
International Journal of Thermal Sciences 196 (2024) 108718

Available online 31 October 2023
1290-0729/© 2023 Published by Elsevier Masson SAS.

Thermographic analysis of topographically controlled 
Marangoni–Rayleigh–Bénard convection in a fluid with 
temperature-dependent properties 

Wasim Waris, Marcello Lappa * 

Department of Mechanical and Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow, G1 1XJ, UK   

A R T I C L E  I N F O   

Keywords: 
Thermal convection 
Pattern 
Heat sources 

A B S T R A C T   

Thermal convection in a shallow layer of liquid with an array of metallic (aluminum) cubic elements evenly 
spaced along the bottom is investigated experimentally using a thermographic technique. The blocks protrude 
upwards and, although they are prevented from reaching the free surface, their vertical thickness, horizontal size 
and overall number can be varied parametrically. This configuration is used with the two-fold intention to 
produce a kind of obstruction or blockage in the flow and, at the same time, to feed thermal convection with heat 
directly injected into the fluid at a certain distance from the (hot) floor. It is shown that tuning of the physical 
topography at the bottom and the difference of temperature between the liquid and the external (gaseous) 
environment is instrumental in enabling internal feedback control over the spontaneous flow behavior. For a 
fixed geometry and temperature difference, variations in the emerging pattern can also be produced by changing 
the thickness of the liquid layer, which indirectly provides evidence for the additional degree of freedom rep-
resented by the relative importance of buoyancy and Marangoni effects. Overall, such results suggest a novel 
possible route to the realization of convective motions with complex (but surprisingly regular) organization, 
which have been rarely obtained in earlier attempts based on conventional setups.   

1. Introduction 

Natural, more commonly referred to as “buoyancy or gravitational", 
convection is a mode of heat transportation whereby fluid motion is 
induced by the differences in density that are produced as a result of 
differential heating. When a fluid receives an intake of internal energy, it 
undergoes thermal expansion and a decrease in density. Accordingly, a 
circulatory pattern is produced, where relatively hot (lighter) fluid rises, 
whereas colder (heavier) fluid sinks. This process is very common on 
Earth’s surface where, however, other convective mechanisms can also 
become dominant if specific conditions are attained. This typically 
happens if the characteristic depth or length of the considered system is 
reduced, thereby strongly mitigating buoyancy effects and paving the 
way to other types of convection that do not rely on density in-
homogeneities. A paradigmatic example of these alternate ‘routes’ or 
occurrences, widespread just as gravitational convection is, is repre-
sented by the so-called Marangoni flow, which emerges as a result of 
thermally induced gradients of surface tension every time an interface 
separating two liquids or a liquid and a gas is subjected to a temperature 

difference (Seta et al. [1]; Gaponenko et al. [2]; Homma et al. [3]). In 
many circumstances both types of convection can be developed and 
interact in a relatively complex way depending on the considered con-
ditions (Schwabe [4]; Shevtsova et al. [5,6]; Shi et al. [7]; Gelfgat [8]). 

Moreover, these phenomena affect an uncountable number of natu-
ral and technological settings (Colinet et al. [9]; Lappa [10–12]; Kad-
deche et al. [13]), and this explains why they are still an area of keen 
interest, which shows no obvious sign of running out of interest yet. In 
particular, a vast literature exists for configurations with simplified 
boundary conditions. These have played a central role in this category of 
studies owing to the related possibility to determine precisely their 
evolution as a function of a reduced set of parameters. A classical real-
ization of this modus operandi is the widespread practice of considering 
shallow layers uniformly heated from below, which correspond to the 
canonical models of Rayleigh-Bénard (RB) and Marangoni-Bénard (MB) 
convection (according to whether gradients of density or surface tension 
are the prevailing force driving fluid flow, respectively, Nepomnyashchy 
and Simanovskii [14]; Ueno et al. [15]; Schwabe [16]; Lyubimova et al. 
[17]; Lyubimov et al. [18]; Lappa and Ferialdi [19]; Lappa and Boaro 
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[20]). 
Seminal experimental studies on these subjects are due to Busse and 

coworkers, who identified a zoo of possible instabilities in RB systems, 
responsible for a variety of spatial and temporal behaviors (according to 
the considered fluid and the imposed temperature difference, see, Busse 
and Whitehead [21,22]; Busse and Clever [23,24]; the interested reader 
being also referred to the very interesting experiments by Krishnamurti 
[25–27]; Gollub et al. [28]; Motsay et al. [29]; Croquette et al. [30,31]; 
Plapp [32]). For the companion case represented by the situation in 
which the top boundary of the liquid layer is a free surface in contact 
with a gas, relevant (landmark) experimental works are those by 
Koschmieder and Switzer [33], Thess and Bestehorn [34], Bestehorn 
[35], Nitschke and Thess [36], Eckert et al. [37], Schwabe [38] and 
Dauby and Lebon [39], where emphasis was put on the ability of 
surface-tension driven convection to select patterns with different 
fundamental spatial symmetries in different regions of the space of 
parameters. 

Despite the simplistic nature of the examined set-ups, this vast and 
long-lasting series of efforts have led over the years to the establishment 
of an elegant and important theoretical sub-field of the more general 
area of thermal convection [12]. This framework has been fed by the 
application of a variety of methodological approaches of theoretical, 
analytical and numerical nature, specifically allowed or facilitated by 
the aforementioned simplicity of the considered geometrical models and 
related thermal conditions. More recently, however, a need has emerged 
for a new line of inquiry considering a departure from such idealized 
circumstances. Indeed, flat walls with uniform temperature, if they exist 
in nature or technology, are a special case of configurations with thermal 
inhomogeneities and non-planar geometry (Lappa [40,41] and Lappa 
and Inam [42], Weppe et al., [43,44]). Thus, fundamental questions 
persist regarding the role of these factors in problems of practical 
interest. 

Apart from filling the aforementioned gap, pursuing a more specu-
lative impact of related advances, it may be argued that this alternate 
line of research may also lead to the identification of exotic states of fluid 
motion that, for now, remain undefined realizations in the mathematical 
theory of pattern formation in non-linear systems. As such, they may 
also contribute to the refinement of already existing theories and/or to 
the elaboration of completely new ones. 

In particular, the present work takes inspiration from the earlier 
experimental investigation (based on a thermographic technique) by 
Ismagilov et al. [45]. Their simple and elegant analysis of MB convection 
(buoyancy effects being negligible in their study) revealed the existence 
of a non-trivial connection between a physical modulation of the bottom 
hot wall (implemented as bulges having various polygonal shapes or 
corrugations developing continuously along a fixed direction) and the 
symmetry properties of the emerging flow. On varying these features, 
the latter was found to undergo sudden transitions between different 
planforms, which were commensurate with the physical topography at 
the bottom, but were differing in terms of ratio of the intrinsic flow 
wavelength and length scale of the bulges (this ratio being constrained 
to remain an integer number). 

The motivations at the root of the present work also originate from 
the earlier numerical analysis by Sakhy et al. [46], who investigated 
mixed Marangoni-buoyancy convection in a liquid film contained in a 
cylindrical container with a bottom of flat solid substrate heated from 
below by a non-uniform heat flux. These authors revealed a fascinating 
set of stationary patterns varying in terms of cell multiplicity and sym-
metry depending on the relative importance of buoyant and thermoca-
pillary effects. 

