
WEIGHTED ENUMERATION OF NONBACKTRACKING WALKS1

ON WEIGHTED GRAPHS ∗2

FRANCESCA ARRIGO† , DESMOND J. HIGHAM ‡ , VANNI NOFERINI§ , AND RYAN3

WOOD¶4

Abstract. We extend the notion of nonbacktracking walks from unweighted graphs to graphs5
whose edges have a nonnegative weight. Here the weight associated with a walk is taken to be6
the product over the weights along the individual edges. We give two ways to compute the associ-7
ated generating function, and corresponding node centrality measures. One method works directly8
on the original graph and one uses a line graph construction followed by a projection. The first9
method is more efficient, but the second has the advantage of extending naturally to time-evolving10
graphs. Based on these generating functions, we define and study corresponding centrality measures.11
Illustrative computational results are also provided.12
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1. Introduction. Complex network analysis is an expanding scientific discipline16

that has recently been producing many research challenges, with applications across17

several fields of science and engineering [11, 24]. One important question is that of18

ranking the nodes of a graph by importance, or, in more mathematical terms, defining19

and studying an appropriate centrality measure. Those centrality measures that can20

be formulated and computed via combinatorial properties of walks on the underlying21

graph have received special attention [7, 12, 13, 19, 23] because they have convenient22

formulations in terms of linear algebra that lead to efficient computational methods.23

In recent years, this paradigm has been refined by studying centrality measures that24

are based on counting not all walks but only some of them, namely, walks that do not25

backtrack [1, 2, 5, 14, 28–30] or more generally do not cycle [5]. Nonbacktracking walks26

are known to be linked to zeta functions of graphs [18, 21, 22, 26]. Their associated27

centrality measures have been shown to possess attractive computational properties28

[1, 2, 4, 14] and have been studied both for undirected and directed graphs, and more29

recently for time evolving graphs [3]. However, in the context of the combinatorics30

of nonbacktracking walks, so far only unweighted graphs have been studied. We31

mention that nonbacktracking random walks were previously considered in [20], but32

the problems studied there are different to the ones analyzed in the present paper.33

Moreover, [20] focuses only on the special case where the nodes are given themselves a34

positive weight φ(i), and the weight of the edge (i, j) is defined as ω((i, j)) = φ(i)φ(j).35
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Instead, we do not impose any restriction on the edges’ weights. In the theory of graph36

zeta functions, weighted graphs have been considered by defining the weight of a walk37

to be the sum (and not the product, as in this paper) of the weights of its edges [18].38

We discuss this issue further in section 2.39

The main purpose of the present paper is to extend the combinatorial theory of40

nonbacktracking walks, and corresponding centrality measures, to graphs whose edges41

carry a positive weight. These graphs are associated with generic nonnegative adja-42

cency matrices, in contrast to unweighted graphs that correspond to binary adjacency43

matrices. While for unweighted graphs one may be interested in the enumeration of44

walks of a given length, for weighted graphs the combinatorial problem is more so-45

phisticated due to the presence of weights. The edge weights naturally give rise to46

an overall weight for each walk, a concept that can be used alongside the length (i.e.,47

the number of edges traversed).48

The structure of the paper is as follows. In Section 2 we introduce some relevant49

notation and core concepts. Section 3 sets up and studies the issue of characterizing50

the classical generating function associated with nonbacktracking weighted walks and51

using it to compute a centrality measure. In section 4 we introduce an alternative52

formulation that applies to a wider class of generating functions and centrality mea-53

sures. Section 5 shows how these ideas can be extended to the case of evolving graphs.54

Numerical experiments are conducted in Section 6. We finish in Section 7 with a brief55

discussion.56

2. Background and Notation. In this paper, we consider finite graphs. A57

finite graph is a triple G = (V,E,Ω) where V = [n] is the set of the nodes (or58

vertices), E ⊂ V × V is the set of (directed) edges, and Ω : E → (0,∞) is a weight59

function that associates to each edge a positive weight. If Ω(e) = 1 for all e ∈ E,60

then the graph is said to be unweighted; if for any pair i ̸= j, with i, j ∈ V we have61

that (i, j) ∈ E ⇔ (j, i) ∈ E and that Ω((i, j)) = Ω((j, i)) then the graph is said to be62

undirected; and if, for every i ∈ V , we have that (i, i) ̸∈ E then the graph is said to be63

without loops. Graphs that are not unweighted are usually called weighted and graphs64

that are not undirected are usually called directed. It is, however, convenient (and65

we will do so within this work) to relax the terminology so that the set of directed66

(resp., weighted) graphs contains as special cases also undirected (resp., unweighted)67

graphs, further we will assume that all graphs are without loops.68

A walk of length ℓ on the graph G is a sequence of nodes i1, i2, . . . , iℓ+1 such that69

(ij , ij+1) ∈ E for all 1 ≤ j ≤ ℓ. Equivalently, it can be seen as a sequence of edges70

e1, . . . , eℓ such that ej ∈ E for all j = 1, . . . , ℓ − 1 and the end node of ej coincides71

with the starting node of ej+1.72

Definition 2.1. Let G = (V,E,Ω) be a weighted graph. The weight of the walk73

e1, . . . , eℓ is74

ℓ∏
k=1

Ω(ek)75

where Ω(ek) is the weight of the edge ek ∈ E.76

Remark 2.2. When Ω : E → {1} is the weight function associated with an un-77

weighted graph, then the weight of all walks in the network is one, regardless of their78

length.79

In the context of mainstream graph theory, the weight (or length or cost) of a walk is80

sometimes defined as the sum, rather than the product, of the weights of its edges. In81
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that scenario, zeta functions of graphs (which are closely related to the enumeration82

of nonbacktracking walks) have been studied [18]. However, we argue that within83

complex network analysis Definition 2.1 has several useful applications. For example,84

consider a road network where nodes represent towns and a nonnegative integer edge85

weight Aij records the number of distinct roads connecting town i and town j. Then,86

the number of distinct routes from i to j that pass through one intermediate town is87

equal to88
n∑

k=1

AikAkj ,89

that is, the weighted sum of walks of length two, where the weight is the product of the90

weights of its edges. Similarly, in a model where edges represent independent prob-91

abilistic events and their weights are their probabilities, as discussed in the original92

work of Katz [19], it is natural to postulate that the weight of a walk is the product93

of the weight of its edges, in agreement with the fact that the joint probability of a94

sequence of independent events is the product of the individual probabilities.95

Given a node ordering, the corresponding adjacency matrix of a graph is the96

matrix A ∈ Rn×n entrywise defined as:97

Aij =

{
0 if (i, j) ̸∈ E;

