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We model nematic liquid crystal configurations inside three-dimensional prisms, with a polygonal cross-
section and Dirichlet boundary conditions on all prism surfaces. We work in a reduced Landau-de Gennes
framework, and the Dirichlet conditions on the top and bottom surfaces are special in the sense that they are
critical points of the reduced Landau-de Gennes energy on the polygonal cross-section. The choice of the
boundary conditions allows us to make a direct correspondence between the three-dimensional Landau-
de Gennes critical points and pathways on the two-dimensional Landau-de Gennes solution landscape
on the polygonal cross-section. We explore this concept by means of asymptotic analysis and numerical
examples, with emphasis on a cuboid and a hexagonal prism, focusing on three-dimensional multistability
tailored by two-dimensional solution landscapes.
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1. Introduction

Nematic liquid crystals (NLCs) are classical examples of mesophases that combine the fluidity of liquids
with the ordering of crystalline solids [Gennes & Prost, 1995]. NLCs are anisotropic materials in the
sense that the constituent rod-like or asymmetric molecules tend to align along some locally preferred
directions, referred to as nematic directors. The directors are distinguished material directions, so that
NLCs have direction-dependent physical, mechanical and optical properties [Gennes & Prost, 1995;
Lagerwall & Scalia, 2012]. The directionality of NLCs make them the working material of choice for a
range of electro-optic devices e.g. display devices, sensors, thermometers, photonics and more recently,
NLCs are also used for artificial intelligence, e.g. in micro-robotics and sensors for bacterial systems
[Jiang et al., 2021; Yao et al., 2022].
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Mathematics can play a crucial role for designer NLC-based materials technologies. One aspect is to
accurately predict the observable NLC configurations in prototype settings, which mimic contemporary
experiments and applications. Secondly, we want to design NLC configurations with desired properties
or structural characteristics i.e. we want to propose mathematical algorithms for stabilizing a priori
prescribed NLC configurations. Our work in this paper is a forward step in the second direction. In a
batch of previous papers [Han et al., 2020, 2021], we carefully study NLC equilibria on two-dimensional
(2D) polygons subject to tangent boundary conditions, for which the nematic director is tangent to the
polygon edges. We work in the powerful Landau-de Gennes (LdG) framework, which was one of the
reasons for awarding Pierre de Gennes the Nobel Prize for physics in 1991 [Gennes & Prost, 1995;
Mottram & Newton, 2014; Wang et al., 2021]. In the LdG framework, the NLC state is described by the
LdG Q-tensor order parameter which has five degrees of freedom in three-dimensional (3D) settings.
The degrees of freedom contain information about the nematic directors and the degree of nematic order
about the directors. In 2D settings, we often work in the reduced LdG framework (rLdG), for which
we can employ the rLdG order parameter with only two degrees of freedom to account for the nematic
director in the plane and to account for the degree of order about the planar director [Han et al., 2020];
full details are given in the next section.

In Han et al. (2020), we study the rLdG model on 2D polygons. We study how the rLdG equilibria
(which are minimizers of the rLdG free energy and model the physically observable configurations)
depend on the polygon edge length. For example, on a square domain, the unique rLdG energy minimizer
is the Well Order Reconstruction Solution (WORS), with tangent boundary conditions on the square
edges, for small edge lengths comparable with the nematic correlation length [Kralj & Majumdar, 2014a].
The WORS is distinguished by two defect lines along the two square diagonals, and the defect lines
partition the square domain into four sub-domains such that the nematic director is constant in each
sub-domain. As the edge length increases, the WORS loses stability but exists as an rLdG critical point
for all edge lengths. For large square domains, the authors report two classes of rLdG equilibria—the
stable diagonal (D) solutions for which the director is aligned along one of the square diagonals, and
the rotated (R) solutions for which the director rotates by π radians between a pair of parallel square
edges. There are two D and four R solutions, and the D solutions have lower rLdG energy than the R
states. The interested reader is referred to Tsakonas et al. (2007); Luo et al. (2012) for more details.
In Yin et al. (2020), the authors compute non-energy-minimizing saddle points of the rLdG energy; they
label the saddle points in terms of their index or the number of negative eigenvalues of the Hessian of
the rLdG energy about the saddle point. The authors compute the index of the WORS as a function
of the square edge length, being index-0 for small edge lengths and the index increases as the edge
length increases. The authors also report other saddle points, e.g. the BD-state with a pair of line defects
along a pair of opposite square edges, and the T-state with a line defect along one square diagonal. The
unstable saddle points connect the stable D and R solutions i.e. we can find pathways between the D
and R solutions, mediated by the high-index unstable saddle points e.g. WORS, BD and T saddle points.
These pathways are of relevance while studying the switching mechanisms or non-equilibrium dynamics
of these toy polygon systems.

We perform analogous studies for a 2D hexagon and pentagon in Han et al. (2020, 2021). For small
edge lengths (comparable with the nematic correlation length), these polygons support the unique Ring
solution, with a single central +1-defect consistent with the tangent boundary conditions. As the edge
length increases, the Ring-solution loses stability and on a K-polygon with K edges, there are at least
K(K−1)

2 stable rLdG equilibria (local minimizers of the rLdG free energy) for large polygons. These
large domain equilibria are distinguished by the locations of the so-called ‘splay’ vertices, such that the
director has a splay-like profile near the vertex. The stable rLdG equilibria have two splay vertices, under
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some physically relevant assumptions and hence, we obtain K(K−1)
2 equilibria for the different choices

of the splay vertices. On a hexagon, we obtain three distinct classes of rLdG equilibria, Para, Meta and
Ortho, and the Para states have the lowest energy for which the splay vertices are the furthest. On a
pentagon, there are two classes of rLdG equilibria, the Meta and the Ortho, and we observe analogues
of the unstable BD-state for all K-polygons with K ≥ 4. There is no analogue of the WORS for K �= 4.

In this paper, we study the rLdG model or critical points of the rLdG energy on three-dimensional
prisms, with a polygon cross-section and tangent boundary conditions on the lateral surfaces. We fix
the boundary conditions or impose Dirichlet boundary conditions on the top and bottom surfaces,
and these boundary conditions are rLdG critical points on the two-dimensional polygon cross-section,
consistent with the tangent boundary conditions. Tangent boundary conditions and/or stable high-
resolution nematic textures on the top and bottom prism surfaces could potentially be experimentally
realized by rubbing techniques and/or photoalignment and photopatterning techniques [Chigrinov, 2013].
The first question concerns the relevance of the rLdG model in a three-dimensional setting i.e. how can
we constrain the nematic director (or the leading eigenvector of the LdG Q-order parameter) to be in
the cross-section plane or to be two-dimensional, in the prism interior, for a 3D setting? The boundary
conditions only ensure planar nematic directors on the boundary surfaces and not necessarily in the
interior of the prism. One potential scenario is that we study NLCs with negative dielectric anisotropy
inside the three-dimensional prisms, and apply an electric field in the transverse direction or normal
direction to the polygon cross-section. The negative dielectric anisotropy coerces the NLC director to be
orthogonal to the applied electric field. The NLC director will then relax into the plane of the polygon
and we conjecture that the director remains in the plane of the polygon, after the field is removed. The
second question concerns the choice of the boundary conditions—can we realistically fix the boundary
conditions on the top and bottom surfaces to be specified rLdG critical points on the polygon cross-
section? This is unclear but it is possible that for NLC materials with negative dielectric anisotropy, the
system will relax into stable rLdG equilibria on the top and bottom surfaces when the applied electric
field is removed i.e. the boundary conditions would correspond to stable rLdG equilibria on the polygon
cross-section subject to tangent boundary conditions on the polygon edges as studied in Han et al. (2020,
2021). This would correspond to the D and R solutions on a cuboid, or the Para-solutions on a prism
with a hexagonal cross-section, etc.

Labelling the Dirichlet boundary conditions on the bottom (top) prism surfaces by Pb (Pt), we
investigate the following question—can a 3D rLdG critical point for which the nematic director is planar,
but depends on all three spatial coordinates, be constructed from a pathway between Pb and Pt on the
2D solution landscape? In other words, can we use pathways on the 2D rLdG solution landscapes on
polygons to construct 3D rLdG critical points on prisms, with a polygon cross-section. The answer is
affirmative, but not every 2D pathway corresponds to a 3D rLdG critical point and equally, there are 3D
rLdG critical points that cannot be constructed from 2D pathways on 2D solution landscapes. There are
hidden, subtle compatibility conditions that determine the configuration and the index of the 3D rLdG
critical point. For example, we choose Pb and Pt to be two D solutions on a cuboid, and we observe
the unstable WORS-texture in the cuboid interior, which would not be possible in 2D settings. We also
work with examples for which Pb and Pt are higher energy or unstable rLdG critical points on the 2D
prism cross-section, and in these cases, we observe multistability in certain geometrical regimes i.e. when
the prism cross-sectional dimensions and the prism height are sufficiently large. Multistability refers to
multiple stable 3D equilibria on prisms, all of which maybe relevant for experiments, and these multiple
equilibria are distinguished by defect lines running across the prism interior (along which the nematic
director cannot be defined). We propose that one could use optical tweezers to manipulate the defect
lines and induce transitions between the multiple equilibria, akin to the experimental situations reported
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in Škarabot et al. (2014). We hope that the examples in this paper can be informative for future studies
of this challenging problem.

In Section 2, we describe the theoretical framework in detail. In Section 3, we focus on the cuboid and
use a combination of asymptotic and numerical methods to study 3D rLdG critical points to show how
multistability can be tailored by the square edge length and prism height. We use different combinations
of (Pb, Pt) to illustrate the effects of the boundary conditions on the solution landscapes. In Section 4,
we generalize these results to a hexagonal prism and conclude with some perspectives in Section 5.

2. Theoretical framework

The LdG theory is one of the most powerful continuum theories for nematic NLCs in the literature
(sections 2.1, 2.3 and 3.1 in Gennes & Prost (1995)). It describes the nematic state by the LdG Q-
tensor order parameter, which is a macroscopic measure of the material anisotropy or directionality.

Mathematically speaking, the Q-tensor is a symmetric traceless 3 × 3 matrix, Q =
3∑

i=1
λiei ⊗ ei,

where the eigenvectors, ei, describe the preferred material directions or preferred directions of averaged
molecular alignment, and the corresponding eigenvalues, λi, measure the degree of orientational order
about the corresponding ei. The nematic phase is said to be (i) isotropic if Q = 0, (ii) uniaxial if Q has a
pair of degenerate non-zero eigenvalues (and one distinguished eigendirection with the non-degenerate
eigenvalue) and (iii) biaxial if Q has three distinct eigenvalues (section 2.1.2 in Gennes & Prost (1995)).

