
1. Introduction
Short-duration extreme rainfall has the potential to cause severe flooding and is projected to increase in intensity as 
well as frequency as a result of anthropogenic climate change (Fowler et al., 2021; Prein et al., 2016; Seneviratne 
et al., 2021). One of the reasons for this projected increase is the thermodynamic connection between tempera-
ture and precipitable water in the atmosphere, since hotter air can hold more moisture (Trenberth et al., 2003). 
Heatwaves, where high temperatures persist over several days, usually coincide with dry weather due to land- 
atmosphere interactions (Miralles et al., 2019). While rainfall is therefore less likely during a heatwave, recent 
studies have shown a significant increase in extreme rainfall immediately after a heatwave (Chen et al., 2022; Li 
et al., 2022; Ning et al., 2022; Sauter et al., 2022; You & Wang, 2021). Heatwaves followed by extreme rainfall 
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heatwaves  are connected to extreme rainfall and can help assess how the risk from these events might change in 
the future.
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should thus be seen as a compound event (Leonard et al., 2014; Zscheischler et al., 2018), as the likelihood and 
intensity of the extreme rainfall event is increased compared to conditions without a heatwave.

This compounding hot-wet extreme event occurs predominately in the mid and high latitudes where there is 
ample moisture supply and high summer temperatures (Sauter et al., 2023). Several studies therefore point toward 
moist convection being the main driver of compounding heatwave-extreme rainfall events, as atmospheric insta-
bility tends to be high during the event (Chen et  al.,  2022; Wu et  al.,  2021; You & Wang,  2021; Zhang & 
Villarini, 2020). Indeed, from a theoretical standpoint, high temperatures related to the heatwave have the poten-
tial to enhance convective extreme rainfall, provided there is ample moisture supply, as extreme rainfall associ-
ated with convection is usually linked to high atmospheric instability and moisture (Brooks, 2013; Groenemeijer 
& Van Delden, 2007; Meyer et al., 2022; Púčik et al., 2015). However, uncertainties remain as to how other 
synoptic-scale drivers contribute; cyclones or fronts could be the causal mechanism of both the reduction in 
ambient temperature during the heatwave termination as well as the associated rainfall. Further, it is unclear if 
the low likelihood of extreme rainfall after heatwaves in arid regions results from the absence of synoptic systems 
associated with rainfall, a lack of available moisture and atmospheric instability, or both.

Identifying convective- and synoptic-scale drivers for extreme events such as extreme rainfall is challenging as 
the drivers are identified using different atmospheric variables and methods. Recent studies have addressed this 
by identifying weather types such as thunderstorms, fronts, and cyclones that can also occur simultaneously in 
space and time (Catto & Dowdy, 2021; Dowdy & Catto, 2017; Pepler et al., 2020). Therefore commonly known 
drivers of extreme rainfall in Australia and Europe, such as east coast lows, tropical and extratropical cyclones, 
fronts, atmospheric rivers and/or thunderstorms (Catto & Pfahl, 2013; Dowdy & Catto, 2017; Dowdy et al., 2019; 
Lavers & Villarini, 2013; Villarini & Denniston, 2016), can be easily identified and causally related to an extreme 
event.

Here, we determine the predominant weather-types during heatwave terminations in Australia and Europe, giving 
insight into the importance of convective and synoptic-scale drivers of extreme rainfall following heatwaves. We 
further investigate how and why the strength of this compound event differs by region. Improved understanding 
of the driving mechanisms is crucial to estimating future changes to extreme rainfall after heatwaves and the 
resulting potential impacts.

2. Data
The selection of rainfall and temperature data, as well as the definition of heatwaves follows that of previous work 
(Sauter et al., 2022) where different definitions and thresholds have been tested and found not to impact results 
significantly. Due to the availability of weather type data sets in these regions, the analysis focusses on Europe 
and Australia.