Ω((i, j)) if (i, j) ∈ E.
98

Note that a graph is undirected if and only if its adjacency matrix is symmetric;99

it is without loops if and only if its adjacency matrix has zero diagonal; and it is100

unweighted if and only if its adjacency matrix has entries all lying in {0, 1}.101

The problems of enumerating walks in unweighted graphs and enumerating weighted102

walks in weighted graphs may both be solved by considering powers of the adjacency103

matrix: indeed, the (i, j) entry of Ak is equal to, respectively, the number of walks104

of length k from node i to node j (when the graph is unweighted) or the weighted105

sum of walks of length k from node i to node j (when the graph is weighted). As a106

consequence, the generating function for the (possibly weighted) enumeration of walks107

is given by108

I + tA+ t2A2 + · · · =
∞∑
k=0

tkAk = (I − tA)−1,109

where we adopt the standard convention that the (weighted) sum of walks of length110

zero from i to j is 1 if i = j and 0 otherwise. Here, t is a real parameter small enough111

to ensure convergence of the series which scales by tk the count for walks of length k.112

A walk can also be seen as a sequence of nodes. If the sequence does not contain113

a subsequence of the form iji for some nodes i and j, then the walk is said to be114

nonbacktracking (NBT). We define pk(A) to be the matrix whose (i, j) entry contains115

the sum of the weights of all nonbacktracking walks of length k from node i to node j.116

By convention, p0(A) = I. Note that, by definition, pk(A) ≤ Ak elementwise. Combi-117

natorially, the problem of computing the (weighted) enumeration of nonbacktracking118

walks is equivalent to finding an explicit expression for the generating function119

(2.1) Φ(t) =
∞∑
k=0

tkpk(A)120

for suitable values of the parameter t > 0.121
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This problem was addressed in [14] for unweighted undirected graphs, and later122

in [1] for unweighted directed graphs. In [2], the solution was extended to the more123

general generating function124

(2.2) κ(t) =
∞∑
k=0

ckt
kpk(A),125

where (ck)k ⊂ [0,∞) is an arbitrary sequence. In [3], the theory was further extended126

to consider time evolving graphs. However, so far, the quantities (2.1) and (2.2)127

have not yet been studied for weighted graphs. Their characterization is the main128

contribution of this paper.129

A corollary of obtaining such computable expressions is a numerical recipe for130

associated nonbacktracking centralities. Indeed, beyond its algebraic interpretation131

as a generating function, (2.2) can be interpreted analytically as a function that will132

converge for sufficiently small values of the variable t. Choosing one such value for133

t allows us to define a centrality measure based on the weighted sum of edges. For134

example, if 1 is the vector of all ones, then the i-th component of the vector135 ( ∞∑
k=0

ckt
kpk(A)

)
1136

computes a nonbacktracking version of Katz centrality [19]. The latter is defined as137

the doubly weighted sum of all the walks departing from node i, where the weight of138

each walk within the sum is the product of the weight of the walk itself and tk, where139

k is the walk length. Similarly, for the subgraph centrality version of nonbacktracking140

Katz, the doubly weighted sum of all the walks that start and end on node i is given141

by142 ( ∞∑
k=0

ckt
kpk(A)

)
ii

.143

As a consequence, two additional questions that we address in this paper are to144

describe the radius of convergence of (2.2) and to derive computable expressions for145

the associated centrality measures. We refer to [1, 2, 14], and the references therein,146

for details of the benefits of nonbacktracking in the centrality context.147

We consider two approaches to bridge the gap between weighted graphs and148

current results on the combinatorics of nonbacktracking walks. The first is specialized149

to the case ck ≡ 1, i.e., to compute (2.1); it leads directly to an expression that has150

computational advantages as it does not require to go through the edge-level and,151

thus, it requires the construction of a potentially much smaller matrix than the second152

approach. The second is based on a technique, described in [3, 5], of forming the line153

graph, obtaining a generating function there, and finally projecting back to compute154

(2.2). While, potentially, the second approach may be computationally less efficient,155

it has the advantages that (i) it is able to solve the more general problem (2.2), (ii)156

it can be generalized to the setting of time evolving graphs, and (iii) it allows us to157

easily estimate the convergence radius of (2.2) (including the special case of (2.1)).158

3. The generating function of nonbacktracking walks on a weighted159

graph. In this section, we assume that G is a finite directed weighted graph with n160

nodes, without loops, and having adjacency matrix A. The directed edge from node161

i to node j has weight Aij > 0. Following Definition 2.1, to the walk i1i2i3 . . . iℓ+1162
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of length ℓ we assign the weight Ai1i2Ai2i3 · · ·Aiℓiℓ+1
. We note the distinction here163

between the length and the weight of a walk.164

The goal of this section is to obtain a convenient formula for the generating165

function Φ(t) in (2.1). We note that this generalizes the version previously studied166

for an unweighted graph [1], and the expression Φ(t)1 is then a natural candidate for167

a node centrality measure.168

3.1. Describing the matrices pk(A) via a recurrence relation. Let us first169

set up some further notation: given two square matrices X,Y ∈ Rn×n we distinguish170

between matrix multiplication, XY , and elementwise multiplication, X ◦ Y , where171

(X ◦ Y )ij = XijYij . Similarly, we differentiate between the k-th linear algebraic172

power Xk and the k-th elementwise power, X◦k, so (X◦k)ij = (Xij)
k. Moreover,173

following Matlab notation, dd(X) := diag(diag(X)) will denote the diagonal matrix174

whose diagonal entries are equal to the diagonal entries of X. We first prove the175

following k-term recurrence, which generalizes previous results that have been derived176

independently for the unweighted [10, 27] and undirected [26] cases.177

Theorem 3.1. For all k ≥ 1,178

pk(A) =
∑

ℓ=2h+1 odd
1≤ℓ≤k

(A◦(h+1) ◦ (AT )◦h)pk−ℓ(A)−
∑

ℓ=2h even
2≤ℓ≤k

dd((A◦h)2)pk−ℓ(A).179

Proof. For the base case of k = 1, the statement reduces to p1(A) = (A ◦180

11T )p0(A). Since A ◦ 11T = A and p0(A) = I, in turn this yields p1(A) = A,181

which is manifestly true since any walk of length one is nonbacktracking. Let us now182

give a proof by induction.183

We start by considering Apk−1(A), whose (i, j) entry is equal to the sum of the184

weights of all walks of length k from i to j that are nonbacktracking if the first step is185

removed. This value is equal to pk(A)ij plus the sum of the weights of all backtracking186

walks of length k from i to j that are nonbacktracking if the first step is removed.187