In the absence of surface energies, a particularly simple form of the LdG energy is given by

ILdG[Q] :=
∫

Ω

L

2
|∇Q|2 + fB (Q) dV, (2.1)

where the elastic energy density and the bulk energy density are given by

|∇Q|2 :=
3∑

i,j=1

Q2
ij,x + Q2

ij,y + Q2
ij,z, fB (Q) := A

2
trQ2 − B

3
trQ3 + C

4

(
trQ2

)2
, (2.2)

Ω ⊂ R
3 is the three-dimensional domain, tr is the notation for trace, the variable A = α(T −

T∗) is a rescaled temperature; α, L, B, C are positive material-dependent constants and T∗ is the
characteristic nematic supercooling temperature. We employ the one-constant approximation for the
elastic energy density, for which all spatial deformations are equally energetically expensive, so that
|∇Q|2 = ∑3

i,j=1 Q2
ij,x + Q2

ij,y + Q2
ij,z. The rescaled temperature A has three characteristic values: (i)

A = 0, below which the isotropic phase Q = 0 loses stability, (ii) the nematic-isotropic transition
temperature, A = B2/27C, at which fB is minimized by the isotropic phase and a continuum of
uniaxial states with s = s+ = B/3C and n arbitrary and (iii) the nematic superheating temperature,
A = B2/24C above which the isotropic state is the unique critical point of fB. For a given low
temperature A < 0 ( temperature T < T∗), the minima of the bulk potential, fB, belong to the set

N :=
{

Q ∈ M3×3 : Qij = Qji, Qii = 0, Q = s+(n ⊗ n − I/3)
}

, where

s+ = B + √
B2 − 24AC

4C
(2.3)
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and n ∈ S2 arbitrary. In other words, the vacuum manifold N is a continuum of uniaxial Q-tensors with
constant eigenvalues determined by s+ in (2.3).

The physically observable configurations are modelled by local or global energy minimizers in an
appropriately defined admissible space. The non energy-minimizing critical points of (2.1) are equally
important, since they connect the energy minimizers on the solution landscape, and often dictate the
non-equilibrium dynamics and selection of the energy minimizer for multistable systems. To define the
degree of instability, we introduce the Morse index. The Morse index of a saddle point of a energy
functional is the number of negative eigenvalues of the Hessian of the energy functional about the critical
point [Milnor et al., 1969]. Stable critical points have index-0 i.e. they have no unstable eigendirections,
whereas unstable index-k saddle points have k-unstable eigendirections in the solution landscape.

To this end, we take our 3D domain to be VK = EK × [−λh, λh], which is a prism of height 2λh
and a regular polygonal cross-section EK , with edge length λ. The parameter, h, is the ratio of the height
to the width of VK . When K = 4, the square domain E4 = [−λ, λ]2 with four vertices at w1 = (λ, λ),
w2 = (−λ, λ), w3 = (−λ, −λ) and w4 = (λ, −λ), otherwise EK is a K-regular polygon with K edges,
centred at the origin with vertices at wk = (λcos(2π(k − 1)/K), λsin(2π(k − 1)/K)), k = 1, ..., K.

We non-dimensionalize the system as, (x̄, ȳ, z̄) = ( x
λ

, y
λ

, z
λh

)
,

F0[Q] :=
∫

V̄K

(
1

2

∣∣∣∇x̄ȳQ
∣∣∣2 + 1

2h2

∣∣Q,z̄

∣∣2 + λ2

L
fB (Q)

)
dV, (2.4)

where VK := EK × [−1, 1], with unit polygonal cross-section in xy-plane, EK , and ∇x̄ȳQ = (Qx̄, Qȳ)
T .

In the following text, the bar is omitted for convenience.
Following the work in Han et al. (2020, 2021), we set B = 0.64×104N/m2, and C = 0.35×104N/m2

[Mottram & Newton, 2014] and work at a fixed low temperature, A = −B2/(3C). In Canevari et al.
(2017), the authors show that for A = −B2/3C, the LdG free energy admits a family of critical points,
Qc, with a fixed eigenvector ẑ and a constant eigenvalue −B/3C associated with ẑ, and hence, Qc has
only two degrees of freedom. In other words, for this special temperature, A = −B2/3C, the LdG free
energy has a family of critical points on polygonal prisms, VK , defined by

Qc = P − B

3C
(2ẑ ⊗ ẑ − x̂ ⊗ x̂ − ŷ ⊗ ŷ), (2.5)

where P is a symmetric traceless 2 × 2 matrix (the entries in the third row and column are zero), and P
is a critical point of the rLdG energy defined below:

F[P] :=
∫

VK

1

2

∣∣∣∇xyP
∣∣∣2 + 1

2h2

∣∣P,z̄

∣∣2 + λ̄2

2C

(
− B2

4C
trP2 + C

4

(
trP2

)2
)

dV, (2.6)

and λ̄2 = 2Cλ2

L . The energy (2.6) is simply the LdG energy (2.4) of the specific branch of critical points
in (2.5). We refer to the P-eigenvector with the largest positive eigenvalue as the ‘nematic director’ in
the plane. We drop the bar over λ for the rest of the manuscript.

This manuscript focuses on the relationship between LdG critical points on 3D polygonal prisms, VK ,
and solution landscapes for the rLdG model on regular polygons, EK , and hence, we use the temperature,
A = −B2/3C, as employed in our previous 2D work in Han et al. (2020, 2021), which also allows for
direct comparisons between the results in 2D and 3D. In fact, the critical points of the rLdG energy on
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FIG. 1. The profiles of 2D solutions of (2.8)D and T , on square with λ2 = 30, Meta on pentagon with λ2 = 30, Para and Tri on
hexagon with λ2 = 600. The vector (cos(arctan(P12/P11)/2), sin(arctan(P12/P11)/2)) is the nematic director, and is plotted in

terms of the white lines and the order parameter
√

P2
11 + P2

12 is represented by colour from blue to red.

EK are simply z-invariant critical points of (2.6) on VK . The authors have extensively studied solution
landscapes of the rLdG model on regular polygons, EK , in a batch of papers [Han et al., 2020, 2021],
in terms of the rLdG tensors, P-matrices in (2.5). In this reduced description, there are two degrees of
freedom to describe the nematic director in the plane of the polygon and the degree of order about this
direction, respectively. In Han et al. (2020, 2021), the authors compute pathways between competing
energy minimizers on polygons, and the pathway is mediated by saddle points or unstable critical points
of the rLdG energy. It is interesting to investigate whether these 2D pathways can be used to construct
critical points of the 3D LdG energy in (2.1), on 3D prisms with a polygonal cross-section i.e. if we can
stack the different 2D critical points on a 2D pathway to construct a 3D critical point on a 3D domain
and if there are algorithms for using the 2D critical points as building blocks for self-assembling 3D
structures? In fact, not every 2D pathway can be used to construct a 3D critical point of (2.1) and this
raises interesting questions about the compatibility of 2D critical points for 3D studies.

The Dirichlet boundary conditions on the top and bottom surfaces of VK are taken to be

P = Pb(x, y) on z = −1; P = Pt(x, y) on z = 1, (2.7)

where Pt and Pb are solutions of

ΔxyP11 = λ2
(

P2
11 + P2

12 − B2

4C2

)
P11,

ΔxyP12 = λ2
(

P2
11 + P2

12 − B2

4C2

)
P12 (2.8)

on EK , where Δxy = (·),xx+(·),yy, i.e. Pt and Pb are critical points of the rLdG energy on the cross-section
EK , which could be identified with the end-points of a 2D pathway on the rLdG solution landscape on
EK . For example, for V4, Pt and Pb could be D or T solutions as reported in our previous work [Yin et
al., 2020], and Meta on pentagon (V5), and Para and Tri states on hexagon (V6) in Han et al. (2020) (see
Fig. 1). It is noticeable that the solutions with natural boundary condition on the top and bottom surfaces
as studied in Canevari et al. (2020) do not necessarily satisfy the Dirichlet boundary conditions above.

We impose a Dirichlet boundary condition, Pl, on the lateral surfaces of VK :

P (x, y, z) = Pl (x, y) for (x, y) ∈ ∂EK , z ∈ [−1, 1] (2.9)
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However, there is a necessary mismatch at the corners/vertices. We define the distance between a point
on the lateral surface (w, z) and the vertical edges (wk, z), for any z ∈ [−1, 1] as

dist (w) = min{||w − wk||2, k = 1, ..., K}, (w, z) on ∂EK × [−1, 1].

On a cuboid, we define the tangential Dirichlet boundary condition P = Pl on lateral surfaces, away
from the vertical edges to be

P11l (w) =
{

− B
2C , dist (w) > ε, w on x = ±1

B
2C , dist (w) > ε, w on y = ±1,

P12l (w) = 0, w on ∂E4, (2.10)

where B/C is the value of s+ in (2.3) for A = −B2/(3C), 0 < ε 
 1 is the size of mismatch region. For
any other prism VK , the same principle applies for defining the tangential Dirichlet boundary condition
on lateral surfaces, and we omit it here. This lateral boundary condition is compatible with any stacks of
2D solutions i.e. solutions of (2.8).

We take the admissible space to be

A0 := {(P11, P12) ∈ W1,2(VK ;R2) : P = Pl, ∂EK × [−1, 1], P = Pt, on z = 1, P = Pb, on z = −1},
(2.11)

and the corresponding critical points, P(x, y, z) are solutions of the corresponding Euler–Lagrange
equations:

ΔxyP11 + 1

h2
ΔzP11 = λ2

(
P2

11 + P2
12 − B2

4C2

)
P11,

ΔxyP12 + 1

h2
ΔzP12 = λ2

(
P2

11 + P2
12 − B2

4C2

)
P12, (2.12)

where Δz = (·),zz. In what follows, we identify the defect set with the nodal set of solutions of (2.12)
above. This is the set of no planar order i.e. for points in the nodal set of P, the nematic director is
not defined in the (x, y)-plane. This definition is widely employed for rLdG approaches as in Han et al.
(2020), Han et al. (2021).

In the next proposition, we prove some basic existence and uniqueness results for critical points of
(2.6) in A0, before studying specific examples on cuboids and other generic prisms.

PROPOSITION 1. For any h and λ, there exist solutions of the Euler–Lagrange equations in (2.12), in the
admissible space A0 in (2.11). For h < h0 = C

2Bλ
or λ < λ0 = C

2Bh , the solution is unique, where h and
λ are dimensionless/rescaled measures of the prism height and cross-section dimension.

