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! WEIGHTED ENUMERATION OF NONBACKTRACKING WALKS

2 ON WEIGHTED GRAPHS *
3 FRANCESCA ARRIGO', DESMOND J. HIGHAM ¥, VANNI NOFERINI$, AND RYAN
4 WOODY

5 Abstract. We extend the notion of nonbacktracking walks from unweighted graphs to graphs
6 whose edges have a nonnegative weight. Here the weight associated with a walk is taken to be
7 the product over the weights along the individual edges. We give two ways to compute the associ-
8 ated generating function, and corresponding node centrality measures. One method works directly
9 on the original graph and one uses a line graph construction followed by a projection. The first
10 method is more efficient, but the second has the advantage of extending naturally to time-evolving
11 graphs. Based on these generating functions, we define and study corresponding centrality measures.
12 Tllustrative computational results are also provided.

13 Key words. Complex network, matrix function, generating function, line graph, combinatorics,
14 evolving graph, temporal network, centrality measure, Katz centrality.
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16 1. Introduction. Complex network analysis is an expanding scientific discipline
that has recently been producing many research challenges, with applications across
18 several fields of science and engineering [11, 24]. One important question is that of
19 ranking the nodes of a graph by importance, or, in more mathematical terms, defining
20 and studying an appropriate centrality measure. Those centrality measures that can
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21 be formulated and computed via combinatorial properties of walks on the underlying
22 graph have received special attention [7, 12, 13, 19, 23] because they have convenient
23 formulations in terms of linear algebra that lead to efficient computational methods.
24 In recent years, this paradigm has been refined by studying centrality measures that
25 are based on counting not all walks but only some of them, namely, walks that do not

26 backtrack [1, 2, 5, 14, 28-30] or more generally do not cycle [5]. Nonbacktracking walks
27 are known to be linked to zeta functions of graphs [18, 21, 22, 26]. Their associated
28 centrality measures have been shown to possess attractive computational properties
29 [1, 2, 4, 14] and have been studied both for undirected and directed graphs, and more
30 recently for time evolving graphs [3]. However, in the context of the combinatorics
31 of nonbacktracking walks, so far only unweighted graphs have been studied. We
32 mention that nonbacktracking random walks were previously considered in [20], but
33 the problems studied there are different to the ones analyzed in the present paper.
34 Moreover, [20] focuses only on the special case where the nodes are given themselves a
35 positive weight (i), and the weight of the edge (4, j) is defined as w((z, 7)) = ©()@(4).

*Submitted to the editors DATE.

fDepartment of Mathematics and Statistics, University of Strathclyde, Glasgow, UK, G1 1XH
(francesca.arrigo@strath.ac.uk). The work of F.A. was supported by fellowship ECF-2018-453 from
the Leverhulme Trust.

£School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Edinburgh, UK,
EH9 3FD (d.j.higham@ed.ac.uk). The work of D.J.H. was supported the Engineering and Physical
Sciences Research Council under grants EP/P020720/1 and EP/V015605/1.

§ Aalto University, Department of Mathematics and Systems Analysis, P.O. Box 11100, FI-00076,
Aalto, Finland (vanni.noferini@aalto.fi). S upported b y a n A cademy o fF inland g rant (Suomen
Akatemian paétos 331230).

YCorresponding author. Aalto University, Department of Mathematics and Systems Analysis,
P.O. Box 11100, FI-00076, Aalto, Finland (ryan.wood@aalto.fi). Supported by an Xcademy of];(in—
land grant (Suomen Akatemian padtds 331240)


mailto:francesca.arrigo@strath.ac.uk
mailto:d.j.higham@ed.ac.uk
mailto:vanni.noferini@aalto.fi
mailto:ryan.wood@aalto.fi

40

[\

S S e L - - SN
= O © 0 3 O Ut k= W N

w N

SRS S, B TS
[GLENTEN

76

T
78
79

81

Weighted enumeration of nonbacktracking walks on weighted graphs

Instead, we do not impose any restriction on the edges’ weights. In the theory of graph
zeta functions, weighted graphs have been considered by defining the weight of a walk
to be the sum (and not the product, as in this paper) of the weights of its edges [18].
We discuss this issue further in section 2.

The main purpose of the present paper is to extend the combinatorial theory of
nonbacktracking walks, and corresponding centrality measures, to graphs whose edges
carry a positive weight. These graphs are associated with generic nonnegative adja-
cency matrices, in contrast to unweighted graphs that correspond to binary adjacency
matrices. While for unweighted graphs one may be interested in the enumeration of
walks of a given length, for weighted graphs the combinatorial problem is more so-
phisticated due to the presence of weights. The edge weights naturally give rise to
an overall weight for each walk, a concept that can be used alongside the length (i.e.,
the number of edges traversed).

The structure of the paper is as follows. In Section 2 we introduce some relevant
notation and core concepts. Section 3 sets up and studies the issue of characterizing
the classical generating function associated with nonbacktracking weighted walks and
using it to compute a centrality measure. In section 4 we introduce an alternative
formulation that applies to a wider class of generating functions and centrality mea-
sures. Section 5 shows how these ideas can be extended to the case of evolving graphs.
Numerical experiments are conducted in Section 6. We finish in Section 7 with a brief
discussion.

2. Background and Notation. In this paper, we consider finite graphs. A
finite graph is a triple G = (V, E,Q) where V = [n] is the set of the nodes (or
vertices), E C V x V is the set of (directed) edges, and €2 : E — (0,00) is a weight
function that associates to each edge a positive weight. If Q(e) = 1 for all e € F,
then the graph is said to be unweighted; if for any pair ¢ # j, with ¢,7 € V we have
that (i,7) € E < (j,i) € E and that Q((z,7)) = Q((4,4)) then the graph is said to be
undirected; and if, for every ¢ € V', we have that (i,7) € E then the graph is said to be
without loops. Graphs that are not unweighted are usually called weighted and graphs
that are not undirected are usually called directed. Tt is, however, convenient (and
we will do so within this work) to relax the terminology so that the set of directed
(resp., weighted) graphs contains as special cases also undirected (resp., unweighted)
graphs, further we will assume that all graphs are without loops.

