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Development and validation of a digital biomarker
predicting acute kidney injury following cardiac surgery
on an hourly basis
Linda Lapp, PhD,a Marc Roper, PhD,a Kimberley Kavanagh, PhD,b and Stefan Schraag, MDc
ABSTRACT

Objectives: To develop and validate a digital biomarker for predicting the onset of
acute kidney injury (AKI) on an hourly basis up to 24 hours in advance in the inten-
sive care unit after cardiac surgery.

Methods: The study analyzed data from 6056 adult patients undergoing coronary
artery bypass graft and/or valve surgery between April 1, 2012, and December 31,
2018 (development phase, training, and testing) and 3572 patients between January
1, 2019, and June 30, 2022 (validation phase). The study used 2 dynamic predictive
modeling approaches, namely logistic regression and bootstrap aggregated regres-
sion trees machine (BARTm), to predict AKI. The mean area under the receiver
operating characteristic curve (AUC), sensitivity, specificity, and positive and nega-
tive predictive values across all lead times before the occurrence of AKI were re-
ported. The clinical practicality was assessed using calibration.

Results: Of all included patients, 8.45% and 16.66% had AKI in the development
and validation phases, respectively. When applied to testing data, AKI was predicted
with the mean AUC of 0.850 and 0.802 by BARTm and logistic regression, respec-
tively. When applied to validation data, BARTm and LR resulted in a mean AUC of
0.844 and 0.786, respectively.

Conclusions: This study demonstrated the successful prediction of AKI on an hour-
ly basis up to 24 hours in advance. The digital biomarkers developed and validated in
this study have the potential to assist clinicians in optimizing treatment and imple-
menting preventive strategies for patients at risk of developing AKI after cardiac
surgery in the intensive care unit. (JTCVS Open 2023;16:540-81)
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Development of hourly prediction models for acute
kidney injury in intensive care.
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CENTRAL MESSAGE

Predicting acute kidney injury
(AKI) dynamically could help cli-
nicians to optimize treatments
and harness preventive strategies
for patients at risk of developing
AKI after cardiac surgery in the
ICU.
PERSPECTIVE
Acute kidney injury (AKI) affects up to 40% of
cardiac surgery patients, leading to increased risks
of infection, longer hospital stays, and lower qual-
ity of life. Currently, there is no single biomarker
for AKI. With routine clinical data, AKI was pre-
dicted (AUC ¼ 0.850) on an hourly basis in the
ICU after cardiac surgery, which will help clinicians
with treatment optimization and resource
allocation.
4
Following cardiac surgery, up to 40% of patients can
develop acute kidney injury (AKI),1 which can contribute
to a greater risk of postoperative infection, atrial fibrillation,
and a more prolonged stay in the intensive care unit (ICU)
and hospital.2 Furthermore, AKI is associated with the pro-
gression of chronic kidney disease, which affects patients’
long-term quality of life.3

Because AKI is a complex, multifactorial complication,
there is currently no single molecular or digital biomarker
signature that is a so-called “kidney troponin.” At present,
the most promising molecular biomarkers for AKI
diagnosis are neutrophil gelatinase-associated lipocalin,
interleukin-18, kidney injury molecule-1, cell-cycle arrest
biomarkers,2 and N-terminal prohormone of brain
natriuretic peptide, high-sensitivity C-reactive protein, he-
moglobin, and magnesium.5 A widely used clinical test
for AKI is NEPHROCHECK (NC; Astute Medical), which
detects urinary biomarkers tissue inhibitor of
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Abbreviations and Acronyms
AKI ¼ acute kidney injury
AUC ¼ area under the receiver operating

characteristic curve
BARTm ¼ bootstrap aggregated regression trees

machine
CABG ¼ coronary artery bypass graft
ICU ¼ intensive care unit
LR ¼ logistic regression
NC ¼ NEPHROCHECK

Lapp et al Adult: Perioperative Management
metalloproteinases and insulin-like growth-factor binding
protein 7 to assess for risk of moderate or severe AKI.6

However, these molecular biomarkers are expensive due
to requiring extra resources to gather, test, and interpret
the data, which consequently affects the usability of these
biomarkers.7 Therefore, investigating already routinely
collected serum data from the ICU to develop a digital
biomarker would offer an affordable and automated way
to assess the risk of developing AKI.

Within the past decade, numerous dynamic predictive
models have been developed with the hope to improve
surgical outcomes and overall patient care, mostly to pre-
dict mortality and sepsis.8 As AKI is a persistent and
widespread problem in cardiac surgery, numerous predic-
tion models for AKI have been developed for preopera-
tive use to minimize patient risk before surgery.2

However, these models mostly use demographic data,
which offer very little granularity when it comes to
personalized prediction. Since AKI is still underdiag-
nosed, especially at lower stages,9 having a dynamic,
near real-time prediction model suitable for ICU use
that considers the patient’s physiological changes could
be useful to detect AKI hours in advance. A model is
considered as dynamic if a prediction is made repeatedly
as time and potentially the value associated with each of
the predictive variable changes. Using patient data,
collected with medical devices and stored in electronic
health records, enables the development of a digital
biomarker that could be used as a monitoring
biomarker10 that assesses the status of AKI.

Therefore, with the objective to improve risk assessment
for AKI in the ICU for the cardiac population, this study
aims to develop and internally validate a digital biomarker
to predict the onset of AKI on an hourly basis within
25 hours since ICU admission, up to 24 hours in advance,
using routinely collected clinical data.
METHODS
This study gained ethical approval from the responsible UK Health

Research Authority (REC18/YH/0366, September 21, 2018). Since this

is a retrospective analysis of routinely collected clinical data, the
requirement for written informed consent was waived by the Institutional

Review Board. This article adheres to the Transparent Reporting of a multi-

variable prediction model for Individual Prognosis Or Diagnosis guide-

lines.11 The methods used in this study have been described in detail in

Appendix E1 (Table E1).

Predicted Outcome
The Kidney Disease Improving Global Outcomes clinical practice

guideline12 was used to define AKI. Retrospective diagnosis was given,

by dividing each serum creatinine level, measured in the ICU, by the preop-

eratively measured serum creatinine level (baseline). If the difference was

greater than or equal to 1.5 times the baseline, the patient was diagnosed to

have AKI. In addition, the timestamp when the creatinine difference

occurred was recorded as a timestamp to indicate the occurrence of AKI.

Setting and Datasets
This study was conducted at the Golden Jubilee National Hospital, a

large cardiac center in the United Kingdom that performs more than

50% of all elective cardiothoracic surgeries for the National Health Service

in Scotland.13 Data from 2 local electronic health record databases were

used: the Cardiac, Cardiology and Thoracic Health Information database,

which includes static information recorded preoperatively, and the

Centricity CIS Critical Care database, which includes dynamic laboratory

data from the ICU. Data for patients undergoing coronary artery bypass

graft (CABG), aortic valve, and combined CABG and valve surgeries be-

tween April 1, 2012, and December 31, 2018, were included for the devel-

opment phase (training and testing) of the models. The patient data

between January 1, 2019, and June 30, 2022, was used to internally validate

the models. The final number of patients included in this study was 6056

patients for development and 3572 patients for validation. The details of

how the final study population for development and validation phase of

the study was arrived at are shown in Figure 1.

Predictors
In total, 82 variables were used in the models, including 25 preopera-

tively recorded variables, including demographic variables (eg, sex and

age), information about the surgery (eg, type and urgency of the surgery),

and comorbidities relevant to cardiac surgery (eg, cardiac and renal func-

tion). From the ICU database, 13 laboratory variables and 4 medicine-

related variables were included. The full list of variables included in the

models, together with descriptive statistics can be found from Table E2.

Classification Methods and Experiments
This paper presents a logistic regression (LR) and a bootstrap aggre-

gated regression trees machine (BARTm) model predicting the onset of

AKIwithin 25 hours since ICU admission on an hourly basis, up to 24 hours

in advance. (As part of this study, other methods were also experimented

with, the details and results of which can be found from https://stax.

strath.ac.uk/concern/theses/6969z130f.) These models were developed

for hourly lead times, based on the time windows (Figure 2).

The models were developed on a complete set of training data (ie, all

records including missing values were removed). To take advantage of be-

ing able to incorporate missing values into the prediction model, 2 exper-

iments were undertaken in terms of incorporating missing values to testing

and validation sets.

Experiment 1: Testing and validating the models using complete data

(ie, removing all records that included missing values). The results of LR

and BARTm are presented.

Experiment 2: Testing and validating the models on datasets that

included some missing values. Records with >40% of missing values

were excluded from analysis, as done elsewhere.14 The rest of the missing

values were left as is. Here, the results of BARTm are presented since this

method is robust to handle missing data.15 The models were developed on
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N = 6056 patients
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N = 3572 patients

FIGURE 1. Flow chart of how final patient population was arrived.NYHA, NewYork Heart Association;MI, myocardial infarction;CABG, coronary artery

bypass grafting; BMI, body mass index; ICU, intensive care unit; AKI, acute kidney injury; COVID-19, coronavirus disease 2019.
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the training data, using 10-fold cross validation. All analyses were conduct-

ed, using R, version 4.2.2 (R Foundation for Statistical Computing).

The models were evaluated for each lead time using the area under the

receiver operating characteristic curve (AUC), sensitivity, specificity, and

positive and negative predictive values. The models’ performance mea-

sures across all lead times were compared using t tests with the significance

level set to .05. Also, calibration was assessed through plotting the pre-

dicted versus observed probabilities for AKI.

RESULTS
Patient Population and AKI

As shown in Table 1, of the 6056 patients included in the
development phase, 512 (8.45%) had AKI. Of these
Model n

Model 2

Model 1

ICU Admission −n −2 −1 0
Time of AKI

Lead
time

FIGURE 2. Visualization of how models were developed for each lead

time before the event of AKI. ICU, Intensive care unit; AKI, acute kidney

injury.
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patients, 4058 were included in the training set, where the
mean age for the training dataset population was
66.08 years, the majority being male (73.04%). The most
common procedure was CABG (57.96%). The mean hospi-
tal stay was 10.97 days, and the mean ICU stay was
38.94 hours. Overall, 49.41% of the patients had complica-
tions and 0.62% of the patients died in the hospital. The
testing set of 1998 patients did not significantly differ
from the training set population.

Of the 3572 patients included in the validation dataset,
595 (16.66%) had AKI. The patients were slightly
younger (mean age of 65.47 years), and the proportion
of male patients was significantly greater (76.99%) in
the validation dataset as compared with the training data-
set. The CABG surgery was still the most popular open-
heart surgery (57.70%). Hospital stay and ICU hours
were significantly different from the training set, with
mean ICU hours being 48.69 and total days in hospital be-
ing 12.00 days in the validation dataset. A significantly
greater proportion of patients in the validation set had
complications (62.74%) and passed away (1.93%),
compared with the training set.



TABLE 1. Descriptive statistics of demographic, surgery, and outcome variables based on training, testing (development phase), and validation

phase

Variable Levels

Development phase P value Validation phase P value

Train Test Test vs train Validation Validation vs train

Demographics

Age Mean (SD) 66.08 (10.97) 66.26 (10.81) .5392 65.47 (10.47) .0171

Sex Male 2964 (73.04) 1428 (71.47) .2092 2750 (76.99) <.0001

Female 1094 (26.96) 570 (28.53) 822 (23.01)

Smoking status Never smoked 1172 (28.88) 559 (27.98) .1058 1592 (44.57) <.0001

Ex-smoker 1253 (30.88) 676 (33.83) 1392 (38.97)

Current smoker 561 (13.82) 275 (13.76) 588 (16.46)

Unknown 1072 (26.42) 488 (24.42) 0 (0.00)

BMI 18.5-25.0 750 (18.48) 382 (19.12) .7926 673 (18.84) .5644

25.1-30.0 1607 (39.60) 777 (38.89) 1429 (40.48)

>30.0 1701 (41.92) 839 (41.99) 1470 (41.64)

Surgery

Surgical priority Elective 2573 (63.41) 1317 (65.92) .1721 1146 (32.08) <.0001

Emergency 37 (0.91) 13 (0.65) 22 (0.62)

Priority 708 (17.45) 314 (15.72) 1198 (33.54)

Urgent 740 (18.24) 354 (17.72) 1206 (33.76)

Surgical procedure CABG 2352 (57.96) 1159 (58.01) .0520 2061 (57.70) <.0001

Valve 1145 (28.22) 603 (30.18) 852 (23.85)

Valve and CABG 561 (13.82) 236 (11.81) 659 (18.45)

Outcomes

Outcome Alive 4033 (99.38) 1982 (99.20) .5108 3503 (98.07) <.0001

Dead 25 (0.62) 16 (0.80) 69 (1.93)

ICU, h Mean (SD) 38.94 (68.66) 39.40 (74.09) .8118 48.69 (104.74) <.0001

Total days in hospital Mean (SD) 10.97 (8.37) 10.49 (6.69) .0248 12.00 (14.31) <.0001

Acute kidney injury No 3712 (91.47) 1832 (91.69) .8121 2977 (83.34) <.0001

Yes 346 (8.53) 166 (8.31) 595 (16.66)

SD, Standard deviation; BMI, body mass index; CABG, coronary artery bypass grafting; ICU, intensive care unit.
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Detailed descriptive statistics of all variables and
comparison between the training, testing, and validation
datasets can be found from Table E2. Most patients in
both development and validation datasets had AKI between
20 and 25 hours since ICU admission (Figure E1), more
specifically at median hours of 16.18 (interquartile range,
24.49) in development phase data and 19.78 (interquartile
range, 23.95) in validation data. Interestingly, patients in
the validation data appeared to have the onset of AKI in
general earlier than in the development dataset. This is
because AKI was retrospectively diagnosed using serum
creatinine measurements and, as shown in Table 2,
creatinine measurements were taken more frequently in
validation dataset than in dataset recorded in the
development phase.