Proof. Our proof is analogous to Theorem 2.2 in Bauman et al. (2012). Consider the LdG energy (2.6)
in terms of the two independent components, P11 and P12 of the reduced P-tensor,

J[P11, P12] :=
∫

VK

fel(P11, P12) + fb(P11, P12) dV, (2.13)
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where

fel(P11, P12) := |∇xyP11|2 + |∇xyP12|2 + 1

h2 |P11,z|2 + 1

h2 |P12,z|2 (2.14)

and

fb(P) := λ2

2C

(
− B2

4C
|P|2 + C

4
|P|4

)
(2.15)

are the elastic and thermotropic bulk energy densities, respectively. We prove the existence of minimizers
of J in the admissible class A0; the minimizers are necessarily solutions of (2.12). Since the boundary
conditions are piece-wise of class C1, the admissible space A0 is non-empty. J is coercive in A0 since
|∇P|2 is coercive. Finally, it suffices to note that J is weakly lower semi-continuous on W1,2(VK), which
follows immediately from the fact that fel is quadratic and convex in ∇(P11, P12). Thus, the direct method
in the calculus of variations yields the existence of a global minimizer of the functional J in the space
of finite-energy vectors, (P11, P12) ∈ W1,2(VK ;R2), satisfying the boundary conditions (2.9) and (2.7)
(theorem 2 in section 8.2.2 of Evans (1949)). The semilinear elliptic system (2.12) is simply the system
of Euler–Lagrange equations associated with J, and the minimizers for J are C∞(VK)∩C2(VK) solutions
of (2.12). The minimizing P-tensor is an exact solution of the LdG Euler–Lagrange equations (2.12).

We adapt the uniqueness criterion argument in lemma 8.2 of Lamy (2014). For any B, C > 0 and h >

0, if (P11, P12) ∈ A0 is a critical point of the rLdG energy (2.6), then P is bounded. This is an immediate
consequence of the maximum principle. We replace the operator ∇ with Lh(.) = (∇xy(.),

1
h (.),z)

T and

following the calculations in the Lemma B.3. of Lamy (2014), we have |P|2 � B2

2C2 . We define the convex

set S = {(P11, P12) ∈ A0, |P|2 � B2

2C2 }.
Then, we can prove that the functional E is strictly convex on S. For any P, P̄ ∈ S, we have

E

(
P + P̄

2

)
− 1

2
E(P) − 1

2
E(P̄)

=
∫

VK

−1

8
|∇xy(P − P̄)|2 − 1

8h2
|(P − P̄),z|2dV +

∫
VK

fb

(
P̄ + P

2

)
− 1

2
fb(P) − 1

2
fb(P̄)dV ,

(2.16)

where fb(P) is the bulk energy density in (2.15). For any point (x̂, ŷ, ẑ) ∈ VK , we have

(P1i − P̄1i)(x̂, ŷ, ẑ) =
∫ ẑ

−1
(P1i − P̄1i),z(x̂, ŷ, z)dz, i = 1, 2. (2.17)

Using the Cauchy–Schwarz inequality, we have

(P1i − P̄1i)
2(x̂, ŷ, ẑ) =

(∫ ẑ

−1
(P1i − P̄1i),z(x̂, ŷ, z)dz

)2

(2.18)

� |ẑ + 1|
∫ ẑ

−1
(P1i − P̄1i)

2
,z(x̂, ŷ, z)dz � 2

∫ 1

−1
(P1i − P̄1i)

2
,z(x̂, ŷ, z)dz. (2.19)
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Integrating both sides of the inequality on VK , we have

∫
VK

(P1i − P̄1i)
2(x̂, ŷ, ẑ)dV̂ ≤ 2

∫ 1

−1

∫
VK

(P1i − P̄1i)
2
,z(x, y, z)dVdẑ = 4

∫
VK

(P1i − P̄1i)
2
,z(x, y, z)dV ,

(2.20)

i.e. the Poincare inequality

‖P − P̄‖2
L2(VK)

� 4‖(P − P̄),z‖2
L2(VK)

, (2.21)

where we define the L2-norm as ‖P‖L2(VK) =
(∫

VK
|P|2dV

) 1
2
. The rationale of exchanging the order of

integration in (2.20) follows from the density of C∞
0 (VK) in H1

0(VK), i.e. we can assume P1i − P̄1i ∈
C∞

0 (VK) [Majumdar & Zarnescu, 2010].
We compute an upper bound for the second integral in (2.16).

∣∣∣∣∣fb
(

P + P̄
2

)
− 1

2
fb(P) − 1

2
fb(P̄)

∣∣∣∣∣ ≤ λ2B2

8C2

⎛
⎝−

∣∣∣∣∣P + P̄
2

∣∣∣∣∣
2

+ 1

2
|P|2 + 1

2
|P̄|2

⎞
⎠

+ λ2

8

⎛
⎝−

∣∣∣∣∣P + P̄
2

∣∣∣∣∣
4

+ 1

2
|P|4 + 1

2
|P̄|4

⎞
⎠

≤ λ2B2

32C
|P − P̄|2 + λ2

8

⎛
⎝−

∣∣∣∣∣P + P̄
2

∣∣∣∣∣
4

+ 1

2
|P|4 + 1

2
|P̄|4

⎞
⎠

Since |P|2|P̄|2 − 〈
P, P̄

〉2 � 0, |P|2, |P̄|2 ≤ B2

2C2 ,
〈
P, P̄

〉 ≤ |P||P̄| ≤ B2

2C2 , we have

−
∣∣∣∣∣P + P̄

2

∣∣∣∣∣
4

+ 1

2
|P|4 + 1

2
|P̄|4

= 7(|P|2 + |P̄|2)|P − P̄|2 + 10
〈
P, P̄

〉 |P − P̄|2 − 16(|P|2|P̄|2 − 〈
P, P̄

〉2
)

16

≤ 7(|P|2 + |P̄|2)|P − P̄|2 + 10
〈
P, P̄

〉 |P − P̄|2
16

≤ 3B2

4C2
|P − P̄|2.
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Subsequently,

∣∣∣∣∣fb
(

P + P̄
2

)
− 1

2
fb(P) − 1

2
fb(P̄)

∣∣∣∣∣ � B2λ2

8C2 |P − P̄|2. (2.22)

Using the Poincare inequality in (2.21), we have

∫
VK

fb

(
P + P̄

2

)
− 1

2
fb(P) − 1

2
fb(P̄)dV � B2λ2

8C2 ‖P − P̄‖2
L2(VK)

� B2λ2

2C2 ‖(P − P̄),z‖2
L2(VK)

. (2.23)

Thus, for h < h0 = 2C
Bλ

or λ < λ0 = 2C
Bh , the energy functional in (2.6) is strictly convex on S and has a

unique critical point, since ∀P, P̄ ∈ S, and P �= P̄,

E

(
P + P̄

2

)
− 1

2
E(P) − 1

2
E(P̄) � − 1

8h2 ‖(P − P̄),z‖2
L2(VK)

+ B2λ2

2C2 ‖(P − P̄),z‖2
L2(VK)

< 0. (2.24)

�
When λ is small enough, the unique solution of the Euler–Lagrange equation (2.8) on EK is a given

P∗ [Han et al., 2020]. The boundary conditions on the top and bottom surfaces are solutions of (2.8)
on EK , by choice. Hence, there is only one choice for Pt and Pb, defined by Pt = Pb = P∗, for λ

sufficiently small. The z-invariant solution, P(x, y, z) = P∗(x, y), is also a solution of the 3D Euler–
Lagrange equations, (2.12), on VK . From Proposition 1, the LdG energy has a unique critical point (or
solution of (2.12)) on VK , for λ sufficiently small, and hence, this unique solution is the z-invariant 2D
solution, defined by P(x, y, z) = P∗(x, y). We work with λ large enough so that we can have Pt �= Pb

and study mixed 3D critical points i.e. solutions of (2.12) on VK with conflicting boundary conditions
on z = ±1.

3. The Cuboid, V4

We consider two illustrative examples in this section, for two different choices of
(
Pb, Pt

)
, using a

combination of analytic and numerical methods. For the first example, we take (Pb, Pt) = (D1, D2),
for which the leading eigenvector of P/ nematic director is almost aligned along one of the diagonals
of the square cross-section, E4. For λ large enough, D1 and D2 are stable z-independent critical points
of (2.6) on E4, subject to the boundary conditions, Pl on the square edges. For the second example,
we take (Pb, Pt) = (T1, T2), where there are line defects with Pb, Pt ≈ 0 on y = x (see Fig. 1). The
two-dimensional D states are always index-0 or stable, and the T-states are always unstable, with Morse
index-3 for λ2 = 30, and necessarily have higher energy than the D solutions. These two examples
illustrate the dependence of 3D mixed critical points on the choices of Pt and Pb, which is interesting
since Pt and Pb could be experimentally tunable states or boundary effects.

3.1 Choices of Pb and Pt: D1 and D2

3.1.1 Small h. Let Pb = D1 and Pt = D2, so that the nematic director (leading eigenvector of P) is
aligned along y = x for D1, and along y = −x for D2. We first note that the P-tensors associated with
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D1 and D2 are solutions of (2.8) and are related by

(PD1
11 , PD1

12 ) = (PD2
11 , −PD2

12 ). (3.1)

The D1 and D2-states have the reflection symmetry about the square diagonals, x = y and x = −y, i.e.

(PDi
11(y, x), PDi

12(y, x)) = (−PDi
11(x, y), PDi

12(x, y)), (3.2)

(PDi
11(−y, −x), PDi

12(−y, −x)) = (−PDi
11(x, y), PDi

12(x, y)), i = 1, 2. (3.3)

For h small enough, the solution of the Euler–Lagrange equation in (2.12) is unique, as in Proposition
1. If (P11(x, y, z), P12(x, y, z)) is a solution of (2.12), then so are (P11(x, y, −z), −P12(x, y, −z)) (from
(3.1)), (−P11(y, x, z), P12(y, x, z)) (from (3.2)), and (−P11(−y, −x, z), P12(−y, −x, z)) (from (3.3)).
Subsequently, on the middle cross-section of V4, (x, y, 0) for (x, y) ∈ E4, since (P11(x, y, z), P12(x, y, z)) =
(P11(x, y, −z), −P12(x, y, −z)), we have P12(x, y, 0) = −P12(x, y, 0) ≡ 0, (x, y) ∈ E4. Since
P11(x, y, z) = −P11(y, x, z), we have P11(x, x, z) = −P11(x, x, z) = 0. Since P11(x, y, z) =
−P11(−y, −x, z), we have P11(x, −x, z) = −P11(x, −x, z) = 0 for any z. Hence, for h small enough,
we have P(x, x, 0) = P(x, −x, 0) = 0, with two line defects along the square cross-section on
z = 0. This is strongly reminiscent of the 2D solution of (2.8), known as the WORS (Well Order
Reconstruction Solution) [Kralj & Majumdar, 2014a] and henceforth, we refer to this mixed critical
point as D1 − WORS − D2 in the rest of the paper. For h small enough, this is the unique and hence,
globally stable critical point of (2.6).