A walk of length £ on the graph G is a sequence of nodes 41,149, . .., 441 such that
(4j,ij41) € E for all 1 < j < £. Equivalently, it can be seen as a sequence of edges
ei1,...,eg such that e; € F for all j = 1,...,¢ — 1 and the end node of e; coincides

with the starting node of e; ;.

DEFINITION 2.1. Let G = (V, E,Q) be a weighted graph. The weight of the walk
€1,...,€g 1S

)4
| | IS,
k=1

where Q(ey) is the weight of the edge e, € E.

REMARK 2.2. When Q : E — {1} is the weight function associated with an un-
weighted graph, then the weight of all walks in the network is one, regardless of their
length.

In the context of mainstream graph theory, the weight (or length or cost) of a walk is
sometimes defined as the sum, rather than the product, of the weights of its edges. In
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Weighted enumeration of nonbacktracking walks on weighted graphs

that scenario, zeta functions of graphs (which are closely related to the enumeration
of nonbacktracking walks) have been studied [18]. However, we argue that within
complex network analysis Definition 2.1 has several useful applications. For example,
consider a road network where nodes represent towns and a nonnegative integer edge
weight A;; records the number of distinct roads connecting town ¢ and town j. Then,
the number of distinct routes from ¢ to j that pass through one intermediate town is

equal to
n
> AipAyj,
k=1

that is, the weighted sum of walks of length two, where the weight is the product of the
weights of its edges. Similarly, in a model where edges represent independent prob-
abilistic events and their weights are their probabilities, as discussed in the original
work of Katz [19], it is natural to postulate that the weight of a walk is the product
of the weight of its edges, in agreement with the fact that the joint probability of a
sequence of independent events is the product of the individual probabilities.

Given a node ordering, the corresponding adjacency matrix of a graph is the
matrix A € R"*™ entrywise defined as:

L]0 if (i,5) ¢ E;
Yool i () € B
Note that a graph is undirected if and only if its adjacency matrix is symmetric;

it is without loops if and only if its adjacency matrix has zero diagonal; and it is
unweighted if and only if its adjacency matrix has entries all lying in {0, 1}.

The problems of enumerating walks in unweighted graphs and enumerating weightedll

walks in weighted graphs may both be solved by considering powers of the adjacency
matrix: indeed, the (i,7) entry of A¥ is equal to, respectively, the number of walks
of length & from node i to node j (when the graph is unweighted) or the weighted
sum of walks of length k from node i to node j (when the graph is weighted). As a
consequence, the generating function for the (possibly weighted) enumeration of walks
is given by

T+tA+£2A% 4 = th AR = (1 —tA) 7!,
k=0

where we adopt the standard convention that the (weighted) sum of walks of length
zero from ¢ to j is 1 if ¢ = j and 0 otherwise. Here, ¢ is a real parameter small enough
to ensure convergence of the series which scales by t* the count for walks of length .
A walk can also be seen as a sequence of nodes. If the sequence does not contain
a subsequence of the form 457 for some nodes ¢ and j, then the walk is said to be
nonbacktracking (NBT). We define pi(A) to be the matrix whose (¢, j) entry contains
the sum of the weights of all nonbacktracking walks of length & from node 7 to node j.
By convention, po(A) = I. Note that, by definition, py(A) < A* elementwise. Combi-
natorially, the problem of computing the (weighted) enumeration of nonbacktracking
walks is equivalent to finding an explicit expression for the generating function

o0

(2.1) o) =y t*pi(A)

k=0

for suitable values of the parameter ¢ > 0.
3
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Weighted enumeration of nonbacktracking walks on weighted graphs

This problem was addressed in [14] for unweighted undirected graphs, and later
in [1] for unweighted directed graphs. In [2], the solution was extended to the more
general generating function

(2.2) K(t) =Y at"pr(A),
k=0

where (ci)r C [0, 00) is an arbitrary sequence. In [3], the theory was further extended
to consider time evolving graphs. However, so far, the quantities (2.1) and (2.2)
have not yet been studied for weighted graphs. Their characterization is the main
contribution of this paper.

A corollary of obtaining such computable expressions is a numerical recipe for
associated nonbacktracking centralities. Indeed, beyond its algebraic interpretation
as a generating function, (2.2) can be interpreted analytically as a function that will
converge for sufficiently small values of the variable {. Choosing one such value for
t allows us to define a centrality measure based on the weighted sum of edges. For
example, if 1 is the vector of all ones, then the i-th component of the vector

(i thkpk (A)) 1

k=0

computes a nonbacktracking version of Katz centrality [19]. The latter is defined as
the doubly weighted sum of all the walks departing from node i, where the weight of
each walk within the sum is the product of the weight of the walk itself and t*, where
k is the walk length. Similarly, for the subgraph centrality version of nonbacktracking
Katz, the doubly weighted sum of all the walks that start and end on node i is given

by
(Z thkpk(A)>
k=0

As a consequence, two additional questions that we address in this paper are to
describe the radius of convergence of (2.2) and to derive computable expressions for
the associated centrality measures. We refer to [1, 2, 14], and the references therein,
for details of the benefits of nonbacktracking in the centrality context.

We consider two approaches to bridge the gap between weighted graphs and
current results on the combinatorics of nonbacktracking walks. The first is specialized
to the case ¢x = 1, i.e., to compute (2.1); it leads directly to an expression that has
computational advantages as it does not require to go through the edge-level and,
thus, it requires the construction of a potentially much smaller matrix than the second
approach. The second is based on a technique, described in [3, 5], of forming the line
graph, obtaining a generating function there, and finally projecting back to compute
(2.2). While, potentially, the second approach may be computationally less efficient,
it has the advantages that (i) it is able to solve the more general problem (2.2), (ii)
it can be generalized to the setting of time evolving graphs, and (iii) it allows us to
easily estimate the convergence radius of (2.2) (including the special case of (2.1)).

i

3. The generating function of nonbacktracking walks on a weighted
graph. In this section, we assume that G is a finite directed weighted graph with n
nodes, without loops, and having adjacency matrix A. The directed edge from node
i to node j has weight A;; > 0. Following Definition 2.1, to the walk i1igi3. .. %041
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Weighted enumeration of nonbacktracking walks on weighted graphs

A,

iies:- We note the distinction here

of length ¢ we assign the weight A; ;, A, -
between the length and the weight of a walk.