It is important to note that there appear to be significant
differences in the development and validation patient popu-
lations (Table 1 and Table E2) in terms of characteristics,
but also in terms of frequency of data collection in the
ICU (Table 2). The reasons for this are multifactorial and
hence difficult to objectively underpin. It can be speculated
that the differences could be due to the changing proced-
ures, where more straightforward patients tend to have
more minimally invasive surgeries, such as percutaneous
coronary intervention, as opposed to riskier CABG and/or
valve surgeries.16 Changes in patient population can also
occur due to policy changes in patient selection processes
but also changes in data collection.17 However, the fre-
quency of data collection could also be different simply
due to improvement and automation of the devices collect-
ing the data.18
Models Predicting Acute Kidney Injury in ICU on
Hourly Basis
Models’ discrimination. For both models, the perfor-
mance, regardless of training, testing or validation datasets,
tended to increase as the lead time got closer to 0 (Figure 3).
The reason behind this might be that with shorter lead times
more data were available for each patient, giving the algo-
rithms more information from which to construct a model
that could indicate the probability whether the patient
would have AKI. However, interestingly, at the lead times
22 and 21, the LR model had a noticeable dip in perfor-
mance. This could be due to more variation being intro-
duced to the model as more data was entered into the
system at these time windows (Figure E2).
JTCVS Open c Volume 16, Number C 543



TABLE 2. Mean and standard deviation (SD) hours of when each laboratory variable is recorded in development and validation datasets, where P

value signifies whether there is a statistically significant difference between the frequency of measurement between development phase and

validation phase

Variable

Development phase (2012-2018) Validation phase (2019-2022)

P valueMean (SD) hours Mean (SD) hours

Every 10 h

Creatinine 10.52 (11.60) 6.36 (10.16) <.0001

Urea 10.52 (11.60) 6.35 (10.15) <.0001

C-reactive protein 10.40 (11.73) 6.13 (10.13) <.0001

Every 1-2 h

Arterial base excess 1.45 (1.21) 1.08 (1.27) <.0001

Arterial hematocrit 1.51 (1.30) 1.08 (1.26) <.0001

Bicarbonate 1.45 (1.22) 1.08 (1.31) <.0001

Hemoglobin 1.48 (1.25) 1.08 (1.26) <.0001

Hydrogen ion 1.44 (1.19) 1.08 (1.26) <.0001

Lactate 2.04 (1.35) 1.09 (1.28) <.0001

Potassium 1.45 (1.20) 1.08 (1.26) <.0001

Sodium 1.45 (1.20) 1.08 (1.26) <.0001

Depending on patient

Urine output 0.64 (0.57) 0.73 (0.60) <.0001

Daily fluid balance 7.76 (10.98) 6.98 (10.57) <.0001

SD, Standard deviation.
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The BARTm model using complete training data and
complete testing data (Experiment 1) achieved the greatest
mean AUC of 0.850 and the greatest mean sensitivity of
0.821 (Table 3) (mean variable importance reported in
Table E3). Logistic regression from Experiment 1 had the
greatest mean specificity of 0.824 (model coefficients re-
ported in Tables E4 and E5). In terms of negative predictive
value, BARTm developed with complete training data and
tested with missing values (Experiment 2) achieved a
1.00
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FIGURE 3. Area under the receiver operating characteristic curve (AUC) for

datasets. AKI, Acute kidney injury; BARTm, bootstrap aggregated regression tr
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greater negative predictive value of 0.800 than LR. For
both models in both experiments, the positive predictive
values were very low due to low prevalence of AKI in the
patient population. In fact, based on the mean AUC,
BARTm had a significantly greater performance than LR,
with the mean AUC of 0.923 for training, AUC of 0.850
for testing and 0.844 for validation data.

BARTm performed comparably well, when applied to
testing and validation datasets that included missing values,
1.00
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TABLE 3. Mean and standard deviation (SD) of each performance measure for training, testing, and validation data for both BARTm and LR

models

Performance measure Data BARTm (mean, SD) LR (mean, SD) P value (BARTm vs LR)

AUC Training 0.923 (0.011) 0.872 (0.093) .0142

Testing – complete 0.850 (0.026) 0.802 (0.100) .0324

Testing – NA 0.837 (0.018)

Validation – complete 0.844 (0.024) 0.786 (0.083) .0026

Validation – NA 0.838 (0.020)

Sensitivity Training 0.875 (0.042) 0.760 (0.189) .0075

Testing – complete 0.821 (0.053) 0.668 (0.216) .0024

Testing – NA 0.811 (0.050)

Validation – complete 0.789 (0.045) 0.667 (0.196) .0063

Validation – NA 0.767 (0.048)

Specificity Training 0.818 (0.042) 0.844 (0.050) .0523

Testing – complete 0.741 (0.057) 0.824 (0.080) .0002

Testing – NA 0.716 (0.058)

Validation – complete 0.806 (0.062) 0.817 (0.073) .5770

Validation – NA 0.774 (0.037)

PPV Training 0.021 (0.028) 0.022 (0.012) .8383

Testing – complete 0.021 (0.006) 0.038 (0.037) .0339

Testing – NA 0.021 (0.005)

Validation – complete 0.019 (0.004) 0.019 (0.007) .6671

Validation – NA 0.025 (0.034)

NPV Training 0.700 (0.044) 0.692 (0.044) .5438

Testing – complete 0.775 (0.054) 0.742 (0.076) .0860

Testing – NA 0.807 (0.036)

Validation – complete 0.758 (0.055) 0.835 (0.044) <.0001

Validation – NA 0.823 (0.030)

Here, “NA” denotes that missing values were included in the dataset, as was done in Experiment 2. BARTm, Bootstrap aggregated regression trees machine; SD, standard de-

viation; LR, logistic regression; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.

Lapp et al Adult: Perioperative Management
with mean AUC being 0.837 and 0.838 for testing and vali-
dation datasets, respectively. This result is very promising,
because missing data in routinely collected clinical data are
common19 and being able to apply the model on patients
whose data is not complete can be extremely helpful to pre-
dict AKI in practice.

There is a noticeable variation in sensitivity and speci-
ficity (Figure 4) from one lead time to another, especially
for logistic regression between lead times of �18 and
�22, again likely due to introduction of more variation in
laboratory values at these lead times. The exact perfor-
mance measures for each lead time for each model and
experiment can be found from Table E6.
Calibration of the models. Unsurprisingly, models were
more confident at their predictions at lead times, which
were closer to the onset of AKI (ie, at 1 hour and 4 hours
in advance) than when the prediction was made earlier
(Figures E3 and E4). Furthermore, in all experiments,
both models were more confident at predicting patients
to not have AKI (ie, when the probability of AKI is
low), rather than at predicting patients to have AKI.
This is especially evident when looking at the BARTm
model predicting AKI 24 hours in advance. The models
tend to slightly overestimate the risk of AKI if the actual
probability is low, and underestimate if the actual prob-
ability is high. The mean predicted probabilities and
actual proportion of patients with AKI are shown for
each model at each lead time for each experiment in
Table E7.

DISCUSSION
Summary of Results and Comparison with Existing
Models
This study developed and validated a digital biomarker that

predicts AKI in ICU following cardiac surgery on an hourly
basis (Figure 5). The best-performing model, BARTm
achieved high overall performance on testing data (mean
AUC ¼ 0.850, sensitivity ¼ 0.821 and specificity ¼ 0.741)
and validation data (mean AUC ¼ 0.844,
sensitivity ¼ 0.789, and specificity ¼ 0.806). The model
also predicted AKI when data included missing values,
achieving mean AUC of 0.837 for testing data and 0.838
for validation data. Even thoughAKI is a persistent andwide-
spread problem in cardiac surgery, only 2 dynamic prediction
models for AKI have been developed to date.20,21

Meyer and colleagues20 predicting renal failure achieved
greater performance (AUC of 0.96, sensitivity of 0.94 and
specificity of 0.86), whereas the BARTm model
JTCVS Open c Volume 16, Number C 545



1.00

0.75

0.50

0.25

0.00

S
en

si
ti

vi
ty

1.00

0.75

0.50

0.25

0.00

S
p

ec
if

ic
it

y

1.00

0.75

0.50

0.25

0.00

S
p

ec
if

ic
it

y

1.00

0.75

0.50

0.25

0.00

S
en

si
ti

vi
ty

−25 −23 −21 −19 −17 −15 −13 −11 −9 −7 −5 −3 −1
Lead time before AKI

−25 −23 −21 −19 −17 −15 −13 −11 −9 −7 −5 −3 −1
Lead time before AKI

Test Train Validation

−25 −23 −21 −19 −17 −15 −13 −11 −9 −7 −5 −3 −1
Lead time before AKI

−25 −23 −21 −19 −17 −15 −13 −11 −9 −7 −5 −3 −1
Lead time before AKI

Test Train Validation

Logistic Regression

Test Test - NA
Validation Validation - NA

Train

Test Test - NA
Validation Validation - NA

Train

BARTm

FIGURE 4. Sensitivity and specificity for both models for each lead time, applied to training, testing and validation datasets. AKI, Acute kidney injury;

BARTm, bootstrap aggregated regression trees machine.

Adult: Perioperative Management Lapp et al
outperformed Ryan and colleagues’s21 model (AUC¼ 0.82)
when predicting any stage of AKI within 48 hours since ICU
admission.

Both Meyer and colleagues’20 and Ryan and col-
leagues’21 models have some limitations, such as potential
overestimation of predicted outcome due to balancing
methods,22 which could lead to poor calibration.23 Neither
of the studies report their models’ calibration, making it
difficult to compare these models’ applicability with the
model developed in this study in clinical practice.

When we compared the digital biomarker developed as
part of this study with the widely used NC urine biomarker
test, BARTm noticeably achieved a better AUC,
sensitivity, and specificity than the NC (AUC ¼ 0.633,
sensitivity ¼ 0.56, and specificity ¼ 0.64), achieved by
the development study.6 Although the NC has shown to
have a great performance when applied to patients who
undergo cardiac surgery (AUC ¼ 0.84,
sensitivity ¼ 0.92, and specificity ¼ 0.81),24 the perfor-
mance of the NC has not been consistent, only achieving
an AUC of 0.60 in a recent study investigating off-pump
CABG patients.25 It is important to note that due to the
546 JTCVS Open c December 2023
nature of the cost of testing molecular biomarkers, these
studies validating NC are very small, including only 50
and 90 patients, respectively.

Strengths and Limitations
Although the Kidney Disease Improving Global Out-

comes criteria are currently the most objective and accurate
way to diagnose AKI,2 they rely on serum creatinine labo-
ratory results. Since creatinine was measured more
frequently in validation phase than in development phase
(Table 2), the hourly prediction based on more frequent
creatinine measurements could improve diagnosis reli-
ability, which could be an explanation for why the models
still performed well in the validation datasets, regardless
of the validation and the development phase data being
significantly different based on the frequency of measure-
ments and also values. Since this study is a single-center
study, it is unclear whether creatinine is measured more
frequently in the later years as an international standard,
or whether this change took place simply at the study insti-
tution. Therefore, it is unclear whether the models could
perform well in validation data where the creatinine
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FIGURE 5. The process of how the digital biomarkers were developed to predict acute kidney injury on an hourly basis. BARTm, Bootstrap aggregated

regression trees machine; AUC, area under the receiver operating characteristic curve.
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measurements are either the same as in the development
phase or even less frequent. To answer this question, an
external validation study is needed.
Due to the missing values of hemoglobin in earlier
years in the Cardiac, Cardiology and Thoracic Health In-
formation database, preoperatively measured hemoglobin
JTCVS Open c Volume 16, Number C 547
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variable was excluded from the analysis. As hemoglobin
has been shown to be associated with kidney function,
the exclusion of this variable can be perceived as a limita-
tion of this study. However, as the models presented in this
study integrate the latest laboratory information available
on an hourly basis, the significance of the most recent he-
moglobin level, documented within the ICU, outweighs
the importance of the hemoglobin level recorded during
the pre-operative phase at the clinic. In the ICU, hemoglo-
bin was recorded every 1 to 1.5 hours (Table 2) for 99.9%
to 100% of patients (Table E2), making it a more reliable
measure than preoperative hemoglobin. Although we have
made use of BARTm’s capability to consider incomplete
data for ICU laboratory measurements, we have opted
not to apply data imputation methods to address missing
values in the preoperative hemoglobin measurements.
This decision is based on the availability of more depend-
able and current hemoglobin data within the ICU, and our
desire to prevent potential biases that imputation methods
might introduce.26

Missing data in electronic health records are very common
and are a barrier to development of accurate and usable clin-
ical prediction models.19 The competitive performance by
BARTm with missing values on testing (mean
AUC ¼ 0.830) and validation data (mean AUC ¼ 0.838) is
promising. Being able to usemethods that canmake a predic-
tion, evenwith the presence ofmissing data, can be extremely
beneficial as a clinician can still be informed whether a pa-
tient is likely to develop AKI due to the well-performing
model that is robust to missing values. In the future, the
models should also be tested on datasets including larger pro-
portions of missing data as entries with more than 40% of
missing values were removed from analysis.

The reduced interpretability of BARTm compared with
logistic regression poses a challenge due to the lack of
model coefficients. However, since ICU is a complex,
data-rich environment, to put either of these models into
use in practice, clinical software needs to be developed to
apply the models to patient data.

Finally, using a local dataset may limit generalizability
but ensures greater relevance of the models within this spe-
cific setting. Local care processes can vary between institu-
tions, and policies influencing treatment and access to care
can differ across countries, and therefore, external valida-
tion and recalibration are needed to support applicability
to other populations.27

Clinical Implications and Future Work
The hourly ICU digital biomarker has the potential to be

developed into a clinical system that is integrated with
electronic health records. Such a system could aid clini-
cians in risk assessment, treatment planning, and resource
allocation to predict AKI hours in advance. The work pre-
sented in this article is the first step to developing the
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clinical decision support model that is integrated with
the electronic health records in the ICU, as is done with
the current commonly used risk prediction models. Unlike
the Sequential Organ Failure Assessment and Acute Phys-
iology, Age and Chronic Health Evaluation scores,28 the
digital biomarker calculates the risk every hour, allowing
clinicians to find out which patients are at risk of devel-
oping AKI in a timely manner, well in advance to avoid
late diagnosis, and consequently worsened health out-
comes for patients.

As AKI is still vastly underdiagnosed,9 there is a need
for an accurate, usable, and timely way to diagnose
AKI, for which the BARTm is a great candidate. The
high sensitivity and specificity show the model’s ability
to recognize patients with and without AKI comparatively
well. The negative predictive value staying above 0.700
for development, testing, and validation sets shows the
model classifies patients to be without AKI with a 70%
probability. Although there is room for improvement
regarding false positives and false negatives, it is unknown
whether this model performs better than other models in
that regard as the other similar studies have not reported
this information.20,21

To improve the predictive ability of the models, in the
future, the inclusion of vital signs, molecular serum, and
plasma data could be beneficial.2 Furthermore, to improve
the usability and applicability of the models, other compli-
cations that are known to be associated with AKI, such as
delirium and sepsis, could be added as additional out-
comes to be predicted. Although the data from the valida-
tion phase were significantly different from the
development phase, interestingly, the models performed
well at predicting AKI on the validation set, based on
discrimination, and calibration. As mentioned earlier,
although the reasons for the development and validation
datasets being different are multifactorial and therefore
difficult to objectively underpin, the strong performance
of the models in the validation set shows the robustness
of the models to the possible changes in patient popula-
tion, health policies, and changes in medical devices,
ICU protocols, patient pathways, and even to possible ef-
fects on changes in patient selection due to the coronavirus
disease 2019 pandemic. However, to confirm the robust-
ness of the model and to support its generalizability before
implementation into clinical practice,27 an external valida-
tion study, an updating strategy, and a clinical support sys-
tem integrated with electronic health records are needed
for widespread adoption.

In summary, this study developed a digital biomarker
for hourly prediction of AKI in the ICU after cardiac sur-
gery, demonstrating high performance. These digital bio-
markers could help clinicians optimize treatments for
patients who are at risk of developing AKI hours in
advance.
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APPENDIX E1: MODEL DEVELOPMENT
METHODS

This study gained ethical approval from the responsible
UK Health Research Authority (REC18/YH/0366,
September 21, 2018). Since this was a retrospective analysis
of routinely collected clinical data, the requirement for writ-
ten informed consent was waived by the institutional review
board. The article adheres to the Transparent Reporting of a
multivariable prediction model for Individual Prognosis or
Diagnosis guidelines.E1

In this paper, 2 models were developed to predict the
onset of acute kidney injury (AKI) within 25 hours since
admission to the intensive care unit (ICU) on an hourly ba-
sis, up to 24 hours in advance, will be presented. These
models are logistic regression (LR) and bootstrap aggre-
gated regression trees machine (BARTm). (As part of this
study, other methods were also experimented with, the de-
tails and results of which can be found from https://stax.
strath.ac.uk/concern/theses/6969z130f.)