For more general cases, in the h → 0 limit, we can take a regular perturbation expansion of P11 and
P12 in powers of h as shown below:

P11(x, y, z) = P0
11(x, y, z) + hf 0(x, y, z) + O(h2) (3.4)

P12(x, y, z) = P0
12(x, y, z) + hg0(x, y, z) + O(h2) (3.5)

for some functions f 0, g0 which vanish on the boundary. Substituting (3.4) and (3.5] into the Euler–
Lagrange equations (2.12), and multiplying the equations by h2, we obtain

h2ΔxyP11 + ΔzP11 = h2λ2
(

P2
11 + P2

12 − B2

4C2

)
P11, (3.6)

h2ΔxyP12 + ΔzP12 = h2λ2
(

P2
11 + P2

12 − B2

4C2

)
P12. (3.7)

The leading partial differential equations for P0
11, P0

12 are given by

ΔzP
0
11 = 0, ΔzP

0
12, (3.8)

which admit the unique solution:

P0
11 = 1 − z

2
Pb

11 + 1 + z

2
Pt

11, P0
12 = 1 − z

2
Pb

12 + 1 + z

2
Pt

12. (3.9)
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FIG. 2. Left: the profiles for D1 − WORS − D2, the solution of the Euler–Lagrange equation (3.8), (P11, P12) with h =
0.1 and λ2 = 30. The colour represents order parameter

√
P2

11 + P2
12 and the white lines represent the nematic director

(cos(arctan(P12/P11)/2), sin(arctan(P12/P11)/2)). Right: the profiles of the difference between the limiting solution as h → 0,
(P0

11, P0
12), the solution of (3.8) and the numerical solution on the left. Let (d11, d12) = (P11, P12) − (P0

11, P0
12). The white lines

represent the vector field, (cos(arctan(d12/d11)/2), sin(arctan(d12/d11)/2)) and the colour bar denotes the quantity,
√

d2
11 + d2

12.

The white lines are drawn when
√

d2
11 + d2

12 ≥ 4e − 3.

These expressions hold for all VK and Pb, Pt. Up to O(h), the governing partial differential equations for
f , g are given by

Δzf = 0, Δzg = 0, (3.10)

i.e. f = g ≡ 0, which means the first order corrections are zero. The small difference between the limiting
solution, (P0

11, P0
12), and the unique solution, (P11, P12), of the Euler–Lagrange equation for h = 0.1, in

Fig. 2, indicates that the limiting solution is a good approximation of the unique solution.

3.1.2 The existence of D1 − WORS − D2 for all h.

PROPOSITION 2. Let λ be large enough so that D1 and D2 are solutions of (2.8), and stable z-independent
critical points of (2.6) on a square domain, E4, subject to the boundary conditions, P = Pl on the square
edges. With Pt = PD2 and Pb = PD1, D1 − WORS − D2 is a critical point, (Ps

11, Ps
12), of the energy

functional (2.6) on the cuboid, V4, in the admissible space A0 in (2.11), for all h > 0.

Proof. We follow the approach in Canevari et al. (2017). Consider a quadrant of the square domain,
denoted by Ωq:

Ωq := {(x, y) ∈ E4 : −x < y < x, 0 < x < 1}. (3.11)
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The following boundary conditions on Ωq × [−1, 0] are consistent with the boundary conditions (2.9)
and (2.7), on the whole of V4:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P = Pl, (x, y) ∈ ∂Ωq ∩ ∂E4, z ∈ [−1, 0];

P = PD1, (x, y) ∈ Ωq, z = −1;

P11 = ∂νP12 = 0, (x, y) ∈ {∂Ωq ∩ {y = ±x}} × [−1, 0];

P12 = P11,z = 0, (x, y) ∈ Ωq, z = 0,

(3.12)

where ∂ν represents the outward normal derivative in xy-plane. The symmetry properties of D1 in (3.2)
and (3.3) imply that D1 satisfies the third boundary condition in (3.12). We minimize the associated LdG
energy functional in Ωq, given by

J[P11, P12] =
∫

Ωq×[−1,0]
fel(P11, P12) + fb(P11, P12) dV, (3.13)

in the admissible space

Aq := {(P11, P12) ∈ W1,2(Ωq × [−1, 0];R2) : (3.12) is satisfied}. (3.14)

As the boundary conditions on ∂V4 are continuous and piecewise of class C1, the admissible space, Aq, is
non-empty. Furthermore, J is coercive on Aq and convex in the gradient ∇(P11, P12). Thus, by the direct
method in the calculus of variations, we are guaranteed the existence of a minimizer (P∗

11, P∗
12) ∈ Aq.

We define a function Ps
11 ∈ V4 by even reflection of P∗

11 ∈ Ωq × [−1, 0] about the cross-section z = 0,
and odd reflection of P∗

11 ∈ Ωq × [−1, 1] about the square diagonals. We do the same for the function
Ps

12 ∈ V4 defined by odd reflections of P∗
12 about cross-section z = 0, and even reflections of P∗

12 about
the square diagonals. The reflections across the mid-plane, z = 0, gives us the D2 state for z > 0, as
required. By repeating the arguments in lemmas 2 and 3 of Dang et al. (1992), and theorem 3 of Dang et
al. (1992), the constructed configuration, (Ps

11, Ps
12), is a weak solution of the associated Euler–Lagrange

equation on V4. One can verify that (Ps
11, Ps

12) is a critical point of J on A0 with the desired properties.
On the middle cross-section z = 0, P12(x, y, 0) ≡ 0 and P11(x, ±x, 0) = 0, so that we have two

line-defects with P = 0 on the square diagonals y = ±x, and we have a WORS-like configuration on
z = 0, justifying the label, D1 − WORS − D2, for this state. �

3.1.3 Instability for large h. In this section, the LdG energy functional is rescaled with the scaling
x̂ = √

2C/Lx, ŷ = √
2C/Ly, ẑ = √

2C/Lz/λ,

Fλh[P] :=
∫

V4λh

(
1

2

∣∣∣∇xyP
∣∣∣2 + 1

2λ2

∣∣P,z

∣∣2 +
(

− B2

8C2 trP2 + 1

8
(trP2)2

))
dV, (3.15)
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where V4λh = E4λ × [−h, h] and E4λ = [−λ, λ]2. The associated second variation of the rLdG energy
at a critical point pc = (Pc

11, Pc
12), is given by

∂2Fλh[η] =
∫

V4λh

|∇xyη|2 + 1

λ2 |η,z|2 +
(

|pc|2 − B2

4C2

)
|η|2 + 2

(
pc · η

)2 dV, (3.16)

The stability of Pc is measured by the quantity

μλ(h) := inf
η∈W1,2

0 (V4λh)\{0}
∂2Fλh[η]∫

V4λh
η2

. (3.17)

For 3D critical points of the rLdG energy in (3.15), pc, with ∂zpc(x, y, ±h) = 0, we can compute an
explicit upper bound for the second variation of the rLdG energy about pc as shown below. The critical
point of ∂2Fλh[η] is a solution of

Δxyη + 1

λ2
Δzη =

(
|pc|2 − B2

4C2

)
η + 2(p · η)p. (3.18)

We set η∗ = pc,z, which vanishes on ∂V4λh by assumption, and satisfies (3.18), since pc satisfies the
Euler–Lagrange equations

ΔxyP11 + 1

λ2
ΔzP11 =

(
P2

11 + P2
12 − B2

4C2

)
P11,

ΔxyP12 + 1

λ2 ΔzP12 =
(

P2
11 + P2

12 − B2

4C2

)
P12. (3.19)

Subsequently, the integral of the first and second terms in (3.16) is

∫
V4λh

|∇xyη
∗|2 + 1

λ2
|η∗

,z|2dV = −
(∫

V4λh

η∗Δxyη
∗ + 1

λ2
η∗Δzη

∗dV

)

=
∫

V4λh

−pc,z(Δxypc),z − 1

λ2 pc,z(Δzpc),zdV

=
∫

V4λh

−pc,z

((
|pc|2 − B2

4C2

)
pc

)
,z

dV

=
∫

V4λh

−2(pc · pc,z)
2 −

(
|pc|2 − B2

4C2

)
|pc,z|2dV . (3.20)

Substituting the above equations into (3.16), we have

∂2Fλh[η∗] = 0. (3.21)
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FIG. 3. (a) The plot of ||P,z||2L2(V4λh)
vs. h, where P is the critical point of the rLdG energy corresponding to (3.15), D1−WORS−D2

with λ2 = 30. In (b) and (c), we plot the scalar order parameter, Distance =
√

|P12(x, y, z)2 + 3(P11(x, y, z)2 − P11(x, y, 0)2)|, of
the numerically computed D1 − WORS − D2 state, at (0, 0, z) and (0, λ/2, z), for different values of h.

Therefore, for any h and λ, 3D critical points, pc, of (3.15), which satisfy pc,z(x, y, ±h) = 0, are not stable
since the smallest eigenvalue of the corresponding Hessian of the rLdG energy is non-positive, i.e.

μλ(h) ≤ 0. (3.22)

In the following text, we consider the stability of the D1 − WORS − D2 critical point on V4, for
large h. As shown in Fig. 3(a), the integral of |∂zpc|2 on V4λh is bounded, so we have ∂zpc → 0
as h → ∞, on the top and bottom surfaces and subsequently μ(∞) ≤ 0. In Fig. 3(b), the order√

P12(x, y, z)2 + 3(P11(x, y, z)2 − P11(x, y, 0)) drops to zero at (x, y, z) = (0, 0, 0), consistent with the
WORS-like state with P12(x, y, 0) ≡ 0 on z = 0. We observe in Fig. 3(b) and (c) that as h increases,
the effect of the middle WORS slice remains confined to a thin transition layer confined to a small
neighbourhood of z = 0, while the D1 − WORS − D2 solution approaches a block-like structure outside
this transition layer. Namely, the solution is effectively the Pb = D1 state for z ∈ [−h, a), a transition
state mediated by a WORS-type profile for z ∈ [a, b] followed by the Pt = D2 state for z ∈ (b, h], for
some fixed a, b independent of h, as h → ∞. We also note that the D1 and D2 states, with no interior
defects, are more energetically favourable and more stable than the middle WORS-slice, which has two
diagonal defect lines.

In order to use the proof for the instability of the 2D WORS (for λ large) in Schatzman (1995) and
Canevari et al. (2017), we rotate the square by 45 deg, so that P̄ is related to P by

(
P̄11 P̄12
P̄12 −P̄11

)
(r) = SP(STr)ST =

( −P12 P11
P11 P12

)
(STr), (3.23)

where S is the corresponding rotation matrix. Hence, the condition P12(x, y, 0) ≡ 0, for (x, y) ∈
[−λ, λ]2 proved in Proposition 2 translates to P̄11(x, y, 0) = 0, (x, y) ∈ S[−λ, λ]2, and the condition
P11(x, ±x, z) ≡ 0, x ∈ [−λ, λ] proved in Proposition 2 translates to P̄12(x, 0, z) ≡ 0, for x ∈
[−√

2λ,
√

2λ], z ∈ [−h, h] and P̄12(0, y, z) ≡ 0 y ∈ [−√
2λ,

√
2λ], z ∈ [−h, h]. In the following remark,

we omit the bars over P11 and P12 for brevity.