Such walks must be of the form iai . . . j: the weight of one such walk is AiaAai times188

the weight of a certain NBT walk of length k − 2 from i to j. Summing over all a189

adjacent to i yields dd(A2)pk−2(A). However, we have subtracted too much, because190

any such walk of the form iaia . . . j, being backtracking after removing the first step,191

was not present in (Apk−1(A))ij . The weight of one such walk is AiaAaiAia = A2
iaAai192

times the weight of a certain NBT walk of length k−3 from a to j. We can sum again193

over all a adjacent to i, to obtain ((A◦2 ◦ AT )pk−3(A))ij . We should sum this value194

back, but again we are adding a bit too much, because walks satisfying the previous195

requirements and being of the form iaiai . . . j should not be there.196

It is clear that this sequence of corrections goes on until we exhaust the length197

of the walk and the statement of the theorem is a consequence of the two following198

facts, both true for all h ≥ 0.199

1. The total weight of walks of length k from i to j of the form i(ai)ha . . . j, such200

that the final subwalk (of length k− (2h+1)) from a to j is not backtracking,201

is equal to202 ∑
a:(i,a)∈E

(Aia)
h+1(Aai)

hpk−2h−1(A)aj =
(
(A◦(h+1) ◦ (AT )◦h)pk−2h−1(A)

)
ij
.203

2. The total weight of walks of length k from i to j of the form (ia)2hi . . . j, such204

that the final subwalk (of length k − 2h) from i to j is not backtracking, is205
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equal to206 ∑
a:(i,a)∈E

(Aia)
h(Aai)

hpk−2h(A)ij =
(
dd((A◦h)2)pk−2h−1(A)

)
ij
.

207

3.2. Solving the recurrence relation. Let us continue by giving a combina-208

torial result in Proposition 3.2. Its statement expresses the generating function of a209

sequence satisfying a growing recurrence relation in terms of two individual generating210

functions.211

Proposition 3.2. Let (Pk)k and (Cℓ)ℓ be two sequences in some (possibly non-212

commutative) ring, and suppose that (Pk)k satisfies the growing recurrence213

k∑
ℓ=0

CℓPk−ℓ = 0214

for all k ≥ 1. Then, the (formal) generating functions Φ(t) =
∑∞

k=0 Pkt
k and Ψ(t) =215 ∑∞

ℓ=0 Cℓtℓ are related by the formula Ψ(t)Φ(t) = C0P0.216

Proof. Observe that, using the recurrence,217

Ψ(t)Φ(t) =

∞∑
k=0

tk
∞∑
ℓ=0

CℓPk−ℓ = C0P0.
218

We can now apply the general technique of Proposition 3.2 to the special case219

of the generating function (2.1), whose coefficients satisfy the recurrence described in220

Theorem 3.1. In other words, we specialize Proposition 3.2 to sequences in the ring221

Rn×n where Pk = pk(A) and222

Cℓ =


I if ℓ = 0;

−[A◦(h+1) ◦ (AT )◦h] if ℓ = 2h+ 1;

dd((A◦h)2) if ℓ = 2h > 0.

223

In particular, C0 = P0 = I, and hence by Proposition 3.2 Φ(t) = Ψ(t)−1. In turn, we224

can write Ψ(t) = Ψe(t)−Ψo(t) by splitting even and odd terms and by extracting the225

minus sign appearing in the odd terms of (Cℓ)ℓ. It is easy to see that Ψe(t) is diagonal226

while Ψo(t) is the off-diagonal part of Ψ(t), since we assume G to be without loops.227

Moreover,228

(Ψo(t))ij =
∞∑
h=0

t2h+1Ah+1
ij Ah

ji =
tAij

1− t2AijAji
.229

Similarly,230

(Ψe(t))ii = 1 +
∞∑
h=1

t2h
n∑

j=1

Ah
ijA

h
ji = 1 +

n∑
j=1

t2AijAji

1− t2AijAji
.231

Let S = A ◦AT , let Q = S◦1/2, let232

f1(x) =
x

1− x
, f2(x) =

x

1 + x
,233
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and let fi(◦tX) denote the elementwise application of fi to the matrix tX, for i = 1, 2.234

Then, if we denote by ◦/ the elementwise application of /, we can write235

Ψe(t) = I + dd(f1(◦tQ)f2(◦tQ)), Ψo(t) = tA ◦ /(11T − t2S)236

and hence Ψ(t) = I + dd(f1(◦tQ)f2(◦tQ))− tA ◦ /(11T − t2S).237

We can state this more formally as a theorem.238

Theorem 3.3. In the notation above, for all values of t such that (2.1) converges,239

we have240

(3.1) Φ(t) = (I + dd[f1(◦tQ)f2(◦tQ)]− tA ◦ /(11T − t2S))−1.241

As a sanity check, let us see what happens in three distinct interesting limiting242

cases that have been addressed previously in the literature.243

• First, let us verify that in the limit of an unweighted graph we recover [1,244

equation (3.3)]. In this case, (Aij)
h = Aij ∈ {0, 1} for all h ≥ 1. As a result,245

if D = dd(A2),246

(Ψe(t))ii = 1 +
∞∑
h=1

t2h
n∑

j=1

AijAji = 1 +Dii
t2

1− t2
⇒ Ψe(t) =

I − t2I + t2D

1− t2
247

and248

(Ψo(t))ij = tAij+
∞∑
h=1

t2h+1AijAji = tAij+
t3Sij

1− t2
⇒ Ψo(t) =

tA− t3(A− S)

1− t2
249

which imply the known Φ(t) = (1 − t2)(I − tA + t2(D − I) + t3(A − S))−1250

from [1, Equation (3.3)].251

• Next, let us observe that if no edge is reciprocated, that is, if there is no (i, j) ∈252