Predicted Outcome
The Kidney Disease” Improving Global Outcomes clin-

ical practice guidelineE2 was used to define AKI. Retrospec-
tive diagnosis was given, by dividing each serum creatinine
level, measured in the ICU, by the preoperatively measured
serum creatinine level (baseline), as done by Birnie and col-
leagues.E3 Ff the difference was greater than or equal to 1.5
times the baseline, the patient was diagnosed to have AKI.
In addition, the timestamp when the creatinine difference
occurred was recorded as a timestamp to indicate the occur-
rence of AKI. The urine output was not used to diagnose
AKI, as per the Kidney Disease: Improving Global Out-
comes definition, because the urine output has been shown
to be overly sensitive and nonspecific for the cardiac sur-
gery population.E4

Setting and Datasets
This study was conducted at the Golden Jubilee National

Hospital, a large cardiac center in the United Kingdom that
performs more than 50% of all elective cardiothoracic sur-
geries for the National Health Service in Scotland.E5 Data
from 2 local electronic health record databases were used:
the Cardiac, Cardiology and Thoracic Health Information
(CaTHI) database, which includes static information re-
corded preoperatively, and the Centricity CIS Critical Care
database, which includes dynamic laboratory data from
the ICU. Data for patients undergoing coronary artery
bypass graft, aortic valve, and combined coronary artery
bypass graft and valve surgeries between April 1, 2012,
and December 31, 2018, were included for the development
phase (training and testing) of the models. The patient data
between January 1, 2019, and June 30, 2022, were used to
internally validate the models. Only the records that
occurred in the dataset for the patient for the first time

(unique entries) were included in the analysis. Furthermore,
patients who experienced AKI within the first hour since
ICU admission were excluded due to no laboratory data
available for these patients to allow for prediction of AKI.
Finally, of patients with AKI, only those who had AKI
within the first 25 hourswere observed, as themajority of pa-
tients were diagnosed with AKI within that time frame (as
shown in the Results). Thus, the final number of patients
included in this study was 6056 patients for development
and 3572 patients for validation. The derivation of training
and testing datasets and how the final number of patients
was arrived at is further described in “MissingData” section.

Predictors
In total, 82 variables were used in the models, including

25 preoperatively recorded variables, including demo-
graphic variables (eg, sex and age), information about the
surgery (eg, type and urgency of the surgery), and comor-
bidities, relevant to cardiac surgery (eg, cardiac, neurologic,
renal, and respiratory function). From the ICU database, 13
laboratory variables and 4 medicine-related variables were
included. The full list of variables included in the models,
together with descriptive statistics can be found from
Table E1.

The preoperative variables were measured only once at
the preoperative assessment clinic, and were therefore
treated as static variables in the models. The laboratory vari-
ables were measured repeatedly, allowing for the develop-
ment of an hourly prediction model.

As shown in Table 1, each laboratory variable was
measured at different times, depending on patient’s needs.
Furthermore, there is a significant difference between the
frequencies of how often the laboratory variables are
measured, when comparing the development data and vali-
dation data. It is especially noticeable that in the (more
recent) validation dataset, measures of creatinine, urea
and C-reactive protein are made about every 6 hours,
whereas in the development dataset, these variables are
measured every 10 hours.

Missing Data
For preoperative data from the CaTHI database, patients

who had not been discharged from the hospital by the time
of data extraction were excluded from the analysis due to
not having their final outcome recorded (ie, deceased or dis-
charged). Patients with “salvage” priority, and “unknown”
New York Heart Association grade, previous myocardial
infarction, and hypertension history were excluded due to
very small group of patients not having these variables re-
corded for them. The cases with many “unknown” entries
for categorical variables were included in the analysis and
left coded as “unknown.”

Also, because some of the validation data was
recorded during the start of the coronavirus disease 2019
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(COVID-19) pandemic, due to the lack of understanding
regarding the specific effects of past COVID-19 infection
on surgical outcomes, patients who were indicated to have
past COVID-19 or COVID-19 infection at the time of
ICU in the clinicians’ notes were excluded from the analysis
(1122 patients). For numerical variables, patients with clin-
ically infeasible values were excluded. If a numerical vari-
able was recorded for less than 80%E6 of the patients, the
variable was excluded from analysis. The only variable
excluded for that reason was preoperative hemoglobin
level.

Although the CaTHI database is an audit database, and
therefore should include fewer “unknowns,” the only vari-
ables that are mandatory in the CaTHI database are those
needed to calculate the logistic EuroSCORE.E7 Therefore,
until a study was conducted in 2016, using this database,
the information regarding New York Heart Association
grade, previous myocardial infarction, and hypertension
history and hemoglobin was not always recorded. Further-
more, as this information is usually recorded at the preoper-
ative assessment clinic, medical history for patients with
emergency surgery might not always be readily available.

The ICU data from Centricity CIS database was checked
for obvious incorrect values, in case of which the values
were marked as NA. If a patient had a timestamp recorded
for a missing value of a variable, the previously recorded
value was carried forward to the next timestamp. The
only variable recorded for all ICU patients was hemoglobin,
with 100% completeness. Creatinine was recorded for
almost all patients, with 98.32% completeness. Instead of
using medicine doses, since these were recorded for less
than 41.00% of the patients, medicine variables were re-
corded as binary categorical variables based on whether
the patient was given medication (yes vs no).

Classification Methods and Experiments
In the development phase of the study, other classification

methods were also experimented with (see LappE8); howev-
er, LR and BARTm were chosen for the validation of the
study due to logistic regression’s high interpretability and
competitiveness with other classification methodsE9 and
BARTm’s ability to incorporate missing values into its
prediction.E10

Although missing data are a common problem in elec-
tronic health records,E11 incorporating classification
methods that can handle missing data without imputation
methods which could lead to biasE12 is rare.E13 BARTm is
a method that can handle missing values by incorporating
built-in estimates of uncertainty in the form of credible in-
tervals as well as previous information on covariates. This is
done by sendingmissing data towhichever of the 2 daughter
nodes increases the overall model likelihood.E14 This
means, if we have 2 options (eg, left and right), then
BARTm offers options for both of these paths if a record

has a missing value. Hence, there is a consideration that
the direction of missingness is equally likely to be left or
right, conditional on the splitting attribute and value.E10 It
has been previously shown that BARTm is comparable
with the performance of random forest with missForest
imputation.E15

The models were developed on a complete set of training
data (ie, all records including missing values were
removed). To take advantage of being able to incorporate
missing values into the prediction model, 2 experiments
were undertaken in terms of incorporating missing values
to testing and validation sets.
Experiment 1: Testing and validating the models using

complete data (ie, removing all records that includedmissing
values). The results of LR and BARTm are presented.
Experiment 2: Testing and validating the models on data-

sets that included some missing values. Records with
>40% of missing values were excluded from analysis, as
done elsewhere.E16 The rest of the missing values were
left as is. Here, the results of BARTm are presented since
this method is robust to handle missing data.E10

For logistic regression, the “caret” R package version
6.0.93 with method “glm” was used.E17 For BARTm, the
“bartMachine” package,E18 version 1.3.3.1, in R was
used, together with the default of including missing values
as the model can accommodate these. The models were
developed on the training data, using 10-fold cross valida-
tion (The general code for developing the classification
models can be found from https://doi.org/10.15129/
1ab360f7–0779–4cf3–8a9a–dae621892a51), which is the
recommended approach to developing a prediction mod-
el.E1 All analysis was conducted, using R, version 4.2.2.

Data Preparation and Time Windows
The models were developed to predict AKI on an hourly

basis. To facilitate this, rolling time windows were created
to first indicate the onset of the predicted outcome. Second,
the time windows were used to develop prediction models
for each time window before the event. In this study, the
hourly prediction was undertaken for AKI within 25 hours
of ICU stay. This timeframe was chosen because the major-
ity of patients experienced the onset of AKI between 20 and
30 hours since ICU admission, as shown in the section “Pa-
tient Population and Acute Kidney Injury.”
The models predicting AKI were built for hourly lead

times, based on the timewindows. The lead times were cho-
sen to be every hour from 1 to 24 hours ahead of the onset of
AKI occurring within 25 hours since ICU admission. For
example, if predicting AKI 1 hour in advance, the data
were collected from the admission to ICU until 1 hour
before the onset of AKI. In general terms, the model pre-
dicting AKI at lead time n used all data that were collected
until n hours before the outcome, which is also illustrated in
Figure 5 in the main article.
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To simplify the laboratory data used in models, for each
laboratory variable for the minimum, maximum, and first
and last measurement for each lead time were used, helping
to create a more consistent set of input data for the models,
which might otherwise have had to deal with variations in
the number of independent variables at each stage (shown
in Figure E1).E19,E20 This means that if the predicted
outcome happened in time window ¼ 6, for each variable
first, last, min, and max measurements that occurred in
time windows 0 to 5 were calculated. Regardless of the
number of hours after admission that AKI occurred, there
would always be 4 values (first, last, min and max) for
each dynamic predictor variable.

The prediction models had a binary outcome (AKI¼ yes/
no), but only patients with AKI¼ yes had a timestamp asso-
ciated with the outcome recorded. Hence, an arbitrary time
as the end point was chosen for patients with AKI ¼ no.
Most patients had AKI between 20 and 25 hours since
ICU admission and so an arbitrary end point of 25 hours
for AKI prediction was chosen.

Finally, it is important to note that patients who had the
predicted outcome recorded within the first hour since
ICU admission were removed from analysis, as done in
other predictive modeling studies.E20 This is because the
hourly prediction model is intended to be used in the
ICU, and hence it is impossible to predict an outcome that
has already happened. Hence, 545 patients who had AKI
on admission to the ICU were excluded from the analysis
in the development dataset and 309 patients from validation
dataset.

For both logistic regression and BARTmmodels, all avail-
able variables were included, and the time points were
treated as independent, ie, the predictions carried out by
the models were not dependent on the previous time points.

Training, Testing, and Validation Data
To develop the models, the datasets for each lead time

were divided into a training set (2/3 of data) and testing
set (1/3 of data). For every experiment, the models devel-
oped using the training data that did not contain anymissing
values. As explained previously, the models were tested and
validated on both complete data and data with missing
values.

Due to AKI occurring at different times for patients in the
ICU, the number of patients in each dataset—and conse-
quently the number of data points used in the creation of
the model—in each lead time is different (shown in Table
E1). Since the same training data was used for both exper-
iments, the mean number of patients in training data was
2464 (standard deviation [SD] ¼ 25.75). The mean number
of patients in testing data was 1212 (SD ¼ 12.96) and 1740
(SD¼ 9.75) for Experiments 1 and 2, respectively. For vali-
dation data, the mean number of patients was 1327
(SD ¼ 21.78) for Experiment 1 and 2341 (25.18) for

Experiment 2. As explained earlier, the training data was
complete for both experiments, and the testing and valida-
tion datasets were complete for Experiment 1. For Experi-
ment 2 (with the missing data) the mean completeness
across all lead times was 96.96% (SD ¼ 0.04) for testing
data and 96.61% (SD ¼ 0.06) for validation data.

Performance Measures
The models’ performance measures were calculated

for training, testing and validation sets for each experi-
ment for each lead time. The models were evaluated
based on discrimination, ie, the area under the receiver
operating characteristic curve, sensitivity, specificity,
and positive predictive value and negative predictive
value. The performance metrics were calculated, using
the optimal cut-off points, where sensitivity and speci-
ficity were maximized. In this article, mean and SD for
each performance measure across all lead times are pre-
sented. The models’ performance measures across all
lead times were compared using t tests with the signifi-
cance level set to .05.

To understand the applicability of the models in this spe-
cific patient population, the models’ calibration was as-
sessed, using calibration plots and predicted versus
observed probabilities for AKI. As the models developed
in this paper were only validated internally, in case of
poor calibration, the models were not recalibrated as the
average of predicted risks would match the event rate.E21
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FIGURE E4. Calibration for logistic regression (LR) and bootstrap aggregated regression trees machine (BARTm) models, when applied to complete vali-

dation sets and validation sets with missing values (validation–NA) at 1, 4, 12, and 24 hours before the onset of AKI. AKI, Acute kidney injury.
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TABLE E1. Number of patients in training, testing, and validation datasets, with proportion of patients with AKI and missingness of the datasets

Lead time

Training data (100% complete) Testing data Validation data

Number

of patients AKI (%)

Number

of patients Missingness (%) AKI (%)

Number

of patients Missingness (%)

AKI

(%)

Experiment 1

�24 2417 6.33 1189 0.00 6.81 1276 0.00 3.53

�23 2427 6.88 1195 0.00 6.61 1285 0.00 3.81

�22 2431 7.03 1197 0.00 6.77 1297 0.00 3.85

�21 2433 6.86 1197 0.00 7.27 1306 0.00 3.98

�20 2437 7.18 1199 0.00 7.01 1309 0.00 4.05

�19 2438 6.97 1200 0.00 7.58 1314 0.00 4.11

�18 2439 7.18 1201 0.00 7.33 1315 0.00 4.18

�17 2443 7.29 1202 0.00 7.49 1316 0.00 4.25

�16 2445 7.69 1203 0.00 6.90 1321 0.00 4.54

�15 2450 7.55 1206 0.00 7.79 1323 0.00 4.69

�14 2456 7.9 1209 0.00 7.78 1324 0.00 4.76

�13 2462 7.88 1212 0.00 8.33 1328 0.00 5.04

�12 2468 8.14 1215 0.00 8.31 1330 0.00 5.11

�11 2475 8.36 1218 0.00 8.54 1333 0.00 5.18

�10 2482 8.78 1221 0.00 8.44 1337 0.00 5.38

�9 2485 9.01 1223 0.00 8.18 1341 0.00 5.52

�8 2488 8.68 1224 0.00 9.15 1344 0.00 5.51

�7 2492 8.87 1226 0.00 9.05 1349 0.00 5.63

�6 2492 8.87 1226 0.00 9.05 1350 0.00 5.70

�5 2492 8.79 1227 0.00 9.29 1350 0.00 5.70

�4 2492 8.79 1227 0.00 9.29 1350 0.00 5.70

�3 2492 8.79 1227 0.00 9.29 1350 0.00 5.70

�2 2493 8.78 1227 0.00 9.37 1351 0.00 5.77

�1 2495 9.26 1228 0.00 8.39 1351 0.00 5.77

Mean (SD) 2464 (25.75) 7.99 (0.85) 1212 (2.69) 8.08 (0.91) 1327 (21.78) 4.89 (0.76)