REMARK 1. Assuming
√|P11(x, y, σ)2 + 3(P12(x, y, σ)2 − P12(x, y, 0)2)| ∼ O(σ ) and xyP12,zz(x, y, 0) ≤

0, for λ � 1/ε2 with small constant ε, if the D1−WORS−D2 critical point has the multi-block structure
as described above, and h is large enough, it is strictly unstable in the sense that the Hessian of the rLdG
energy (2.6) about this critical point has a negative eigenvalue.
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This is not a rigorous proof, but rather a set of heuristic arguments based on numerical estimates.
However, it gives a clear physical interpretation of the origin of the instability of the D1 − WORS − D2
critical point—an instability localized near the centre of the cuboid that stems from the instability of the
WORS on a square domain, for λ large enough and for h large enough.

The critical point is D1 − WORS − D2, labelled by p = (P11, P12), which is a solution of (3.19).
Consider the second variation of the rLdG energy in (3.16) and we construct a perturbation η = (η1, η2),
such that the associated second variation is negative. We work with the perturbation

η(x, y, z) = η̃(x, y)φ(z), (3.24)

where φ ∈ C∞
0 (R) is a cut-off function satisfying |φ′| ≤ C/σ which is equal to 1 over [−σ/2, σ/2]

and vanishes outside [−σ , σ ], where σ is less than the thickness of jump layer, the region with s < 1
2 in

Fig. 3.
The 2D perturbation η̃(x, y) is an unstable direction for a 2D WORS solution p̃ = (P̃11, P̃12), which

is reported in lemma 3.4 of Schatzman (1995). The components, P̃11 and P̃12, satisfy

P̃11 ≡ 0, on SE4λ (3.25)

ΔxyP̃12 =
(

P̃2
12 − B2

4C2

)
P̃12 on SE4λ. (3.26)

As for the perturbation η̃ in Schatzman (1995), we assume

η̃(x, y) =
{

ψ(x/n)P∞
12,y(|x|, y), if |x| ≥ ε,

P∞
12,y(ε, y) + P∞

12,xy(ε, y) x2−ε2

2ε
, if |x| ≤ ε.

(3.27)

where P∞ satisfies

P∞
11 ≡ 0, on R

2 (3.28)

ΔxyP∞
12 =

(
P∞

122 − B2

4C2

)
P∞

12 on R
2. (3.29)

ψ ∈ C∞
0 (R) is a cut-off function, which is equal to 1 over [−1, 1] and vanishes outside [−2, 2], and n is

a large positive number.
We substitute the perturbation in (3.24), into the second variation (3.16),

∂2Fλh[η] =
∫

SV4λh

|∇xyη̃|2φ2 + 1

λ2 (η̃φ′)2 +
(

P2
11 + 3P2

12 − B2

4C2

)
(η̃φ)2dV (3.30)

=
∫

SV4λh

(|∇xyη̃|2 +
(

3P̃2
12 − B2

4C2

)
η̃2)φ2dV (3.31)

+
∫

SV4λh

1

λ2 (η̃φ′)2 +
(

P2
11 + 3(P2

12 − P̃2
12)

)
η̃2φ2dV (3.32)
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=
∫

SV4λh

(|∇xyη̃|2 +
(

3P̃2
12 − B2

4C2

)
η̃2)φ2dV (3.33)

+
∫

SV4λh

1

λ2 (η̃φ′)2 +
(

P2
11 + 3(P2

12 − P12(x, y, 0)2
)

η̃2φ2dV (3.34)

+
∫

SV4λh

3
(

P12(x, y, 0)2 − P̃2
12

)
η̃2φ2dV , (3.35)

where SV4λh is the 3D cuboid domain after rotation. According to the stability analysis of 2D WORS in
lemma 5.5 of Canevari et al. (2017) and lemma 3.4 of Schatzman (1995), the order of the integral in (3.33)
is O(−εσ ) + O(σn−1). From corollary 2.9 in Schatzman (1995), we infer that for all μ ∈ (0, λ1) (λ1 is

the smallest positive eigenvalue of the spectrum of H, where HP∞
12 = −ΔxyP∞

12 +
(

P∞
122 − B2

4C2

)
P∞

12),

there exists a constant c(μ), such that

|P∞
12,y(x, y)| ≤ c(μ)e−|y|μ, |P∞

12,xy(x, y)| ≤ c(μ)min(e−|x|μ, e−|y|μ). (3.36)

Hence ∫
SE4λ

η̃2dxdy =
∫

SE4λ∩|x|≤ε

η̃2dxdy +
∫

SE4λ∩|x|≥ε

η̃2dxdy (3.37)

≤
∫

SE4λ∩|x|≤ε

(
P∞

12,y(ε, y) + P∞
12,xy(ε, y)

x2 − ε2

2ε

)2

dxdy +
∫

SE4λ∩|x|≥ε

ψ2(x/n)P∞2

12,y(|x|, y)dxdy (3.38)

≤
∫ λ

−λ

4c2(μ)e−2|y|μ2εdy +
∫ 2n

−2n

∫ λ

−λ

c2(μ)e−2|y|μdydx (3.39)

=O(n), (3.40)

where SE4λ is the E4λ after rotation. The first term in (3.34) is

∫
SV4λh

1

λ2
(η̃φ′)2dV = 1

λ2

∫
SE4λ

η̃2dxdy
∫

[−h,h]
(φ′)2dz = O(nσ−1λ−2). (3.41)

The most drastic changes of the nematic order, along the z-axis, happen on (x, y) = (0, 0). From our
numerical result (see Fig. 3(b and c)), when h is large enough, the term

√
|P11(x, y, z)2 + 3(P12(x, y, z)2 − P12(x, y, 0)2)|

is almost linear in |z| near the centre and thus can be controlled by O(σ 2). The second term in (3.34) can
be controlled by O(σ 3n).

Let us define Ωqλ := SE4λ ∩ {x ≥ 0} ∩ {y ≥ 0}. The 2D WORS solution P̃12(x, y) satisfies

− ΔxyP̃12 +
(

P̃2
12 − B2

4C2

)
P̃2

12 = 0 on Ωqλ (3.42)

P̃12 = B

2C
on ∂Ωqλ\{x = 0}\{y = 0}, (3.43)
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FIG. 4. The plot of P12,zz on SE4λThe area of domain Ωqλ is framed with yellow lines.

P̃12 = 0 on x = 0 and y = 0. (3.44)

According to Fig. 4, for D-WORS-D, P12,zz(x, y, 0) ≤ 0 on Ωq. Hence P12(x, y, 0) is a subsolution

of (3.42). Then p1 := max{P12(x, y, 0), P̃12(x, y)} is a subsolution of (3.42). The constant B/2C is a
supersolution of (3.42). Therefore, by the classical sub- and supersolution method (theorem 1 p.508 in
Evans (2022)), there exists a solution p2 of (3.42) such that p1 ≤ p2 ≤ B/2C. Due to the maximum
principle, we have P̃12(x, y) ≥ 0 on Ωqλ, and subsequently p2 ≥ 0. According to lemma 4.2 in Canevari
et al. (2017), there is a unique non-negative solution of (3.42). Thus, we deduce P12(x, y, 0) ≤ p1 ≤ p2 =
P̃12(x, y), i.e. P2

12(x, y, 0) − P̃2
12(x, y) ≤ 0 on Ωqλ. One can repeat the arguments above on the remaining

three quadrants to deduce that P2
12(x, y, 0) − P̃2

12(x, y) ≤ 0 on SE4λ.
Finally, we have

∂2Fλh[η] ≤ O(−εσ + σn−1 + nσ−1λ−2 + σ 3n) (3.45)

and the second variation is negative ∂2Fλh[η] ≤ 0 when n � ε−1, σ �
√

ε/n � ε, λ �
√

n/εσ−1 �
n/ε � ε−2, i.e. σ is small enough; h and λ are large enough.

In Fig. 5, we plot the bifurcation diagram for solutions of (2.12) in a prism V4 v.s. the height h.
For h small enough, the D1 − WORS − D2 critical point is the unique stable state. As h increases, the
D1−WORS−D2 loses stability and bifurcates into two critical points: D1−BD1−D2 and D1−BD2−D2.
The BD states are unstable z-independent critical points of (2.6) on V4, subject to P = Pl on the lateral
surfaces. This is an interesting observation that we can observe unstable 2D states, such as WORS and
BD (which are expected to be difficult to observe in purely 2D situations), by imposing stable boundary
conditions, D1 and D2, on the top and bottom surfaces of the cuboid or V4. BD1 and BD2 are two BD
critical points, related by a rotation, and are energetically degenerate. The smallest eigenvalue of the
Hessian of the rLdG energy evaluated at the two distinct states, D1 − BD1 − D2 and D1 − BD2 − D2,
are the same. An analogous bifurcation diagram has been reported in Canevari et al. (2020); Shi et al.
(2023), with Neumann boundary conditions on the top and bottom surfaces of V4. The D1 − BD1 − D2
and D1 − BD2 − D2 critical points also have a multi-block structure, with the BD-states confined to a
small layer localized near z = 0.

As h → ∞, according to Remark 1, the smallest eigenvalue of the D1 − WORS − D2 critical point
converges to a negative constant (see Fig. 5). The eigenvector corresponding to this negative eigenvalue
changes the WORS-type configuration on z = 0, to a BD-type critical point on z = 0. The D1−BD−D2
has a zero smallest eigenvalue for the associated Hessian of the rLdG energy in (2.6) (see Fig. 5). The
intuitive explanation is that the eigenvector corresponding to the zero eigenvalue moves the transition
layer around z = 0 up or down (provided it remains sufficiently far from the top and bottom surfaces),
without changing the energy. Hence D1 − BD − D2 cannot be strictly stable. This is consistent with the
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FIG. 5. The smallest eigenvalue, λ1, of the Hessian of the critical points, D1 − WORS − D2 and D1 − BD − D2, for λ2 = 30 v.s.
h, and the plots of these two critical points at h = 1, λ2 = 30.

computation at the beginning of this subsection which demonstrates that μ(∞) ≤ 0 for any multi-block
critical point, pc such that pc,z → 0 as h → ∞, on the top and bottom surfaces.