E such that (j, i) ∈ E, then S = Q = 0. Hence, we recover the generating253

function associated with classical Katz centrality, i.e., Φ(t) = (I − tA)−1,254

which is consistent with the fact that every walk is nonbacktracking under255

this assumption.256

• Finally, if the graph is undirected then S = A◦2 and Q = A. Hence, the257

formulae simplify to258

Ψe(t) = I + dd[f1(◦tA)f2(◦tA)], Ψo(t) = tA ◦ /(11T − t2A◦2)259

yielding in particular260

Φ(t) = (I + dd[f1(◦tA)f2(◦tA)]− tA ◦ /(11T − t2A◦2))−1.261

If we additionally assume that the graph is unweighted, we further reduce to262

Φ(t) = (1− t2)(I −At+ t2(D− I))−1 in agreement with [14, Equation (5.3)].263

We now briefly comment on the convergence of Φ(t) =
∑

k pk(A)tk to the right-264

hand-side of (3.1). Since the series converges to a rational function, its radius of265

convergence is equal to the smallest of its poles. One way to compute the radius is266

therefore via the eigenvalues of the rational function Ψ(t) =Φ(t)−1. A more straight-267

forward method (albeit possibly less efficient) to estimate the radius of convergence268

is available when computing Φ(t) with a different method. This is described in more269
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detail in Section 3 and, in particular, within Corollary 4.8. In spite of the some-270

what awkward notation, (3.1) is in fact quite straightforward to compute given A, by271

composing elementwise functions and matrix addition and multiplications.272

We conclude this section by recalling that we can define a nonbacktracking version273

of Katz centrality on weighted graphs by summing the value of the generating function274

over all possible ending nodes, which can be expressed as the linear algebraic matrix-275

vector multiplication Φ(t)1.276

The following corollary is then an immediate consequence of Theorem 3.1.277

Corollary 3.4. For all values of t such that (2.1) converges, consider the cen-278

trality measure where node i is assigned the value xi according to x = Φ(1)1. Then x279

may be found by solving the linear system280

(3.2) (I + dd[f1(◦tQ)f2(◦tQ)]− tA ◦ /(11T − t2S))x = 1.281

Corollary 3.4 shows in particular that the centrality measure can be found without282

explicitly computing the inverse in (3.1). We can instead compute the vector of283

nonbacktracking centralities x by solving the linear system (3.2). We note that the284

coefficient matrix in (3.2) is no less sparse than I − tA; hence the computational285

complexity of solving such a linear system is the same as for classical Katz centrality,286

and the task is feasible with standard tools for sparse linear systems for very large,287

sparse networks.288

4. Generating function by constructing the line graph and projecting289

back. In this section, we derive an alternative computable expression for the gener-290

ating function Φ(t). Although generally this second method is less computationally291

efficient, it offers three main advantages: (i) it can be extended to nonbacktracking292

centrality measures other than Katz (for example, based the exponential rather than293

the resolvent); (ii) it allows for a simple characterization of the radius of convergence294

of the generating function; and (iii) it can be extended to time evolving graphs.295

As before, we consider a finite weighted graph with n nodes. We also assume
(directed) edges have been labelled from 1 to m in an arbitrary, but fixed, manner.
We may then define the source matrix L ∈ Rm×n and target (or terminal) matrix
R ∈ Rm×n as follows [31]:

Lej =

{
1 if edge e starts from node j

0 otherwise
Rej =

{
1 if edge e ends on node j

0 otherwise.

Moreover, we let Z be an m×m diagonal matrix such that Zee = Aij , where (in the296

chosen labelling of the edges) the e-th edge is precisely (i, j).1 Then, we have the297

following relationship.298

Proposition 4.1. We have A = LTZR.299

Proof. Since Z is diagonal, (LTZR)ij =
∑m

e=1 LeiZeeRej . But there is at most300

one value of e such that LeiRej ̸= 0, and that is precisely the value identifying the301

edge i → j, if this is an edge of the graph. If such an edge does not exist then the302

summation yields 0, as desired. If such an edge exists, then, for that e, Zee = Aij303

which concludes the proof.304

Now let W be the weighted matrix of the dual graph (or line graph), i.e., the305

graph whose nodes correspond to the original (directed) edges, and whose edges are306

1For clarity, we will sometimes use the notation i → j to denote the edge (i, j) ∈ E.
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pairs of edges from the original graph that can form a walk. The pair (i → j, j → k)307

represents a walk that has weight equal to the product of the original edge weights;308

that is, AijAjk. These values are recorded in the entries of W , with Wef = AijAjk if309

e is the label of edge i → j and f is the label of edge j → k.310

Theorem 4.2. We have W = ZRLTZ.311

Proof. We proceed entrywise. Suppose for concreteness that edge e is i → j and
edge f is k → ℓ, where i ̸= j, k ̸= ℓ are (possibly, but not necessarily, all distinct)
nodes. Note for a start that Wef = AijAjℓ if j = k and Wef = 0 if j ̸= k. Now, since
Z is diagonal,

(ZRLTZ)ef = ZeeZff

n∑
h=1

RehLfh = AijAkℓ

n∑
h=1

RehLfh.

Suppose j ̸= k; then there is no h such that RehLfh ̸= 0, so the summation above is312

0 = Wef . On the other hand, if j = k then the summation over h yields 1 so that313

(ZRLTZ)ef = AijAjℓ = Wef .314

In the unweighted case, we have a projection relation LTW kR = Ak+1 [5, Propo-315

sition 2.4]. However, for weighted graphs, entries of W k count walks of length k + 1,316

but with incorrect weights. For example, the walk 1 → 2 → 3 → 4 would be weighted317

A12A
2
23A34 rather than A12A23A34. We now exhibit a trick that corrects this prob-318

lem. Coherently with the notation of the previous section, below M◦1/2 denotes the319

elementwise nonnegative square root of a nonnegative matrix M ; note that generally320

this does not correspond to the classical matrix square root
√
M (i.e., the matrix X321

such that X2 = M), a notable exception being the case of a diagonal square matrix322

with nonnegative diagonal. We note that Z falls in this latter category, hence the323

notation in the following result.324

Theorem 4.3. Let 0 < k ∈ N. The (e, f) element of
√
Z(W ◦1/2)k

√
Z counts,325

with weights, all walks of length k + 1 from edge e to edge f .326

Proof. The crucial observation is that W ◦1/2 =
√
ZRLT

√
Z, which is clear by a

minor modification of the proof of Theorem 4.2. We now proceed by induction on k.
For the base case k = 1, it suffices to observe that

√
ZW ◦1/2

√
Z = ZRLTZ = W.

Suppose now that the statement holds for k − 1. Then,

√
Z(W ◦1/2)k

√
Z =

√
Z(W ◦1/2)k−1

√
Z(Z−1/2)W ◦1/2

√
Z.

Define for notational simplicity U :=
√
Z(W ◦1/2)k−1

√
Z, X := Z−1/2, Y := W ◦1/2,

Σ :=
√
Z. Then, since X and Σ are diagonal,

(UXY Σ)ef =
∑
g∈E

UegXggYgfΣff .