2.1. Rainfall Observations

We use hourly rainfall observations from the Global Sub-Daily Rainfall Dataset (GSDR) (Lewis et al., 2019a) 
which have been extensively quality-controlled (Ali et  al., 2022; Lewis et  al., 2021). Here, we only consider 
stations with at least 12 years of rainfall records and less than 20% of missing data during any year (analog to 
Ali et al. (2021)). As rainfall observations are paired up with temperature data as well as with weather type data, 
rainfall records are limited to starting from 1979 or later. This results in the analysis of 1987 stations in Europe 
and 581 stations in Australia. Extreme rainfall is defined for each station individually as an hourly rainfall event 
that exceeds the respective 99th percentile of all hours with >0.1 mm/hr within the entire rainfall record. This 
ensures that the 99th percentile rainfall threshold is higher than if using the 99th percentile of wet and dry hours, 
as excluding non-rainfall hours reduces the number of values and extreme values vary less between locations 
depending on the respective climatological number of dry days/hours per year.

2.2. Reanalysis Data

We additionally use 2-m temperature, total column water vapor (TCWV), and convective available potential 
energy (CAPE) variables from the ERA5 reanalysis data set (Hersbach et  al., 2020). The data is provided at 
a horizontal resolution of 31 km and the grid box closest to each GSDR station is selected. All variables are 
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aggregated from hourly to daily timescales with respect to their local time zones (maximum and minimum daily 
temperatures; Tmax, Tmin, mean daily TCWV and CAPE). Other variables describing moisture (e.g., absolute 
humidity) and atmospheric instability (e.g., convective inhibition) are available from reanalysis as well; however, 
TCWV and CAPE are analyzed as they have been found to serve well as proxy parameters for conditions associ-
ated with extreme precipitation (Meyer et al., 2022).

2.3. Weather Type Data

We use two weather type data sets that cover Europe and Australia respectively. For Europe we use a weather type 
data set following Dowdy and Catto (2017) and Catto and Dowdy (2021) that determines cyclones, fronts, and 
thunderstorms from ERA5 data. The fronts are identified using an updated version of a thermal front parameter 
method (Sansom & Catto, 2022), and the cyclones are identified using the Wernli and Schwierz (2006) method 
of identifying closed contours of mean sea level pressure. The thunderstorm environment is defined using CAPE, 
bulk wind shear from 0 to 6 km, total totals index and a Laplacian of 500-hPa geopotential height (Dowdy & 
Brown, 2023) and the thresholds are based on lightning observations (Dowdy, 2020). The individual weather 
systems can occur by themselves or in combination with other systems. Therefore, the combination of these three 
identified systems means that the weather types included in the Europe region are Cyclone Only (CO), Front Only 
(FO), Thunderstorm Only (TO), Cyclone-Front (CF), Cyclone-Thunderstorm (CT), Front-Thunderstorm (FT), 
Cyclone-Front-Thunderstorm (CFT), and Undefined (U). The data set is provided at 0.25° resolution, spanning 
1980 to 2019.

For Australia, we use a weather types data set from Pepler et al. (2020), based on the ERA-Interim reanalysis, 
which follows Dowdy and Catto (2017) but includes a number of additional identification algorithms. In this data 
set, fronts are identified using both the thermal front parameter method (Berry et al., 2011; Hewson, 1998), and a 
wind shift method (Simmonds et al., 2012). Cyclones are identified using mean sea level pressure with both the 
Wernli and Schwierz (2006) method and the University of Melbourne algorithm (Murray & Simmonds, 1991; 
Simmonds & Keay, 2000; Simmonds et al., 1999). If a front or cyclone is only identified with one of their respec-
tive two identification methods, they are classified as “Unconfirmed Cyclones/Fronts (UCF).” More detailed 
information about the identification of each individual weather system can be found in Pepler et al. (2020). For 
any given time and location, if none of the previous weather types is identified, the weather type at that location 
is “Undefined” (“U”). Therefore, in addition to the eight weather types used in Europe, three additional weather 
types are included for Australia: High pressure (H), Warm-front (WF), “Unconfirmed Cyclones/Fronts (UFC).” 
The data set for Australia is provided at a gridded 0.75° horizontal resolution from 1979 to 2015. For each GSDR 
station the corresponding grid box from the European or Australian weather type data set are selected.