While studying z-independent critical points of the rLdG energy (2.6) on the square domain, subject
to the boundary conditions P = Pl on the square edges, the WORS is index-4, and the BD is index-2 for
λ2 = 30. There are other unstable states too, such as the index-3 T and index-2 H critical points (see Fig.
9(b)). Fixing D1 and D2 to be Pb and Pt, respectively, only the BD and WORS-critical points appear on
z = 0, for the mixed 3D critical points. Hence, the boundary conditions impose constraints on the state
observed on and around z = 0, and consequently, the mixed 3D critical points, index-0 D1 − BD − D2
and index-1 D1−WORS−D2 on a 3D cuboid have lower indices than the BD and WORS on a 2D square,
respectively. We conjecture that the index of a 2D unstable critical point, pu, is always higher than the
index of a mixed LdG critical point on a 3D prism, which exhibits a pu-type interior profile connecting
the Dirichlet boundary conditions, Pt and Pb, respectively.

3.1.4 The λ → ∞ limit. In the λ → ∞ limit, rLdG minimizers converge to minimizers of the bulk

energy i.e. if P is an rLdG minimizer for large enough λ, then |P|2 → s2+
2 , where s+ = B

C , at least
everywhere away from the edges and vertices of the cuboid geometry and defects. The choice of s+
is dictated by the temperature, in this case A = − B2

3C . This can be seen informally by the competition
between the bulk and elastic energy terms in (2.6) in the λ → ∞ limit, and rigorously using variational
arguments as in Majumdar & Zarnescu (2010) for example. In other words, to leading order, in the
λ → ∞ limit, the rLdG minimizer is of the form

P = s+(n ⊗ n − I/2),

away from the vertices and edges of VK , where n = (cos θ , sin θ). Hence, the energy functional in (2.6)
reduces to

F∞ =
∫

V4

|∇xyθ |2 + 1

2h2

∣∣θ,z

∣∣2 dV. (3.46)

The Dirichlet boundary conditions on the top and bottom surfaces, Pt and Pb, have directors nt =
(cos θ t, sin θ t) and nb = (cos θb, sin θb), respectively. Hence, to leading order, for the rLdG minimizer,
θ is a solution of

Δxyθ + 1

h2 Δzθ = 0, (3.47)
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FIG. 6. We divide the square domain, Ω , into four sub-domains, Ωi, with diagonal legs Cri and Clr , i = 1, · · · , 4.

subject to the boundary conditions θ = θ t on z = 1, and θ = θb on z = −1. If Pt and Pb are chosen to be
stable 2D critical points of the rLdG energy i.e. stable solutions of (2.8), then for λ sufficiently large θ t

and θb are (to leading order) solutions of the Laplace equation (see Han et al. (2020) for more details).
Given these conditions on Pt and Pb, one can easily check that the corresponding solution of (3.47) is
linear in z and is given by

θ(x, y, z) = z + 1

2
θ t(x, y) + (1 − z)

2
θb(x, y). (3.48)

The leading order rLdG minimizer is given by P = s+(n ⊗ n − I/2), where n = (cos θ , sin θ) and θ is
given by (3.48), in the λ → ∞ limit. The solution in (3.48) is a good approximation to minimizers of
the rLdG energy, for large enough λ, see Fig. 8.

Next, we give some examples of solutions of the form of (3.48). We divide the domain Ω into four
triangular domains, Ωi by the diagonal lines x = ±y (see Fig. 6). We denote the two diagonal legs of
Ωi as, Cil and Cir. This domain division is only useful/applicable for V4 with D1 and D2 as Pb and Pt,
respectively, since the numerically computed rLdG critical points only exhibit defects along the diagonals
and edges of E4.

We have multiple choices for θ t(θb), corresponding to the same state. The boundary conditions θ t

and θb can jump by multiples of π across common diagonal edges of adjacent triangular domains. In the
simplest case, we prescribe θb and θ t on the diagonal edges of Ωi, without any discontinuities or jumps.
For example, for the D1 and D2 solutions, we can have

θD1
b =

⎧⎪⎨
⎪⎩

π/2 on C1 and C3,

0 on C2 and C4,

π/4 on Cri and Cli, i = 1, · · · , 4.

θD2
t =

⎧⎪⎨
⎪⎩

−π/2 on C1 and C3,

0 on C2 and C4,

−π/4 on Cri and Cli, i = 1, · · · , 4.

(3.49)

Hence on z = 0, θ is given by (refer to (3.48))

θ = (θD1 + θD2)/2 ≡ 0, on Ω , (3.50)

which is the BD1 state (Fig. 7(a)) that has two line defects on the left and right edges. This is the candidate
for the global rLdG minimizer in the λ → ∞ limit.

We fix the boundary conditions for D1 (θb) as in (3.49), and then increase θ t on one or more of
the diagonal edges of Ωi by π , i.e. increase θ on the middle layer by π/2, to generate more candidates
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FIG. 7. (a) and (b) illustrate the different possibilities for the middle layer configuration on z = 0, obtained from different choices
of the boundary conditions, θb and θ t on Cil and Cir , respectively (corresponding to D1 and D2 on the bottom and top of V4). (c)
Other potential choices for the configuration on the middle layer. The black/yellow lines indicate that the nematic director is along
x/y-axis. The θD2(θ t) is increased by π on the Ωi occupied by the yellow lines. The green lines on edges or diagonals represent
line defects.

for the middle layer configuration on z = 0. Given θ t and θb, we get the solution θ by (3.48) on the
square quadrant (bounded by two diagonal legs and one square edge). This allows us to define Pt by the
relations, Pt

11 = s+√
2

cos 2θ t, Pt
12 = s+√

2
sin 2θ t. We then have Pt and Pb on the square quadrant, and then

define a critical point on the entire prism, by reflecting the solution on the quadrant as in Proposition 2.
The computed rLdG tensors, P, are not expected to be approximate rLdG minimizers for large enough
λ, but could be good initial conditions for computing unstable saddle points of the rLdG energy in this
limit. For example, we modify θ t as shown below

θD2
t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π/2 on C1

−π/2 on C3,

0 on C2 and C4,

3π/4 on Cr1 and Cl1,

−π/4 on Cri and Cli, i = 2, · · · , 4.

(3.51)



666 Y. HAN ET AL.

FIG. 8. The plots of the solutions of Euler–Lagrange equation in (2.12) with λ2 = 300 and the corresponding limiting profile as
λ → ∞, with h = 1, (a) D − WORS − D, (b) D − BD − D. In (a) and (b), we plot the numerical solutions on the left for which
the nematic director, given by the vector field (cos(arctan(P12/P11)/2), sin(arctan(P12/P11)/2)) is plotted by white lines, and

the order parameter,
√

P2
11 + P2

12, is plotted in terms of the colour bar. The right images (for (a) and (b)) are the limiting profiles,

the white lines plot the vector field, (cos(2θ), sin(2θ)), and the red colour implies that the order parameter is constant, s ≡ B
C , for

the limiting profile.

FIG. 9. (a) Two 2D pathways between the two fixed T solutions on the top and bottom, which correspond to 3D solutions, T −
D − WORS − D − T and T − R − BD − R − T . The T , BD and the WORS-profiles are unstable saddle points of the rLdG energy
on E4, while D and R solutions are stable solutions of (2.8) with λ2 = 30. (b) The solution landscape with 2D critical states
from index-4 to index-0. The number in each disk indicate the number of states in the class. (c) The 3D solutions of (2.12) with
(Pb, Pt) = (T1, T2) with λ2 = 30 and h = 1. The blue colour label the point defect or line defect. (d) The smallest eigenvalue λ1

of the multiple critical points. In this and all the subsequent figures, the colour bar encodes the order parameter
√

P2
11 + P2

12, and
the white lines label the nematic director, (cos(arctan(P12/P11)/2), sin(arctan(P12/P11)/2)).
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Subsequently, we have the following profile for θ on z = 0 (refer to (3.48)):

θ = (θD1 + θD2)/2 =
{

π/2, on Ω1,

0, on Ωi, i = 2, · · · , 4,
(3.52)

accompanied by line defects on {(x, y) : y = ±x, x ≥ 0} (Fig. 7(b)).
We can generate more possibilities for θ on z = 0 by adding multiples of π to θ t, on the diagonal

edges of Ωi (see Fig. 7(c)). These modified boundary conditions generate line defects and asymmetric
configurations, and are unlikely to be observed in practice. We only observe the BD1, BD2 and WORS
configurations on z = 0, for the numerically computed critical points of the rLdG energy, with (Pb, Pt) =
(D1, D2).

3.2 (Pb, Pt): T1 and T2

The unstable states, T1 and T2, exist on a 2D square domain for λ2 ≥ 25, with a line defect along one of
the square diagonals (Fig. 1). For λ2 = 30, the critical point index-3 T is connected with a higher index
critical point, index-4 WORS, and lower index critical points, index-2 BD and H, index-1 J, index-0 D
and R (Fig. 9(b)) Yin et al. (2020). We can use this information to construct families of mixed 3D critical
points, with the fixed boundary conditions on the top and bottom surfaces of V4. In what follows, we
label critical points by means of strings e.g. A − B − C − D, where A and D are the fixed boundary
conditions, and B and C are z-invariant solutions of the reduced Euler–Lagrange equations, compatible
with the lateral boundary conditions, Pl. The complicated bifurcation diagram is partially illustrated in
Fig. 9(d), where the corresponding states are plotted in Fig. 9(c).

For h small enough, the T − WORS − T critical point (with the WORS configuration on z = 0) is the
unique stable state. As h increases, T − WORS − T loses stability and bifurcates into a stable T − D − T
and an index-1 T − R − BD − R − T; this is analogous to the bifurcation from a stable WORS to a stable
D solution and unstable BD solution on a square domain as the edge length increases, see Robinson et
al. (2017). Then the T − WORS − T further bifurcates to an index-2 T − R − T − R − T , and an index-3
T − D − WORS − D − T . The index-1 T − R − BD − R − T critical point further bifurcates into an
index-2 T − R − BD − R − T critical point, and an index-1 T − R − BD − R − T(2). The index-3,
T − D − WORS − D − T critical point, further bifurcates into an index-2 T − D − WORS − D − T and an
index-3 T − J − T − J − T . The state, T − D − WORS − D − T , contains the familiar D − WORS − D,
as discussed in Section 3. One can find the corresponding 2D pathways on the 2D solution landscape in
Fig. 9(b), which give rise to these exotic 3D critical points of the rLdG energy with fixed initial and end
points (boundary conditions). For example, the pathways in Fig. 9(a), T → D → WORS → D → T
correspond to the 3D solution T − D − WORS − D − T in Fig. 9(b) and T → R → BD → R → T
corresponds to the 3D solution, T − R − BD − R − T in Fig. 9(b). For (Pb, Pt) = (D1, D2), the mixed
3D critical points correspond to pathways on the 2D solution landscape in Fig. 9(a) via one higher-index
states(index-2 BD/index-4 WORS in 2D). For (Pb, Pt) = (T1, T2), we obtain 3D critical points that
correspond to different kinds of pathways on the 2D solution landscape i.e. 2D pathways via lower-
index states (index-0 D/index-0 R/index-1 J) and/or a higher-index state (index-2 BD/index-3 T/ index-4
WORS) like T − D − WORS − D − T , or via a single higher-index saddle point as in the T − WORS − T
critical point.