This causality has been further explored in later numerical in-
vestigations such as those by Lappa et al. [47] and Lappa and Waris [48] 
where the attention was concentrated on situations where the departure 
from classical RB or MB modes was caused by bulges (blocks) having a 
cubic shape mounted on the bottom wall rather than by a spatially 
varying heat flux at a fixed depth. Moreover, as a distinguishing mark 

with respect to Ismagilov et al. [45], much thicker layers of liquid were 
considered, thereby allowing buoyancy to play a significant role. 
Interestingly, in these circumstances, solid protuberances have been 
found to prevent the flows from developing the classical rolls or inverted 
hexagonal cells typical of RB and MB convection in liquid metals [47] 
and, similarly, to produce vigorous thermal plumes (thermals) able to 
interfere with classical surface-tension driven effects in silicone oils 
[48]. Accordingly, it has been clarified that due to the presence of 
blocks, the set of possible solutions can be significantly modified, 
resulting in a zoo of possible behaviors, which seem to escape a possible 
simple definition or classification in the light of the exiting literature. 
For practical reasons of for ‘simplicity, in the abovementioned studies, a 
possible classification has been attempted as follows: trivial modes of 
convection where the surface temperature distribution simply reflects 
(through a 1:1 correspondence) the ordered arrangement of the under-
lying hot protuberances, patterns that display a notable degree of 
analogy with the ‘parent’ convective mechanisms (classical RB and MB 
flow) and a third category of flows represented by a kaleidoscope of 
previously unknown states driven by intrinsic self-organization abilities 
of the considered system. 

The present experimental investigation builds on, but also tries to 
extend these numerical studies by expanding the set of non-dimensional 
parameters in terms of values of the Prandtl, Rayleigh and Marangoni 
numbers. In particular, given the intrinsic nature of the considered 
problem, a thermographic technique is used to visualize directly the 
thermally induced fluid currents originating from the top of the 
considered (disjoint) solid blocks with finite-size and study their influ-
ence of the emerging (spatially varying) patterns. Furthermore, different 
fluid depths are examined in order to change the relative importance of 
the buoyancy and Marangoni effects for a fixed geometry and temper-
ature difference. Specific insights into the results are obtained using 
typical tools for the analysis of planform formation in non-linear systems 
and, accordingly, some effort is provided to interpret them, whenever 
possible, in the light of existing theories for pattern selection in canon-
ical thermal convection systems. 

2. Geometrical model and experimental approach 

A sketch of the considered experimental setup is shown in Fig. 1. The 
physical properties of the related materials are listed in Table 1. The 
fluid container consists of a square metal plate of aluminum having a 
size of 10 × 10 cm and 1 mm thickness, on which solid walls of Perspex 
(1 cm tick and 2 cm tall) have been mounted along each side, thereby 
leaving 8 × 8 cm of internal space to be occupied by the considered 
liquid (up to a total volume of 1.28 × 10− 4 m3, corresponding to 128 ml, 
in the absence of obstructions at the bottom). 

The blocks are also made of aluminum (same material used for the 
bottom plate) and are mounted along the bottom wall in such a way to 
maintain their spacing regular along both the x and z horizontal di-
rections. They are available with different vertical sizes as indicated in 
Table 2. 

A commercial component has been used to produce the required 
uniform heating at the bottom of the fluid container (see Fig. 2a), that is, 
a MS-H280-Pro Round ceramic coated Steel Hotplate/Stirrer (by which 
the heating temperature Tplate can be increased up to 280 ◦C in precise 
1 ◦C increments, other specifications being reported in Table 3). This 
component relies on a standard PID approach, that is, the departure of 
the desired temperature from the corresponding imposed value is 
calculated at any time and a correction is applied accordingly (based on 
a Proportional, Integral, and Derivative feedback mechanism, hence the 
acronym). 

We wish to recall that the use of infrared data for the analysis of 
Rayleigh-Marangoni-Bénard (RMB) convection or similar convective 
systems has already been successfully attempted in the past, leading to 
useful insights into these phenomena (Cerisier et al. [49,50]; Ismagilov 
et al. [45]; Chauvet et al. [51]; Wang et al. [52]; Wu et al. [53]; Sobac 
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et al. [54]; Tönsmann et al. [55]). Here, the distribution of temperature 
on the free surface of the considered liquid has been obtained using a 
FLIR C3-X Compact Thermal Imaging Camera (the related IR sensor has 
a resolution of 128 × 96 px and thermal sensitivity of 70 mK; moreover, 
it can detect and measure temperatures between − 20 ◦C and +300 ◦C to 
an accuracy of ±3%). The temperature of the ceramic-coated steel 
hotplate (as provided by the instrument digital display) and that of the 
liquid free surface measured by the thermocamera have been verified 
independently using a 0.3-mm head size K thermocouple connected to 
an external multimeter (difference ≅ 0.1 ◦C to be ascribed to the 
non-negligible size of the thermocouple head). 

Additional care has been devoted to confirming the uniformity of the 
temperature established along the bottom wall of the container sketched 
in Fig. 1. Using the same thermocouple described above, and after 
waiting a time of 60 min, in order to allow the overall system to attain 
steady/stable conditions, the temperature has been measured at 
different positions along the x and z axes with increments of 1 cm along 
both directions, thereby leading to a total of more than 60 measure-
ments. The differences among distinct measurements have been found to 
be smaller than ≅ 0.1 ◦C for a bottom temperature of 30 ◦C and ≅ 0.3 ◦C 
for a bottom temperature of 50 ◦C (the reader being also referred to the 
thermographic image shown in Fig. 2c). 

The interested reader may consult Fig. 3 for the relationship between 
the viscosity of the used fluid (Emkarate RL22H oil) and the tempera-
ture. Similar plots for the other physical properties of this liquid (ther-
mal diffusivity, specific heat, density, thermal conductivity, etc.) have 
been already reported in Waris and Lappa [56] and are not duplicated 

here for the sake of brevity (see Fig. 2b–h in that work). Here we limit 
ourselves to recalling that this oil displays an appreciable sensitivity to 
temperature. While the variations in terms of density, specific heat, 
thermal conductivity and thermal diffusivity over a range of 100 K are 
limited to a 10% percentage (or even smaller) of their initial value, the 
decrease in terms of viscosity can be much more significant (Fig. 3). In 
particular, by defining the related Prandtl number as: 

Pr= ν/α (1)  

(where ν and α are the liquid kinematic viscosity and thermal diffusivity, 
respectively), this characteristic number would decreases from Pr ≅
520 for ambient temperature conditions to Pr ≅ 175 for a temperature 
≅ 50 ◦C. 

The most remarkable implication of this observation is that, by using 
a single fluid and increasing its average temperature, a range of situa-
tions are covered here, comparable, e.g., to the interval of viscosities 
considered by Cerisier et al. [50], who used 20 cSt silicone oil with 
Prandtl number Pr = 206 at 25 ◦C, 50 cSt silicone oil with Pr = 474 at 
25 ◦C, and the more viscous oils employed by Wu et al. [53], their ki-
nematics viscosities and the corresponding Prandtl numbers being ν =
1.5, 2, 5, 10, and 50 cSt and Pr = 16.16, 25.21, 62.5, 113.38, and 
467.29, respectively (we will come back to the implications of this 
observation later). 

As a concluding remark for this section, we wish to highlight that, for 
all the experiments reported in Sect. 4, the temperature of the envi-
ronment (air) has been controlled by means of a standard air condi-
tioning system (available in the lab) and kept at a constant value Tair ≅

21 ± 0.3 ◦C (as confirmed by independent measurements made using a 
digital thermometer). 

3. Mathematical model and governing parameters 

Mapping the experimental problem into a corresponding space of 
general non-dimensional parameters requires the introduction of addi-
tional dimensionless characteristic numbers. For buoyancy and surface- 
tension driven convection, these can be classically defined as: 

Ra= gβT ΔTd3/ν0α0 (2)  

Ma=σTΔTd/μ0α0 (3)  

where the first is the canonical Rayleigh number (g and βT being the 

Fig. 1. Three-dimensional view of the fluid container delimited by sidewalls of Perspex with a series of bottom wall-mounted square elements evenly positioned 
along the sidewall directions (spacing, width and height can be systematically varied). 