3. Methods
Heatwaves are defined for each location individually, where Tmax lies above its 95th percentile for at least 3 
consecutive days and Tmin lies above its 95th percentile for at least the second and third day. To avoid a longer 
heatwave being identified as two or more shorter heatwaves, a heatwave is only terminated if Tmax, Tmin, or a 
combination of the two, fall below their respective thresholds for at least two consecutive days. The robustness 
of the heatwave-extreme rainfall signal has also been tested for different heatwaves definitions and thresholds 
in a previous study (Sauter et al., 2022), and these were not found to change the results significantly. However, 
to test the influence of different heatwave types on available moisture, we define day-time heatwaves as a mini-
mum of three consecutive days where Tmax lies above its 95th percentile, while Tmin lies below its 95th percentile 
during  the same days. Analog to this definition, we define night-time heatwaves as a minimum of three consecu-
tive days where Tmin lies above its 95th percentile, while Tmax lies below its 95th percentile during the same days.

To avoid identifying localized reductions in temperature as large-scale heatwave terminations, we only consider 
heatwave terminations where at least two stations agree on the timing of a termination. We found that requiring 
more stations does not significantly change the results, and therefore use two stations as a minimum to increase 
the number of identified heatwaves. For each heatwave termination, we select the weather type that is present at 
most of the affected stations at the termination. Weather type distributions are analyzed at 12:00 on the last day 
of the heatwave. The distribution of weather types for different times throughout and after the heatwave is shown 
in Figures S1 and S2 of the Supporting Information S1. For CAPE and TCWV, we calculate the station-mean of 
all affected stations.
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The influence of a heatwave on the likelihood and intensity of extreme rainfall is strongest immediately (24–48 hr) 
after a heatwave (Chen et al., 2022; Sauter et al., 2022). We therefore consider any rainfall connected to a heat-
wave termination if it occurs within a 36-hr time window starting on noon on the last day of a heatwave. Though 
the signal of a heatwave on subsequent rainfall can last up to several days, the strongest rainfall response occurs 
within the first day after a heatwave (Chen et al., 2022; Sauter et al., 2022).

All heatwave terminations are then divided further into three categories based on the rainfall following the 
heatwave:

 (1)  Heatwaves followed by extreme rainfall; At least one station records at least 1 hr of extreme rainfall after the 
heatwave.

 (2)  Heatwaves followed by moderate rainfall; At least one station records at least one wet hour (>0.1 mm/hr) 
after the heatwave, but none of the stations record any extreme rainfall.

 (3)  Heatwaves followed by no rainfall; No station records any rainfall after a heatwave.

Figure  1 shows the location of GSDR stations used for this study in Australia (a) and Europe (b). Stations 
in Australia and Europe have been sub-divided to account for differences in climatic conditions. Australia is 
sub-divided into four (Northern Australia, Rangelands, Eastern Australia and Southern Australia) according to 
the regions suggested by CSIRO and Bureau of Meteorology (2015). Europe has been divided into two; Central 
Europe and Southern Europe, based on Köppen-Geiger climate classifications (Beck et  al.,  2018). Central 

Figure 1. Location of rainfall stations used for Australia (a) and Europe (b). The stations are colored according to their region used in this study (44 in Northern 
Australia, 165 in Eastern Australia, 30 in Rangelands, 186 in Southern Australia, 1479 in Central Europe and 227 in Southern Europe). (c) Percentage of heatwaves 
ending with extreme rainfall (dark blue), moderate rainfall (blue), or no rainfall (light blue) for each of the regions used within Australia and Europe.
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Europe includes Moderate, Cold, and Polar climate classifications that are associated with high likelihoods of 
extreme rainfall after heatwaves (Köppen-Geiger sub-classes “Cfa,” “Cfb,” “Cfc,” “Dfb,” “Dfc,” and “ET”), and 
Southern Europe contains Arid and Moderate climate classifications associated with low likelihoods of extreme 
rainfall after heatwaves (Köppen-Geiger sub-classes “BSk,” “Csa,” and “Csb”) (Sauter et al., 2023). All major 
Köppen-Geiger climate classifications (Tropical, Arid, Moderate, Cold and Polar) are represented within at least 
one of the six regions.

Figure 1c shows that the likelihood of (extreme) rainfall after a heatwave varies depending on the region and 
climatic conditions. In Australia, extreme rainfall after heatwaves is most likely in Eastern Australia, followed by 
Southern Australia, while heatwaves in Northern Australia and the Rangelands are less likely to be followed by 
extreme rainfall. In Europe, heatwaves are far more likely to be followed by extreme rainfall in Central Europe 
than in Southern Europe.