Experiment 2

�24 2417 6.33 1722 3.12 6.39 2299 3.58 4.22

�23 2427 6.88 1727 3.10 6.43 2307 3.51 4.55

�22 2431 7.03 1728 3.09 6.48 2309 3.45 4.63

�21 2433 6.86 1729 3.09 6.88 2313 3.41 4.80

�20 2437 7.18 1729 3.07 6.65 2315 3.40 4.88

�19 2438 6.97 1729 3.07 7.00 2316 3.39 4.92

�18 2439 7.18 1732 3.07 6.93 2320 3.39 5.09

�17 2443 7.29 1734 3.07 7.09 2322 3.39 5.17

�16 2445 7.69 1735 3.07 6.69 2328 3.39 5.41

�15 2450 7.55 1738 3.06 7.31 2331 3.39 5.53

�14 2456 7.9 1741 3.06 7.29 2332 3.38 5.57

�13 2462 7.88 1742 3.05 7.69 2340 3.38 5.90

�12 2468 8.14 1743 3.04 7.69 2345 3.39 6.10

�11 2475 8.36 1745 3.03 7.85 2349 3.38 6.26

�10 2482 8.78 1749 3.03 7.83 2356 3.37 6.54

�9 2485 9.01 1749 3.02 7.66 2362 3.37 6.77

�8 2488 8.68 1750 3.02 8.34 2365 3.36 6.89

�7 2492 8.87 1750 3.01 8.29 2367 3.34 6.97

�6 2492 8.87 1750 3.00 8.29 2369 3.33 7.05

�5 2492 8.79 1751 3.00 8.45 2370 3.34 7.09

�4 2492 8.79 1751 3.00 8.45 2370 3.34 7.09

�3 2492 8.79 1751 3.00 8.45 2371 3.34 7.13

�2 2493 8.78 1751 2.99 8.51 2373 3.34 7.21

�1 2495 9.26 1749 2.97 7.83 2373 3.34 7.21

Mean (SD) 2464 (25.75) 7.99 (0.85) 1740 (9.75) 3.04 (0.04) 7.52 (0.73) 2341 (25.18) 3.39 (0.06) 5.96 (1.01)

AKI, Acute kidney injury; SD, standard deviation.
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TABLE E2. Descriptive statistics of all variables included in the models, where frequencies and percentages are shown for categorical and mean

and standard deviation (SD) are shown for numerical variables

Variable Levels

Development data P value Validation data P value

Completeness

(%) Train Test

Test

vs train

Completeness

(%) Validation

Validation

vs train

Demographics

Age Mean (SD) 100.0 66.08 (10.97) 66.26 (10.81) .5392 100.0 65.47 (10.47) .0171

Sex Male 100.0 2964 (73.04) 1428 (71.47) .2092 100.0 2750 (76.99) <.0001

Female 1094 (26.96) 570 (28.53) 822 (23.01)

Smoking status Never smoked 74.2 1172 (28.88) 559 (27.98) .1058 100.0 1592 (44.57) <.0001

Ex-smoker 1253 (30.88) 676 (33.83) 1392 (38.97)

Current smoker 561 (13.82) 275 (13.76) 588 (16.46)

Unknown 1072 (26.42) 488 (24.42) 0 (0.00)

BMI 18.5-25.0 100.0 750 (18.48) 382 (19.12) .7926 100.0 673 (18.84) .5644

25.1-30.0 1607 (39.60) 777 (38.89) 1429 (40.48)

>30.0 1701 (41.92) 839 (41.99) 1470 (41.64)

Comorbidities

Logistic

EuroSCORE

Mean (SD) 100.0 4.96 (5.52) 5.02 (5.51) .7046 100.0 5.41 (7.13) .0014

Diabetes No 100.0 3051 (75.18) 1496 (74.87) .8176 100.0 2542 (71.16) .0005

Yes 1007 (24.82) 502 (25.13) 1030 (28.84)

Renal impairment Normal 76.4 1690 (41.65) 811 (40.59) .5067 100.0 2084 (58.34) <.0001

Moderate 1129 (27.82) 585 (29.28) 1261 (35.30)

Severe 268 (6.60) 142 (7.11) 227 (6.35)

Unknown 971 (23.93) 460 (23.02) 0 (0.00)

Neurologic

dysfunction

No 100.0 4013 (98.89) 1967 (98.45) .1828 100.0 3244 (90.82) <.0001

Yes 45 (1.11) 31 (1.55) 328 (9.18)

Preoperative

creatinine

Mean (SD) 100.0 89.82 (42.39) 92.25 (62.43) .0743 100.0 89.85 (34.63) .4295

Pulmonary disease No 100.0 3380 (83.29) 1691 (84.63) .1957 100.0 3003 (84.07) .6717

Yes 678 (16.71) 307 (15.37) 569 (15.93)

Cardiac health

LV function Good 100.0 3222 (79.40) 1612 (80.68) .0907 100.0 2655 (74.33) <.0001

Moderate 712 (17.55) 344 (17.22) 805 (22.54)

Poor 124 (3.06) 42 (2.10) 112 (3.14)

NYHA grade I 100.0 844 (20.80) 389 (19.47) .0805 100.0 732 (20.49) <.0001

II 2052 (50.57) 1001 (50.10) 1592 (44.57)

III 1027 (25.31) 556 (27.83) 1099 (30.77)

IV 135 (3.33) 52 (2.60) 149 (4.17)

Angina status 0 100.0 1278 (31.49) 641 (32.08) .6557 100.0 1082 (30.29) <.0001

I 546 (13.45) 279 (13.96) 698 (19.54)

II 1376 (33.91) 688 (34.43) 1059 (29.65)

III 645 (15.89) 298 (14.91) 576 (16.13)

IV 213 (5.25) 92 (4.60) 157 (4.40)

Rhythm Normal 94.2 3371 (83.07) 1657 (82.93) .1860 99.4 3161 (88.49) <.0001

Abnormal 438 (10.79) 237 (11.86) 388 (10.86)

Unknown 249 (6.14) 104 (5.21) 23 (0.64)

Previous MI No 100.0 2548 (62.79) 1242 (62.16) .6555 100.0 2105 (58.93) .0015

Yes 1510 (37.21) 756 (37.84) 1467 (41.07)

LMS disease No 61.1 1879 (46.30) 972 (48.65) .1250 93.8 2750 (76.99) <.0001

Yes 565 (13.92) 285 (14.26) 600 (16.80)

Unknown 1614 (39.77) 741 (37.09) 222 (6.22)

Hypertension

history

No 100.0 1122 (27.65) 567 (28.38) .5724 100.0 1021 (28.58) .3531

Yes 2936 (72.35) 1431 (71.62) 2551 (71.42)

(Continued)

564 JTCVS Open c December 2023

Adult: Perioperative Management Lapp et al



TABLE E2. Continued

Variable Levels

Development data P value Validation data P value

Completeness

(%) Train Test

Test

vs train

Completeness

(%) Validation

Validation

vs train

Congestive

cardiac failure

No 100.0 3685 (90.81) 1809 (90.54) .7714 100.0 2989 (83.68) <.0001

Yes 373 (9.19) 189 (9.46) 583 (16.32)

Previous operations No 100.0 3969 (97.81) 1948 (97.50) .5064 100.0 3433 (96.11) <.0001

Yes 89 (2.19) 50 (2.50) 139 (3.89)

Previous PCI No 100.0 3485 (85.88) 1753 (87.74) .0513 100.0 2940 (82.31) <.0001

Yes 573 (14.12) 245 (12.26) 632 (17.69)

Active endocarditis No 100.0 4019 (99.04) 1979 (99.05) 1.0000 100.0 3501 (98.01) .0001

Yes 39 (0.96) 19 (0.95) 71 (1.99)

Surgery

Surgical priority Elective 100.0 2573 (63.41) 1317 (65.92) .1721 100.0 1146 (32.08) <.0001

Emergency 37 (0.91) 13 (0.65) 22 (0.62)

Priority 708 (17.45) 314 (15.72) 1198 (33.54)

Urgent 740 (18.24) 354 (17.72) 1206 (33.76)

Surgical procedure CABG 100.0 2352 (57.96) 1159 (58.01) .0520 100.0 2061 (57.70) <.0001

Valve 1145 (28.22) 603 (30.18) 852 (23.85)

Valve and CABG 561 (13.82) 236 (11.81) 659 (18.45)

Extracardiac

arteriopathy

No 100.0 3615 (89.08) 1757 (87.94) .2003 100.0 3215 (90.01) .0128

Yes 443 (10.92) 241 (12.06) 357 (9.99)

Critical

preoperative state

No 100.0 3994 (98.42) 1966 (98.40) 1.0000 100.0 3469 (97.12) .0001

Yes 64 (1.58) 32 (1.60) 103 (2.88)

Outcomes

Outcome Alive 100.0 4033 (99.38) 1982 (99.20) .5108 100.0 3503 (98.07) <.0001

Dead 25 (0.62) 16 (0.80) 69 (1.93)

ICU hours Mean (SD) 100.0 38.94 (68.66) 39.40 (74.09) .8118 100.0 48.69 (104.74) <.0001

Total days in hospital Mean (SD) 100.0 10.97 (8.37) 10.49 (6.69) .0248 100.0 12.00 (14.31) <.0001

Complications No 100.0 2053 (50.59) 1067 (53.40) .0422 100.0 1331 (37.26) <.0001

Yes 2005 (49.41) 931 (46.60) 2241 (62.74)

Severe complications No 100.0 3887 (95.79) 1927 (96.45) .2445 100.0 3342 (93.56) <.0001

Yes 171 (4.21) 71 (3.55) 230 (6.44)

Acute kidney injury No 100.0 3712 (91.47) 1832 (91.69) .8121 100.0 2977 (83.34) <.0001

Yes 346 (8.53) 166 (8.31) 595 (16.66)

Laboratory variables

Arterial base excess Mean (SD) 97.3 �1.22 (2.32) �1.26 (2.39) .0824 99.3 �1.45 (2.95) <.0001

Arterial hematocrit Mean (SD) 97.2 29.35 (5.35) 29.33 (5.32) .5922 99.3 30.78 (5.73) <.0001

HCO3 Mean (SD) 97.2 23.45 (2.30) 23.43 (2.29) .4495 99.2 23.74 (2.63) <.0001

Creatinine Mean (SD) 97.9 97.70 (51.75) 95.89 (42.59) .0649 98.8 105.46 (57.06) <.0001

C-reactive protein Mean (SD) 80.4 113.22 (77.89) 115.39 (78.48) .2519 92.7 113.13 (82.37) .9451

Daily fluid balance Mean (SD) 81.7 807.13 (860.04) 763.78 (861.34) .0184 91.9 913.38 (1090.36) <.0001

Hemoglobin Mean (SD) 100.0 99.68 (18.01) 99.51 (18.63) .1740 99.9 100.46 (31.35) <.0001

Hydrogen ion Mean (SD) 94.7 40.35 (5.74) 40.37 (6.62) .7559 98.6 42.93 (17.76) <.0001

Lactate Mean (SD) 94.5 1.81 (1.01) 1.82 (1.08) .3291 97.6 2.01 (1.95) <.0001

Potassium Mean (SD) 97.3 4.67 (0.57) 4.67 (0.58) .5302 99.1 4.64 (0.67) <.0001

Sodium Mean (SD) 97.3 136.63 (3.09) 136.67 (3.02) .1282 99.2 140.35 (390.82) .0450

Urea Mean (SD) 81.4 6.53 (2.77) 6.44 (2.68) .1841 93.9 7.09 (3.66) <.0001

Urine output Mean (SD) 88.0 94.47 (80.25) 93.23 (73.08) .1489 98.4 112.83 (1036.90) .0053

Medicines

Vasopressin given No 100.0 1959 (98.05) 3991 (98.35) .4621 100.0 3427 (95.94) <.0001

Yes 39 (1.95) 67 (1.65) 145 (4.06)

Noradrenaline given No 100.0 1228 (61.46) 2473 (60.94) .7171 100.0 1308 (36.62) <.0001

(Continued)
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TABLE E2. Continued

Variable Levels

Development data P value Validation data P value

Completeness

(%) Train Test

Test

vs train

Completeness

(%) Validation

Validation

vs train

Yes 770 (38.54) 1585 (39.06) 2264 (63.38)

Dobutamine given No 100.0 1431 (71.62) 2885 (71.09) .6919 100.0 2018 (56.49) <.0001

Yes 567 (28.38) 1173 (28.91) 1554 (43.51)

Dopamine given No 100.0 1899 (95.05) 3831 (94.41) .3294 100.0 3440 (96.30) .0001

Yes 99 (4.95) 227 (5.59) 132 (3.70)

The P values are derived, using c2 tests for categorical and Student t tests for numerical variables. BMI, Body mass index; EuroSCORE, European System for Cardiac Operative

Risk Evaluation; LV, left ventricular: NYHA, New York Heart Association; MI, myocardial infarction; LMS, left main stem; PCI, percutaneous coronary intervention; CABG,

coronary artery bypass grafting; ICU, intensive care unit; HCO3, bicarbonate.
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TABLE E3. Mean variable importance for the top 10 variables for

each lead time for the BARTm model

Variable Mean importance

Preoperative creatinine 0.0549

Creatinine 0.0296

Urine output 0.0246

Potassium 0.0243

Lactate 0.0238

Urea 0.0228

C-reactive protein 0.0212

Hydrogen ion 0.0203

Hemoglobin 0.0202

Sodium 0.0197

LMS 0.0197

Arterial base excess 0.0193

Vasopressin given 0.0193

Daily fluid balance 0.0188

Sex 0.0181

Age 0.0177

Smoking status 0.0176

Arterial hematocrit 0.0175

Dobutamine given 0.017

Noradrenaline given 0.0167

Logistic EuroSCORE 0.0159

Previous MI 0.0153

Dopamine given 0.0153

Procedure 0.0147

Bicarbonate 0.0147

Extracardiac arteriopathy 0.0137

Previous PCI 0.0132

LMS, Left main stem; EuroSCORE, European System for Cardiac Operative Risk

Evaluation; MI, myocardial infarction; PCI, percutaneous coronary intervention;

BARTm, bootstrap aggregated regression trees machine.
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TABLE E4. Model coefficients for the logistic regression models for the lead time of 1 to 12 hours before AKI

Variable 1 2 3 4 5 6 7 8 9 10 11 12

(Intercept) �3.3155�17.7871 �3.7293 2.6593 8.0087 1.8157 �4.2057 1.4899 �0.3817 6.2444 8.1845 2.1429

ABE min 0.0063 �0.0073 �0.0086 0.0225 0.0061 �0.1343 �0.2274 �0.1271 �0.1769 �0.1204 �0.1088 �0.0234

ABE max �0.0502 �0.0927 �0.1676 �0.1435 �0.2361 �0.2042 �0.2404 �0.3069 �0.2072 �0.0678 0.0646 �0.0320

ABE first �0.0904 �0.2155 �0.2909 �0.2211 �0.1323 �0.3108 �0.2389 �0.1128 �0.1417 �0.1822 0.1853 �0.4340

ABE last 0.2710 �0.4662 0.0226 0.2425 0.5614 0.1161 �0.1839 0.4286 0.1529 0.2156 �0.1548 �0.0334

AH min 0.0812 �0.0754 �0.1785 �0.1897 �0.2048 �0.1725 �0.1742 �0.0229 0.0030 �0.0403 �0.0293 �0.1048

