assisted Intervention, 723–731 (Springer, 2019).
 37. Milletari, F., Navab, N. & Ahmadi, S.-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. 

In 2016 Fourth International Conference on 3D Vision (3DV), 565–571 (IEEE, 2016).
 38. Caradu, C., Spampinato, B., Vrancianu, A. M., Bérard, X. & Ducasse, E. Fully automatic volume segmentation of infrarenal 

abdominal aortic aneurysm computed tomography images with deep learning approaches versus physician controlled manual 
segmentation. J. Vasc. Surg. 74, 246–256 (2021).

 39. Adam, C. et al. Pre-surgical and post-surgical aortic aneurysm maximum diameter measurement: Full automation by artificial 
intelligence. Eur. J. Vasc. Endovasc. Surg. 62, 869–877 (2021).

 40. Jiang, Z., Ding, C., Liu, M. & Tao, D. Two-stage cascaded u-net: 1st place solution to brats challenge 2019 segmentation task. In 
International MICCAI Brainlesion Workshop, 231–241 (Springer, 2019).

 41. Zhao, Y.-X., Zhang, Y.-M. & Liu, C.-L. Bag of tricks for 3d mri brain tumor segmentation. In International MICCAI Brainlesion 
Workshop, 210–220 (Springer, 2019).

 42. Ali, M., Gilani, S. O., Waris, A., Zafar, K. & Jamil, M. Brain tumour image segmentation using deep networks. IEEE Access 8, 
153589–153598 (2020).

 43. Gibson, E. et al. Automatic multi-organ segmentation on abdominal ct with dense v-networks. IEEE Trans. Med. Imaging 37, 
1822–1834 (2018).

 44. Cai, J. et al. End-to-end adversarial shape learning for abdomen organ deep segmentation. In International Workshop on Machine 
Learning in Medical Imaging, 124–132 (Springer, 2019).

 45. Weston, A. D. et al. Complete abdomen and pelvis segmentation using u-net variant architecture. Med. Phys. 47, 5609–5618 (2020).

Author contributions
F.T., L.B., W.G. and K.C. contributed to the methodology. L.B. conducted the experiments. M.H. provided the 
manual segmentation for the aortic data. F.T. analysed the results. All authors reviewed the manuscript.

http://arxiv.org/abs/1811.02629
https://repo-prod.prod.sagebase.org/repo/v1/doi/locate?id=syn3193805&type=ENTITY
https://repo-prod.prod.sagebase.org/repo/v1/doi/locate?id=syn3193805&type=ENTITY
https://doi.org/10.7303/SYN3193805
http://arxiv.org/abs/1903.00879


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14216  | https://doi.org/10.1038/s41598-022-18173-0

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 18173-0.

Correspondence and requests for materials should be addressed to L.B. or K.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-18173-0
https://doi.org/10.1038/s41598-022-18173-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Evaluation of a hybrid pipeline for automated segmentation of solid lesions based on mathematical algorithms and deep learning
	Methods
	Reference standards. 
	Pipeline tests. 
	Data analysis and presentation. 
	Ethical approval. 

	Results and discussion
	Results. 
	Aortas. 
	AbdomenBraTS. 
	Further experiments. 

	Discussion. 
	Aortic segmentation. 
	BraTS. 
	Abdominal organs. 


	Conclusion
	References