To estimate the frequency of a particular weather type and atmospheric conditions such as TCWV and CAPE 
independent of any heatwave occurrence, we calculate climatological estimations for weather type frequencies, 
TCWV and CAPE for the same time of the year as the heatwave. For each heatwave termination (i.e., all stations 
whose heatwave ended on the same day), we calculate the weather type, TCWV and CAPE for the same day of 
the year for all available years in the respective record. If a heatwave termination falls on the last day of a year 
during a leap year, as in some instances in Australia, the 365th instead of the 366th day of the year is chosen in 
order not to reduce the sample size.

4. Results
During any given time, multiple weather types can be present in one region, as illustrated in a case study exam-
ple from a heatwave termination followed by extreme rainfall in summer 2002 (Figure 2). During this heatwave 
termination, most of Europe was under a thunderstorm environment. The termination of the heatwave and asso-
ciated extreme rainfall, however, was associated with the passage of a front. Though part of the same frontal 
structure, the weather types data set  allows separating frontal conditions that occur simultaneously with and 
without thunderstorm conditions (brown and purple areas, respectively). During the 36-hr window from 12:00 
on the last heatwave day, 16 of the 23 stations with heatwave terminations on that day recorded at least 1 hr of 
extreme rainfall.

Figure 2. Case study of a heatwave termination with extreme rainfall on the 31 July 2002 in Central Europe. (a) Shadings show areas associated with a particular 
weather type during 12:00 on the last day of the heatwave. Dots indicate locations of all stations where a heatwave terminates on the 31 July 2002. Red dots indicate 
locations of the five stations with the highest recoded hourly rainfall of all stations affected by the heatwave termination, and their observed rainfall intensity is shown in 
(b), ordered from east to west (top to bottom in (b)). Vertical dashed lines indicate the end of the heatwave.
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Heatwaves in Europe and Australia tend to terminate during frontal (F) and/or thunderstorm (T) conditions 
(Figure 3). While these weather types are also very common climatologically, there were statistically significant 
differences between the frequency of particular weather types during heatwave terminations and climatology. In all 
regions (except Central Europe), Thunderstorm Only conditions occurred significantly more often than expected 
from climatology (i.e., above the 95th percentile) in cases where a heatwave was followed by extreme rainfall. 
If a heatwave in the same regions was followed only by moderate or no rainfall, Thunderstorm Only conditions 
were mostly more likely than or comparable to conditions expected from climatology. Significantly higher Front 
Only conditions during all heatwave termination types compared to climatology were found in the Rangelands 
and Southern Australia but were comparable or less likely than climatology in the other regions. The combina-
tion of fronts and thunderstorms were significantly more likely than climatology during all heatwave endings in 
Southern Australia and Central Europe, but the signal is less clear in the other regions and dependent on the type 
of heatwave termination. There is some indication that Cyclone-Front-Thunderstorm conditions during heatwave 

Figure 3. Frequency of each weather type at 12:00 on the last day of a heatwave for heatwaves followed by extreme rain (dark blue dots), moderate rain (blue dots) 
or no rain (light blue dots) for Northern Australia (a), Rangelands (b), Eastern Australia (c), Southern Australia (d), Central Europe (e), and Southern Europe (f). Gray 
boxplots show climatological distribution of weather types during the same time of the year as the heatwaves and whiskers extend from the 5th to 95th percentile. The 
number in brackets in the legends show number of heatwaves identified for each of the three heatwave endings in the respective region. The weather types High (H), 
Warm-front (WF), and Unconfirmed Fronts/Cyclones (UFC) are only available for Australia.

 21698996, 2023, 21, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

038761 by U
niversity O

f Strathclyde, W
iley O

nline L
ibrary on [30/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

SAUTER ET AL.