AH max 0.0848 �0.1525 �0.1079 �0.1356 �0.1461 �0.1695 �0.1670 �0.2347 �0.2430 �0.2836 �0.1958 �0.0582

AH first �0.0241 0.1190 0.1111 0.1229 0.1371 0.1507 0.1548 0.1823 0.1854 0.1928 0.1266 0.0380

AH last �0.0436 0.0918 0.1133 0.1304 0.0447 0.1569 0.1525 0.1276 0.1516 0.1475 �0.0094 0.0940

Creatinine min �0.1107 �0.1168 �0.1994 �0.2362 �0.2314 �0.3181 �0.2166 9.1287 0.6663 75.3091 159.1650 �2.3706

Creatinine max �0.2588 �0.1410 �0.3302 �0.3498 �0.3088 �0.2848 �0.2411 9.0462 0.4662 75.1716 158.9959�12.1159

Creatinine first 0.1209 0.1338 0.2332 0.2669 0.2602 0.3223 0.2439 �9.0750 �0.6089 �75.2371�159.1060 2.4310

Creatinine last 0.3218 0.1930 0.3585 0.3826 0.3439 0.3367 0.2711 �9.0340 �0.4614 �75.1734�158.9911 12.1250

CRP min 2.2498 �4.6452 �5.0717 �5.0443 8.4744 �0.0266 �0.0033 11.2194 1.4312 2.3385 2.4364 2.0305

CRP max �1.5044�12.7405�13.8891�13.8979 �0.0118 �0.0311 �0.0282 �0.0173 �0.0268 �15.4994 �15.6951 �0.7263

CRP first �2.2390 4.6843 5.0815 5.0522 �8.4616 0.0567 0.0305 �11.2019 �1.4051 13.1606 13.2573 �1.3070

CRP last 1.4936 12.7015 13.8804 13.8913 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DFB min 0.0009 0.0001 0.0014 0.0016 0.0021 0.0011 0.0015 0.0000 �0.0001 0.0001 0.0004 0.0045

DFB max �0.0006 �0.0009 0.0000 0.0004 0.0009 0.0003 0.0008 �0.0007 �0.0005 �0.0012 �0.0004 0.0021

DFB first �0.0004 0.0001 �0.0015 �0.0017 �0.0022 �0.0012 �0.0015 �0.0001 0.0000 �0.0004 �0.0003 �0.0046

DFB last 0.0005 0.0010 0.0003 0.0000 �0.0004 0.0001 �0.0004 0.0012 0.0011 0.0018 0.0006 �0.0015

Bicarb min 0.0829 0.1087 0.1240 0.1366 0.1782 0.2363 0.3209 0.2128 0.2834 0.2341 0.1555 0.1526

Bicarb max 0.0492 0.0689 0.0908 0.0959 0.2054 0.1034 0.1306 0.2169 0.2289 0.0488 �0.0269 0.0671

Bicarb first 0.0787 0.1724 0.1845 0.1263 0.0494 0.2472 0.1863 0.0362 0.0368 0.0454 �0.2619 0.2568

Bicarb last �0.3759 0.2672 �0.0842 �0.3447 �0.6641 �0.2110 0.0670 �0.4465 �0.3182 �0.2749 �0.0199 �0.1322

Hemoglobin min �0.0337 0.0222 0.0465 0.0477 0.0527 0.0502 0.0533 0.0115 �0.0002 0.0149 0.0221 0.0370

Hemoglobin max �0.0255 0.0420 0.0377 0.0408 0.0383 0.0459 0.0454 0.0574 0.0745 0.0648 0.0431 0.0270

Hemoglobin first 0.0054 �0.0331 �0.0301 �0.0305 �0.0313 �0.0345 �0.0367 �0.0366 �0.0462 �0.0370 �0.0217 �0.0123

Hemoglobin last 0.0012 �0.0480 �0.0515 �0.0511 �0.0239 �0.0616 �0.0589 �0.0531 �0.0636 �0.0517 �0.0230 �0.0579

Hydrogen ion min 0.0923 0.0385 0.0407 0.0536 0.0534 0.0074 0.0234 0.0489 0.0444 0.0784 0.0764 0.0631

Hydrogen ion max �0.0260 �0.0153 �0.0032 �0.0020 �0.0031 �0.0161 �0.0228 �0.0345 �0.0351 �0.0158 �0.0328 �0.0168

Hydrogen ion first �0.0285 �0.0980 �0.1173 �0.0992 �0.0909 �0.1106 �0.1014 �0.0883 �0.0639 �0.0949 0.0341 �0.1181

Hydrogen ion last 0.1399 0.0191 0.0919 0.1126 0.1563 0.0778 �0.0115 0.1638 0.0804 0.0806 �0.0041 0.0411

Lactate min 0.6463 0.2401 0.0637 0.1559 �0.0041 0.0812 0.0654 0.5344 0.3746 �0.0693 0.3309 0.4062

Lactate max �0.2492 �0.2078 �0.1921 �0.2073 �0.2099 �0.2863 �0.3272 �0.4133 �0.5003 �0.3407 �0.3409 �0.4162

Lactate first 0.2187 0.3597 0.3562 0.3788 0.4005 0.2524 0.2585 0.1586 0.3540 0.4987 0.3028 0.4559

Lactate last 0.4501 0.4529 0.5405 0.4339 0.5316 0.4865 0.4974 0.3769 0.2658 0.2973 0.2935 �0.0251

Potassium min �0.2827 0.2198 �0.4334 �0.3504 �0.3441 �0.4274 �0.5304 �0.2418 �0.5534 �0.3586 �0.1227 0.1204

Potassium max 0.1336 0.0515 0.0086 0.0009 �0.1053 0.0587 0.0449 �0.0763 �0.3728 �0.3132 �0.3254 �0.3268

Potassium first �0.4252 �0.0496 0.1751 0.1567 0.2620 0.0009 0.0009 0.0803 0.0691 �0.0094 �0.2962 �0.3284

Potassium last 1.0046 0.3203 0.2132 0.0686 �0.0365 0.2723 0.4531 0.4199 0.6882 0.2802 0.7569 0.6396

Sodium min �0.0859 �0.0320 �0.0511 �0.0284 �0.0634 �0.0391 �0.0341 �0.0834 �0.0238 �0.0164 �0.0395 0.1001

Sodium max �0.0599 �0.0681 �0.1123 �0.1048 �0.1013 �0.0957 �0.0995 �0.0633 �0.0651 �0.0557 �0.0626 �0.1983

Sodium first 0.0060 0.0109 0.0403 0.0215 0.0286 0.0157 0.0231 �0.0159 �0.0474 �0.0791 �0.0256 �0.0508

(Continued)

568 JTCVS Open c December 2023

Adult: Perioperative Management Lapp et al



TABLE E4. Continued

Variable 1 2 3 4 5 6 7 8 9 10 11 12

Sodium last 0.1120 0.0775 0.0464 0.0305 0.0507 0.0142 0.0071 0.0682 0.0580 0.0534 0.0315 0.0523

Urea min 11.0466 6.7434 7.2850 5.4943 6.1846 �4.6818 �5.0169 4.0404 �0.2864 165.5889�393.5287�10.7716

Urea max 6.6862 4.5250 4.7118 3.2855 3.7942 �6.9378 �5.8298�117.1044 �8.2502 169.2877�392.8579 0.4373

Urea first �9.6053 �5.9957 �6.6836 �4.8759 �5.6490 5.3354 5.4132 �3.7839 0.0301�165.9517 393.0349 10.5400

Urea last �7.9795 �5.0604 �5.0433 �3.6405 �4.0421 6.4805 5.6222 117.0219 8.6885�168.6656 393.5856 0.0000

Urine min �0.0051 0.0019 0.0030 0.0047 1.0663 1.2276 1.1605 0.0077 0.7161 0.2652 0.1852 0.0081

Urine max �0.0010 �0.0007 �0.0001 0.0000 �0.1055 0.1532 0.1311 �0.0001 0.2915 0.1883 0.3863 0.0000

Urine first �0.0010 �0.0005 0.0002 0.0001 0.6010 0.6028 0.6390 �0.0009 0.7481 0.6815 0.5318 �0.0015

Urine last �0.0012 �0.0005 �0.0006 �0.0001 0.7188 0.6774 0.6153 �0.0021 0.7630 0.6663 0.4355 �0.0032

Vasopressin given 0.6634 0.7241 1.0164 1.0332 0.0115 0.0081 0.0113 0.6302 0.0094 0.0121 0.0075 0.2843

Noradrenaline given 0.5160 0.2441 �0.0958 �0.0976 0.0000 �0.0009 �0.0007 0.1717 �0.0004 �0.0010 �0.0004 0.3262

Dobutamine given 0.5232 0.4145 0.6380 0.6683 0.0001 0.0001 �0.0001 0.7331 �0.0003 0.0005 �0.0003 0.4636

Dopamine given 1.2560 0.7603 0.6814 0.7320 �0.0071 �0.0042 �0.0073 0.6161 �0.0022 �0.0032 �0.0050 0.9150

Sex: female 0.0111 0.3747 0.3938 0.4046 0.4538 0.3205 0.4284 0.3799 0.3606 0.4074 0.5883 0.3347

Logistic EuroSCORE 0.0478 0.0256 0.0232 0.0230 0.0185 0.0081 0.0108 0.0361 0.0393 0.0249 0.0373 0.0228

Priority: emergency 2.1180 2.2483 1.9617 2.0547 2.0984 0.6468 0.7731 1.1973 0.9499 �0.8440 �0.8018�17.4710

Priority: priority 0.1784 0.2170 0.1567 0.1691 0.1856 0.0346 0.1017 0.0999 �0.1163 0.1337 0.2850 0.0088

Priority: urgent 0.1094 0.1469 0.1602 0.2120 0.0906 0.1895 0.1988 0.2055 0.1048 0.0380 �0.1060 �0.0049

Procedure general:

valve

0.3312 0.2453 0.3569 0.3832 0.3595 0.4216 0.3843 0.5319 0.1981 0.3948 0.1701 0.3667

Procedure general:

valve and CABG

0.1346 0.0128 �0.0375 �0.0301 0.0026 0.1510 0.1554 0.2010 �0.0663 0.1208 0.0674 0.3790

LV function: moderate 0.1271 0.1472 �0.0098 0.0148 0.0047 �0.2093 �0.2480 0.1120 �0.2013 �0.1196 �0.1577 �0.1431

LV function: poor 1.0494 0.9072 0.6258 0.7121 0.6841 0.4534 0.4881 0.6449 �0.1105 0.0090 0.3895 1.2613

NYHA grade: II 0.0098 0.1272 0.0232 �0.0049 �0.0523 0.0117 0.0392 0.2271 �0.1424 �0.0176 0.0627 �0.1558

NYHA grade: III 0.3539 0.5042 0.1829 0.1589 0.1206 0.2039 0.2755 0.1627 �0.1599 0.0097 0.0432 �0.2152

NYHA grade: IV 0.9812 0.5170 0.1903 0.2548 0.3044 0.3213 0.3727 0.2427 0.1805 0.3143 0.1702 0.3641

Angina status: I �0.3182 �0.1685 �0.3666 �0.4249 �0.4512 �0.3464 �0.3428 �0.0656 �0.2999 �0.5215 �0.5303 �0.2028

Angina status: II �0.3681 �0.5307 �0.5056 �0.4663 �0.4706 �0.4504 �0.4352 �0.0442 �0.2702 �0.3509 �0.4239 �0.3714

Angina status: III �0.3278 �0.4556 �0.3121 �0.3384 �0.3908 �0.2554 �0.2472 �0.0198 �0.1007 �0.1691 �0.2199 �0.7443

Angina status: IV �0.1793 �0.7894 �0.5899 �0.6593 �0.6113 �0.4667 �0.4195 �0.2024 �0.7655 �0.6598 �0.3888 �1.3840

Renal impairment:

moderate

0.3586 0.3428 0.1822 0.1761 0.1599 0.1146 0.0702 0.2520 0.2362 0.3592 0.3446 0.4735

Renal impairment:

severe

0.6327 0.3185 0.3561 0.3658 0.2970 0.5425 0.4306 0.4375 0.4401 0.7055 0.7157 1.1448

Renal impairment:

unknown

�0.0267 �0.1335 0.1924 0.2272 0.2427 0.3367 0.2797 0.2650 0.0405 0.5162 0.9252 0.0090

Rhythm: abnormal 0.1730 0.0090 0.1172 0.0700 0.0724 0.0074 0.0298 �0.0252 0.1157 0.1015 0.0563 0.1501

Rhythm: unknown �0.5016 �0.3388 �0.3636 �0.3592 �0.2010 �0.0928 �0.0248 0.1615 0.2421 �0.3630 �0.0779 �0.2895

Previous operations �0.2423 �0.0787 �0.1689 �0.2262 �0.2951 0.0581 0.0886 �0.6988 �0.7157 �0.2419 0.4732 �0.8792

Neurologic dysfunction�17.7479�14.4475�14.4227�14.5516�17.5575�13.6783�13.8796 �20.2477�16.0784 �23.5500 �22.7321�19.8565

Smoking status:

ex-smoker

�0.0831 0.1362 �0.0741 �0.0483 �0.0097 �0.1456 �0.1622 �0.2579 �0.1638 �0.2439 �0.0752 �0.2594

Smoking status:

current smoker

�0.6165 �0.3329 �0.6959 �0.7270 �0.7993 �0.6106 �0.6613 �0.2541 �0.7612 �0.3738 �0.6334 �0.1216

(Continued)
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TABLE E4. Continued

Variable 1 2 3 4 5 6 7 8 9 10 11 12

Smoking status:

unknown

0.1196 0.0189 �0.0970 �0.0470 �0.0222 �0.2234 �0.2392 �0.1354 �0.1247 �0.1752 0.0740 �0.3442

Previous MI 0.3932 0.1360 0.3796 0.3530 0.3549 0.2792 0.2435 0.2233 0.1359 0.3021 0.4534 0.4075

LMS 0.0215 �0.3172 �0.2956 �0.2942 �0.3061 �0.0987 �0.0954 �0.4625 �0.5473 �0.4215 �0.2026 0.1881

LMS: unknown �0.5476 �0.3519 �0.4491 �0.4678 �0.4728 �0.2828 �0.2426 �0.2407 �0.5953 �0.3579 �0.4574 �0.3244

Preoperative creatinine �0.0831 �0.0796 �0.0714 �0.0741 �0.0750 �0.0671 �0.0653 �0.0715 �0.0666 �0.0750 �0.0721 �0.0778

Pulmonary disease �0.0917 0.1811 0.2191 0.2539 0.2366 0.2267 0.1431 0.1687 0.2698 0.2112 0.3381 0.3158

Hypertension history 0.1187 0.1256 0.0837 0.1005 0.1139 �0.0226 0.0033 0.0972 0.0304 0.1703 0.2109 0.0118

Congestive

cardiac failure

�1.0520 �0.7182 �0.5117 �0.4874 �0.4518 �0.3109 �0.3438 �0.5262 �0.5975 �0.9438 �0.8085 �0.8693

Previous PCI 0.3554 �0.0045 0.1172 0.1411 0.1590 0.3459 0.3808 0.4925 0.3935 0.3369 0.3103 0.1592