Suppose now that edge e is i → j and edge f is h → ℓ; then edges g must be of the
form x → h for some node x. Indeed, Ygf = 0 unless the end node of edge g coincides
with the start node of edge f , i.e., unless gf is a walk of length two. Hence, in this
notation,

(UXY Σ)ef =
∑

x:Axh>0

Ue,x→h

√
AhℓAxh

√
Ahℓ

Axh
= Ahℓ

∑
x:Axh>0

Ue,x→h,
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where
∑

x:Axh>0 Ue,x→h is, by the inductive assumption, the count (with weights) of327

all walks of length k− 1 from edge e to all edges of the form x → h, i.e., the weighted328

enumeration of all walks of length k − 1 from edge e to node h. However, the count329

with weights of all walks of length k from edge e to edge f is precisely the count with330

weights of all walks of length k from edge e to node ℓ with node h as the penultimate331

node, i.e., the right hand side in the latter displayed equation.332

We have the following consequence of Theorem 4.3.333

Corollary 4.4. For all k ∈ N, LT
√
Z(W ◦1/2)k

√
ZR = Ak+1.334

Proof. The result follows from Proposition 4.1, if k = 0, and from Theorem 4.3,335

if k > 0.336

Now let B ∈ Rm×m be the nonbacktracking version of W , i.e., Bef = 0 if337

WefWfe ̸= 0 and Bef = Wef otherwise. This matrix is often referred to as the338

Hashimoto matrix [16]. Recall, moreover, that pk(A) ∈ Rn×n is the matrix counting339

all NBT walks of length k (from i to j in its (i, j) element). Now we can observe that340

all the proofs above hold for B as well, modulo substituting walks with nonbacktrack-341

ing walks. Hence, the projection relation still holds.342

Theorem 4.5. For all k ∈ N, we have LT
√
Z(B◦1/2)k

√
ZR = pk+1(A).343

Proof. We have p1(A) = A = LTZR, and when k > 0 the result follows from a344

minor modification of the arguments used to prove Corollary 4.4.345

Suppose now that (ck)k ⊂ [0,∞) is a sequence and t is such that

κ(t, A) =
∞∑
k=0

ckt
kpk(A)

as in (2.2) converges; we are interested in the centrality measure346

(4.1) v(t, A) = κ(t, A)1.347

We now derive formulae for κ(t, A) and v(t, A). To this end, we introduce the following
notation. Given a real-analytic scalar function

f(x) =
∞∑
k=0

ckx
k

consider the operator

∂f(x) =
∞∑
k=0

ck+1x
k =

f(x)− c0
x

.

We then have the following.348

Theorem 4.6. It holds that349

∞∑
k=0

ckt
kpk(A) = c0I + tLT

√
Z∂f(tV )

√
ZR,350

for V = B◦1/2 and |t| < r/ρ(V ), where ρ(V ) is the spectral radius of V and r is the351

radius of convergence of the scalar function f(x) =
∑∞

k=0 ckt
k.352

Hence, for the centrality associated with f(x) and t small enough to give conver-
gence in the matrix power series, in (4.1) we have

v(t, A) = c01+ tLT
√
Z∂f(tV )

√
Z1.
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Proof. By Theorem 4.5 we easily see that

κ(t, A) = c0I + tLT
√
Z

( ∞∑
k=0

ck+1t
k(B◦1/2)k

)
√
ZR.

As a consequence,

v(t, A) = c01+ tLT
√
Z

( ∞∑
k=0

ck+1t
k(B◦1/2)k

)
√
Z1.

Observing that the resolvent is an eigenfunction (with eigenvalue 1) of ∂, we note353

in particular that for Katz centrality, i.e., ck = 1 for all k, ∂f(x) = f(x) = (1− x)−1.354

Hence, we have the following special case.355

Corollary 4.7. In the notation of Theorem 4.6, we have that the generating356

function Φ(t) defined in (2.1) can be expressed as357

(4.2) Φ(t) = I + tLT
√
Z(I − tV )−1

√
ZR.358

This analysis in particular yields a lower bound for the radius of convergence for359

(2.1).360

Corollary 4.8. If |t| < ρ(V )−1, where V = B◦1/2, then the sequence Φ(t) =361 ∑∞
k=0 pk(A)tk converges.362

Remark 4.9. Letting r denote the radius of convergence of (2.1), Corollary 4.8363

shows that r ≥ ρ(V )−1. It is possible to strengthen this result and prove that r =364

ρ(V )−1. A proof of this fact, which is beyond the scope of the present article, appears365

in [25, Theorem 5.2].366

5. Nonbacktracking centralities for evolving weighted graphs. In Sec-367

tions 3 and 4, we obtained formulae for the generating function Φ(t) in (2.1) by368

working, respectively, at node and edge level. For a static network, i.e., one which369

does not evolve in time, working at the node level is clearly preferable as, for large n,370

we may have that n ≪ m. However, a significant advantage of the latter, edge-level,371

formula is that it easily extends to the case of temporal networks in all backtracking372

regimes, whereas a direct node-level formula which forbids backtracking in time is373

generally unavailable [3]. Let us first generalize the definition of graph, walk, and374

NBT walk to the dynamic case.375

Definition 5.1. A finite time-evolving graph G is a finite collection of graphs376

(G[1], . . . , G[N ]), associated with the non-decreasing time stamps (t1, . . . , tN ) ∈ RN ,377

such that the set of nodes of G[i] does not depend on i and when observed at time ti378

the structure of G is identical to that of G[i].379

We remark that the concept of a graph can be extended to the dynamic setting in380

a number of ways [17]. The discrete-time framework of Definition 5.1 covers a range381

of realistic scenarios where interactions take place, or are recorded, at specific points382

in time. For example, in an on-line social media platform, an edge may represent a383

form of communication between users, and G[i] may count the number of interactions384

between each pair of individuals over time (ti−1, ti].385

The definition of walk across a network can be extended to the setting of temporal386

graphs as follows.387
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Definition 5.2. A walk of length ℓ across a temporal network is defined as an388

ordered sequence of ℓ edges e1e2 . . . eℓ such that for all k = 1, . . . , ℓ−1 the end node of389

ek coincides with the start node of ek+1 and, moreover, that ek ∈ E[τ1], ek+1 ∈ E[τ2]390

for some 1 ≤ τ1 ≤ τ2 ≤ N , where E[τi] denotes the set of edges of the graph G[τi].391

It is useful to make an equivalent definition.392

Definition 5.3. A walk of length ℓ across a temporal network is defined as an393

ordered sequence of ℓ+ 1 nodes i1i2 . . . iℓ+1 such that for all k = 2, . . . , ℓ it holds that394

ik−1 → ik ∈ E[τ1] and ik → ik+1 ∈ E[τ2] for some 1 ≤ τ1 ≤ τ2 ≤ N .395

We want to stress that multiple edges can be crossed at one given time stamp and,396

moreover, that a walk is allowed to remain inactive for some of the time stamps.397