Table 1 
Solid material physical properties (at ambient temperature).  

Material Thermal conductivity (W/mK) Heat capacity (J/KgK) 

Aluminum 240 887 
Perspex 0.19 1470  

Table 2 
Block dimensions.  

Horizontal size Vertical size 

10 mm 10 mm 
10 mm 5 mm 
10 mm 3 mm  
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gravity acceleration and the thermal expansion coefficient, 9.81 ms− 2 

and ≅ 7.7 × 10− 4 K− 1 for the considered liquid, respectively) and the 
second represents the well-known Marangoni number (σT being the 

surface tension derivative coefficient, ≅ 0.218 mNm− 1 K− 1 in the pre-
sent case). In both expressions, d is a characteristic length (the depth of 
the liquid layer) and, similarly, ΔT accounts for a representative tem-
perature difference, which here is defined as the difference between the 
temperature of the steel heating plate (Tplate) and that of the ambient 
(Tair), i.e. ΔT = Tplate − Tair (this temperature difference, much higher 
than that effective through the liquid, is used here for practical purposes 
as the temperature of the free liquid-gas interface is not known a priori; 
moreover, this temperature is expected to behave as a spatially varying 
quantity in the presence of convection). 

For a situation where the physical properties of the fluid can undergo 
strong variations like in the present case, a ‘reference state’ must also be 
defined for the evaluation of the other physical properties appearing in 
these definitions (namely, μ, ν and α). Here, these are evaluated at T0 =

Tair (where, as explained in Sect. 2, Tair ≅ 21 ◦C). 
Besides the three independent parameters Pr, Ma and Ra accounting 

for the relative importance of various effects (molecular transport of 
momentum vs heat transport, surface tension or buoyancy versus 
viscous forces, etc), the problem also depends on its coupling with the 

Fig. 2. MS-H280-Pro Round ceramic-coated steel hotplate with diameter 13.5 cm and 10 × 10 cm (diagonal length 14.14 cm) Fluid Container: a) Setup picture 
(visible light), b) Corresponding thermographic image (Tplate = 50 ◦C, no liquid present, i.e. metallic surfaces exposed to air), c) Thermographic image taken in the 
absence of blocks (Tplate = 50 ◦C, no liquid, Note: Metals are known for having high reflectivity, which explains their shiny appearance. This implies a very low 
emissivity. When a highly polished metal object with a low emissivity is observed with a thermocamera, that surface will act like a mirror. Instead of measuring the 
temperature of the object itself, the camera will instead detect reflected temperature. In order to fix this issue, the thermographic images of the metal surfaces directly 
exposed to air reported in this figure have been taken after covering them with a thin layer (0.05 mm) of paper). 

Table 3 
Specifications of MS-H280-Pro Round ceramic coated Steel Hotplate/Stirrer.  

Parameter Value/range 

Work plate Dimension Φ 135 mm 
Work plate material stainless steel cover with ceramic 
Motor type Brushless DC motor 
Motor rating input 5 W 
Motor rating output 3 W 
Power 515 W 
Heating output 500 W 
Voltage 100–120/200–240 V 50/60 Hz 
Heating temperature range Room temp.-280, increment 1 ◦C 
Control accuracy of work plate ±1 ◦C (<100 ◦C) ±1% (>100 ◦C) 
External temperature sensor PT1000 (accuracy ±0.5 ◦C) 
Dimension [W × D × H] 150 × 260 × 80 mm 
Weight 1.8 kg  
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external gas. In this regard, it is worth recalling that these systems can 
develop properties that appear as a consequence of the intrinsic physical 
mechanisms governing their evolution, and properties that arise as a 
result of their interaction with the environment (see, e.g., Cerisier et al. 
[50]; Sakhy et al. [46]). The latter typically depend on the heat ex-
change effectively occurring at the free surface with the overlying gas. 

Although, this observation might be seen as quite an obvious infer-
ence, however, an experimental characterization of this effect is not as 
straightforward as one would imagine. Just like the effective tempera-
ture difference established between the heated bottom of the fluid layer 
and its top cannot be defined ‘a priori’ (because no thermal control is 
enforced at the liquid free surface, which therefore attains a temperature 
essentially depending on the fluid-dynamic phenomena established in-
side the liquid), in a similar way the heat lost should be considered as a 
‘derived’ quantity, i.e. an outcome of the experiments, rather than an 
‘input’ parameter. For completeness, in the present work, an estimate of 
such effect is obtained through evaluation of the related (buoyant) 
convective heat exchange coefficient h. In turn, this is determined as a 
function of the ‘observed’ (measured) spatially averaged surface tem-
perature Tsurf (determined electronically by means of Matlab), using the 
following empirical relationship: 

h= 0.54
λair

Lc
Ra1/4

air (4)  

known to be valid for 104≤Raair≤107 (see, e.g. Cengel et al., [57]), 

where Raair =
gβair(Tsurf − Tair)(L3

c )

ν2
air

Prair, Lc = Aplate/4Lplate = Lplate/4, Aplate is 

the area of the free surface in contact with the external gas and the 
physical properties of air are evaluated at Tairavrg=(Tair + Tsurf)/2. 
Accordingly, the surface non-dimensional Biot number (required for 
problem theoretical closure) is finally computed as: 

Bi=
hd

λliquid
(5)  

with λliquid being evaluated at Tairavrg as well. 
Although, as explained before, this should not be regarded as an 

independent governing (definable a priori) number, it will be used in the 
following for a more complete characterization of the observed 
dynamics. 

Another meaningful characteristic parameter (it measures the rela-
tive importance of buoyancy and Marangoni effects), is the so-called 
dynamic Bond number, which can be simply introduced as: 

Bodyn =Ra
/

Ma = ρgβT d2/σT (6) 

Unlike all the other non-dimensional groups defined before, notably, 
the direct dependence on the temperature difference is filtered out in 
this non-dimensional group, which implies that, for a fixed liquid, it 
essentially scales with the square of the depth of the considered layer. 
Other relevant ‘geometry-scaling’ factors required for the characteriza-
tion of the considered problem are the non-dimensional extensions of 
the blocks along the directions of the reference system and their aspect 
ratios Axbar and Azbar: 

δx =
l x

d
, δy =

l y

d
, δz =

l z

d
, (7a)  

Axbar =
δy

δx
,Azbar =

δy

δz
(7b)  

where l x, l y and l z represent the dimensional size of each element 
along the three reference directions of the coordinate system shown in 
Fig. 1. 

Similarly, the aspect ratios of the entire fluid domain can be defined 
as: 

Ax =
Lx

d
,Az =

Lz

d
(8)  

where Lx and Lz are the related (dimensional) horizontal lengths (Ax =

Az = A = L/d if Lx = Lz). Indicating by N the number of blocks (elements) 
along z and by M the corresponding number along x, the nondimen-
sional distance between adjoining elements can therefore be expressed 
as 

ξx =
Lx − Ml x

Md
=

Ax

M
− δx, ξz =

Lz − Nl z

Nd
=

Az

N
− δz (9)  

As in the present work the projections of the entire liquid domain and 
each element in the xz plane are perfect squares, obviously, the 
following identities hold: Lx = Lz, l x = l z → Ax =Az, Axbar =Azbar, N =M 
and ξx = ξz. 