The goal of this section is to obtain a convenient formula for the generating
function ®(¢) in (2.1). We note that this generalizes the version previously studied
for an unweighted graph [1], and the expression ®(¢)1 is then a natural candidate for

a node centrality measure.

3.1. Describing the matrices p;(A) via a recurrence relation. Let us first
set up some further notation: given two square matrices X,Y € R"*™ we distinguish
between matrix multiplication, XY, and elementwise multiplication, X oY, where
(X oY);; = X;;Yi;. Similarly, we differentiate between the k-th linear algebraic
power X* and the k-th elementwise power, X°%, so (X°F);; = (X;;)*. Moreover,
following Matlab notation, dd(X) := diag(diag(X)) will denote the diagonal matrix
whose diagonal entries are equal to the diagonal entries of X. We first prove the
following k-term recurrence, which generalizes previous results that have been derived
independently for the unweighted [10, 27] and undirected [26] cases.

THEOREM 3.1. For all k > 1,

pe(A) = Y (Ao (AT M g(A) = DT dd((A))pr—e(A).
¢=2h+1 odd ¢=2h even
1<0<k 2<I<k
Proof. For the base case of k = 1, the statement reduces to p;(A)

= (
117)p(A). Since Ao 117 = A and po(A) = I, in turn this yields p;(A) =
which is manifestly true since any walk of length one is nonbacktracking. Let us now
give a proof by induction.

We start by considering Apy_1(A), whose (i, 7) entry is equal to the sum of the
weights of all walks of length k from 7 to j that are nonbacktracking if the first step is
removed. This value is equal to py(A);; plus the sum of the weights of all backtracking
walks of length k£ from ¢ to j that are nonbacktracking if the first step is removed.
Such walks must be of the form dai ... j: the weight of one such walk is A;,A4; times
the weight of a certain NBT walk of length k£ — 2 from ¢ to j. Summing over all a
adjacent to i yields dd(A?)py_o(A). However, we have subtracted too much, because
any such walk of the form iaia...j, being backtracking after removing the first step,
was not present in (Apig—1(A))i;. The weight of one such walk is A;qAq;Aiq = A2 Ay
times the weight of a certain NBT walk of length k£ —3 from a to j. We can sum again
over all a adjacent to 4, to obtain ((4°2 o AT)py_3(A));;. We should sum this value
back, but again we are adding a bit too much, because walks satisfying the previous
requirements and being of the form iaiai...j should not be there.

It is clear that this sequence of corrections goes on until we exhaust the length
of the walk and the statement of the theorem is a consequence of the two following
facts, both true for all A > 0.

1. The total weight of walks of length k from i to j of the form i(ai)"a. .., such
that the final subwalk (of length k — (2h+1)) from «a to j is not backtracking,
is equal to

> (i)™ (i) Proan-1(A)ay = (A% 0 (AT)M )y 1 (4))

Iy
a:(t,a)EE J

2. The total weight of walks of length k from i to j of the form (ia)?"i ... j, such
that the final subwalk (of length k — 2h) from 4 to j is not backtracking, is

5



N

08

l: b

210
211
212
213

215
216

[\
~

218

219
220
221
222

223

NN

1
5
26
27
228

NN NN

229

230

Weighted enumeration of nonbacktracking walks on weighted graphs

equal to

Z (Aia)"(Aui)"pr—on(A)ij = (dd<(AOh)2)pk72hfl(A))ij'
a:(i,a)€EE 0

3.2. Solving the recurrence relation. Let us continue by giving a combina-
torial result in Proposition 3.2. Its statement expresses the generating function of a
sequence satisfying a growing recurrence relation in terms of two individual generating
functions.

PROPOSITION 3.2. Let (Py)r and (C)¢ be two sequences in some (possibly non-
commutative) ring, and suppose that (Pi )k satisfies the growing recurrence

k
Z C[Pk_g =0
£=0

for all k > 1. Then, the (formal) generating functions ®(t) = > pe Prt* and ¥(t) =
> ieo Cot® are related by the formula U(t)®(t) = CoPy.

Proof. Observe that, using the recurrence,

V(D) =D 7Y CPrr = CoPo.
0

k=0 (= O

We can now apply the general technique of Proposition 3.2 to the special case
of the generating function (2.1), whose coefficients satisfy the recurrence described in
Theorem 3.1. In other words, we specialize Proposition 3.2 to sequences in the ring
R™™ where Py, = pr(A) and

I if £ = 0;
Cp =< —[A°h+D) o (AT)h]  if £ =2h + 1;
dd((A°h)?) if £=2h>0.

In particular, Co = Py = I, and hence by Proposition 3.2 ®(¢) = ¥(¢)~!. In turn, we
can write ¥ (t) = . (t) — U, (t) by splitting even and odd terms and by extracting the
minus sign appearing in the odd terms of (Cp),. It is easy to see that W.(¢) is diagonal
while U, (¢) is the off-diagonal part of ¥(t), since we assume G to be without loops.
Moreover,

e tA;.
U, (1), =Y 2htightliph — 29
( O( ))z] }; v J 1-— tQA’LjA]l

Similarly,

> " " 24 A
U (1), =1 § t2h§ AlAl — 1 E (#
(We(t)); + = = 1j g1 + = 1—t2A;;Aj

Let S = Ao AT, let Q = S°/2, let
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Weighted enumeration of nonbacktracking walks on weighted graphs

and let f;(otX) denote the elementwise application of f; to the matrix tX, fori =1, 2.
Then, if we denote by o/ the elementwise application of /, we can write

U (t) = I +dd(fi(otQ) fa(otQ)),  W,(t) =tAo /(11T —29)
and hence W(t) = I + dd(fi(otQ)fo(otQ)) —tAo /(117 —#29).

We can state this more formally as a theorem.