We also recall here that there is not just one definition of backtracking for temporal398

networks; indeed, three arise naturally [3]:399

• backtracking happens within a certain time-stamp; we will refer to this as400

backtracking in space,401

• backtracking happens across time-stamps; we will refer to this as backtracking402

in time,403

• backtracking happens both within a time-stamp and across time-stamps (not404

necessarily in this order); we will refer to this as backtracking in time and405

space.406

Given any finite time-evolving graph G, we can associate with it a matrix M called407

the global temporal transition matrix which was defined in [3] for unweighted graphs.408

Definition 5.4 below generalizes the definition of the global temporal transition matrix409

to the weighted case.410

Definition 5.4. Let G = (G[1], G[2], . . . , G[N ]) be a time-evolving graph with N411

time stamps. The weighted global temporal transition matrix associated with G is the412

m×m block matrix413

(5.1) M = M [1,...,N ] =



C [1] C [1,2] C [1,3] . . . C [1,N ]

0 C [2] C [2,3] . . . C [2,N ]

...
. . .

...
...

. . .
...

0 . . . . . . 0 C [N ]



◦1/2

,414

where the definition of the blocks depends on the chosen backtracking regime in the415

following way:416

(i) C [τ1] = W [τ1] and C [τ1,τ2] = W [τ1,τ2] := S[τ1]R[τ1](L[τ2])TS[τ2] for all τ1, τ2 =417

1, 2, . . . , N (τ1 < τ2) if backtracking in both space and time is permitted;418

(ii) C [τ1] = B[τ1] and C [τ1,τ2] = W [τ1,τ2] for all τ1, τ2 = 1, 2, . . . , N (τ1 < τ2) if419

backtracking in space is forbidden but backtracking in time is permitted;420

(iii) C [τ1] = W [τ1] and C [τ1,τ2] = B[τ1,τ2] := W [τ1,τ2] − (W [τ1,τ2] ◦ W [τ2,τ1]
T
)◦1/2421

for all τ1, τ2 = 1, 2, . . . , N (τ1 < τ2) if backtracking in time is forbidden but422

backtracking in space is permitted; and423

(iv) C [τ1] = B[τ1] and C [τ1,τ2] = B[τ1,τ2] for all τ1, τ2 = 1, 2, . . . , N (τ1 < τ2) if424

backtracking in both time and space is forbidden.425

It was further shown in [3] that the global temporal transition matrix provides an426

accurate way of counting walks in all backtracking regimes across a finite unweighted427

time-evolving graph and thereby allows for the computation of the (nonbacktracking)428
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Katz centrality v via the formula:429

(5.2) v(t) = (I + tLT (I − tM)−1R)1,430

where L,R are the global source and target matrices respectively as defined in [3,431

Definition 4.4].432

To handle the weighted case, we may extend Theorem 4.5 naturally to the global433

temporal transition matrix M in the following way.434

Theorem 5.5. For a finite time-evolving graph with N -many time frames, let the435

global weight matrix Z be defined block-wise as436

Z := Z [1,2,...,N ] = diag(Z [1], Z [2], . . . , Z [N ]),437

where Z [τi] is the diagonal matrix associated with time stamp 1 ≤ τi ≤ N . For each of438

these matrices, their diagonal entries are given by Z
[τi]
ee = we

[τi], with we
[τi] being the439

weight of edge e at time stamp τi. Further let the backtracking regime be fixed such440

that the weighted global temporal transition matrix M is fixed. Then, for 0 < k ∈ N,441

the (e, f)-th entry of
√
ZMk

√
Z counts, with weights, all permitted walks of length442

k + 1 from edge e to edge f across the time evolving graph given the backtracking443

regime.444

Proof. Suppose the backtracking regime is given such that the structure of M is445

fixed as specified in Definition 5.4. We prove the theorem by induction on the length446

of permitted walks k ∈ N. Consider the basis case k = 1:447

√
ZM

√
Z =

√
Z



C [1] C [1,2] C [1,3] . . . C [1,N ]

0 C [2] C [2,3] . . . C [2,N ]

...
. . .

...
...

. . .
...

0 . . . . . . 0 C [N ]



◦1/2

√
Z.448

The (e, f)-th element of this matrix correctly counts the unique walk of length449

two with weights from edge e to edge f . In the following we will omit the temporal450

superscript, since the indices e and f also uniquely determine the time frame. With451

this convention:452 (√
ZM

√
Z
)
ef

=
∑
r,s

√
ZerMrs

√
Zsf453

= (
√
Z)ee(

√
Z)ffMef454

=

{√
we

√
wf

√
wewf = wewf ef is a permitted walk of length two

0 otherwise.
455

456

where we have used the fact that, if ef is an admissible walk of length two, then457

(M)ef =
√
wewf .458

Suppose now that the result holds for k−1 and for brevity denote by P the matrix459 √
ZMk−1

√
Z, which, by the inductive assumption, correctly counts in its entries the460

number of weighted temporal walks of length k. Then, using the fact that Z is461
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diagonal,462

(
√
ZMk

√
Z)ef =

∑
r,s,t

(√
ZMk−1

√
Z
)
er
(Z−1/2)rsMst(

√
Z)tf463

=
∑
r

Per(Z
−1/2)rrMrf (

√
Z)ff464

=

{
wf

∑
r Per e . . . rf is a permitted walk of length k + 1

0 otherwise.
465

466

By the inductive assumption Per counts the permitted weighted walks of length467

k from edge e to edge r. Therefore the above formula does indeed count the weighted468

permitted walks beginning with edge e and ending on edge f with length k + 1469

correctly.470

Theorem 5.6. Given global source, target and weight matrices, L, R and Z re-471

spectively, we can compute M when backtracking is entirely forbidden in two steps:472

1. M̂ =
(√

Z(RLT −RLT ◦ LRT )
√
Z
)
;473

2. Obtain M from M̂ by setting all entries below the block diagonal to 0.474

Proof. The above theorem is easy to prove by observing that the (i, j)-th block of475

the matrix RLT is equal to R[i]L[j]T , whereas the (i, j)-th block of the matrix LRT476

is equal to L[i]R[j]T = (R[j]L[i]T )T ; whereupon the (i, j)-th block of the matrix M̂477

becomes478

M̂ij =
√
Z [i]

(
R[i]L[j]T −R[i]L[j]T ◦ (R[j]L[i]T )T

)√
Z [j].479

480

The central term here in brackets can be seen as the binarized B[i,j], i.e., B[i,j] where481

all non-zero weights are uniformly equal to 1, thus the presence of a non-zero entry482