4. Results 

As already explained to a certain extent in the introduction, the 
present paper may be regarded as a sequel to two earlier (purely nu-
merical) studies, where the ability of an increasing number of blocks to 
induce multicellular states with varying degrees of complexity and self- 
organization was investigated for a fixed aspect ratio of the blocks, fixed 
values of the Prandtl, Marangoni and Rayleigh numbers and fixed layer 
thickness. Moreover, the physical properties of the liquid were assumed 
constant. Here, all these constraints are removed through a four-fold 
approach relying on a liquid with temperature-dependent physical 
properties [56], blocks with variable height (as shown in Table 2), 
increasing values of the temperature of the bottom plate (for a fixed 
value of the ambient gas temperature) and different liquid depths. 

In doing so, we follow a logical process in which one influential 
factor is varied at a time, while the others are kept fixed. Such a specific 
hierarchy is obviously instrumental for the selective identification of 
specific system trends, which would remain otherwise out of reach due 
to the intertwined nature of many of these dependences. For the con-
venience of the reader, some of these can be briefly illustrated as follows. 
While a larger temperature difference contribute to increase directly 
(through a direct linear proportionality law) both the Marangoni and 
Rayleigh number by a similar percentage (in such a way that their ratio, 
i.e. the dynamic Bond number remains constant), an increase in the 
liquid depth can cause a mismatch or disparity in the ensuing increase of 
these non-dimensional parameters (which display a linear and cubic 
dependence on the system size, respectively); accordingly, a significant 
variation of Bodyn can be produced. 

Fig. 3. Dynamic viscosity μ of Emkarate RL22H as a function of temperature as 
provided by the manufacturer. 
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Also, the block size and aspect ratio have obviously an impact on the 
possible emerging solutions. 

In order to clarify these dynamics, in the following, an extensive 
parametric analysis is carried out. In particular, the following ranges are 
investigated: 15≤ ΔT≤30 ◦C, 0.75≤ d ≤1.5 cm and 3≤ l y ≤10 mm (see 
again Table 2), corresponding to O(1)≤Bodyn≤O(10), 5.3≤A≤10.6, 
0.3≤Abar≤1.0, 0.2≤δy≤0.66 in terms of non-dimensional parameters. As 
already explained in Sect. 2, the temperature field is obtained from the 
infrared radiation emitted by the oil-gas interface. Moreover, the 
resulting images are digitized in order to allow the extraction of some 
relevant (quantitative) data using an appropriate Matlab based software 
(already extensively used by Waris and Lappa [56] for a posteriori 
computer-based reconstruction of the spatial distribution of wave-
lengths in inclined layer convection). 

For all the cases reported in the following, the temperature maps 
shown in the figures have been recorded after a time of 60 min. As this 
time exceeds the characteristic thermal diffusive time td for all the 
considered conditions (670 ≤ td ≤ 2700 s for 0.75 ≤ d ≤ 1.5 cm if a 
representative thermal diffusivity of 8.3 × 10− 8 m2/s is assumed [56]), 
the duration of each experiment can be considered sufficiently high to 
allow the system to attain an asymptotic state. The thermographic im-
ages have been taken with the camera at a distance of 20 cm from the 
liquid free surface. For the majority of cases, patterns with 
time-independent topological properties have been found and this has been 
verified by observing their evolution over other 30 min (leading the total 
duration of each experiment to at least 1.5 h). Like [48], localized os-
cillations have occasionally been detected (e.g., for ΔT larger than 
≅ 27 ◦C and ≅ 21 ◦C in the 7.5 mm and 10 mm depth cases, respec-
tively). Although, the threshold for the emergence of these effects is 
slightly dependent on the presence of blocks, however we have seen only 
minor variations in terms of patterning behavior (consisting of minor 
modulations in the shape and size of the thermal spots due to localized 
‘vibrating’ spokes), which explains why in the following we essentially 

concentrate on ‘spatial’ rather than temporal aspects. Notably, all these 
patterns have been found to be reproducible by repeating the experi-
ment at a different time (on different days). 

For the convenience of the reader, we start from the simplest possible 
situation, that is, the case with a shallow single block located in the 
center of the domain (a situation formally resembling that investigated 
numerically by Sakhy et al. [46] for the case of a flat bottom boundary). 
Moreover, we consider layers with the role of buoyancy increasing as the 
discussion progresses, that is, we begin the analysis from a layer with 
thickness 0.75 cm (Sect. 4.1). 

4.1. Shallow blocks in shallow layer 

Fig. 4 provides a first glimpse of the dynamics observed for the block 
with height 3 mm located at the bottom of a layer with thickness 0.75 cm 
(Bodyn ≅ 1.94) and increasing values of the temperature set for the 
bottom hot plate. 

It can be seen that for the smallest value of ΔT considered (Fig. 4a), a 
multicellular configurations is obtained. This is indirectly proven by the 
distribution of hot spots visible along the free surface, each reflecting the 
presence of a convective structure with fluid rising (vertically) at the 
center and descending at the lateral boundary of the cell (after it has 
exchanged heat with the external environment). Another key observa-
tion concerns the number and distribution of such cells. At first glance, 
indeed, the overall pattern might resemble that typical of classical MB 
convection. However, upon closer analysis, in qualitative agreement 
with the numerical findings by Sakhy et al. [46], this figure also reveals 
that the influence of the central block is not negligible. This is witnessed 
by the specific arrangement of spots visible in the central part of the 
domain. While five distinct cells/hot spots can be distinguished along 
each sidewall, a larger thermal feature occupies the geometrical center 
of the domain. The hallmark of this specific localized structure is not 
limited to its (slightly) larger size. Unlike all the other spots, a smaller 

Fig. 4. Depth of the layer 0.75 cm (A = 10.6, Bodyn ≅ 1.94), N = 1, block thickness 3 mm (δy = 0.4, Abar = 0.3), variable temperature difference (Ra≅8.6 × 102 × ΔT, 
Ma≅4.4 × 102 × ΔT): a) ΔT = 15 ◦C, Bi ≅ 0.347 (Note: the central spot is surrounded by 6 smaller spots), b) ΔT = 18 ◦C, Bi ≅ 0.358, c) ΔT = 27 ◦C, Bi ≅ 0.40, d) ΔT =
30 ◦C, Bi ≅ 0.413. Temperature maps show the descending currents as lines of colder (dark) material. 
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concentric area is visible. It displays a temperature identical to that of 
the other regions separating adjoining spots (which, as explained before, 
correspond to the presence of fluid that after being cooled due to its 
interaction with the external environment tends to sink), and this leads 
to the straightforward conclusion that a current of descending fluid is 
created just above the single block mounted on the bottom (i.e. a 
toroidal roll is formed just over its top surface, see the sketch in Fig. 5). 

Returning to Fig. 4, its next panel (Fig. 4b) indicates that the sym-
metry of the arrangement of spots in Fig. 4a is lost as the temperature 
difference is increased. Although the central donut-like thermal feature 
is maintained, the surrounding pattern undergoes strong modifications. 
Initially, these consist of spot coalescence phenomena (Fig. 4b), which 
cause a decrease in the number of spots aligned along the external 
sidewalls and the formation of an almost circular circuit or ‘ring’ of spots 
encapsulating the central thermal feature. On a further increase of the 
temperature difference, also this specific scheme is lost in favor of a 
more disordered patterning behavior (Fig. 4c–d). 

On increasing N to 2 (Fig. 6), the ability of the topography to influ-
ence the pattern strengthens as witnessed by the multiplicity of the 
thermal features linked to the underlying blocks by a 1:1 correspon-
dence. The thermal inhomogeneities induced at the free surface by the 
elements at the bottom always manifest as warmer regions with a 
relatively large spatial extension in comparison to the other minor spots 
located in proximity to the walls. In turn, the number of these (see, e.g., 
Fig. 6a) is smaller than that visible in Fig. 4 for N = 1 (3 spots aligned 
along each sidewall in place of 4). 