THEOREM 3.3. In the notation above, for all values of t such that (2.1) converges,
we have

(3.1) ®(t) = (I + dd[f1(otQ) fo(otQ)] —tAo /(11T —£25)) 7L,

As a sanity check, let us see what happens in three distinct interesting limiting
cases that have been addressed previously in the literature.

e First, let us verify that in the limit of an unweighted graph we recover [1,

equation (3.3)]. In this case, (4;;)" = A;; € {0,1} for all h > 1. As a result,

if D = dd(4?),
ok t? I—#2I+#2D
(Wet))y = L+ DD Ay = 1+ Dag—s = Welt) = ——5—
h=1  j=1
and
3 1Sy, tA— 13 (A - S)
(Wo(t))s; = tAiJ’JFZt%HAijAji = tAz‘jJFl _ tj2 = U,(t) = T 1z

h=1

which imply the known ®(t) = (1 — t3)(I —tA+t*(D —I) +t3(A - S§))~*
from [1, Equation (3.3)].

e Next, let us observe that if no edge is reciprocated, that is, if there isno (¢, 5) €
E such that (j,i) € E, then S = @Q = 0. Hence, we recover the generating
function associated with classical Katz centrality, i.e., ®(t) = (I —tA)~!,
which is consistent with the fact that every walk is nonbacktracking under
this assumption.

e Finally, if the graph is undirected then S = A°%? and Q = A. Hence, the
formulae simplify to

U, (t) = I + dd[fi(otA) f2(otA)], U,(t) =tAo /(117 — 12 A°%)
yielding in particular
O(t) = (I + dd[fi(otA) fa(otA)] —tAo /(11T — 12 A°%)) "L,

If we additionally assume that the graph is unweighted, we further reduce to

O(t) = (1 —-t*)(I — At +t*(D —I))~! in agreement with [14, Equation (5.3)].

We now briefly comment on the convergence of ®(t) = Y, pi(A)t* to the right-
hand-side of (3.1). Since the series converges to a rational function, its radius of
convergence is equal to the smallest of its poles. One way to compute the radius is
therefore via the eigenvalues of the rational function ¥(¢) =®(¢)~!. A more straight-
forward method (albeit possibly less efficient) to estimate the radius of convergence
is available when computing ®(¢) with a different method. This is described in more

7



282
283
284
285
286
287

288

289
290
291
292
293
294
295

Weighted enumeration of nonbacktracking walks on weighted graphs

detail in Section 3 and, in particular, within Corollary 4.8. In spite of the some-
what awkward notation, (3.1) is in fact quite straightforward to compute given A, by
composing elementwise functions and matrix addition and multiplications.

We conclude this section by recalling that we can define a nonbacktracking version
of Katz centrality on weighted graphs by summing the value of the generating function
over all possible ending nodes, which can be expressed as the linear algebraic matrix-
vector multiplication ®(¢)1.

The following corollary is then an immediate consequence of Theorem 3.1.

COROLLARY 3.4. For all values of t such that (2.1) converges, consider the cen-
trality measure where node i is assigned the value x; according to x = ®(1)1. Then x
may be found by solving the linear system

(3.2) (I 4 dd[f1(otQ) f2(otQ)] —tAo /(11T —#28))x = 1.

Corollary 3.4 shows in particular that the centrality measure can be found without
explicitly computing the inverse in (3.1). We can instead compute the vector of
nonbacktracking centralities x by solving the linear system (3.2). We note that the
coefficient matrix in (3.2) is no less sparse than I — tA; hence the computational
complexity of solving such a linear system is the same as for classical Katz centrality,
and the task is feasible with standard tools for sparse linear systems for very large,
sparse networks.

4. Generating function by constructing the line graph and projecting
back. In this section, we derive an alternative computable expression for the gener-
ating function ®(t). Although generally this second method is less computationally
efficient, it offers three main advantages: (i) it can be extended to nonbacktracking
centrality measures other than Katz (for example, based the exponential rather than
the resolvent); (ii) it allows for a simple characterization of the radius of convergence
of the generating function; and (iii) it can be extended to time evolving graphs.

As before, we consider a finite weighted graph with n nodes. We also assume
(directed) edges have been labelled from 1 to m in an arbitrary, but fixed, manner.
We may then define the source matric L € R™*™ and target (or terminal) matric
R € R™*™ as follows [31]:

{1 if edge e starts from node j {1 if edge e ends on node j
ej — ej —

0 otherwise 0 otherwise.

Moreover, we let Z be an m x m diagonal matrix such that Z.. = A;;, where (in the
chosen labelling of the edges) the e-th edge is precisely (i,7).! Then, we have the
following relationship.

PROPOSITION 4.1. We have A = LTZR.

Proof. Since Z is diagonal, (LTZR)ij = Z?:l LeiZeeRe;. But there is at most
one value of e such that L.;R.; # 0, and that is precisely the value identifying the
edge i — 7, if this is an edge of the graph. If such an edge does not exist then the
summation yields 0, as desired. If such an edge exists, then, for that e, Z.. = Aj;;
which concludes the proof. 0

Now let W be the weighted matrix of the dual graph (or line graph), i.e., the
graph whose nodes correspond to the original (directed) edges, and whose edges are

LFor clarity, we will sometimes use the notation i — j to denote the edge (4,j) € E.

8
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pairs of edges from the original graph that can form a walk. The pair (i — j,j — k)
represents a walk that has weight equal to the product of the original edge weights;
that is, A;;A;x. These values are recorded in the entries of W, with W,y = A;; Ajy, if
e is the label of edge i — j and f is the label of edge j — k.

THEOREM 4.2. We have W = ZRLT Z.

Proof. We proceed entrywise. Suppose for concreteness that edge e is i — j and
edge f is k — ¢, where i # j, k # { are (possibly, but not necessarily, all distinct)
nodes. Note for a start that Wey = A;jAjp if j =k and Wy = 0 if j # k. Now, since
Z is diagonal,

(ZRL"Z)ey = ZeeZys Z RenLgn = AijAre Z Ren L.
h=1 h=1

Suppose j # k; then there is no h such that R.,L¢j, # 0, so the summation above is
0 = Wey. On the other hand, if j = k then the summation over h yields 1 so that
(ZRLTZ) ey = AijAje = Wey. ]

In the unweighted case, we have a projection relation LTW*R = A**+1 [5, Propo-
sition 2.4]. However, for weighted graphs, entries of W* count walks of length k + 1,
but with incorrect weights. For example, the walk 1 — 2 — 3 — 4 would be weighted
A12 A%, A3y rather than A3 Az3A34. We now exhibit a trick that corrects this prob-
lem. Coherently with the notation of the previous section, below M°!/2 denotes the
elementwise nonnegative square root of a nonnegative matrix M; note that generally
this does not correspond to the classical matrix square root v/ M (i.e., the matrix X
such that X2 = M), a notable exception being the case of a diagonal square matrix
with nonnegative diagonal. We note that Z falls in this latter category, hence the
notation in the following result.