10.1029/2023JD038761

7 of 14

terminations were also more likely than climatology in the Rangelands, Eastern Australia, Southern Australia, 
and Southern Europe. However, the absolute occurrences were comparably low and the difference to climatol-
ogy is only significant for certain heatwave termination types such as heatwaves followed by extreme rainfall in 
Southern Australia or Central Europe. Cyclone Only weather type occurrences during heatwave terminations 
were usually not significantly different to climatology, except for the Rangelands, where heatwaves followed by 
no rain were associated with Cyclone Only conditions significantly more often than expected from climatology. 
Cyclone-Thunderstorm weather types during heatwaves mostly made up only a small contribution overall and 
were mostly comparable to climatology, with the exception of the Rangelands where Cyclone-Thunderstorm 
weather types were significantly more likely than climatology during all heatwave endings. High, Warm-front, 
and Unconfirmed Fronts/Cyclones weather types tended to be less frequent during heatwave terminations than 
climatology (often significantly less frequent, e.g., in Southern Australia), though there were some exceptions 
like in the Rangelands, where a significantly higher contribution of WF weather types compared to climatology 
occurred during heatwave terminations which were followed by extreme rainfall. The proportion of undefined (U) 
weather types was lower than expected from climatologic conditions during all heatwave terminations. Overall, 
weather types related to thunderstorms and fronts (i.e., Thunderstorm Only, Front Only, and Front-Thunderstorm) 
tended to be more likely during heatwave terminations, especially if a heatwave was followed by extreme rainfall.

The weather type analysis shows that the likelihood of a specific weather type during heatwave termination varies 
by region, but much less by whether a heatwave is followed by (extreme) rainfall and cannot fully explain why 
some heatwaves are followed by extreme rainfall while others in the same region are not. We therefore analyze if 
these differences in rainfall behavior after heatwaves can be explained by variations in atmospheric conditions. 
Specifically, we analyze the atmospheric instability and availability of moisture before and after the heatwave 
termination as these are important requirements for extreme rainfall in thunderstorms and their mechanistic roles 
in contributing to extreme rainfall is well known (Meyer et al., 2022).

Figure 4 shows convective available potential energy (CAPE) and total column water vapor (TCWV) for Australia 
and Europe during and after a heatwave conditional on whether the heatwave was followed by extreme, moderate, 
or no rainfall. In all the regions studied in Australia and Europe, if a heatwave is followed by extreme rainfall, 
CAPE increases during the heatwave until the last day or the day after the heatwave. However, the duration of 
the buildup in CAPE varies from only one or 2 days in the Rangelands or Southern Europe, to several days in the 
other regions. For a heatwave followed by only moderate rainfall, CAPE also increases, but at a lower magnitude. 
In contrast, a heatwave followed by no rainfall shows little to no increase in CAPE.

TCWV shows a similar behavior. A heatwave followed by extreme rainfall shows a strong increase in TCWV 
in the lead up to heatwave termination. TCWV values tend to peak on the first day after termination (except in 
Central Europe where the peak occurs on the last heatwave day) and are not necessarily linked with the peak in 
CAPE. A heatwave followed by moderate rainfall shows similar increases in TCWV, but at a lower magnitude. 
TCWV remains low for a heatwave followed by no rainfall.

CAPE, and to a lesser degree TCWV, also vary depending on the present weather type during a heatwave termi-
nation, as demonstrated here for Southern Australia (Figure 5). During thunderstorm conditions (Thunderstorm 
Only and Front-Thunderstorm), both CAPE and TCWV show high values during a heatwave termination if a 
heatwave is followed by extreme rainfall. This is unsurprising, as CAPE is one of the two parameters used to 
determine the thunderstorm weather type (Section 2.3). CAPE during the Front-Thunderstorm weather type is 
lower than during the Thunderstorm-Only conditions. Heatwaves terminations associated with frontal conditions 
alone are associated with much lower values of CAPE. TCWV, however, remains high during both frontal and 
thunderstorm-related weather types. The highest values of TCWV and CAPE are still found in cases where a 
heatwave is followed by extreme rainfall and are lower where a heatwave is followed by moderate or no rainfall. 
Similar behaviors can be found in the other regions as well (Figures S3–S7 in Supporting Information S1).