Overall, for not too high values of ΔT, the pattern for N = 2 obeys the 
D4 symmetry group (Lappa and Waris [48]), that is, the set of reflections 
applicable to a regular polygon with 4 vertices. These include mirroring 
with respect to the lines perpendicular to the container sidewalls (par-
allel to the x and z axes shown in Fig. 1), which pass through the 
geometrical center of the domain and the analogous property with 
respect to the diagonal directions, i.e. the lines passing through dia-
metrically opposite vertices. As a result, the center of the domain be-
haves as a special point (knot) with four-fold topology where the fluid 
(reaching it along four different horizontal directions) is finally pushed 
towards the bottom of the layer. The chosen disposition of the blocks 
within the container is compatible with these symmetries, which are 
retained by the emerging flow. Obviously, this concept cannot be 
extended to the up-down reflection, which is broken in any case because 
of the free upper surface and the presence of blocks [48]. 

Apart from the above-mentioned interesting information about the 
symmetries which are retained or violated, the major significance of 
these findings resides in the confirmation they provide about the ability 
of hot protuberances to behave as ‘catalysts’, by forcing currents of 
rising warm fluid to form at fixed positions. These behave as ‘pillars’, 
which can somehow ‘stabilize’ the pattern, i.e. make it much more 
regular with respect to those which would be produced with no topog-
raphy. Suffice to recall that in the absence of topography, fluid con-
vection would be characterized by a disordered distribution of rolls with 

different orientations and/or convective cells emerging at different po-
sitions. Moreover, such a distribution would change on repeating the 
experiments in identical conditions due to the well-known random 
initial spatial orientation of the convective structures emerging in both 
RB and MB convection. 

Along the same lines, frame-by-frame comparison of Figs. 6 and 4 
also indicates that as N is increased, the transition to a disordered 
pattern is delayed to larger values of the ΔT, which may be regarded as a 
further demonstration or verification of the stabilizing role that the 
bottom hot blocks can have on the emerging behaviors. This realization 
indeed finds its ultimate verification in the dynamics shown in Fig. 7, yet 
for a layer with depth 0.75 cm for N = 3. 

Regardless of the considered value of ΔT, a total of nine spots with 
well-defined square shape and highly ordered arrangement can be 
distinguished in this figure. This means that conditions are attained for 
which the features of the surface temperature field can be directly 
mapped into the topography at the bottom, i.e. they simply reflect the (a- 
priori-set) order of the underlying grid of hot blocks (while all the other 
minor spots are suppressed, a solution hereafter simply referred to as 
‘saturated state’). However, a closer inspection of these figures also re-
veals that, although disordered patterns are no longer possible, on 
increasing the ΔT, the D4 symmetry can still be broken due to some 
‘localized effects’. These manifest as localized star-shaped figures 
(Fig. 7b). 

4.2. Tall blocks in shallow layer 

A replacement of the blocks having thickness 3 mm with the 5 mm 
ones has a two-fold effect. For N = 1, the central thermal feature that 
was displaying a donut shape in Fig. 4 (descending flow at the center) is 
replaced by a full spot (rising fluid at the center, Fig. 8). Moreover, 
(given the proximity of the top surface of protuberances to the free 
surface) the size of this central spot is appreciably larger (we argue that 
due to the limited space between the top surface of the block and the free 
liquid-gas interface the central toroidal roll described in Sect. 4.1 is no 
longer formed). 

For ΔT = 15 ◦C (Fig. 8a), the ring of spots surrounding the central one 
displays 8 distinct features in place of the 6 observed in Fig. 4a. For 
larger ΔT (Fig. 8b), this ordered arrangement is taken over by a rela-
tively disordered distribution of rolls with inclined orientation, which 
tend to break into separated spots. 

The next figure of the sequence (Fig. 9) is instrumental in showing 
that, moving on to the case with N = 2, a stable pattern preserving the D4 
symmetries is established over the entire interval of temperature dif-
ferences considered. As a minor difference with respect to the equivalent 
dynamics depicted in Fig. 6, the aforementioned central ‘singular’ vertex 
with four-fold topology (collecting fluid moving horizontally towards it 
along the free surface, as explained in Sect. 4.1) is taken over by a small 
spot emerging at the center of the domain. 

Additional insights follow naturally from a comparison of Fig. 9b and 

Fig. 5. Sketch of the toroidal roll formed above the top surface of blocks.  
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6d. The convective state for a block thickness of 5 mm is much more 
regular and ordered at the same ΔT, which indicates that for a fixed layer 
depth the stabilizing role played by the topography strengthens as the 
thickness of the blocks is increased. The same concept also applies to N 
= 3 (Fig. 10). The location of spots is simply consistent with the related 
distribution of protuberances, and an external observer looking at the 
free surface in this case would naturally be induced to map the set of 
spots into an array having the same dimensions of the underling matrix 
of blocks (once again a saturated state condition). 

4.3. Shallow blocks in intermediate-depth layer 

Having completed a description of the emerging patterns in terms of 
spatial features for the shallow layer case (Bodyn ≅ 1.94), we turn now to 
considering the companion situations with thicker layer, these 

experiments being instrumental in clarifying the nonlinear processes of 
wavenumber selection at play in these systems. Along these lines, Fig. 11 
refers once again to the archetypal N = 1 case. As the reader will realize 
by inspecting this figure, the most striking difference with respect to the 
analogous dynamics depicted in Figs. 4 and 8, for relatively small values 
of the ΔT concerns the size of the emerging thermal features, which 
increases considerably in the present case (compare e.g., Figs. 11a and 
4a). Moreover, for small ΔT the D4 symmetry is no longer a property of 
the pattern, this being replaced by a smaller degree of symmetry, 
namely, the reflectional invariance with respect to a line parallel to the z 
axis passing through the center of the domain (Fig. 11a). The signifi-
cance of Fig. 11a and b, however, primarily resides in their ability to 
make evident that the distribution of wavenumbers is not independent 
from the ΔT. As the vertical temperature difference grows, the number of 
convective features becomes higher and accordingly their size shrinks 

Fig. 6. Depth of the layer 0.75 cm, (A = 10.6, Bodyn ≅ 1.94), N = 2, block thickness 3 mm (δy = 0.4, Abar = 0.3), variable temperature difference (Ra ≅ 8.6 × 102 ×

ΔT, Ma ≅ 4.4 × 102 × ΔT): a) ΔT = 15 ◦C, Bi ≅ 0.347 (the black boxes indicate the position of the solid blocks), b) ΔT = 18 ◦C, Bi ≅ 0.358, c) ΔT = 27 ◦C, Bi ≅ 0.40, d) 
ΔT = 30 ◦C, Bi ≅ 0.413. Temperature maps show the descending currents as lines of colder (dark) material. 

Fig. 7. Depth of the layer 0.75 cm, (A = 10.6, Bodyn ≅ 1.94), N = 3, block thickness 3 mm (δy = 0.4, Abar = 0.3), variable ΔT (Ra ≅ 8.6 × 102 × ΔT, Ma ≅ 4.4 × 102 ×

ΔT): a) ΔT = 15 ◦C, Bi ≅ 0.347 (the black boxes indicate the position of the solid blocks), b) ΔT = 30 ◦C, Bi ≅ 0.413. 
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(thereby indicating that an increase in ΔT can cause a rise in the 
wavenumber, we will come back to this concept later). 

For N = 2, the pattern is very ordered (Fig. 12a), with four central 
spots encapsulated into an external ordered arrangement displaying 3 
spots along each side. On increasing the ΔT, however, the symmetry is 
broken (Fig. 12b). Finally, for N = 3, the trivial aforementioned “satu-
rated state” is recovered over the entire range of ΔT considered (simply 
reflecting the underlying distribution of elements, not shown). 