(B[i,j])ef simply reflects whether or not the concatenation of edges e and f forms a483

non-backtracking walk of length two. Matrix multiplication from the left by
√
Z [i]484

and on the right by
√
Z [j] then provides the appropriate weighting for the (e, f)-th485

entry, namely
√
we

√
wf , as required. Finally, the second step of setting all blocks486

below the block diagonal, i.e., M̂ij with i > j, to zero reflects the requirement that487

walks may not move back in time.488

We can also compute the f -total communicability of the time-evolving graph with489

weights by using the global temporal transition matrix M .490

Theorem 5.7. Given a function f with series expansion f(t) =
∑∞

k=0 ckt
k having491

radius of convergence r, and some fixed backtracking regime, the f -total communica-492

bility vf (t) of the time-evolving graph G = (G[1], . . . , G[N ]) with N time stamps is493

given by the formula:494

(5.3) vf (t) = (c0I + t∂LT
√
Zf(tM)

√
ZR)1495

for 0 < |t| < r/maxi=1,...,N{ρ(C [τi])}.496

Proof. By Proposition 5.5, we have that
√
ZMk

√
Z counts with weights all walks497

of length k + 1, thus498

vf (t) = (c0I + t∂LT
√
Zf(tM)

√
ZR)1 = c0I + t

∞∑
k=0

ck+1t
kLT

√
ZMk

√
ZR1.499
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Table 6.1: Static network convergence information.

Non-binarized graph ρ(B◦1/2) 926.9
Binarized graph ρ(B) 48.61

Non-binarized nonbacktracking permitted range of t t ∈ [0, 1.079 · 10−3)
Binarized nonbacktracking permitted range of t t ∈ [0, 2.057 · 10−2)

Non-binarized ρ(A) 1038
Binarized ρ(A) 51.26

Non-binarized backtracking permitted range of t t ∈ [0, 9.635 · 10−4)
Binarized backtracking permitted range of t t ∈ [0, 1.951 · 10−2)

In the above formula we see the number of walks of length k + 1 correctly counted500

with weights that are further weighted by the coefficient ck+1t
k+1, which is provided501

by the series expansion of f(x).502

6. Numerical Experiments. In this section we show how the formulae for503

nonbacktracking Katz centrality from sections 3, 4 and 5 may produce significantly504

different node-rankings for real-world social networks when compared with Katz cen-505

trality which permits backtracking walks. We further examine the effect of weighting506

edges on the rankings produced by both centrality measures. To this end, we consider507

the Katz centrality formula (5.2) as applied to one static network and one temporal508

network, both derived from the same data set (Fauci’s email release [6]) 2. The origi-509

nal dataset is a collection of over 3000 pages of emails involving Anthony Fauci and his510

staff during the COVID-19 pandemic. Data includes sender and receivers (including511

CC’d) of emails, as well as time stamps of when the emails were sent. Both networks512

used in the following were presented in [6].513

6.1. Analysis on Static Networks. In this section, we analyze a static network514

produced by [6] which is both undirected and weighted. We have an edge (i, j) if there515

exists an email which involves both nodes i and j as any combination of sender and516

recipient (including CC’d recipients). The weight assigned to such an edge, Ω((i, j)),517

is a positive integer equal to the number of such emails that were sent.518

In our analysis, we apply Corollary 3.4 to obtain the NBT Katz centrality vector519

for our network, which is then contrasted with the classical Katz centrality vector520

for attenuation factor values t = 0.5/ρ and t = 0.95/ρ, where 1/ρ is the radius of521

convergence for the respective centrality measure. In particular 1/ρ is equal to 1/ρ(A),522

where A is the adjacency matrix of the graph in the case of classical Katz centrality;523

whereas 1/ρ=1/ρ(B◦1/2) in the case of weighted nonbacktracking Katz centrality [25,524

Theorem 5.2], where B is the Hashimoto matrix associated to the graph. These values525

are given in Table 6.1. We also analyze the binarized graph which is produced from526

the static graph by setting all edge weights to 1. In the context of the binarized527

network 1/ρ equals 1/ρ(A) in the case of classical Katz centrality, and 1/ρ(B) for528

nonbacktracking Katz centrality, where A and B are the adjacency and Hashimoto529

matrices associated with the binarized network, respectively.530

The results are visualised in Figures 6.1, 6.2 and 6.3. Figure 6.1 shows that531

NBT Katz centrality emphasizes a clique not containing the node corresponding to532

Antony Fauci, and that for large values of the attenuation factor this clique begins to533

2The code used in the following analysis can be found at https://github.com/rwood12347/
Weighted-enumeration-of-nonbacktracking-walks-on-weighted-graphs
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Katz centrality t = 0.5/ρ(A) Katz centrality t = 0.95/ρ(A)

NBT Katz centrality t = 0.5/ρ(B◦1/2) NBT Katz centrality t = 0.95/ρ(B◦1/2)

Fig. 6.1: Visualizations of classical (top/red) and NBT Katz (bottom/blue) across the static 
email network with large node size and dark colour indicating large centrality values; darker 
edges indicate a larger weight.
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Fig. 6.2: Classical and nonbacktracking Katz centrality vector values for backtracking
fully forbidden with attenuation factor t = 0.5/ρ and t = 0.95/ρ, respectively. In each
plot we display the union of the 10 most central nodes according to each centrality
measure.

dominate the ranking to such an extent that the node corresponding to Anthony Fauci,534

which occupies the central position in the network visualisation, is no longer counted535

among the 10 most central nodes. This can be seen in Figure 6.2 which depicts the536

nonbacktracking and classical Katz normalized centrality values for the union of the537

10 most central nodes in the static network. The left bar chart in Figure 6.2 indicates538

that both classical and nonbacktracking Katz agree on the 10 most central nodes of539

which ‘Anthony Fauci’ is most central when t = 0.5/ρ. However the rightmost figure540

depicts a complete divergence in the ten most highly-ranked nodes produced by classic541

and nonbacktracking Katz centralities respectively. In particular we see that while542

the ‘Anthony Fauci’ node remains fairly central according to both measures, nodes543

belonging to the clique shown in Figure 6.1 have overtaken it in the ranking induced by544

nonbacktracking Katz centrality. The clique identified in this case consists exclusively545

of participants (i.e., either directly sent or received an email within the thread, or were546

CC’d in an email within the thread) in the so-called ‘Red Dawn’ email thread that547

was used throughout the pandemic “to provide thoughts, concerns, raise issues, share548

information across various colleagues responding to Covid-19” [8].549

The effect of weighted edges on the rankings produced by nonbacktracking and550

classical Katz centralities for the static network is demonstrated in Figure 6.3. The551

figure contains two scatter graphs of the normalized nonbacktracking Katz centrality552

vector (t = 0.95/ρ(B◦1/2)) plotted against the Katz centrality vector (t = 0.95/ρ(A))553

for both the original network (right) and a binarized modified network (left), which554

is formed from the original network by setting all edge weights to 1.555

In particular we see that the presence of non-uniformly weighted edges in the net-556

work produces greater variation in the nonbacktracking and classical Katz centrality557

vectors.558
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Fig. 6.3: Scatter plots of normalized NBT Katz centrality against normalized classical
Katz centrality corresponding to binarized and non-binarized static networks with
attenuation factor t = 0.95/ρ.