Extracardiac

arteriopathy

�0.0399 0.4178 0.3839 0.3372 0.3786 0.5793 0.5605 0.4742 0.1821 0.2177 �0.0029 0.0057

Critical preoperative

state

�2.2082 �0.7259 �0.8993 �1.0321 �0.8515 �0.5435 �0.4020 �1.0670 �0.5831 �1.0219 �0.3391 �0.5206

Diabetes 0.1522 0.2734 0.2711 0.2763 0.2816 0.3002 0.2822 0.3153 0.3739 0.2150 0.5108 0.3653

BMI: 25.1-30.0 �0.1371 0.3601 0.3667 0.3783 0.3637 0.4162 0.3739 0.1674 0.0524 0.3175 0.2275 0.3903

BMI:>30.0 �0.1909 �0.0155 0.2896 0.2808 0.2874 0.2632 0.2250 0.0815 �0.0258 0.0461 0.3039 0.1158

Age: 61-67 y 0.0982 0.6297 0.6889 0.6465 0.5612 0.7044 0.7588 0.6369 0.3446 0.2626 0.4007 0.3470

Age: 68-74 y �0.1550 0.5128 0.7029 0.6289 0.5352 0.6867 0.7007 0.5147 0.1769 0.2735 0.4187 0.0735

Age: 75-99 y �0.1484 0.5417 0.6389 0.6115 0.5487 0.8551 0.8870 0.6303 0.4801 0.3903 0.3544 0.3606

Active

endocarditis

1.8186 1.5886 0.9655 0.9881 1.1905 1.9725 1.7755 1.1651 �0.2248 1.1158 0.9636 1.0412

ABE, Arterial base excess; AH, arterial hematocrit; CRP, C-reactive protein; DFB, daily fluid balance; EuroSCORE, European System for Cardiac Operative Risk Evaluation;

CABG, coronary artery bypass grafting; LV, left ventricular; NYHA, New York Heart Association; MI, myocardial infarction; LMS, left main stem; PCI, percutaneous coronary

intervention; BMI, body mass index; AKI, acute kidney injury.
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TABLE E5. Model coefficients for the logistic regression models for the lead time of 13 to 24 hours before AKI

Variable 13 14 15 16 17 18 19 20 21 22 23 24

(Intercept) 11.1764 �1.4593 �1.8628 �3.7877 �1.9712 4.0283 �4.0620 1,958,193,855,762,030.0 5,585,119,126,415,140.0 4.8024 1.7825 0.7851

ABE min �0.2027 �0.0609 �0.1766 �0.2534 �0.1558 �0.1387 �0.2326 13,858,619,475,796.9 350,900,481,015,319.0 0.3286 0.4133 0.0988

ABE max �0.2021 �0.0423 �0.2011 �0.1413 �0.1125 0.0259 0.0129 111,177,907,885,775.0 �29,255,273,696,403.4 0.4522 0.1248 �0.4461

ABE first 0.0470 �0.1084 0.0438 0.1277 �0.0081 0.0033 0.1000 �38,277,316,290,424.4 �98,856,639,379,121.9 �0.6334 �0.1779 �0.9056

ABE last 0.4039 �0.2183 0.0655 �0.2006 �0.0429 �0.1153 �0.2067 �143,035,041,460,717.0 52,244,765,191,140.9 �0.4281 �0.7057 1.1877

AH min �0.0671 �0.0749 �0.1040 �0.0668 0.0065 0.0943 �0.0376 559,486,030,361.7 �57,006,622,066,613.7 �0.0684 �0.1692 0.3181

AH max �0.1065 �0.0943 �0.2045 �0.0381 �0.1015 �0.1125 �0.1408 �113,914,217,742,307.0 �26,461,413,585,431.2 �0.0793 0.0225 0.8945

AH first 0.0718 0.0864 0.1453 0.0467 0.0651 0.0740 0.1192 111,886,078,822,010.0 9,931,408,211,317.1 0.0516 0.0489 �0.7051

AH last 0.0309 0.0597 0.0617 0.0318 0.0580 �0.0259 0.0316 43,201,926,222,481.1 95,186,622,451,119.5 0.1387 0.1193 �0.5107

Creatinine

min

�35.4011 �3.9604 �20.8515 �8.9203 10.7133 0.0137 �0.0652 �60,420,211,285,212.2 341,086,840,399,494.0 3.2495 �1.2560 1.4906

Creatinine

max

�35.4307 �7.3655 �20.8573 �19.5405 0.2084 0.1408 0.2404 �35,124,103,106,448.5 242,637,986,072,914.0 0.9891 1.3218 �3.5984

Creatinine

first

35.4384 3.9680 20.9150 9.0896 �10.8580 �0.0928 �0.1003 110,035,513,622,027.0 �574,941,590,667,754.0 �4.1716 0.0000 2.1689

Creatinine

last

35.4595 7.4180 20.8601 19.4381 0.0000 0.0000 0.0000 0.0 0.0 0.0000 0.0000 0.0000

CRP min 2.3216 1.8825 2.4004 1.5322 2.3712 3.5366 2.1882 733,642,171,992,321.0 �161,986,286,593,525.0 �1.7777 �2.1667 �0.2960

CRP max �13.3124 �2.7804 �7.7058 �3.3780 �6.9967 �9.8809 �11.3768 �19,515,989,893,487.2 25,949,766,394,516.4 0.0297 0.0546 0.2960

CRP first 10.9907 0.8959 5.3064 1.8426 4.6256 6.3480 9.1923 �709,403,652,543,203.0 136,197,162,492,844.0 1.7491 2.1147 0.0000

CRP last 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0 0.0 0.0000 0.0000 0.0000

DFB min 0.0037 0.0023 0.0019 �0.0488 1.9347 �0.8345 1.3245 3,702,651,213,109.8 1,506,564,672,025.5 0.0225 0.0117 1.1226

DFB max 0.0029 0.0013 0.0011 �0.1645 1.8549 �2.1152 �0.0013 497,494,511,277.5 �646,707,032,013.5 0.0005 0.0003 �0.0932

DFB first �0.0038 �0.0020 �0.0020 0.0488 �1.9352 0.8381 �1.3230 �1,497,788,972,514.8 �725,422,913,808.8 �0.0226 �0.0117 �1.0291

DFB last �0.0025 �0.0010 �0.0006 0.1649 �1.8541 2.1119 0.0000 �2,369,861,095,353.3 0.0 0.0000 0.0000 0.0000

Bicarb min 0.2842 0.1636 0.3158 0.3189 0.2417 0.1698 0.1671 �23,774,107,698,308.2 �16,906,470,964,048.6 �0.2274 �0.2705 0.0199

Bicarb max 0.0705 �0.1022 0.0183 0.0243 �0.0525 �0.0103 �0.0228 �108,908,906,183,672.0 �55,504,864,731,627.0 �0.5262 �0.3094 �0.2326

Bicarb first 0.0232 0.1234 �0.0063 �0.0810 0.0675 �0.0325 �0.0793 67,877,784,772,170.6 100,217,193,715,025.0 0.5324 0.1897 0.9803

Bicarb last �0.4839 0.0431 �0.1692 0.0834 �0.0482 �0.0149 0.0822 79,807,883,722,227.5 �245,965,630,382,425.0 0.3920 0.6020 �0.7513

Hemoglobin

min

0.0281 0.0380 0.0335 0.0300 0.0016 �0.0130 0.0092 �8,158,168,901,732.0 �17,228,905,555,540.0 0.0004 0.0475 �0.0330

Hemoglobin

max

0.0136 0.0209 0.0376 0.0086 0.0313 0.0154 0.0208 34,842,063,050,603.2 �37,244,568,853,888.4 0.0219 0.0028 �0.1511

Hemoglobin

first

�0.0058 �0.0248 �0.0280 �0.0151 �0.0248 �0.0131 �0.0183 �36,535,384,140,446.5 36,879,969,370,636.9 �0.0087 �0.0313 0.0981

(Continued)
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TABLE E5. Continued

Variable 13 14 15 16 17 18 19 20 21 22 23 24

Hemoglobin

last

�0.0250 �0.0303 �0.0227 �0.0208 �0.0259 �0.0206 �0.0156 �9,856,205,554,322.7 18,096,519,964,225.9 �0.0342 �0.0279 0.0726

Hydrogen Ion

min

0.0022 0.0474 0.0607 0.0665 0.0506 �0.0633 �0.0234 25,014,613,370,127.8 34,983,554,507,504.0 0.1387 0.1073 0.0338

Hydrogen ion

max

�0.0660 �0.0244 �0.0214 �0.0452 �0.0375 �0.0547 �0.1228 �15,489,630,419,108.8 �17,943,875,401,800.7 �0.0665 0.0274 �0.0428

Hydrogen ion

first

0.0052 �0.0380 �0.0347 �0.0296 �0.0621 0.0160 0.0344 �17,331,077,301,091.5 �24,989,092,546,939.1 �0.1387 �0.0760 �0.2579

Hydrogen ion

last

0.1353 �0.0299 0.0101 �0.0010 0.0322 0.0506 0.0357 1,881,982,348,406.3 58,758,525,345,303.9 0.0189 �0.1978 0.2476

Lactate min 0.4977 0.1530 �0.1672 0.0039 �0.4495 �0.4509 �0.2116 119,530,414,807,721.0 20,342,538,808,739.6 0.2384 �3.0192 �0.7430

Lactate max �0.4111 �0.4492 �0.2537 �0.2567 �0.2838 �0.3994 �0.2024 �395,314,486,873,560.0 �437,870,350,166,224.0 �0.9958 �5.3638 �6.7972

Lactate first 0.3242 0.5715 0.6264 0.4421 0.6207 0.7175 0.4969 393,116,263,917,665.0 243,249,464,535,678.0 0.8582 4.2553 5.5431

Lactate last �0.0269 0.0903 0.0385 �0.1425 0.0649 0.1122 �0.1192 30,206,347,589,401.1 265,316,107,716,496.0 0.1037 4.3038 2.0882

Potassium min �0.1330 �0.0941 �0.2098 �0.2086 �0.2673 �0.0546 �0.7120 �520,965,815,989,114.0 �127,711,665,848,273.0 �0.1967 �1.5767 0.8270

Potassium max �0.2287 �0.2979 �0.4505 �0.2292 �0.0919 �0.2713 �0.1820 �332,092,600,672,306.0 �220,862,612,157,605.0 �0.5525 �1.5560 0.5471

Potassium first �0.1165 �0.1173 0.0420 0.0576 0.1689 0.2707 0.4109 187,025,784,415,029.0 45,660,344,765,347.2 0.0857 1.4827 �0.1776

Potassium last 0.0659 0.3917 0.1502 0.2037 0.1523 0.0318 0.4171 435,387,696,858,357.0 216,762,379,616,276.0 0.3854 1.3794 �1.3217

Sodium min 0.0791 0.0532 0.1054 0.0526 0.1101 0.0734 0.2118 88,115,150,907,139.7 �17,800,701,837,982.3 0.1435 0.1202 �0.0932

Sodium max �0.0061 �0.0174 0.0001 0.0131 �0.1297 �0.1865 �0.1168 �35,942,161,734,412.9 �20,719,522,776,091.3 �0.0269 0.0494 0.0156

Sodium first �0.0712 �0.0027 �0.0426 �0.0343 0.0032 0.1098 �0.0437 �31,177,778,205,981.0 �35,361,720,840,845.8 �0.1333 �0.1524 0.0621

Sodium last �0.1081 �0.0832 �0.0982 �0.0858 �0.0270 �0.0531 �0.0608 �44,009,293,290,976.0 35,519,006,039,801.4 �0.0553 �0.0611 �0.0222

Urea min 0.4752 52.0079 155.4182 �15.5058 0.6726 154.2554 147.6371 �296,585,365,536,571.0 18,287,964,416,913,400.0 83.0758 91.6785 0.1886

Urea max 0.8804 0.2852 0.7525 2.3355 �1.4322 1.5103 5.9762 2,701,948,735,017,500.0 �10,223,020,053,755,000.0 �52.5660 �61.1843 0.0000

Urea first �1.1951 �52.1130 �156.0342 13.3238 0.9397 �155.5679 �153.3898 �2,354,912,493,860,920.0 �7,962,293,744,809,060.0 �30.3409 �30.2719 0.0000

Urea last 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0 0.0 0.0000 0.0000 0.0000

Urine min 0.9824 0.9920 0.3231 �0.0012 0.9442 0.3870 �0.0726 4,166,049,346,988.0 67,491,967,728,257.8 �0.1699 0.4835 �0.0069

Urine max 0.3417 0.2453 0.5359 �0.0004 0.1510 0.1605 0.3300 �6,256,305,204.0 6,372,718,826,092.3 0.1020 0.3244 �0.0138

Urine first 0.6157 0.5004 0.5354 0.0000 0.5857 0.5733 0.4173 �582,802,469,257.0 174,665,332,726,455.0 0.4910 0.4258 0.0121

Urine last 0.8789 0.6744 0.7473 0.0010 0.7615 0.7600 0.4828 �1,613,716,817,827.4 161,251,664,239,996.0 1.0589 0.8050 0.0086

Vasopressin

given

0.0070 0.0004 0.0031 0.9550 0.0019 0.0082 0.0064 �660,476,569,970,552.0 �927,670,247,671.5 �0.0006 �0.0008 0.1193

Noradrenaline

given

�0.0006 0.0000 0.0000 0.3777 �0.0003 0.0000 �0.0002 120,601,601,771,668.0 �335,737,741,226.9 �0.0021 �0.0056 0.3045

Dobutamine

given

�0.0002 �0.0004 �0.0015 0.6238 �0.0005 �0.0007 �0.0003 323,602,996,948,020.0 �279,264,256,744.0 0.0008 0.0035 0.4275

(Continued)
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TABLE E5. Continued

Variable 13 14 15 16 17 18 19 20 21 22 23 24

Dopamine

given

0.0003 0.0008 �0.0011 0.7192 0.0023 �0.0045 �0.0008 303,941,959,026,546.0 1,159,593,580,102.6 0.0022 0.0022 0.7383

Sex: female 0.4622 0.3150 0.2985 0.6241 0.6448 0.3086 0.5998 345,371,277,098,159.0 76,495,231,702,591.2 0.3047 0.3693 0.2149

Logistic

EuroSCORE

0.0107 0.0117 0.0175 0.0049 0.0204 �0.0235 �0.0318 �30,343,418,378,487.5 30,710,037,795,255.1 �0.0080 0.0033 �0.0221

Priority:

emergency

0.6943 1.3087 0.8511 �17.6079 �18.6589 �23.8863 �23.4192 �1,971,847,600,283,780.0 322,747,931,080,681.0 �14.3587 �13.6796 �18.1191

Priority:

priority

0.0235 0.2849 �0.4391 0.0034 �0.0568 0.2481 0.2195 316,053,159,768,962.0 25,974,563,805,617.0 0.1343 0.2463 �0.0891

Priority: urgent 0.2012 �0.0430 �0.0941 �0.0798 �0.4309 0.1641 0.0204 4,326,974,520,148.6 223,352,253,391,998.0 �0.2024 0.0485 �0.2259