In contrast to the case with stable D1 and D2 solutions as boundary conditions, we get a genuine
rLdG minimizer T − D − T as h → ∞, for which the second variation of the rLdG energy is strictly
positive. The T states are unstable and have higher energy than the middle D layer. Consequently, the
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middle layer extends to a small neighbourhood of the boundaries, and we get thin transition layers near
the boundaries, z = ±h. Hence, letting Pc = T − D − T , we do not have Pc,z → 0 as z → ±h, and
there is no eigenvector corresponding to the movement of jump layers or transition layers, i.e. we lose
the analogy of the zero-eigenvalue in D − BD − D.

4. Other prism VK

We systematically study various classes of stable solutions on 2D polygons, in the rLdG framework, for
large λ in Han et al. (2020). Namely, we use simple combinatorial arguments to show that there are at least
K(K−1)

2 stable rLdG equilibria on a regular K-polygon with K-edges, and [ K
2 ] classes of stable equilibria,

not related by rotation and reflection. The stable rLdG equilibria are distinguished by the location of the
splay vertices i.e. the polygon vertices for which the nematic director rotates by 2π/K − π around the
vertex. We make certain physically reasonable assumptions about the boundary data, to show that the
stable states always have two splay vertices and the distinct equilibria classes are distinguished by the
relative location of two splay vertices Han et al. (2020). For example, on 2D hexagon, there are three
classes of stable equilibria: Para with a pair of diagonally opposite splay vertices, Meta with a pair of
splay vertices separated by one vertex, and Ortho with two adjacent splay vertices.

Next, we adapt the 2D arguments in Han et al. (2020) to make some elementary predictions about
the number of mixed 3D critical points on the prism, VK , that has a polygonal cross-section, EK , with
K-edges. For example, take Pt and Pb to be two distinct global energy minimizers on EK i.e. a Para
state with two diagonally opposite splay vertices on a hexagon and a Meta state, with two splay vertices
separated by a vertex, on a pentagon. Since the Laplace operator in (2.12) is rotationally invariant, we
can rotate the regular K-polygon domain around the z-axis so that the boundary conditions on the top
and bottom surfaces have the following reflection symmetry property about y = 0 axis,

Pt
11(x, y) = Pb

11(x, −y), (4.1)

Pt
12(x, y) = −Pb

12(x, −y). (4.2)

For small h, there is a unique rLdG minimizer (critical point) for a given Pt and Pb, and we can show that
if (recall the arguments in 3.1.1) (P11, P12)(x, y, z) is a solution of (2.12), then (P11, −P12)(x, −y, −z) is
also a solution of (2.12), subject to the boundary conditions above. The solution is unique for small h
and hence, has the symmetry property

P11(x, y, z) = P11(x, −y, −z), (4.3)

P12(x, y, z) = −P12(x, −y, −z). (4.4)

On the middle cross-section z = 0, the reflection symmetry axis is y = 0, and we have P12(x, 0, 0) =
−P12(x, 0, 0) = 0, i.e. the nematic director is either parallel or perpendicular to the symmetry axis, or
we have a defect with P = 0 on y = z = 0.

To distinguish between the three situations, the sign of P11 is taken into consideration. If
P11(x, 0, 0) ≥ / ≤ / = 0, then the nematic director is parallel/ perpendicular/undefined along the
symmetry axis (y, z) = (0, 0), the third case corresponding to a nematic defect. The three situations are
captured by three commonly observed 2D solutions - the WORS on a square domain, with line defects
along (y, z) = (0, 0); the BD1 on a pentagon domain (Fig. 10), with nematic director perpendicular to the
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FIG. 10. The profiles of mixed solutions of (2.12) in V5 with two Meta on the top and bottom, Meta−BD1−Meta and Meta−BD2−
Meta at λ2 = 30 and h = 0.3. The right state has lower energy than the left. The axis indicates the symmetry axis (y, z) = (0, 0).

FIG. 11. (a) The 3D stable state P − BD − P, the solution of (2.12) with λ2 = 600 and h = 1; (b) the 2D pathway between two
distinct Para via a BD with λ2 = 600; (c) the smallest eigenvalue of P − BD − P.

symmetry axis, (y, z) = (0, 0); and the BD2 on a pentagon domain (Fig. 10), with the nematic director
parallel to (y, z) = (0, 0) almost everywhere in the interior of the pentagon. The WORS is exclusive to
a square domain, but the BD-states are generic. We conjecture that for given Pt �= Pb in the same class
of globally stable rLdG equilibria, the Pb − BD − Pt is the unique rLdG minimizer for small h, that
remains potentially stable for all h (or at least has non-negative second variation), on a generic prism VK
for K > 4.

Repeating the same arguments as in Han et al. (2020), we argue that for a given Pt and Pb on VK ,
where Pt and Pb belong to the same class of lowest energy rLdG equilibria on EK , (e.g. two Meta states
on E5, and two Para states on E6), there are [K/2] ([K/4]) distinct classes of mixed 3D critical points
on VK with odd(even) K, not related by rotation and reflection. For example on V5, we have [5/2] = 2
classes of mixed 3D solutions Meta − BD1 − Meta and Meta − BD2 − Meta in Fig. 10. On V6, we have
[6/4] = 1 class of 3D mixed solution, labelled by Para − BD − Para in Fig. 11.

4.1 Hexagonal prism, V6

In this section, we restrict attention to a hexagonal prism V6, since we study the 2D problem on E6 in
detail in Han et al. (2020, 2021). On E6, there are three competing stable classes of rLdG equilibria -
Para, Meta, and Ortho with two splay vertices each, among which Para has the lowest energy, for large
enough λ. Additionally, in Han et al. (2021), a new stable state TRI is reported, for λ large enough.
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TRI has one central −1/2 point defect and three splay vertices, and has the highest energy among all
the numerically computed stable rLdG equilibria on E6. We numerically compute a plethora of unstable
index-k saddle points of the rLdG energy on E6, for which the Hessian of the rLdG energy has k negative
eigenvalues or k unstable directions. We report pathways between the stable rLdG equilibria on E6, and
there are pathways mediated by the commonly reported transition states (index-1 saddle points) and
pathways mediated by high-index saddle points in E6, illustrating the fascinating connectivity of the 2D
solution landscape of the rLdG model on E6 in Han et al. (2021).

Consider V6 and fix Pt and Pb to be two different Para states, with diagonally opposite splay vertices.
By the arguments in the preceding sections, for h small enough, we expect to find a P − BD − P state
with a BD-like profile on z = 0; indeed we numerically find a P − BD − P state (see Fig. 11(a)). In
Fig. 11(a), we notice blue tubes connecting the splay vertices of Pt and Pb, and the blue tubes are defect
lines running through the height of V6. These defect lines could have pronounced optical and mechanical
responses in experiments. The mixed 3D critical point, P − BD − P corresponds to a pathway between
two Para(P) states on the 2D solution landscape, which proceeds via a BD state. The P−BD−P state is
always a minimizer and does not bifurcate into other critical points. As h → ∞, the smallest eigenvalue
of the Hessian of the rLdG energy about the P − BD − P state tends to be zero (Fig. 11(c)), which is
analogous to D − BD − D state in Section 3.

Next, we fix Pt and Pb to be two different TRI states, on top and bottom surfaces. Here the solution
landscape is rich and we find multiple stable and unstable mixed 3D critical points (see Fig. 12). All
the mixed critical points exhibit line defects (blue tubes) running across the height of V6, and these line
defects connect the splay vertices and the central point defects on the top and bottom. There are multiple
combinations of these line defects, which offer multiple possibilities for exotic morphologies. Similar
line defects have been observed in a 3D cylinder, where there are straight defect lines and defect rings
in both experiments and numerical simulations Williams et al. (1972); Han et al. (2019). We may not
have found all the mixed 3D critical points with these fixed boundary conditions, but it is notable that
the numerically computed mixed 3D critical points have corresponding counterpart pathways on the 2D
solution landscapes reported in Han et al. (2021). For example, in Han et al. (2021), we report a pathway
between the fixed TRI states constructed by four transition pathways, via index-1 states, T0 and M1.
We numerically find the mixed 3D critical point TRI − T0 − M − M1 − P − M1 − M − T0 − TRI,
with the stable Para state in the middle, corresponding to the 2D pathway reported in Han et al. (2021)
(see Fig. 12(a)). We also report pathways via high-index saddle points like BD in Han et al. (2021). Fig.
12(b) shows a part of the solution landscape where TRI is directly or indirectly connected via high-index
saddle points. In Fig. 12(c), from bottom to the top of TRI − T135 − RING − T135 − TRI state, the
three +1/2 defect near vertices move towards the central −1/2 defect, merge together and we obtain
the Ring solution with a unique central +1 defect, and then reverse the process to connect to TRI(Pt).
Again, this mixed 3D critical point corresponds to a pathway between Pt and Pb on the 2D solution
landscape. The mixed critical point, TRI − T0 − M − BD − M − T0 − TRI is constructed by two
transition pathways, via index-1 T0 state and one pathway via the index-2 BD state. The mixed states,
TRI −T130−P−T130−TRI and TRI −T10−P−T10−TRI go through two index-3 T130 states, and
an index-2 T10 state, respectively. This illustrates the relevance of unstable higher index saddle points
on E6, for rLdG critical points in three dimensions. From Fig. 12(d), and according to our numerical
computations, when h is small, TRI − T135 − Ring − T135 − TRI is stable, and for h large enough, both
TRI−T0−M−M1−P−M1−M−T0−TRI and TRI−T0−M−M1−BD−M1−M−T0−TRI are stable.

We can generate other classes of mixed 3D critical points by choosing Pt and Pb to belong to different
solution classes e.g. Para on either z = ±1 accompanied by Meta or TRI on the opposite boundary
surface (see Fig. 13). We do not make definite conclusions since the solution landscape is hugely
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FIG. 12. (a) A 2D transition pathway between two TRI solutions, corresponding to the 3D solution TRI − T0 − M − M1 − P −
M1 − M − T0 − TRI. The profiles on the top line are index-1 saddle points, and on the bottom line are minimizers, the solutions of
(2.8) with λ2 = 600. (b) A part of solution landscape showing the connectivity of index-3 saddle points to index-0 saddle points.
The number in each disk indicate the number of states (related by rotation and reflection) in the class. (c) The 3D solutions of
(2.12) with two TRI states as (Pb, Pt), with h = 0.4, λ2 = 300. The blue lines are the defect lines, for which |P| approaches zero
or is of much smaller magnitude than the neighbouring region. (d) The smallest eigenvalue λ1 of the Hessian of the rLdG energy
evaluated about the multiple critical points.