4.4. Tall blocks in intermediate-depth layer 

Following the same approach undertaken in Sect. 4.2, in this section 
the focus is shifted to the scenario where the vertical size of the blocks is 
increased while retaining the same layer depth considered in the earlier 
section (Sect. 4.3). In such a treatment, however, we skip the case N = 1 
as the related patterns are almost identical to that already shown in 
Fig. 11, which leads to the conclusions that for this depth (or value of the 
dynamic Bond number, i.e. Bodyn ≅ 3.44) the ability of a single block to 
influence the overall pattern is relatively limited. 

On considering values of N larger than 1, however, some interesting 
localized effects become evident (Figs. 13 and 14). 

The phenomena originally seen in Fig. 7 for a depth 0.75 cm, N = 3 
and block thickness 3 mm also manifest in this case. In particular, as a 
result of an instability affecting the toroidal roll located above each 
block (as witnessed by the position of the inner colder spot located at the 
center of any square hot spot), some special knots appear in the domain, 
which can be uniquely identified through the topological order p of the 
radial spokes that emanate from them. For N = 2, notably, one of these 
special points is located just in the center of the domain (Fig. 13) and its 
topological order is p = 8. Remarkably, the p = 8 multiplicity is still 
present for N = 3 (Fig. 14), although the related knots no longer occupy 
the center of the domain. Owing to this asymmetry, knots with topo-
logical order p = 6 are present in addition to the standard one with p = 4 
(a similar effect can also be noticed in Fig. 7). 

4.5. Shallow blocks in thick layer 

This section and the next one (Sect. 4.6) are finally used to describe 

Fig. 8. Depth of the layer 0.75 cm, (A = 10.6, Bodyn ≅ 1.94), N = 1, block thickness 5 mm (δy = 0.66, Abar = 0.5), variable temperature difference (Ra ≅ 8.6 × 102 ×

ΔT, Ma ≅ 4.4 × 102 
× ΔT): a) ΔT = 15 ◦C, Bi ≅ 0.347 (the black central box indicates the position of the solid block; the central spot is surrounded by 8 smaller spots), 

b) ΔT = 30 ◦C, Bi ≅ 0.413. 

Fig. 9. Depth of the layer 0.75 cm (A = 10.6, Bodyn ≅ 1.94), N = 2, block thickness 5 mm (δy = 0.66, Abar = 0.5), variable temperature difference (Ra ≅ 8.6 × 102 ×

ΔT, Ma ≅ 4.4 × 102 × ΔT): a) ΔT = 15 ◦C, Bi ≅ 0.347 (the black boxes indicate the position of the solid blocks), b) ΔT = 30 ◦C, Bi ≅ 0.413. 

Fig. 10. Depth of the layer 0.75 cm (A = 10.6, Bodyn ≅ 1.94), N = 3, block 
thickness 5 mm (δy = 0.66, Abar = 0.5, the black boxes indicate the position of 
the solid blocks), ΔT = 30 ◦C, Bi ≅ 0.413 (Ra ≅ 8.6 × 102 

× ΔT, Ma ≅ 4.4 × 102 

× ΔT). 
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the dynamics for a layer with thickness 1.5 cm (doubled with respect to 
that considered in Sects. 4.1 and 4.2). 

In line with the trends highlighted in the earlier sections, by which an 
increase in the layer depth and/or temperature difference causes a 
breakdown in the symmetry of the emerging pattern, Fig. 15 clearly 
shows that for a single block (N = 1) with height 3 mm in a layer with 
depth 5 times this height, no specific spatial order exists over the entire 
range of temperature differences considered. 

As the ΔT is increased, the wavenumber becomes higher and some 
“spokes” separating spots having asymmetric square or hexagonal shape 
appear, thereby making the pattern similar to those reported by other 
authors for the case of pure buoyancy convection (we will come back to 

this interesting concept in Sect. 5). 
For N = 2 (Fig. 16) a trivial pattern with four large spots is obtained 

over the entire range of ΔT considered, which indicates that for this layer 
depth the system enters the saturated state condition for a smaller value 
of N (compare with Figs. 6 and 12). 

4.6. Tall blocks in thick layer 

A scenario similar to that described in Sect. 4.5 still holds when the 
height of the block is increased. 

While Figs. 17 and 18 provide a glimpse of the more complex dy-
namics that are enabled when N = 1 regardless of the thickness of the 

Fig. 11. Depth of the layer 1 cm (A = 8, Bodyn ≅ 3.44), N = 1, block thickness 3 mm (δy = 0.3, Abar = 0.3), variable temperature difference (Ra ≅ 2.0 × 103 × ΔT, Ma 
≅ 5.9 × 102 

× ΔT): a) ΔT = 15 ◦C, Bi ≅ 0.44 (the black central box indicates the position of the solid block), b) ΔT = 30 ◦C, Bi ≅ 0.538. 

Fig. 12. Depth of the layer 1 cm (A = 8, Bodyn ≅ 3.44), N = 2, block thickness 3 mm (δy = 0.3, Abar = 0.3), variable temperature difference (Ra ≅ 2.0 × 103 
× ΔT, Ma 

≅ 5.9 × 102 × ΔT): a) ΔT = 21 ◦C, Bi ≅ 0.482 (the black boxes indicate the position of the solid blocks), b) ΔT = 27 ◦C, Bi ≅ 0.525 (topological order of central knot p 
= 4). 

Fig. 13. Depth of the layer 1 cm (A = 8, Bodyn ≅ 3.44), N = 2, block thickness 5 mm (δy = 0.5, Abar = 0.5), variable temperature difference (Ra ≅ 2.0 × 103 × ΔT, Ma 
≅ 5.9 × 102 

× ΔT): a) ΔT = 21 ◦C, Bi ≅ 0.482, b) ΔT = 30 ◦C, Bi ≅ 0.538 (topological order of central knot p = 8). 
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considered block (this being 5 mm and 10 mm in Figs. 17 and 18, 
respectively), a saturated state is recovered as soon as N is increased to 2 
or 3 (not shown). 

5. Discussion 

In order to interpret the present findings, a review of certain results 
appearing in the literature is beneficial, in particular, a short excursus 
into the peculiar properties of RB convection in problems that lack the 
up-down reflection property may help to filter out those aspects which 
are typical of this form of convection with respect to those induced by 
the presence of blocks and/or a thermal inhomogeneity at the bottom. 

As the reader will have realized at this stage, in the present case, the 
up-down symmetry is broken due to the contribution of three indepen-
dent factors, namely, 1) the strong dependence of some fluid properties 

on the temperature (as discussed to a certain extent in Sect. 2), 2) the 
presence of a free surface (as opposed to the no-slip conditions at the 
bottom) and 3) the existence of hot protuberances along the floor (the 
topography). 

Often hexagonal and asymmetric square convective cells have been 
observed in the literature even in circumstances where no topography 
was present in conditions where the first or the second factors were at 
play, relevant examples being the works by Palm [58] and Golubitsky 
et al. [59] for the situation with temperature-dependent viscosity and by 
Demircan and Seehafer [60] for the case of RB convection in layer with a 
free surface. In this regard it is also worth citing Clever and Busse [61], 
who found a pattern resembling that shown in Fig. 15d for a fluid layer 
delimited by solid walls both from above and from below (see F ig. 4.25 
in Ref. [12]). 