Procedure general:

valve

0.6321 0.6466 0.3951 0.3021 0.3868 0.6366 0.7870 341,182,694,636,460.0 �3,218,030,512,994.7 0.6832 0.7335 0.7634

Procedure general:

valve and CABG

0.6461 0.6296 0.5693 0.4611 0.4727 0.3689 0.7741 352,467,708,701,108.0 �155,845,346,944,126.0 0.5084 0.6441 0.6282

LV function:

moderate

0.0787 0.1188 �0.0747 �0.0417 �0.0142 0.0923 0.4501 82,124,446,920,578.9 17,751,823,594,108.0 0.0045 �0.2407 0.1936

LV function:

poor

0.4991 1.1058 0.6683 0.6856 0.6722 1.3484 1.6069 787,410,410,213,189.0 �132,432,303,771,795.0 0.9261 0.7524 1.1662

NYHA grade: II �0.1590 �0.1184 �0.2403 �0.1286 �0.1617 �0.2357 �0.5153 �273,820,184,106,736.0 �16,009,053,969,651.9 �0.3722 �0.1615 �0.0168

NYHA grade: III �0.2379 0.0042 �0.1555 �0.1488 �0.0495 0.0182 �0.3463 �258,273,913,499,150.0 120,322,027,532,904.0 �0.3584 �0.0142 �0.0654

NYHA grade: IV 0.1427 0.0813 0.0098 0.0724 0.4137 0.3725 �0.5374 �23,589,275,230,276.4 �285,245,892,451,566.0 �0.4942 0.1386 0.4162

Angina status: I �0.3308 �0.0480 �0.3020 �0.6292 �0.2673 0.0654 �0.0308 �69,394,199,112,350.3 �288,450,109,165,304.0 �0.0851 0.0627 0.1309

Angina status: II �0.2382 0.0592 0.0518 �0.1923 0.0579 �0.0310 0.1332 �57,796,223,173,130.6 �21,272,276,019,237.1 0.0559 0.1731 0.3038

Angina status: III �0.2105 �0.3501 �0.2411 �0.3826 �0.0736 �0.0650 0.1882 �5,113,282,631,469.2 �200,277,983,846,487.0 0.1550 0.3368 0.2153

Angina status: IV �0.7431 �0.9675 �0.4427 �1.1802 �1.1594 �1.8303 �0.3981 �824,762,954,162,916.0 �177,683,211,365,535.0 �0.0286 �0.6198 �0.2265

Renal impairment:

moderate

0.3499 0.1594 0.1969 0.3361 0.2659 0.3260 0.1471 3,996,953,666,564.7 11,287,267,767,735.9 0.5724 0.3685 �0.1267

Renal impairment:

severe

0.8230 0.8780 0.7199 0.5221 0.6694 0.8190 0.5860 401,551,636,039,549.0 �453,087,903,256,738.0 1.2477 0.8375 0.2642

Renal impairment:

unknown

0.4947 0.1430 0.4336 0.1413 �0.1538 0.0557 0.3535 17,502,129,088,324.6 12,798,642,332,972.7 0.6687 0.6509 �0.1074

Rhythm:

abnormal

0.0495 �0.0729 0.1356 0.4073 0.3323 0.2433 0.2428 279,937,961,386,447.0 63,209,234,110,804.0 0.2783 0.1217 0.1148

Rhythm:

unknown

�0.3791 �0.5700 0.0522 0.5768 �0.2171 �0.5300 0.1680 60,798,488,872,892.8 �26,927,516,718,715.6 �0.5568 �0.5909 �0.0547

(Continued)
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TABLE E5. Continued

Variable 13 14 15 16 17 18 19 20 21 22 23 24

Previous

operations

0.0692 �0.0621 �0.6363 �0.4417 �0.6379 �0.2952 �0.3003 �708,595,443,801,867.0 �756,412,101,465,413.0 �0.8198 �1.8197 0.1198

Neurologic

dysfunction

�20.4808 �19.4998 �25.2036 �22.4815 �18.9833 �24.4765 �23.9815 �1,008,136,057,294,050.0 �182,028,864,286,183.0 �15.1816 �15.0233 �18.7356

Smoking status:

ex-smoker

�0.2614 �0.1024 0.0765 �0.1202 �0.0776 �0.3629 �0.4601 �69,931,265,151,681.5 142,607,682,712,594.0 0.1451 0.1877 �0.0767

Smoking status:

current smoker

�0.3683 �0.2210 �0.4705 �0.3746 �0.6081 �0.8252 �0.4506 �575,741,341,061,196.0 34,465,434,416,503.7 �0.2477 �0.4088 �0.4299

Smoking status:

unknown

�0.1427 0.2083 0.0391 �0.0885 0.0670 �0.1887 �0.2752 �155,333,467,019,895.0 �99,389,855,535,395.4 0.2220 0.0166 �0.3057

Previous MI 0.3978 0.2582 0.2702 0.4305 0.5803 0.5596 0.6301 494,907,310,513,025.0 34,812,436,243,184.6 0.5215 0.6433 0.3551

LMS �0.0870 0.2028 �0.0129 �0.2164 �0.1284 0.0346 0.0261 35,065,534,984,794.8 �196,494,725,372,545.0 �0.5632 �0.3964 �0.4696

LMS: unknown �0.1831 �0.3757 �0.1683 �0.7333 �0.4563 �0.3966 �0.4505 �310,770,720,379,790.0 �174,580,331,014,328.0 �0.5381 �0.5337 �0.4635

Preoperative

creatinine

�0.0752 �0.0686 �0.0728 �0.0712 �0.0703 �0.0669 �0.0809 �16,137,640,218,124.3 �2,612,550,702,842.2 �0.0740 �0.0735 �0.0650

Pulmonary

disease

0.4828 0.2156 0.1504 0.3204 0.3570 0.4784 0.6384 414,512,907,849,904.0 �98,530,520,254,170.0 0.6291 0.3078 0.3319

Hypertension

history

�0.1455 �0.0133 �0.0663 0.0443 �0.2285 0.1058 �0.0274 332,077,287,266,487.0 199,961,290,995,373.0 �0.0482 �0.0791 0.2475

Congestive

cardiac failure

�0.9605 �0.6768 �0.5933 �0.3865 �0.7661 �0.7136 �0.5393 �104,873,226,391,883.0 �450,357,512,685,601.0 �0.3778 �0.5893 �0.4518

Previous PCI 0.3168 0.3849 0.2414 0.1079 0.0233 0.3640 0.2901 226,201,046,071,099.0 48,717,479,884,320.2 0.0337 0.1500 0.3677

Extracardiac

arteriopathy

0.8146 0.4963 0.5438 0.2736 0.3462 0.7859 0.6302 378,547,596,618,020.0 �88,230,216,064,613.6 0.5492 0.5695 0.6683

Critical

preoperative

state

�0.3347 �0.0175 �0.6026 �0.3866 �0.4886 �0.5433 �0.4305 22,650,172,629,481.7 �558,323,660,364,674.0 �0.0414 �1.0724 0.8801

Diabetes 0.4135 0.2664 0.1325 0.0914 0.1200 0.0935 0.1579 122,126,489,813,521.0 �59,795,625,718,223.5 0.2252 0.0347 �0.0624

BMI: 25.1-30.0 0.0435 0.1589 0.5661 0.0652 0.2376 0.3211 0.2715 100,321,949,563,768.0 �132,231,973,653,146.0 0.1474 0.2482 0.1715

BMI:>30.0 �0.1002 0.1692 0.1882 0.1109 �0.0796 0.2415 0.1388 �57,675,093,738,626.0 �45,193,595,921,922.3 �0.0626 0.1882 0.3477

Age: 61-67 y 0.2920 0.4467 0.2995 0.5269 0.3019 0.2168 0.4195 235,509,488,773,289.0 196,116,064,124,413.0 0.3749 0.7335 0.7166

Age: 68-74 y 0.1486 0.2835 0.0562 0.3268 0.2514 0.0030 0.4656 347,695,477,943,977.0 �126,564,424,967,840.0 0.2194 0.6978 0.6539

Age: 75-99 y 0.2943 0.4738 0.4273 0.5840 0.4108 0.1258 0.5106 419,108,620,156,596.0 140,362,598,360,892.0 0.5202 0.9097 1.3133

Active endocarditis 1.0306 1.0274 0.7359 1.2976 0.9216 �0.4330 �0.1379 �165,656,675,206,947.0 �2,188,665,690,240,340.0 1.1748 1.3240 0.9812

ABE, Arterial base excess; AH, arterial hematocrit; CRP, C-reactive protein; DFB, daily fluid balance; EuroSCORE, European System for Cardiac Operative Risk Evaluation; CABG, coronary artery bypass grafting; LV, left ven-

tricular; NYHA, New York Heart Association; MI, myocardial infarction; LMS, left main stem; PCI, percutaneous coronary intervention; BMI, body mass index; AKI, acute kidney injury; .
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TABLEE6. Performancemeasures for eachmodel for each lead time applied on each dataset when predicting the onset of AKI within 25 hours, up

to 24 hours in advance in ICU

Lead time AUC Sensitivity Specificity PPV NPV Cut-Off

Training data

BARTm

�1 0.954 0.918 0.864 0.010 0.593 0.128

�2 0.935 0.922 0.782 0.009 0.710 0.092

�3 0.916 0.918 0.747 0.010 0.741 0.078

�4 0.929 0.849 0.850 0.017 0.647 0.126

�5 0.919 0.927 0.748 0.009 0.738 0.079

�6 0.927 0.919 0.780 0.010 0.711 0.097

�7 0.929 0.923 0.766 0.010 0.722 0.091

�8 0.919 0.898 0.773 0.012 0.726 0.094

�9 0.926 0.875 0.825 0.015 0.669 0.117

�10 0.914 0.817 0.841 0.021 0.670 0.130

�11 0.918 0.792 0.880 0.021 0.624 0.152

�12 0.929 0.876 0.846 0.130 0.664 0.121

�13 0.923 0.912 0.791 0.009 0.729 0.094

�14 0.901 0.892 0.767 0.012 0.753 0.088

�15 0.928 0.859 0.858 0.013 0.669 0.126

�16 0.923 0.883 0.825 0.012 0.705 0.109

�17 0.903 0.815 0.830 0.017 0.726 0.113

�18 0.915 0.783 0.882 0.019 0.661 0.134

�19 0.924 0.871 0.822 0.012 0.731 0.098

�20 0.925 0.863 0.842 0.012 0.703 0.110

�21 0.926 0.880 0.818 0.011 0.737 0.094

�22 0.925 0.871 0.829 0.012 0.721 0.102

�23 0.926 0.838 0.871 0.014 0.675 0.123

�24 0.909 0.895 0.783 0.090 0.782 0.077

Mean (SD)

Logistic regression

�1 0.944 0.957 0.789 0.006 0.684 0.056

�2 0.915 0.872 0.799 0.015 0.705 0.073

�3 0.905 0.826 0.831 0.020 0.680 0.094

�4 0.903 0.817 0.836 0.021 0.675 0.102

�5 0.904 0.826 0.828 0.020 0.684 0.095

�6 0.889 0.765 0.852 0.026 0.666 0.113

�7 0.892 0.787 0.843 0.024 0.672 0.110

�8 0.905 0.792 0.862 0.022 0.647 0.119

�9 0.897 0.835 0.800 0.020 0.708 0.086

�10 0.900 0.844 0.803 0.018 0.707 0.081

�11 0.901 0.797 0.849 0.021 0.675 0.109

�12 0.911 0.836 0.836 0.017 0.689 0.088

�13 0.890 0.825 0.803 0.018 0.736 0.075

�14 0.888 0.784 0.836 0.022 0.709 0.094

�15 0.888 0.751 0.874 0.023 0.672 0.119

�16 0.892 0.793 0.846 0.020 0.700 0.102

�17 0.883 0.815 0.793 0.018 0.763 0.073

�18 0.881 0.743 0.865 0.022 0.701 0.112

�19 0.898 0.747 0.886 0.021 0.671 0.119

�20 0.648 0.326 0.970 0.051 0.544 0.000

�21 0.515 0.036 0.994 0.067 0.684 0.000

�22 0.888 0.813 0.819 0.017 0.746 0.077

�23 0.903 0.862 0.796 0.013 0.762 0.065

�24 0.894 0.791 0.848 0.016 0.740 0.086

Mean (SD)

(Continued)
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TABLE E6. Continued

Lead time AUC Sensitivity Specificity PPV NPV Cut-Off

Testing data

BARTm

�1 0.918 0.932 0.764 0.008 0.734 0.082

�2 0.876 0.791 0.833 0.025 0.671 0.115

�3 0.881 0.816 0.814 0.023 0.690 0.104

�4 0.887 0.868 0.765 0.017 0.726 0.088

�5 0.887 0.798 0.837 0.024 0.665 0.121

�6 0.871 0.865 0.726 0.018 0.761 0.081

�7 0.876 0.811 0.789 0.023 0.723 0.101

�8 0.851 0.812 0.756 0.024 0.749 0.084

�9 0.838 0.730 0.801 0.029 0.754 0.110

�10 0.848 0.767 0.788 0.027 0.750 0.105

�11 0.837 0.837 0.723 0.021 0.780 0.069

�12 0.823 0.832 0.686 0.022 0.806 0.053

�13 0.832 0.743 0.769 0.030 0.774 0.092

�14 0.830 0.840 0.700 0.019 0.809 0.063

�15 0.814 0.723 0.753 0.030 0.802 0.084

�16 0.837 0.855 0.693 0.015 0.829 0.061

�17 0.856 0.789 0.749 0.022 0.797 0.077

�18 0.843 0.795 0.739 0.021 0.806 0.069

�19 0.837 0.813 0.729 0.021 0.803 0.066

�20 0.831 0.857 0.693 0.015 0.826 0.059

�21 0.817 0.793 0.719 0.022 0.819 0.054

�22 0.841 0.840 0.698 0.016 0.832 0.063

�23 0.843 0.886 0.651 0.012 0.847 0.043

�24 0.832 0.914 0.601 0.010 0.857 0.036

Mean (SD)

Logistic regression

�1 0.896 0.825 0.841 0.019 0.678 0.078

�2 0.847 0.757 0.822 0.030 0.695 0.085

�3 0.862 0.860 0.789 0.018 0.706 0.075

�4 0.858 0.798 0.793 0.025 0.717 0.080

�5 0.855 0.781 0.814 0.027 0.699 0.089

�6 0.887 0.766 0.854 0.027 0.657 0.120

�7 0.867 0.793 0.813 0.025 0.704 0.093

�8 0.841 0.679 0.863 0.036 0.667 0.125

�9 0.857 0.720 0.838 0.029 0.717 0.107

�10 0.856 0.786 0.792 0.024 0.741 0.077

�11 0.840 0.817 0.708 0.024 0.793 0.051

�12 0.761 0.624 0.765 0.043 0.806 0.055

�13 0.827 0.663 0.872 0.034 0.679 0.125

�14 0.810 0.670 0.821 0.033 0.760 0.094

�15 0.800 0.766 0.710 0.027 0.818 0.050

�16 0.802 0.807 0.654 0.021 0.852 0.037

�17 0.824 0.556 0.940 0.037 0.573 0.190

�18 0.796 0.648 0.801 0.034 0.795 0.076

�19 0.585 0.209 0.961 0.063 0.694 0.000

�20 0.529 0.083 0.975 0.200 0.934 0.000

�21 0.552 0.138 0.966 0.065 0.760 0.000

�22 0.839 0.728 0.823 0.023 0.770 0.080

�23 0.830 0.759 0.789 0.021 0.797 0.064

�24 0.838 0.802 0.769 0.018 0.798 0.057

Mean (SD)