THEOREM 4.3. Let 0 < k € N. The (e, f) element of NZ(W°Y2)r\/Z counts,
with weights, all walks of length k + 1 from edge e to edge f.

Proof. The crucial observation is that W°/2 = \/ZRLT+\/Z, which is clear by a
minor modification of the proof of Theorem 4.2. We now proceed by induction on k.
For the base case k = 1, it suffices to observe that vVZW°Y2\/Z = ZRLTZ = W.
Suppose now that the statement holds for £ — 1. Then,

\/E(Wol/Q)k\/Z — \/E(WOl/Q)k_l\/Z(Z_l/Q)WOUQ\/Z.

Define for notational simplicity U := vZ(W°V)k=1/Z X := Z=Y2 Y := W°lV/?,
Y :=+/Z. Then, since X and ¥ are diagonal,

(UXYX)er = Z UegXggYgrXiss-
geE

Suppose now that edge e is i — j and edge f is h — {; then edges g must be of the
form & — h for some node x. Indeed, Y, = 0 unless the end node of edge g coincides
with the start node of edge f, i.e., unless gf is a walk of length two. Hence, in this
notation,

A
(UXYE)ef = Z Ue,z%h V AhZA:L’h T}f = Ah@ Z Ue,m%ha

x:App >0 x:App>0
9
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where ) A, >0 Ueu—n 18, by the inductive assumption, the count (with weights) of
all walks of length k — 1 from edge e to all edges of the form x — h, i.e., the weighted
enumeration of all walks of length £ — 1 from edge e to node h. However, the count
with weights of all walks of length k from edge e to edge f is precisely the count with
weights of all walks of length & from edge e to node ¢ with node h as the penultimate
node, i.e., the right hand side in the latter displayed equation. ]

We have the following consequence of Theorem 4.3.
COROLLARY 4.4. For all k € N, LT/ Z(W°Y/2)k\/ZR = AF+1.

Proof. The result follows from Proposition 4.1, if ¥ = 0, and from Theorem 4.3,
it k>0. d

Now let B € R™*™ be the nonbacktracking version of W, i.e., Bey = 0 if
WefWse # 0 and Bey = W,y otherwise. This matrix is often referred to as the
Hashimoto matriz [16]. Recall, moreover, that pg(A) € R™*™ is the matrix counting
all NBT walks of length &k (from 4 to j in its (4, j) element). Now we can observe that
all the proofs above hold for B as well, modulo substituting walks with nonbacktrack-
ing walks. Hence, the projection relation still holds.

THEOREM 4.5. For all k € N, we have L"/Z(B°Y?)k\/ZR = pr41(A).

Proof. We have p;(A) = A = LTZR, and when k > 0 the result follows from a
minor modification of the arguments used to prove Corollary 4.4. ]

Suppose now that (¢x)x C [0,00) is a sequence and ¢ is such that
oo
k(t, A) = Z crtipr(A)
k=0

as in (2.2) converges; we are interested in the centrality measure
(4.1) v(t, A) = k(t, A)1.

We now derive formulae for x(t, A) and v(¢, A). To this end, we introduce the following
notation. Given a real-analytic scalar function

flz) = Z cpz®
k=0

consider the operator

of(z) = ch+1xk - m'
k=0 t
We then have the following.
THEOREM 4.6. It holds that
Z crtfpr(A) = col +tLTVZof(tV)VZR,
k=0

for V.= B°Y2 and |t| < v/p(V), where p(V) is the spectral radius of V and r is the
radius of convergence of the scalar function f(x) = po, cith.

Hence, for the centrality associated with f(xz) and t small enough to give conver-
gence in the matriz power series, in (4.1) we have

v(t, A) = col + tL"VZaf(tV)VZ1.
10
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Proof. By Theorem 4.5 we easily see that

K’(t,A) = col + tLT\/Z (Z ck+1tk(Bol/2)k> \/ZR

k=0

As a consequence,

v(t,A) = col +tL"VZ (Z ckﬂtk(B“/?)’“) VZ1.

k=0

Observing that the resolvent is an eigenfunction (with eigenvalue 1) of 9, we note
in particular that for Katz centrality, i.e., ¢, = 1 for all k, 0f(z) = f(x) = (1 — )~ L.
Hence, we have the following special case.

COROLLARY 4.7. In the notation of Theorem /.6, we have that the generating
function ®(t) defined in (2.1) can be expressed as

(4.2) O(t) =1 +tL"VZ(I —tV)"'VZR.

This analysis in particular yields a lower bound for the radius of convergence for
(2.1).

COROLLARY 4.8. If [t| < p(V)~', where V = B2 then the sequence D(t) =
> o Pr(A)* converges.

REMARK 4.9. Letting r denote the radius of convergence of (2.1), Corollary 4.8
shows that r > p(V)~1. It is possible to strengthen this result and prove that r =
p(V)~L. A proof of this fact, which is beyond the scope of the present article, appears
in [25, Theorem 5.2].

5. Nonbacktracking centralities for evolving weighted graphs. In Sec-
tions 3 and 4, we obtained formulae for the generating function ®(¢) in (2.1) by
working, respectively, at node and edge level. For a static network, i.e., one which
does not evolve in time, working at the node level is clearly preferable as, for large n,
we may have that n <« m. However, a significant advantage of the latter, edge-level,
formula is that it easily extends to the case of temporal networks in all backtracking
regimes, whereas a direct node-level formula which forbids backtracking in time is
generally unavailable [3]. Let us first generalize the definition of graph, walk, and
NBT walk to the dynamic case.

DEFINITION 5.1. A finite time-evolving graph G is a finite collection of graphs
(G, ... GINY), associated with the non-decreasing time stamps (t1,...,tx) € RY,
such that the set of nodes of Gl does not depend on i and when observed at time t;
the structure of G is identical to that of G,

We remark that the concept of a graph can be extended to the dynamic setting in
a number of ways [17]. The discrete-time framework of Definition 5.1 covers a range
of realistic scenarios where interactions take place, or are recorded, at specific points
in time. For example, in an on-line social media platform, an edge may represent a
form of communication between users, and G/ may count the number of interactions
between each pair of individuals over time (¢;_1,;].

The definition of walk across a network can be extended to the setting of temporal
graphs as follows.