Most interestingly, Demircan and Seehafer [60] demonstrated by 
means of numerical simulations that, if stress-free conditions are 
considered at the horizontal boundaries in place of no-slip ones, square 
patterns appear in RB convection via the Skewed Varicose instability of 
rolls. In particular, square cells are made possible by the nonlinear 
interaction of modes with two different wavenumbers that are excited at 
the same time. These interacting modes can produce bifurcations lead-
ing to periodic alternation between a non-equilateral hexagonal pattern 
and a square pattern or to different kinds of standing oscillations [60]. It 
is also worth recalling that this oscillatory behavior of dynamical side 
swapping in square convection can also be found in Marangoni-Bénard 
convection (see, e.g., Ondarcuhu et al. [62] and Krmpotic et al. [63], 
where it was still interpreted as the nonlinear interaction between 
different critical modes). 

Re-examination of the present results in the light of this knowledge 
seems to indicate that, although the propensity to develop square con-
vection is indeed present in some circumstances, however, in general, it 
should be regarded as the natural tendency of the considered system to 
develop saturated states when N is increased (the reader being referred 

Fig. 14. Depth of the layer 1 cm (A = 8, Bodyn ≅ 3.44), N = 3, block thickness 5 
mm (δy = 0.5, Abar = 0.5), ΔT = 27 ◦C, Bi ≅ 0.525 (Ra ≅ 2.0 × 103 × ΔT, Ma ≅
5.9 × 102 × ΔT). 

Fig. 15. Depth of the layer 1.5 cm (A = 5.3, Bodyn ≅ 7.75), N = 1, block thickness 3 mm (δy = 0.2, Abar = 0.3), variable temperature difference (Ra ≅ 6.85 × 103 ×

ΔT, Ma ≅ 8.8 × 102 × ΔT): a) ΔT = 15 ◦C, Bi ≅ 0.65 (the black central box indicates the position of the solid block), b) ΔT = 18 ◦C, Bi ≅ 0.673, c) ΔT = 27 ◦C, Bi ≅
0.78, d) ΔT = 30 ◦C, Bi ≅ 0.8. 
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once again to Figs, 7, 10 and 16). Moreover, the considered cases display 
the ability to give rise to more complex states or behaviors. 

As indicated by the present findings, on the one hand, thermals 
developing in the fluid due to the presence of blocks can dramatically 
limit the tendency of these systems to produce disordered patterns and 
multiple solutions, i.e. solutions that coexist in the space of phases and 
are selected depending on the initial conditions. On the other hand, 
however, features can be produced, which would not be a solution to the 

classical situation with no topography. 
In order to clarify this second aspect, in the following, in particular, 

we consider the case N = 1 for which, as illustrated in Sect. 4, the in-
fluence of the topography on the resulting pattern is mediated by the 
depth of the layer, the height of the block and the temperature difference 
(i.e. the central block displays a variable degree of success in influencing 
the overall dynamics depending on d, l y and ΔT, which provides a hint 
for the existence of interesting scaling laws). 

In particular, the impact of a single block on the distribution of non- 
dimensional wavelengths (made non-dimensional using the layer depth) 
is quantitatively substantiated in the three maps obtained for d = 0.75, 1 
and 1.5 cm, shown in Figs. 19–21 for Bodyn ≅ 1.94, 3.44 and 7.75, 
respectively. 

The wavelength has been obtained as follows: a Matlab based algo-
rithm able to turn any thermographic image provided by the camera into 
a corresponding “table” of numerical values (i.e. a matrix with a given 
number of rows and columns) has initially been used to get the set of 
quantitative data to be used for the ensuing wavelength determination 
analysis; a second Matlab based algorithm has been exploited to perform 
a kind of FFT (Fast Fourier Transform) analysis on each row (corre-
sponding to a temperature profile in the x direction) and column (cor-
responding to a temperature profile along the z direction) pertaining to 
the considered matrix. An example of this approach can be found in 
Ref. [48] where it was implemented to extract the spectrum of the 
surface temperature distribution provided by numerical simulations of 
Marangoni-Bénard convection for high values of the Marangoni number 
(see Fig. 5 in that work). Here, for a fixed temperature difference ΔT, for 
each temperature profile along x or z directions, the “local” wavelength 
has been obtained as the “period” of the considered temperature profile. 
More precisely, for each signal (row or column) a discrete set (i.e. a 

Fig. 16. Depth of the layer 1.5 cm (A = 5.3, Bodyn ≅ 7.75), N = 2, block 
thickness 3 mm (δy = 0.2, Abar = 0.3, the black boxes indicate the position of the 
solid blocks), ΔT = 30 ◦C, Bi ≅ 0.8 (Ra ≅ 6.85 × 103 × ΔT, Ma ≅ 8.8 × 102 

× ΔT). 

Fig. 17. Depth of the layer 1.5 cm (A = 5.3, Bodyn ≅ 7.75), N = 1, block thickness 5 mm (δy = 0.33, Abar = 0.5), variable temperature difference (Ra ≅ 6.85 × 103 
×

ΔT, Ma ≅ 8.8 × 102 × ΔT): a) ΔT = 15 ◦C, Bi ≅ 0.65, b) ΔT = 30 ◦C, Bi ≅ 0.8. 

Fig. 18. Depth of the layer 1.5 cm (A = 5.3, Bodyn ≅ 7.75), N = 1, block thickness 10 mm (δy = 0.66, Abar = 1), variable temperature difference (Ra ≅ 6.85 × 103 ×

ΔT, Ma ≅ 8.8 × 102 × ΔT): a) ΔT = 15 ◦C, Bi ≅ 0.65, b) ΔT = 30 ◦C, Bi ≅ 0.8. 
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limited number) of wavelengths has been obtained, which represents the 
(spatial) “spectral” content of the considered temperature (spatial) 
profile (just like a set of temporal frequencies would represent the 
spectral content of an oscillatory-in-time signal). This procedure has led 
to the identification of 2–4 different “characteristic” wavelengths being 
present in the entire fluid domain for each ΔT over the entire set of 
columns and rows (hereafter, these wavelength are simply referred to as 
λ1, λ2 and λ3, with λ1 > λ2 > λ3; a fourth relatively small wavelength has 
been found only in a few cases, only for ΔT > 25 ◦C). As expected (given 
the problem symmetries) the recurring wavelengths along x have found 
to be almost identical to those found for the z direction. This set of data 
has been further elaborated as follows: each characteristic wavelength 
has been averaged over the entire set of rows (columns). The 3 dominant 
spatially averaged wavelengths obtained in this way represent the data 
summarized in Figs. 19–21 referred to as the lower, intermediate and 
upper branches, respectively (the lower and the upper representing the 
most and least extended thermal features, respectively). These wave-
lengths have been normalized using the depth of the layer. Finally the 
uncertainty has been determined as the difference between the 
maximum and minimum wavelength related to a given averaged value. 

These figures can be used to reveal the non-trivial correspondence 
between the topography and the pattern; multiple occurrences of the 
same symbol for a fixed value of the temperature difference (e.g., along 

the vertical direction in Fig. 19) indicate the presence of coexisting 
convective structures with different horizontal extension. For completeness, 
quantitative data about experiments with the classical unobstructed 
layer are also included (the reader being referred to the “no block” 
symbol and the corresponding snapshots presented as insets). 

A first key observation stemming from Fig. 19 (Bodyn ≅ 1.94) con-
cerns the visible similarities for the layer with and without topography. 
Such common features (made evident by the overlapping symbols) 
clearly indicate that these are inherited from the parent forms of con-
vection (the classical RMB problem). 

Comparison of the results with and without blocks, however, is also 
instrumental in showing that an additional branch of wavelengths 
(representative of another class of convective features) exists for the 
block-perturbed case (upper branch in Fig. 19). Notably, in general, an 
increase in the temperature difference results in larger convective 
structures only if this branch is considered, whereas no significant 
dependence of the wavelength on the temperature difference can be 
noticed for the lower branch. 