FIG. 13. The unique 3D solutions of (2.12) for which Pb and Pt belong to different equivalence classes of solutions of (2.8), for
λ2 = 600 and h = 0.1. The subscripts indicate the location of defects at the vertices or in the interior. Readers are referred to Han
et al. (2021) for nomenclature details.
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complex, but these numerical examples do demonstrate the tremendous possibility of multistability in
3D, generated by tessellating 2D solutions of the rLdG model or stacking 2D critical points on top of
each other, and the sequence of the 2D critical points seems to be intimately connected to corresponding
pathways between Pt and Pb on the 2D solution landscapes.

5. Conclusions

In this paper, we study rLdG equilibria (solutions of (2.12) or equivalently critical points of (2.6)) on the
prism VK , with a regular polygon cross-section EK with K edges, and fixed Dirichlet boundary conditions
on the top and bottom surfaces. We work in a rescaled framework and there are two key parameters—a
dimensionless parameter λ which incorporates the cross-section edge length, and the parameter, h, which
is a measure of the prism height. Our framework is comparable with that studied in Shi et al. (2023),
where we fix the boundary conditions on the lateral surfaces of VK but impose Neumann boundary
conditions on the top and bottom surfaces. In this paper, we choose the Dirichlet conditions on the top
and bottom surfaces, Pt and Pb, to be z-invariant solutions of (2.12), consistent with the lateral boundary
conditions. In contrast, in Shi et al. (2023), Pt and Pb are determined as part of the energy minimization
process, and both approaches have scientific and practical value.

For a given Pt and Pb, we prove that there exists a unique rLdG energy minimizer in our admissible
space, for h sufficiently small. If λ is large enough so as to allow for different classes of z-invariant
solutions, then we take Pt �= Pb and search for mixed 3D critical points. It is difficult to perform
exhaustive asymptotic studies as h → 0, h → ∞, or as λ → ∞ in 3D, as in Han et al. (2020), but
we obtain some analytic insights accompanied by illuminating numerical results. We consider V4 in
some detail, with a square cross-section, and two different choices of (Pb, Pt). For the first example, we
take Pt and Pb to be two different diagonal solutions, D1 and D2, both of which are z-invariant local
minimizers of (2.6). We prove the existence of a D1−WORS−D2 critical point on V4 for all h, such that
there are two defect lines along the square diagonals on z = 0. For h small enough, this critical point is
globally stable and in fact, the unique critical point, and loses stability as h increases. As h increases, the
D1 − WORS − D2 state bifurcates into the D1 − BD − D2 critical point, but the D1 − BD − D2 state is
not strictly stable in the sense that the second variation of the rLdG energy of the D1−BD−D2 tends to
zero as h → ∞. We believe this to be a generic feature of multi-block critical points for which the prism
is effectively partitioned into blocks of z-invariant critical points of (2.6), when Pt and Pb are z-invariant
minimizers of (2.6). The multi-block critical point will effectively be constant near the top and bottom
surfaces, separated by a thin transition layer near the middle of the prism. We do not observe any other
mixed 3D critical points for this particular choice of Pt and Pb.

In contrast, when we choose Pt and Pb to be non energy-minimizing z-invariant solutions of (2.12)
or critical points of (2.6) with higher energy, the solution landscape is richer and we obtain multistability
or multiple stable rLdG critical points, along with multiple unstable rLdG critical points. Here, it is not
energetically preferable to have constant block structures near the top and bottom surfaces. In the λ → ∞
limit , we construct approximating profiles for the different admissible configurations by exploiting the
non-uniqueness of the boundary conditions in the director framework (captured by the director angle θ ).
This exercise has a two-fold benefit—these limiting profiles provide good initial conditions for numerical
solvers, and in some cases are good approximations to the numerically computed stable rLdG critical
points.

We generalize some of the analysis for V4 to generic VK , and we largely focus on a numerical
computation of rLdG critical points on V6, for different choices of Pt and Pb. On EK , we conjecture that
the Para states are the z-invariant minimizers of (2.6) subject to the tangent lateral boundary conditions
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for K even, with two diagonally opposite splay vertices. For K odd, we conjecture that the Meta states
are the z-invariant energy minimizers, for which the splay vertices are furthest apart. If Pt and Pb belong
to the class of z-invariant energy minimizers, then we conjecture that Pb − BD − Pt is the unique stable
mixed 3D critical point on VK for K > 4. The BD-state is an unstable z-invariant critical point of (2.6)
with two low-order lines (and/or point defects) in the interior of EK . A distinguishing feature of these
mixed 3D critical points are defect lines connecting the splay vertices on the top and bottom of VK ,
running throughout the prism VK . There are multiple possibilities for the multiplicity and locations of
these defect lines, and this could be a key driving factor for multistability in 3D. We restrict ourselves
to a special temperature A = −B2/3C, largely to facilitate comparisons between our 2D work in Han et
al. (2020, 2021) and the 3D study on polygonal prisms in this manuscript. We speculate that this work
can be generalized to arbitrary A < 0, although there will be technical difficulties and we will need to
work with Qc in (2.5) that have a non-constant eigenvalue associated with ẑ i.e. LdG critical points with
three degrees of freedom. However, we do expect Proposition 1, some of our asymptotic results in the
h → 0 and the λ → ∞ limits, and the quasi-stable 3D LdG critical points with multi-block structures,
to be generic for all A < 0.

The key question is: can every mixed 3D critical point be related to a 2D pathway between Pt and Pb

on the 2D solution landscape on EK? The answer is negative. For example, in Fig. 5, we only find two
solutions, D1−BD−D2 and D1−WORS−D2 on V4. These solutions are constructed by two pathways
D1 → BD → D2, and D1 → WORS → D2. However, there is another pathway D − J − R − J − D,
and we cannot find a corresponding 3D mixed critical point on V4. Similarly, on V6, we do not find 3D
mixed critical points constructed by the pathways P − M1 − M − M1 − P or P − Ring − P. Equally, we
find some mixed 3D critical points which do not correspond to a pathway on the 2D solution landscape
e.g. we find a 3D solution TRI − TR − TRI in Fig. 12(c) on V6, for which the middle layer TR is not an
rLdG critical point on 2D hexagon.

The overarching question is: what are the hidden compatibility conditions between Pt and Pb, such
that some 2D pathways correspond to mixed 3D critical points and some 2D pathways do not correspond
to mixed 3D critical points on VK , with Dirichlet boundary conditions? This is a deep question and
requires extensive work, but our work offers good examples and insights which could be foundational
for future work on these lines.
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A. Appendix: Numerical details

We use the saddle dynamics (SD) method [Yin et al., 2019; Luo et al., 2022; Zhang et al., 2022], which
has been successfully used to efficiently compute the critical points, to find the reduced Landau-de
Gennes critical states in three-dimensional prisms with fixed Dirchlet boundary conditions on the top and
bottom surfaces. A critical point P is an index-k saddle point for which ∇2E(P) has exactly k negative
eigenvalues: λ1 � · · · � λk < 0, corresponding to k unit eigenvectors v̂1, · · · , v̂k subject to

〈
v̂i, v̂j

〉 = δij,
1 � i, j � k.

The SD for finding an index-k saddle point P, (denoted by k-SD) is defined as
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⎞
⎠∇2E(P)vi, i = 1, 2, · · · , k,

(A.1)

where I is the identity operator. To avoid evaluating the Hessian of E(P), we use the dimer

h(P, vi) = ∇E(P + lvi) − ∇E(P − lvi)

2l
(A.2)
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as an approximation of ∇2E(P)vi, with a small dimer length 2l. By setting the k-dimensional subspace
V = span

{
v̂1, · · · , v̂k

}
, P̂ is a local maximum on P̂ + V and a local minimum on P̂ + V⊥, where V⊥ is

the orthogonal complement of V .
The dynamics for P in (A.1) can be written as

Ṗ =
(

I −
k∑

i=1

viv
�
i

)
(−∇E(P)) +

(
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i

)
∇E(P)

= (
I − PV

)
(−∇E(P)) + PV (∇E(P)) ,

(A.3)

where PV∇E(P) =
(∑k

i=1 viv
�
i

)
∇E(P) is the orthogonal projection of ∇E(P) on V . Thus,(

I − PV
)
(−∇E(P)) is a descent direction on V⊥, and PV (∇E(P)) is an ascent direction on V .

The dynamics for vi, i = 1, 2, · · · , k in (A.1) can be obtained by minimizing the k Rayleigh quotients
simultaneously with the gradient type dynamics,

min
vi

〈
vi, ∇2E(P)vi

〉
, s.t.

〈
vi, vj

〉
= δij, j = 1, 2, · · · , i, (A.4)

which generates the subspace V by computing the eigenvectors corresponding to the smallest k
eigenvalues of ∇2E(P).

In the calculation of critical points in 3D domain, we may encounter an ill-conditioned problem,
as the 3D structures like D − BD − D and D − WORS − D have small absolute eigenvalue when h
is large enough in Fig. 5, which reflects the subtle energy change when the middle slice moves up
and down. Therefore, we use a stable numerical scheme, the semi-implicit scheme for the gradient
flow of P with the Barzilai–Borwein step size [Barzilai & Borwein, 1988] for the time discretization.
The non-dimensionalized prism domain VK is discretized into triangular prism or cuboids with mesh
size δx � 1/32, using finite difference method for cuboid and hexagonal prism. The finite element
method is used to calculate the minimizers in pentagonal prism. We apply a single-step Locally Optimal
Block Preconditioned Conjugate Gradient (LOBPCG) method [Knyazev, 1987] to renew the unstable
eigendirections instead of the gradient type dynamics in (A.1),
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�v2,n,i)vl,n,i, l = 1, 2,

Renew vl,n,i as vl,n+1,i with single-step LOBPCG, i = 1, 2, · · · , k, l = 1, 2,

(A.5)

where DδxE(P) is the discretization of the Frechet derivative. When the point is close to the target critical
point enough, i.e. ||DδxE(P)||2F ≤ 0.01, we use Newton’s method to complete tail convergence with a
higher convergence rate [Shi et al., 2023]. Noting that when the target critical point has small absolute
eigenvalue, we use an Inexact-Newton method [Dembo et al., 1982], since the ill-conditioned linear
equation in Newton iteration is hard to solve exactly. All the symmetric linear equation systems in (A.5),
Newton and Inexact-Newton method are solved by The Minimal Residual Method [Paige & Saunders,
1975].
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