11
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DEFINITION 5.2. A walk of length ¢ across a temporal network is defined as an
ordered sequence of £ edges eres ... ey such that for allk =1,...,£—1 the end node of
ex coincides with the start node of ery1 and, moreover, that ey € E[Tl],ekH € Elml
for some 1 < 1 <19 < N, where E[™] denotes the set of edges of the graph GI™).

It is useful to make an equivalent definition.

DEFINITION 5.3. A walk of length ¢ across a temporal network is defined as an
ordered sequence of £ + 1 nodes i1is . ..1¢41 such that for all k =2,...,¢ it holds that
i1 — ix € B and i, — Tk+1 € Elm] for some 1 <713 <719 <N.

We want to stress that multiple edges can be crossed at one given time stamp and,
moreover, that a walk is allowed to remain inactive for some of the time stamps.
We also recall here that there is not just one definition of backtracking for temporal
networks; indeed, three arise naturally [3]:

e backtracking happens within a certain time-stamp; we will refer to this as
backtracking in space,

e backtracking happens across time-stamps; we will refer to this as backtracking
m time,

e backtracking happens both within a time-stamp and across time-stamps (not
necessarily in this order); we will refer to this as backtracking in time and
space.

Given any finite time-evolving graph G, we can associate with it a matrix M called
the global temporal transition matriz which was defined in [3] for unweighted graphs.
Definition 5.4 below generalizes the definition of the global temporal transition matrix
to the weighted case.

DEFINITION 5.4. Let G = (G, G, ... GINY) be a time-evolving graph with N
time stamps. The weighted global temporal transition matrix associated with G is the
m X m block matrix

cll o2 ol oluNgel/?
o cE ¢kl o ok

(5.1) M =MUN = : :
0 ... .. 0 W

where the definition of the blocks depends on the chosen backtracking regime in the
following way:
(i) CIml = winl gnd Clromel = winerel .= ginlRInl(Ll=NT gl for all 7,75 =
1,2,...,N (11 < 12) if backtracking in both space and time is permitted;

(ii) '™l = BInl and Clmoml = Wimoml for all 7,79 = 1,2,...,N (11 < ) if
backtracking in space is forbidden but backtracking in time is permitted;

(Z’LZ) C[Tl] _ W[Tl] and C[Tl,Tz] _ B[Tl,‘rg] — W[Tl,rg] _ (W[TI,TQ] ° W[Tz,T1]T)°1/2
for all Ty,79 = 1,2,...,N (11 < 712) if backtracking in time is forbidden but
backtracking in space is permitted; and

(iv) CMl = BNl and Clmvml = BImoml for all 7,19 = 1,2,...,N (1 < ) if
backtracking in both time and space is forbidden.

It was further shown in [3] that the global temporal transition matrix provides an

accurate way of counting walks in all backtracking regimes across a finite unweighted
time-evolving graph and thereby allows for the computation of the (nonbacktracking)

12
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Katz centrality v via the formula:
(5.2) v(t) = (I +tLT (I —tM) 'R)1,

where £, R are the global source and target matrices respectively as defined in [3,
Definition 4.4].

To handle the weighted case, we may extend Theorem 4.5 naturally to the global
temporal transition matrix M in the following way.

THEOREM 5.5. For a finite time-evolving graph with N-many time frames, let the
global weight matrix Z be defined block-wise as

7 = zW2 N = diag(z0 718 7N,

where ZIi is the diagonal matriz associated with time stamp 1 < 7, < N. For each of
these matrices, their diagonal entries are given by ZLZ] = w ™, with w.[] being the
weight of edge e at time stamp 7;. Further let the backtracking regime be fized such
that the weighted global temporal transition matric M is fived. Then, for 0 < k € N,
the (e, f)-th entry of VZM*NZ counts, with weights, all permitted walks of length
k+ 1 from edge e to edge f across the time evolving graph given the backtracking

regime.

Proof. Suppose the backtracking regime is given such that the structure of M is
fixed as specified in Definition 5.4. We prove the theorem by induction on the length
of permitted walks k € N. Consider the basis case k = 1:

ol o2 o3l ol el/?
o ¢ ¢kl BN

VZIMVZ =VZ | : : VZ.

b 0 Cle

The (e, f)-th element of this matrix correctly counts the unique walk of length
two with weights from edge e to edge f. In the following we will omit the temporal
superscript, since the indices e and f also uniquely determine the time frame. With
this convention:

(\FZM\FZ)E]C => VZe M, NZyg

= (\/Z)ee(\/?)ffMef
{,/we, /We,/WeWs = wewys ef is a permitted walk of length two
0

otherwise.

where we have used the fact that, if ef is an admissible walk of length two, then

(M)ey = \/Wewy.
Suppose now that the result holds for k—1 and for brevity denote by P the matrix
VZM*1\/Z, which, by the inductive assumption, correctly counts in its entries the

number of weighted temporal walks of length k. Then, using the fact that Z is
13
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diagonal,

(\FZMk\/E)ef = Z (\FZMk*lﬁ> (Zil/z)rsMst(ﬁ)tf

er
7,8,t

= Pe(Z72),, My (VZ) 45

_Jws ) Per e...rfisa permitted walk of length k + 1
~]o otherwise.

By the inductive assumption P, counts the permitted weighted walks of length
k from edge e to edge r. Therefore the above formula does indeed count the weighted
permitted walks beginning with edge e and ending on edge f with length £ + 1
correctly. |

THEOREM 5.6. Given global source, target and weight matrices, L, R and Z re-
spectively, we can compute M when backtracking is entirely forbidden in two steps:

1. M= (ﬁ(RET —RLT o ,CRT)ﬁ) ;
2. Obtain M from M by setting all entries below the block diagonal to 0.

Proof. The above theorem is easy to prove by observing that the (7, j)-th block of
the matrix RLT is equal to R[i]L[j}T, whereas the (i, j)-th block of the matrix LRT

is equal to L RW" = (R[j]L[i]T)T; whereupon the (i, 7)-th block of the matrix M
becomes

M. = /2l (R[z'JLmT _ Rl (R[j]L[i]T)T) 71,

The central term here in brackets can be seen as the binarized B%9, i.e., Bl where
all non-zero weights are uniformly equal to 1, thus the presence of a non-zero entry
(B[i’j])e ¢ simply reflects whether or not the concatenation of edges e and f forms a
non-backtracking walk of length two. Matrix multiplication from the left by VZIil
and on the right by V/Zlil then provides the appropriate weighting for the (e, f)-th
entry, namely /we,/Wy, as required. Finally, the second step of setting all blocks
below the block diagonal, i.e., Z\/Zj with 4 > j, to zero reflects the requirement that
walks may not move back in time. |

We can also compute the f-total communicability of the time-evolving graph with
weights by using the global temporal transition matrix M.