The required explanation for the perfect horizontal orientation of the 
lower branch can be elaborated in its simplest form on the basis of the 
argument that the although the aspect ratio of the fluid domain in this 
case is relatively large (A = 10.6), however it is not sufficiently high to 
allow the considered system to mimic the behavior of an infinite layer 

Fig. 19. Wavelength as a function of the temperature difference between the bottom plate and the ambient for the layer with depth 7.5 mm (Bodyn ≅ 1.94; Legend: 
black ■ - No block, red ◆ - 3 mm block, blue ▴ - 5 mm block; the insets are examples used to support reader’s understanding of the relationship between the 
patterning behavior and the related spatial spectrum in terms of wavelengths). 
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(which leads to the conclusion that it is prevented from producing 
continuous changes in the wavelength of the modes of convection per-
taining to the parent RMB flow when the imposed ΔT is varied in the 
considered range; see also Dauby and Lebon [39]). 

Interestingly, however, the presence of the block allows the system to 
develop an ‘intermediate’ branch of wavelengths, which does not exist 
in the case with no topography. The use of different colors in this figure 
is also instrumental in revealing that a net distinction exists between the 
wavelength for blocks with 3 and 5 mm (upper branch). This implies 
that the anisotropy introduced by the central block, not only leads to the 
emergence of a new branch of localized states, but it also cause some 
readjustments in the general ability of the system to produce other 
localized convective features (thereby providing a justification for the 
different extension of the intermediate branch for different vertical sizes 
of the block). 

However, when the depth of the layer is increased to 1 cm (Fig. 20, 
Bodyn ≅ 3.44), it can be seen that the results obtained for blocks having a 
height of 5 mm and 3 mm are relatively close one another. Moreover, the 
(vertical) distance of the upper branch (accounting for the presence of 
the central convective structure) from the other branches becomes 

smaller. On a separate note, it is also worth highlighting that, on 
increasing the ΔT, the central spot displays a tendency to grow whereas 
the structures produced by standard RMB convection become smaller for 
ΔT ≥ 27 ◦C (the shrinkage being even more evident for the 5 mm block 
case). 

As the layer depth is increased to 1.5 cm (Fig. 21, Bodyn ≅ 7.75), the 
branch related to the convective cell/spot above the single central block 
is no longer present. The ability of the block to influence the overall flow 
is relatively limited as also witnessed by the overlap of wavelengths 
obtained for the cases 3 mm and 5 mm. Relatively small structures 
appear only for ΔT ≥ 27 ◦C and in the case with block thickness 5 mm 
(see the triangle symbols at the very bottom of this figure). 

As already discussed to a certain extent in Sect. 4, this variety of 
coexisting wavelengths tends to be mitigated as N is increased, until the 
convective features generated by the blocks become so dominant that 
they prevent the system from adapting to changes in the depth of the 
layer and/or height of the blocks. In those cases, the system enter the 
aforementioned “saturated” condition, which explains why figures 
equivalent to Figs. 19–21 are not being shown here for N = 2 and N = 3. 

Additional insights finally stem from comparison of the present 

Fig. 20. Wavelength as a function of the temperature difference between the bottom plate and the ambient for the layer with depth 10 mm (Bodyn ≅ 3.44; Legend: 
black ■ - No block, red ◆ - 3 mm block, blue ▴ - 5 mm block; the insets are examples used to support reader’s understanding of the relationship between the 
patterning behavior and the related spatial spectrum in terms of wavelengths). 
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experimental findings with the numerical ones by Lappa and Waris [48]. 
Although those numerical results were obtained for a much smaller 
value of the Prandtl number and constant viscosity (Pr = 10, as larger 
values of this parameter would have otherwise required prohibitive 
computational times), some interesting qualitative considerations can 
be made. It can indeed be inferred that a fluid with variable (temper-
ature-dependent) physical properties tendentially promotes the emer-
gence of self-organized states such as those shown in Figs. 6, 9, 12 and 13 
for smaller values of the parameter N. 

6. Conclusions 

Complex patterns typical of canonical forms of convection such as 
MB and RB arise spontaneously as a result of the amplification (and 
ensuing saturation) of certain categories of disturbances, which are 
selected out of the full spectrum of possible perturbations because of the 
symmetry that they satisfy and the isotropy and/or multidirectional 
translational invariance of the system where they are amplified. 
Nevertheless, as revealed by the present study, somehow ‘engineered’ 
states can be produced through the introduction of a given topography 
in the system. This can help to meet the desired objective through a two- 
fold influential process, namely, first (passive control) by limiting the 
accessibility of the flow to certain regions of the physical domain 
(breaking the in-plane isotropy of the fluid layer), second (active con-
trol) through the buoyancy-induced generation of thermals, which, by 
acting as ‘pillars’ can force the pattern to develop nodes with relatively 
high topological order at fixed points, just like atoms positioned at lat-
tice points in a crystal. 

The system response to a change in the topography (N) is mediated 
by a number of factors, including, the depth of the layer, the height of 
blocks, the temperature difference and the layer aspect ratio. By 
following a structured modus operandi aimed to unravel some specific 
interwoven aspects, we have shown that for N = 1, features of the 
abovementioned classical forms of convection can still be clearly iden-
tified. For small and intermediate depths of the layer, these features 
correspond to the branches visible in the lower part of the figures (maps) 
providing the distribution of wavelength as a function of the 

temperature difference. In turn, the horizontal orientation of such 
branches indicates that, for the conditions considered in the present 
work, i.e. A = O (10), the layer is not sufficiently extended in the hor-
izontal direction to allow a continuous variation of the wavelength with 
ΔT (in other words, the size of the emerging convective structures rep-
resented by these branches is dictated essentially by the aspect ratio of 
the layer). 

The anisotropy introduced by the blocks leads to the emergence of 
another branch and some related re-adjustments in the other branches. 
The related ability of the wavelength to scale with the ΔT may be 
regarded as evidence of the different nature of this convective feature, 
which is not constrained to obey the rules of standard RMB convection 
and represents a clear departure from convection in isotropic layers (it 
clearly draws from fluid motion originating from the hot vertical walls of 
the block, which allows it to escape the abovementioned rules). 

On increasing the layer depth, as expected, the pattern-forming 
mechanism is transferred back to the parent forms of convection. 
Remarkably, however, an increase in N has the opposite effect, i.e., the 
system gradually evolves towards topography-controlled solutions, 
whereas the properties of the parent forms of convection tend to be 
suppressed in favor of more system specific ones. 

For all the conditions considered in the present work, indeed, the 
convective features induced by the blocks become dominant with 
respect to those of the parent RMB convection as soon as N is increased 
from 1 to 2, regardless of the depth of the layer. These consist of a unique 
arrangement of square thermal features supporting knots with topo-
logical order in the range between p = 4 and p = 8. As already explained 
before, these are made possible by the thermal plumes generated above 
the blocks, which act as pillars stabilizing the flow and reducing 
dramatically the set of allowed wavelengths until a single possible 
wavelength corresponding to L/3, i.e. a trivial state is obtained for N = 3 
over a wide range of conditions. 

A tendency opposing the emergence of such saturated states is rep-
resented by the ability of the planform to develop localized features, 
which can increase locally the topological order of certain knots and 
cause a breakdown in its symmetry, especially if relatively small values 
of the dynamic Bond number are considered. Vice versa, an increase in 
this parameter can promote asymmetry and disordered patterns in the 
case N = 1. 

In order to expand this line of inquiry, future experiments could be 
conducted for the situation where the considered multi-block system is 
inclined with respect to the horizontal direction, thereby opening the 
door to the ability of gravity-induced shear flow to cause a further 
breakage (this time at a “global” level) in the in-plane isotropy of the 
fluid domain. 
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