TCWV and CAPE on the last day the heatwave are also strongly related to the maximum 1 hr rainfall intensity 
after heatwave termination (Figure 6). The maximum 1 h rainfall intensities are calculated as the highest hourly 
rainfall recorded at any station affected by the heatwave termination within 36 hr of 12:00 on the last heatwave 
day. In all regions, the highest rainfall events are also associated with high values of TCWV and CAPE for the 
respective region. Lower rainfall maxima are associated with lower TCWV and CAPE values. Heatwaves that 
terminate without rainfall also tend to have noticeably lower values of TCWV and CAPE. Dry regions such as 
Rangelands or Southern Europe produce high values of CAPE; however, TCWV is comparably low, especially 
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Figure 4.
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for dry heatwave termination. In moderate climates such as Eastern Australia or Central Europe, high CAPE 
values are more strongly associated with high rainfall. The same relationship between CAPE, TCWV and 1 hr 
extreme rainfall can also be seen for CAPE and TCWV values on the day after a heatwave termination (Figure 
S8 in Supporting Information S1).

To further investigate the influence of the heatwave on rainfall production, we compare distributions of TCWV 
and CAPE on the last day of the heatwave to climatology (Figure 7). TCWV on the last day of a heatwave is 
significantly higher (p < 0.01 with a Student's t-test) than expected from climatology for all regions except for 
Northern Australia. CAPE on the last day of the heatwave is also significantly higher (p < 0.01 with a Student's 
t-test) for all regions except for the Rangelands. Similar differences in CAPE and TCWV compared to clima-
tology can also been seen on the day after the heatwave (Figure S9 in Supporting Information S1). We further 
find that night-time heatwaves are associated with a higher moisture increase during the heatwave termination 
compared to regular heatwaves (high temperatures during day and night, Figures S10 and S11 in Supporting 

Figure 4. CAPE (blue) and TCWV (purple) during and after heatwaves for heatwave followed by extreme rain (left columns), moderate rain (center columns) or no 
rain (right columns). First four rows show CAPE and TCWV for four regions in Australia (Northern Australia, Rangelands, Eastern Australia, and Southern Australia; 
rows 1–4 respectively) and bottom two rows show CAPE and TCWV for two regions in Europe (Central Europe, and Southern Europe; rows 5–6, respectively). X-axis 
denotes the day relative to the last day of the respective heatwave. Solid lines show median values of CAPE and TCWV for each day relative to the heatwave and 
shading show the respective 5th–95th percentile ranges. Top right corner of each plot shows number of heatwaves identified for the respective region and heatwave 
ending. Vertical dashed lines indicate the end of the heatwave.

Figure 5. Like Figure 4, but for Southern Australia and showing heatwaves for the three most common weather types associated with heatwaves followed by extreme 
rainfall. Top row (middle row, bottom row) shows CAPE and TCWV during and after heatwaves if the dominant weather type during the heatwave termination at 12:00 
was Front Only (FO) (Thunderstorm Only; TO, Front-Thunderstorm; FT). The other regions are shown in Figures S3–S7 of the Supporting Information S1.

 21698996, 2023, 21, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

038761 by U
niversity O

f Strathclyde, W
iley O

nline L
ibrary on [30/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

SAUTER ET AL.

10.1029/2023JD038761

10 of 14

Information S1). Day-time heatwaves on the other hand show an increase in TCWV compared to climatology 
only in Southern Australia and Central Europe, while in all other regions TCWV during the heatwave termination 
is lower compared to climatology.

5. Discussion
We have demonstrated that heatwaves mostly terminate during thunderstorm and/or frontal conditions. 
Thunderstorm-related environments are generally more likely during the warmer months of the year 
(Dowdy, 2020), and high temperatures during heatwaves are likely to favor thunderstorm conditions by increas-
ing atmospheric instability. During heatwave terminations, thunderstorm environments are more common in 
cases where a heatwave was followed by extreme rainfall compared to a heatwave followed by moderate or no 
rainfall. In these cases, the frequency of thunderstorm conditions is significantly higher than expected from 
climatology. While thunderstorms are potentially enhanced by the heatwave itself, fronts might occur more 
independently of the heatwave but are likely the cause the heatwave termination. Cold fronts are associated 
with the advection of cooler air—and thereby reduce the ambient temperature. However, it is important to 
note that from our analysis alone it is not possible to distinguish with certainty if heatwaves increase the 
likelihood of synoptic disturbances, synoptic disturbances contribute to the termination of the heatwave, or 
both. Besides their role in terminating heatwaves, fronts can also contribute to extreme rainfall by introduc-