6.2. Analysis on Temporal Networks. We now move on to the case of a559

time-dependent network, and we note that the special case of an unweighted network560

with backtracking permitted corresponds to the work in [15] wherein the dynamic561

communicability matrix Q(t) associated to such a network is defined as the product562

of the successive resolvents563

(6.1) Q(t) = (I − tA[1])−1(I − tA[2])−1 · · · (I − tA[N ])−1.564

Here A[i] is the adjacency matrix associated to the i-th time-stamp of the temporal565

network G. Katz centrality can then be computed via the formula566

(6.2) x(t) = Q(t)1.567

This formula accounts for all walks across the temporal network G including those568

that backtrack in space and between time-stamps.569

The temporal network G analyzed in this section is the largest temporal strong570

component [9] of the provided email data, i.e., the largest component that is connected571

in the sense that there exists a time-respecting path between any two nodes contained572

within. This network consists of a collection of 100 directed networks associated with573

the date 2018-09-04 and the 99 consecutive days between 2020-01-26 and 2020-05-05.574

In this network we have a directed weighted edge (i, j) ∈ E(G[τt]), if node j is a575

recipient of, or is CC’d in, an email sent by node i. The weight of such an edge is576

equal to the number of such emails sent during the t-th timestamp.577

We reiterate here that when treating temporal networks there is a range of possible578

nonbacktracking regimes, as outlined in Definition 5.4. The choice of appropriate579

backtracking regime is highly context-dependent. For the data set analyzed here, it580

is reasonable to forbid backtracking entirely, since the time-stamps associated with581

the temporal network have an almost uniform spacing of one day, and the time taken582

to reply to an email is on a similar scale to the spacing between time-stamps. It is583
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Table 6.2: Temporal network convergence information.

ρ(M) 5.025
nonbacktracking permitted range of t t ∈ [0, 0.1990)

maxi(ρ(A
[i])) 8.832

Backtracking permitted range of t t ∈ [0, 0.1132)

Fig. 6.4: The time-evolving network centrality vector values for both NBT and clas-
sical Katz with attenuation factor t = 0.5/ρ and t = 0.95/ρ respectively. In each
plot we display the union of the ten most central nodes according to each centrality
measure.

worth mentioning that this choice to fully forbid backtracking is subjective and other584

regimes may also be reasonable.585

Our analysis of the spectrum of the global temporal transition matrix M associ-586

ated to the graph G with backtracking fully-forbidden yields the permitted ranges of587

attenuation factor t shown in Table 6.2. We contrast this with the permitted range588

of t in the case of classical Katz centrality via the dynamic communicability matrix589

Q as defined in (6.1).590

Figure 6.4 depicts two bar charts which display the normalized centrality values591

for both classical and nonbacktracking Katz centralities for t = 0.5/ρ and t = 0.95/ρ592

respectively, where 1/ρ is the upper-limit of the respective regime as given in Table 6.2.593

In particular 1/ρ is equal to 1/ρ(M) (see the proof of [25, Theorem 5.2]) in the case594

of nonbacktracking Katz centrality, where M is the matrix described in Definition 5.4595

(iv) that is, the form of M in which all forms of backtracking are forbidden. In the596

case of classical Katz centrality 1/ρ is given by 1/maxi(ρ(A
[i]), the reciprocal of the597

largest principal eigenvalue of the adjacency matrices. In Figure 6.4 we report results598

for 12 nodes, which are selected by taking the union of the 10 most highly ranked599

nodes for classical Katz and the 10 most highly ranked nodes for NBT Katz, when600

t = 0.95/ρ.601

In Figure 6.5 we plot for the weighted temporal network both the classical and602

nonbacktracking Katz centrality values of 10 selected nodes against the attenuation603

factor t which ranges from 0% to 99% of its permitted range (as given in Table 6.2).604

The 10 nodes were selected such that they are the most central for large values of t.605

Figure 6.6 presents results for the same experiment, this time carried out with606

the binarized version of the temporal network, i.e., the temporal network with all607

non-zero weights set to 1.608

19

Weighted enumeration of nonbacktracking walks on weighted graphs



It is interesting to note that nonbacktracking Katz identifies a node distinct from609

“Anthony Fauci” as the most central node for large values of t, favouring instead610

the node “Jeremy Farrar” which is considerably lower ranked in the static networks611

produced from the same data set. Furthermore by comparing Figures 6.5 and 6.6, we612

observe the large effect that weighting has on the two centrality measures.613

Fig. 6.5: Plots of the normalized Katz (upper) and nonbacktracking Katz (lower)
centralities vector values for 10 most prominent nodes (i.e., those with the largest
centrality value as of the upper limit of the attenuation factor t) within the weighted
temporal network

7. Discussion. Our aim in this work was to develop a useful theory for the614

enumeration of nonbacktracking walks as well as for associated centrality measures,615

in the case of edge weights that are combined multiplicatively. We showed in The-616

orem 3.1 that in contrast to the unweighted case where a four-term recurrence is617

sufficient to count nonbacktracking walks of different lengths, the weighted case gives618

rise to a recurrence where the walk count at length k depends on walk counts for all619
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Fig. 6.6: Plots of the normalized Katz (upper) and nonbacktracking Katz (lower)
centralities vector values for 10 most prominent nodes (i.e., those with the largest
centrality value as of the upper limit of the attenuation factor t) within the binarized
temporal network.

shorter lengths. Despite this added complexity, the resulting formulas for the stan-620

dard generating function in Theorem 3.3 and corresponding node centrality measure621

in Corollary 3.4 are straightforward to evaluate.622

We also showed in Theorem 4.5 that when working at the line graph level, the623

introduction of appropriate componentwise square roots allows us to develop a theory624

that extends to the unweighted case, with Theorem 4.6 summarizing the results, and625

Theorem 5.7 dealing with more general time-evolving graph sequences.626

A practical take-home message is that a theory of nonbacktracking walk counts627

for static or dynamic weighted graphs is available, with corresponding computational628

algorithms that have the same complexity as in the unweighted case.629
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