THEOREM 5.7. Given a function f with series expansion f(t) =Y e, cxt® having
radius of convergence r, and some fived backtracking regime, the f-total communica-
bility vy (t) of the time-evolving graph G = (G, ... G with N time stamps is
given by the formula:

(5.3) vi(t) = (col +tILTVZFAM)VZR)1

for 0 < |t| < r/max;—1___n{p(CI"])}.

Proof. By Proposition 5.5, we have that v/ZM"*\/Z counts with weights all walks
of length k + 1, thus

vp(t) = (col +tOL"VZF(MWZR)L = col +1 Y cpat* L"VZM*VZR1.
k=0
14
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Table 6.1: Static network convergence information.

Non-binarized graph p(B°!/?) 926.9

Binarized graph p(B) 48.61
Non-binarized nonbacktracking permitted range of ¢ | t € [0,1.079 - 10~3)
Binarized nonbacktracking permitted range of ¢ t €10,2.057-1072)

Non-binarized p(A) 1038

Binarized p(A) 51.26
Non-binarized backtracking permitted range of ¢ t€10,9.635-107%)
Binarized backtracking permitted range of ¢ t€1[0,1.951-1072)

In the above formula we see the number of walks of length & 4 1 correctly counted
with weights that are further weighted by the coefficient ¢ 1t*+!, which is provided
by the series expansion of f(x). d

6. Numerical Experiments. In this section we show how the formulae for
nonbacktracking Katz centrality from sections 3, 4 and 5 may produce significantly
different node-rankings for real-world social networks when compared with Katz cen-
trality which permits backtracking walks. We further examine the effect of weighting
edges on the rankings produced by both centrality measures. To this end, we consider
the Katz centrality formula (5.2) as applied to one static network and one temporal
network, both derived from the same data set (Fauci’s email release [6]) . The origi-
nal dataset is a collection of over 3000 pages of emails involving Anthony Fauci and his
staff during the COVID-19 pandemic. Data includes sender and receivers (including
CC’d) of emails, as well as time stamps of when the emails were sent. Both networks
used in the following were presented in [6].

6.1. Analysis on Static Networks. In this section, we analyze a static network
produced by [6] which is both undirected and weighted. We have an edge (i, j) if there
exists an email which involves both nodes ¢ and j as any combination of sender and
recipient (including CC’d recipients). The weight assigned to such an edge, Q((4, 7)),
is a positive integer equal to the number of such emails that were sent.

In our analysis, we apply Corollary 3.4 to obtain the NBT Katz centrality vector
for our network, which is then contrasted with the classical Katz centrality vector
for attenuation factor values t = 0.5/p and t = 0.95/p, where 1/p is the radius of
convergence for the respective centrality measure. In particular 1/p is equal to 1/p(A),
where A is the adjacency matrix of the graph in the case of classical Katz centrality;
whereas 1/p=1/p(B°/?) in the case of weighted nonbacktracking Katz centrality [25,
Theorem 5.2], where B is the Hashimoto matrix associated to the graph. These values
are given in Table 6.1. We also analyze the binarized graph which is produced from
the static graph by setting all edge weights to 1. In the context of the binarized
network 1/p equals 1/p(A) in the case of classical Katz centrality, and 1/p(B) for
nonbacktracking Katz centrality, where A and B are the adjacency and Hashimoto
matrices associated with the binarized network, respectively.

The results are visualised in Figures 6.1, 6.2 and 6.3. Figure 6.1 shows that
NBT Katz centrality emphasizes a clique not containing the node corresponding to
Antony Fauci, and that for large values of the attenuation factor this clique begins to

2The code used in the following analysis can be found at https://github.com/rwood12347/
Weighted-enumeration-of-nonbacktracking-walks-on-weighted-graphs
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o, o'
Katz centrality t = 0.5/p(A) Katz centrality ¢t = 0.95/p(A)
‘o
.j.;v

NBT Katz centrality ¢ = 0.5/p(B°/?) NBT Katz centrality t = 0.95/p(B°'/?)

Fig. 6.1: Visualizations of classical (top/red) and NBT Katz (bottom/blue) across the static
email network with large node size and dark colour indicating large centrality values; darker
edges indicate a larger weight.
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Fig. 6.2: Classical and nonbacktracking Katz centrality vector values for backtracking
fully forbidden with attenuation factor ¢ = 0.5/p and ¢t = 0.95/p, respectively. In each
plot we display the union of the 10 most central nodes according to each centrality
measure.

dominate the ranking to such an extent that the node corresponding to Anthony Fauci,
which occupies the central position in the network visualisation, is no longer counted
among the 10 most central nodes. This can be seen in Figure 6.2 which depicts the
nonbacktracking and classical Katz normalized centrality values for the union of the
10 most central nodes in the static network. The left bar chart in Figure 6.2 indicates
that both classical and nonbacktracking Katz agree on the 10 most central nodes of
which ‘Anthony Fauci’ is most central when ¢ = 0.5/p. However the rightmost figure
depicts a complete divergence in the ten most highly-ranked nodes produced by classic
and nonbacktracking Katz centralities respectively. In particular we see that while
the ‘Anthony Fauci’ node remains fairly central according to both measures, nodes
belonging to the clique shown in Figure 6.1 have overtaken it in the ranking induced by
nonbacktracking Katz centrality. The clique identified in this case consists exclusively
of participants (i.e., either directly sent or received an email within the thread, or were
CC’d in an email within the thread) in the so-called ‘Red Dawn’ email thread that
was used throughout the pandemic “to provide thoughts, concerns, raise issues, share
information across various colleagues responding to Covid-19” [8].