Figure 6. TCWV (x-axis) and CAPE (y-axis) for all stations on the last day of each heatwave for regions in Australia (a–d) and Europe (e–f). Data is separated by 
color by the maximum 1-hr rainfall of all stations experiencing a heatwave over a 36-hr period starting from 12:00 on the last heatwave day. The 1-hr rainfall maxima 
have been sorted into intensities of >15 mm/hr, 15–5 mm/hr, 5–0.1 mm/hr as well as no rainfall. Curves above (to the right of) the scatter plots show normalized kernel 
density estimates (estimated distributions) of TCWV (CAPE).
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ing further moisture as they are often associated with atmospheric rivers (Catto & Pfahl,  2013; Lavers & 
Villarini, 2013). Further, fronts could also act as a dynamical trigger of convection (e.g., Browning, 1986). As 
thunderstorm conditions are common during a heatwave termination (Figure 3), the combined occurrence with 
a front could therefore contribute to the observed higher rainfall intensities and likelihoods of extreme rainfall 
after heatwaves.

We further show that the likelihood and intensity of (extreme) rainfall after a heatwave is influenced by atmos-
pheric instability and moisture availability. Both CAPE and TCWV are highest during terminations of heat-
waves that are followed by extreme rainfall compared to heatwaves followed by moderate or no rainfall. We 
find that CAPE and TCWV vary depending on the weather type, with high values of CAPE only found during 
thunderstorm-related conditions. High values of TCWV were found in cases where a heatwave was followed 
by extreme rainfall regardless of the present weather type, indicating that high values of moisture are an essen-
tial condition for extreme rainfall after heatwaves. Other studies have also demonstrated high values of atmos-
pheric instability (Chen et  al.,  2022; You & Wang,  2021; Zhang & Villarini,  2020) and moisture (Zhang & 
Villarini, 2020) during the transition from a hot to a wet extreme. Both CAPE and TCWV may increase due to 
the arrival of a frontal system and the associated advection of moisture. However, it is likely that the conditions 
during the heatwave also contribute, since the increase in both variables can be observed for several days before 
the heatwave termination, even during frontal conditions.

Figure 7. Distribution of TCWV (a) and CAPE (b) on the last day of the heatwave (red) and for climatology (gray) for the 
six regions used in this study. The boxplot whiskers extend from the 5th to 95th percentile.
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These results further explain why extreme rainfall following heatwaves as a compound extreme is far more likely 
in mid to high latitudes (Sauter et al., 2023) than elsewhere. Mid and high latitudes are usually characterized by 
moderate to polar climates with high temperatures and comparably high moisture availability during summer, 
providing good conditions for high atmospheric instability and moisture during heatwave terminations. In arid 
regions, however, as represented here by the Rangelands and Southern Europe regions, most heatwaves are not 
accompanied by increases in CAPE or TCWV (Figure 4). Additionally, frontal systems tend to occur more in 
higher latitudes, such as in Central Europe and Southern Australia, where both regions are characterized by high 
likelihoods of extreme rainfall after heatwaves.

Using station-based observations to detect rainfall improves the representation of extremes; however, 
this might lead to instances where small-scale rainfall after heatwaves is not detected. This would lead to 
heatwaves being falsely categorized as followed by moderate rainfall even though rainfall elsewhere was 
extreme, or as followed by no rainfall even though there was rainfall elsewhere. This is more likely in cases 
where heatwaves were only identified for a small number of stations. However, we have found that using a 
higher minimum number of stations does not change the results significantly, while reducing the available 
heatwave sample size.

6. Conclusions
In conclusion, we have shown that heatwave terminations in Australia and Europe are usually related to thunder-
storm and/or frontal conditions. The likelihood of extreme rainfall occurring in the wake of a heatwave, however, 
is mainly governed by the atmospheric instability and moisture availability. The highest rainfall intensities after 
heatwaves are usually related to the highest values of atmospheric instability and moisture, which are in turn 
higher than without a heatwave. However, in the higher latitudes frontal systems are likely to contribute to the 
likelihood and intensity of extreme rainfall after heatwaves as well, as they can trigger convection and potentially 
introduce further moisture. Accurately estimating future changes to this compound event will therefore involve 
studying changes in both synoptic variability as well as the atmospheric parameters influencing convection.
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