(Continued)
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TABLE E6. Continued

Lead time AUC Sensitivity Specificity PPV NPV Cut-Off

Validation data

BARTm

�1 0.907 0.824 0.873 0.016 0.655 0.127

�2 0.886 0.774 0.844 0.021 0.712 0.114

�3 0.855 0.755 0.847 0.023 0.715 0.135

�4 0.860 0.814 0.783 0.019 0.767 0.113

�5 0.844 0.814 0.744 0.020 0.795 0.090

�6 0.864 0.682 0.902 0.028 0.640 0.215

�7 0.851 0.767 0.821 0.022 0.743 0.143

�8 0.828 0.788 0.753 0.022 0.797 0.108

�9 0.814 0.765 0.755 0.024 0.800 0.106

�10 0.821 0.791 0.787 0.021 0.773 0.108

�11 0.811 0.818 0.684 0.020 0.834 0.072

�12 0.835 0.793 0.814 0.019 0.753 0.102

�13 0.837 0.758 0.842 0.021 0.731 0.151

�14 0.834 0.780 0.780 0.020 0.792 0.100

�15 0.841 0.759 0.851 0.020 0.727 0.147

�16 0.824 0.817 0.760 0.017 0.801 0.101

�17 0.824 0.764 0.849 0.018 0.746 0.109

�18 0.864 0.746 0.892 0.018 0.694 0.162

�19 0.858 0.785 0.862 0.016 0.734 0.140

�20 0.842 0.881 0.711 0.010 0.839 0.061

�21 0.825 0.826 0.780 0.014 0.810 0.089

�22 0.824 0.901 0.697 0.009 0.846 0.052

�23 0.879 0.747 0.888 0.017 0.714 0.158

�24 0.834 0.799 0.834 0.014 0.778 0.110

Mean (SD)

Logistic regression

�1 0.877 0.821 0.810 0.013 0.791 0.034

�2 0.843 0.718 0.863 0.020 0.757 0.096

�3 0.833 0.779 0.784 0.017 0.821 0.075

�4 0.822 0.792 0.757 0.016 0.835 0.073

�5 0.815 0.792 0.761 0.016 0.833 0.070

�6 0.812 0.649 0.853 0.024 0.789 0.134

�7 0.812 0.645 0.859 0.024 0.785 0.131

�8 0.794 0.649 0.822 0.024 0.825 0.114

�9 0.789 0.757 0.695 0.020 0.873 0.051

�10 0.774 0.611 0.868 0.025 0.791 0.118

�11 0.777 0.696 0.813 0.020 0.831 0.078

�12 0.788 0.735 0.750 0.019 0.863 0.043

�13 0.796 0.731 0.800 0.018 0.837 0.102

�14 0.788 0.698 0.794 0.019 0.855 0.067

�15 0.797 0.629 0.866 0.021 0.812 0.124

�16 0.811 0.783 0.762 0.013 0.865 0.061

�17 0.815 0.679 0.811 0.017 0.862 0.078

�18 0.806 0.545 0.934 0.021 0.735 0.193

�19 0.804 0.704 0.840 0.015 0.841 0.092

�20 0.543 0.132 0.955 0.037 0.891 0.000

�21 0.513 0.038 0.987 0.039 0.889 0.000

�22 0.807 0.760 0.781 0.012 0.878 0.029

�23 0.841 0.898 0.710 0.006 0.891 0.024

�24 0.805 0.778 0.742 0.011 0.901 0.048

Mean (SD)

(Continued)
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TABLE E6. Continued

Lead time AUC Sensitivity Specificity PPV NPV Cut-Off

Testing data with missing values

BARTm

�1 0.882 0.832 0.786 0.018 0.752 0.105

�2 0.859 0.772 0.805 0.026 0.731 0.112

�3 0.818 0.868 0.607 0.020 0.829 0.051

�4 0.836 0.784 0.774 0.025 0.757 0.104

�5 0.857 0.811 0.772 0.022 0.753 0.096

�6 0.859 0.903 0.667 0.013 0.803 0.066

�7 0.859 0.876 0.685 0.016 0.799 0.071

�8 0.840 0.733 0.815 0.029 0.735 0.119

�9 0.823 0.828 0.668 0.021 0.828 0.056

�10 0.827 0.759 0.745 0.027 0.798 0.096

�11 0.816 0.737 0.772 0.028 0.784 0.103

�12 0.820 0.828 0.640 0.022 0.839 0.049

�13 0.833 0.754 0.747 0.027 0.801 0.087

�14 0.832 0.890 0.616 0.014 0.846 0.052

�15 0.802 0.764 0.688 0.026 0.838 0.068

�16 0.820 0.750 0.749 0.023 0.824 0.079

�17 0.850 0.797 0.722 0.021 0.821 0.071

�18 0.845 0.883 0.650 0.013 0.842 0.048

�19 0.835 0.802 0.731 0.020 0.817 0.070

�20 0.825 0.783 0.737 0.021 0.825 0.077

�21 0.826 0.849 0.693 0.016 0.830 0.052

�22 0.844 0.839 0.681 0.016 0.846 0.057

�23 0.844 0.811 0.731 0.017 0.828 0.069

�24 0.829 0.809 0.713 0.018 0.839 0.056

Mean (SD)

Validation data with missing values

BARTm

�1 0.892 0.836 0.790 0.016 0.764 0.105

�2 0.872 0.819 0.770 0.018 0.784 0.097

�3 0.836 0.868 0.772 0.020 0.757 0.051

�4 0.855 0.839 0.713 0.017 0.818 0.072

�5 0.856 0.810 0.751 0.019 0.801 0.086

�6 0.864 0.814 0.779 0.180 0.781 0.112

�7 0.858 0.782 0.784 0.020 0.787 0.112

�8 0.844 0.810 0.739 0.019 0.813 0.102

�9 0.827 0.775 0.757 0.021 0.812 0.107

�10 0.820 0.714 0.797 0.024 0.803 0.116

�11 0.822 0.748 0.766 0.021 0.824 0.092

�12 0.836 0.699 0.821 0.023 0.798 0.109

�13 0.831 0.754 0.766 0.020 0.832 0.108

�14 0.832 0.746 0.773 0.019 0.837 0.100

�15 0.821 0.791 0.745 0.016 0.846 0.082

�16 0.819 0.817 0.703 0.015 0.864 0.078

�17 0.828 0.742 0.788 0.018 0.840 0.095

�18 0.831 0.720 0.827 0.018 0.818 0.120

�19 0.831 0.737 0.799 0.017 0.841 0.110

�20 0.823 0.796 0.729 0.014 0.869 0.076

�21 0.816 0.667 0.830 0.020 0.835 0.118

�22 0.831 0.794 0.737 0.013 0.872 0.075

�23 0.845 0.714 0.837 0.016 0.827 0.113

�24 0.815 0.722 0.793 0.015 0.867 0.080

Mean (SD)

AUC, Area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; BARTm, bootstrap aggregated regression trees ma-

chine; SD, standard deviation; AKI, acute kidney injury; ICU, intensive care unit.
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TABLEE7. Mean predicted probabilities for bothmodels for each lead time and actual proportion of patients with AKI, based on each experiment

Dataset Lead time

Mean predicted probability (SD)

AKI (%)Logistic Regression BARTm

Train (complete) �1 9.26 (19.48) 9.11 (14.52) 9.26

�2 8.78 (16.99) 8.70 (12.72) 8.78

�3 8.79 (16.29) 8.70 (12.54) 8.79

�4 8.79 (16.07) 8.71 (12.01) 8.79

�5 8.79 (16.38) 8.75 (12.67) 8.79

�6 8.87 (15.64) 8.83 (12.12) 8.87

�7 8.87 (15.78) 8.76 (12.16) 8.87

�8 8.68 (16.02) 8.71 (12.23) 8.68

�9 9.01 (16.31) 8.92 (13.12) 9.01

�10 8.78 (16.33) 8.75 (12.49) 8.78

�11 8.36 (15.73) 8.31 (12.57) 8.36

�12 8.14 (16.02) 8.11 (11.88) 8.14

�13 7.88 (14.73) 7.81 (10.68) 7.88

�14 7.90 (14.16) 7.91 (10.56) 7.90

�15 7.55 (13.65) 7.58 (10.48) 7.55

�16 7.69 (13.99) 7.73 (10.30) 7.69

�17 7.29 (13.40) 7.31 (9.65) 7.29

�18 7.18 (12.87) 7.22 (9.69) 7.18

�19 6.97 (13.30) 6.96 (9.75) 6.97

�20 5.13 (22.06) 7.17 (10.09) 7.18

�21 0.78 (8.80) 6.81 (10.27) 6.86

�22 7.03 (13.12) 7.02 (10.00) 7.03

�23 6.88 (13.62) 6.84 (10.17) 6.88

�24 6.33 (12.13) 6.39 (9.22) 6.33

Test (complete) �1 8.75 (19.32) 8.71 (13.72) 8.39

�2 8.69 (17.47) 8.28 (12.12) 9.37

�3 9.15 (17.29) 8.70 (12.54) 9.29

�4 9.19 (17.11) 8.61 (11.45) 9.29

�5 8.97 (16.90) 8.69 (11.67) 9.29

�6 9.40 (16.44) 8.60 (11.97) 9.05

�7 9.42 (16.53) 8.50 (11.43) 9.05

�8 8.64 (15.89) 8.52 (12.03) 9.15

�9 8.77 (16.17) 8.46 (11.81) 8.18

�10 8.96 (16.81) 8.53 (11.48) 8.44

�11 8.58 (16.41) 7.87 (9.98) 8.54

�12 7.19 (15.13) 7.19 (11.04) 8.31

�13 7.57 (13.62) 7.89 (10.54) 8.33

�14 7.57 (13.82) 7.63 (9.86) 7.78

�15 6.89 (12.11) 7.11 (9.49) 6.88

�16 6.86 (12.69) 7.21 (9.54) 7.48

�17 7.20 (13.70) 7.19 (9.30) 7.32

�18 6.96 (13.04) 6.92 (9.06) 7.58

�19 6.88 (13.14) 6.68 (9.63) 7.00

(Continued)
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TABLE E7. Continued

Dataset Lead time

Mean predicted probability (SD)

AKI (%)Logistic Regression BARTm

�20 4.17 (20.00) 7.16 (9.53) 7.01

�21 1.09 (10.37) 6.48 (9.46) 7.27

�22 6.84 (13.34) 6.77 (9.54) 6.77

�23 7.30 (15.21) 6.68 (8.73) 6.61

�24 6.62 (12.87) 6.18 (8.58) 6.81

Test (NA) �1 – 9.24 (13.76) 7.83

�2 – 8.48 (11.80) 8.51

�3 – 8.70 (12.54) 8.45

�4 – 9.20 (12.73) 8.45

�5 – 8.74 (12.07) 8.45

�6 – 8.84 (11.59) 8.29

�7 – 8.75 (11.50) 8.29

�8 – 8.50 (11.42) 8.34

�9 – 7.73 (11.19) 7.66

�10 – 9.00 (12.09) 7.83

�11 – 8.68 (11.84) 7.85

�12 – 7.41 (10.70) 7.69

�13 – 7.95 (10.25) 7.69

�14 – 7.55 (9.59) 7.29

�15 – 7.12 (8.40) 7.31

�16 – 7.03 (9.32) 6.69

�17 – 7.04 (9.03) 7.09

�18 – 6.73 (8.92) 6.93

�19 – 6.98 (9.37) 7.00

�20 – 7.42 (9.74) 6.65

�21 – 6.59 (9.48) 6.88

�22 – 7.03 (9.75) 6.48

�23 – 6.76 (9.59) 6.43

�24 – 5.99 (8.39) 6.39

Validation (complete) �1 5.68 (15.11) 7.32 (12.09) 5.77

�2 6.83 (15.30) 7.36 (10.72) 5.77

�3 7.98 (15.63) 8.03 (10.97) 5.70

�4 8.34 (15.23) 8.03 (10.63) 5.70

�5 8.32 (15.56) 7.81 (11.87) 5.70

�6 8.67 (15.71) 8.48 (11.07) 5.70

�7 8.30 (15.09) 8.04 (10.26) 5.63

�8 8.41 (15.50) 8.18 (11.09) 5.51

�9 7.84 (14.34) 8.30 (10.35) 5.52

�10 7.10 (14.45) 7.30 (10.31) 5.38

�11 7.13 (14.53) 7.15 (9.56) 5.18

�12 5.61 (12.41) 6.96 (10.39) 5.11

�13 8.62 (15.31) 7.71 (9.59) 5.04

�14 6.07 (12.11) 7.65 (9.23) 4.76

(Continued)
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TABLE E7. Continued

Dataset Lead time

Mean predicted probability (SD)

AKI (%)Logistic Regression BARTm

�15 7.12 (13.04) 7.15 (9.17) 4.69

�16 6.60 (12.83) 7.37 (9.60) 4.54

�17 6.33 (12.05) 5.97 (7.59) 4.25

�18 6.35 (12.22) 6.56 (8.02) 4.18

�19 6.63 (13.23) 6.06 (8.35) 4.11

�20 4.89 (21.57) 6.70 (8.50) 4.05

�21 1.38 (11.66) 6.12 (7.96) 3.98

�22 3.75 (10.24) 5.90 (8.02) 3.85

�23 5.14 (12.63) 6.05 (8.55) 3.81

�24 5.74 (11.34) 5.53 (7.53) 3.53

Validation (NA) �1 – 9.20 (14.11) 7.21

�2 – 8.59 (11.70) 7.21

�3 – 8.70 (12.74) 7.13

�4 – 8.40 (11.92) 7.09

�5 – 8.94 (12.62) 7.09

�6 – 9.21 (11.61) 7.05

�7 – 8.96 (11.14) 6.97

�8 – 9.68 (12.04) 6.89

�9 – 9.12 (11.78) 6.77

�10 – 8.05 (10.68) 6.54

�11 – 7.81 (10.43) 6.26

�12 – 7.25 (9.67) 6.10

�13 – 8.57 (10.32) 5.90

�14 – 8.02 (9.20) 5.57

�15 – 6.93 (7.85) 5.53

�16 – 7.85 (9.78) 5.41

�17 – 6.94 (8.53) 5.17

�18 – 7.20 (8.67) 5.09

�19 – 7.46 (9.41) 4.92

�20 – 7.30 (9.30) 4.88

�21 – 6.35 (8.76) 4.80

�22 – 6.69 (8.77) 4.63

�23 – 6.55 (8.96) 4.55

�24 – 5.65 (7.83) 4.22

SD, Standard deviation; AKI, acute kidney injury; BARTm, bootstrap aggregated regression trees machine.
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