The effect of weighted edges on the rankings produced by nonbacktracking and
classical Katz centralities for the static network is demonstrated in Figure 6.3. The
figure contains two scatter graphs of the normalized nonbacktracking Katz centrality
vector (t = 0.95/p(B°'/?)) plotted against the Katz centrality vector (¢ = 0.95/p(A))
for both the original network (right) and a binarized modified network (left), which
is formed from the original network by setting all edge weights to 1.

In particular we see that the presence of non-uniformly weighted edges in the net-
work produces greater variation in the nonbacktracking and classical Katz centrality
vectors.

17
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Fig. 6.3: Scatter plots of normalized NBT Katz centrality against normalized classical
Katz centrality corresponding to binarized and non-binarized static networks with
attenuation factor ¢ = 0.95/p.

6.2. Analysis on Temporal Networks. We now move on to the case of a
time-dependent network, and we note that the special case of an unweighted network
with backtracking permitted corresponds to the work in [15] wherein the dynamic
communicability matriz Q(t) associated to such a network is defined as the product
of the successive resolvents

(6.1) Qt) = (I — tAMY=1(1 —¢AP)=1 .. (1 — tAlN)—1,

Here Al is the adjacency matrix associated to the i-th time-stamp of the temporal
network G. Katz centrality can then be computed via the formula

(6.2) z(t) = Q(t)1.

This formula accounts for all walks across the temporal network G including those
that backtrack in space and between time-stamps.

The temporal network G analyzed in this section is the largest temporal strong
component [9] of the provided email data, i.e., the largest component that is connected
in the sense that there exists a time-respecting path between any two nodes contained
within. This network consists of a collection of 100 directed networks associated with
the date 2018-09-04 and the 99 consecutive days between 2020-01-26 and 2020-05-05.
In this network we have a directed weighted edge (i,j) € E(G[™), if node j is a
recipient of, or is CC’d in, an email sent by node i. The weight of such an edge is
equal to the number of such emails sent during the ¢-th timestamp.

We reiterate here that when treating temporal networks there is a range of possible
nonbacktracking regimes, as outlined in Definition 5.4. The choice of appropriate
backtracking regime is highly context-dependent. For the data set analyzed here, it
is reasonable to forbid backtracking entirely, since the time-stamps associated with
the temporal network have an almost uniform spacing of one day, and the time taken
to reply to an email is on a similar scale to the spacing between time-stamps. It is
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Table 6.2: Temporal network convergence information.

(M) 5.025
nonbacktracking permitted range of ¢ | ¢ € [0,0.1990)

max; (p(AM)) 8.832
Backtracking permitted range of ¢ t €10,0.1132)
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Fig. 6.4: The time-evolving network centrality vector values for both NBT and clas-
sical Katz with attenuation factor ¢ = 0.5/p and t = 0.95/p respectively. In each
plot we display the union of the ten most central nodes according to each centrality
measure.

worth mentioning that this choice to fully forbid backtracking is subjective and other
regimes may also be reasonable.

Our analysis of the spectrum of the global temporal transition matrix M associ-
ated to the graph G with backtracking fully-forbidden yields the permitted ranges of
attenuation factor ¢ shown in Table 6.2. We contrast this with the permitted range
of t in the case of classical Katz centrality via the dynamic communicability matrix
Q as defined in (6.1).

Figure 6.4 depicts two bar charts which display the normalized centrality values
for both classical and nonbacktracking Katz centralities for ¢ = 0.5/p and t = 0.95/p
respectively, where 1/p is the upper-limit of the respective regime as given in Table 6.2.
In particular 1/p is equal to 1/p(M) (see the proof of [25, Theorem 5.2]) in the case
of nonbacktracking Katz centrality, where M is the matrix described in Definition 5.4
(iv) that is, the form of M in which all forms of backtracking are forbidden. In the
case of classical Katz centrality 1/p is given by 1/ max;(p(Al), the reciprocal of the
largest principal eigenvalue of the adjacency matrices. In Figure 6.4 we report results
for 12 nodes, which are selected by taking the union of the 10 most highly ranked
nodes for classical Katz and the 10 most highly ranked nodes for NBT Katz, when
t=0.95/p.

In Figure 6.5 we plot for the weighted temporal network both the classical and
nonbacktracking Katz centrality values of 10 selected nodes against the attenuation
factor ¢ which ranges from 0% to 99% of its permitted range (as given in Table 6.2).
The 10 nodes were selected such that they are the most central for large values of t.

Figure 6.6 presents results for the same experiment, this time carried out with
the binarized version of the temporal network, i.e., the temporal network with all
non-zero weights set to 1.
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It is interesting to note that nonbacktracking Katz identifies a node distinct from
“Anthony Fauci” as the most central node for large values of t, favouring instead
the node “Jeremy Farrar” which is considerably lower ranked in the static networks
produced from the same data set. Furthermore by comparing Figures 6.5 and 6.6, we
observe the large effect that weighting has on the two centrality measures.
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Fig. 6.5: Plots of the normalized Katz (upper) and nonbacktracking Katz (lower)
centralities vector values for 10 most prominent nodes (i.e., those with the largest
centrality value as of the upper limit of the attenuation factor ¢) within the weighted
temporal network

7. Discussion. Our aim in this work was to develop a useful theory for the
enumeration of nonbacktracking walks as well as for associated centrality measures,
in the case of edge weights that are combined multiplicatively. We showed in The-
orem 3.1 that in contrast to the unweighted case where a four-term recurrence is
sufficient to count nonbacktracking walks of different lengths, the weighted case gives
rise to a recurrence where the walk count at length k& depends on walk counts for all
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Fig. 6.6: Plots of the normalized Katz (upper) and nonbacktracking Katz (lower)
centralities vector values for 10 most prominent nodes (i.e., those with the largest
centrality value as of the upper limit of the attenuation factor ¢) within the binarized
temporal network.

shorter lengths. Despite this added complexity, the resulting formulas for the stan-
dard generating function in Theorem 3.3 and corresponding node centrality measure
in Corollary 3.4 are straightforward to evaluate.

We also showed in Theorem 4.5 that when working at the line graph level, the
introduction of appropriate componentwise square roots allows us to develop a theory
that extends to the unweighted case, with Theorem 4.6 summarizing the results, and
Theorem 5.7 dealing with more general time-evolving graph sequences.

A practical take-home message is that a theory of nonbacktracking walk counts
for static or dynamic weighted graphs is available, with corresponding computational
algorithms that have the same complexity as in the unweighted case.
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