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Climate and hydrologic hazards pose a threat to the distribution of watersheds’
water resources in time and space, necessitating planning for sustainable
resilience and adaptation. Hydrologic modelling has emerged as a potential
solution for understanding watershed responses to projected climate change,
and a prediction model that can deliver actionable information is necessary,
although it requires basin-scale observations to calibrate the model to reliably
predict basin-scale water resources hazards. Such luxury is not always tenable in
watersheds with inadequate ground-based observation. However, satellite-based
evapotranspiration (ET) data coupled with a machine learning feature selection as
a data refinement process has made integrated water balance modelling widely
regarded as a viable alternative for improving the capability of watershed
modelling processes in data-sparse regions. This study developed a convincing
hydrologic model framework to sufficiently calibrate and provide accurate
behavioural solutions for all model responses. The framework was applied to
four sub-basins that form the larger Lake Chad basin. The model results were
applied to assess the dynamic changes in projected blue and greenwater resource
sustainability in response to climate change in one of the sub-basins. Study
findings indicate that hydrologic fluxes can be simulated accurately with
varying degrees of acceptability, with R2 and NSE values in the range of
0.69–0.88 and 0.45–0.77 for calibration and 0.69–0.79 and 0.34–0.63 for
validation, respectively, and captured within a satisfactory uncertainty range of
P-factor and R-factor values of 0.68–0.93 and 0.73–1.31, respectively, in 83%,
67%, 85.7%, and 81.3% of the sub-watersheds based on multi-site simulation
despite distinct watershed morphology, although there are significant trade-offs
in parameter sensitivity. Whilst greenwater is the dominant freshwater component
across the basin relative to blue water, climate change may be a significant factor
influencing changes in the projected green water sustainability status, and the
combination of socioeconomic drivers and climate change may significantly
impact the projected blue water sustainability status across the basin.
Projected changes in the green and blue water sustainability status have
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shown that more than 50% of the watershed will become ecologically fragile. In
addition, the identified freshwater geographic sustainability hotspots may be
beyond restoration without adequate long-term river basin water resource plans.

KEYWORDS

data uncertainty, feature selection, integrated modelling, ungauged watershed, climate
change, water footprint, freshwater sustainability

1 Introduction

Water resource planning must find a solution to the issue of
achieving judicious and effective use of water, particularly in light of
the growing population, climate change, and depleting water
supplies (Novoa et al., 2019). Water is the cornerstone of
community development since it provides such a wide range of
ecological functions. This enables its efficient, fair, and sustainable
distribution in order to eradicate poverty, promote economic
development, and protect the environment (Hu et al., 2016).

The rate and amount of time required to store water in various
storage reservoirs, including surface and groundwater, seas,
atmosphere, snow, and ice, has been altered due to human use
(Keys et al., 2016). Consequently, attaining water sustainability,
which is defined as meeting everyone’s present water needs
without compromising the supply in the future while advancing
societal goals and preserving the environment, remains one of the
greatest difficulties worldwide (Hu et al., 2016; Chouchane et al.,
2018). Many administrative authorities have made the sustainable
management of water resources a top priority to ensure that all
residents and economic sectors have access to water sufficiently in
the right quality and quantity (Martinsen et al., 2019; Tortajada
et al., 2019). The sustainability of water in a basin can only be
achieved if it is possible to sustain ecosystems’ hydrological,
ecological, biological, and chemical processes while providing an
equitable and effective water supply over time (Pfister et al., 2009;
Wang et al., 2016). The water footprint (WF) concept addresses
these needs by providing an assessment of water resources that
accounts for natural variability and usage across sectors (Hejazi
et al., 2014).

A multi-dimensional indicator called the water footprint (WF)
reveals the characteristics of anthropogenic stresses on water supplies
and the amount of freshwater consumed. This offers insights intowater-
related challenges, aids in understanding present patterns of water
allocation across different river basin sectors (Muratoglu et al., 2022),
and enables decision-makers to take advantage of the substantial data
on water use supplied by the WF technique by improving water
management, hotspot identification, and the development of
appropriate responses to changes (Pellicer-Martínez and Martínez-
Paz, 2018). The approach is excellent for comparing water resources
across different administrative boundaries relative to their quantity and
quality (Li et al., 2018).

Blue and green water are the two categories into which the
freshwater cycle can be separated based on the hydrological
processes and types of storage involved. Green water is the
portion of precipitation that seeps into the ground and changes
into soil moisture or momentarily stays on top of the ground or
vegetation and, subsequently, evaporates and transpires back into
the atmosphere. Blue water is the term for precipitation that

accumulates in aquifers, lakes, and reservoirs and flows through
or below the land surface (Rockström et al., 2009; Rodrigues et al.,
2014). The consumption of both blue and green water by various
sectors is included in the water footprint concept, according to
Hoekstra et al. (2011). The concept indicates that the green water
footprint (GWF) represents the estimated amount of green water
required and used by plants (i.e., evapotranspiration (ET) from crop
and pastureland), which is frequently referred to as productive
vapour flows), whereas the blue water footprint represents the
consumptive use of freshwater water resources from rivers, lakes,
and overland flow.

Hydrologic models created for various time and spatial scales
have started to become more complicated, and as a result, the use of
WF as an indicator of sustainability is essential in order to determine
environmental water consumption restrictions (Shrestha et al.,
2017). This indicator is particularly essential in regions
susceptible to water variabilities, such as basins in Mediterranean
and tropical climates, where the demand for water for irrigation rises
during decreased precipitation, limiting runoff and downstream
flows (Novoa et al., 2019).

Previous studies have demonstrated that extreme hydrological
events are rising in terms of frequency and severity due to the
deepening of global climate change, creating new problems for
managing water resources and the regional water cycle (Vicente-
Serrano et al., 2017; Tabari, 2020). Global attention has been drawn
to changes in climate patterns and their possible effects on water
resources. However, there are uncertainties in future climate change
estimates (e.g., changes in temperature and precipitation), which makes
it difficult to decide on appropriate adaptation measures by planning
authorities (Dessai and Hulme, 2007; Gosling and Arnell, 2016). The
main sources of these uncertainties are changes in the initialisations and
parameterisations used in climate models to explain physical processes
as well as downscaling methods (Zhuang et al., 2016). It has been
posited that water resources are vulnerable to these uncertainties, and it
is challenging to anticipate with precision in a changing environment.
Therefore, it is crucial to create water management plans in an
environment that is complex and uncertain during a period of
global climate change (Wang et al., 2016).

Multiple climate models have been used in an evaluation
framework to find effective ways to manage basin water
resources under the effects of climate change; the results showed
that these plans are extremely vulnerable to climatic changes. Some
conclusions drawn from other studies revealed that water resources
in various regions are sensitive to climate change, and the relative
influence varies significantly around the world. Accumulating
evidence reveals that the sources and types of uncertainties affect
the selection of adaption strategies (Dessai and Hulme, 2007; Arnell
et al., 2011; Refsgaard et al., 2013; Cai et al., 2015; Tzabiras et al.,
2016; Sun et al., 2017). Identification of effective corporate strategies
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and policy actions requires uncertainty analysis (e.g., climate
adaptation, resilience, and mitigation measures). When
stakeholders, decision-makers, and researchers are aware of the
sources, types, and characteristics of uncertainty, their trust in
scientific analysis is increased (Gabbert et al., 2010; Kirchner
et al., 2021). Accounting for uncertainty is typically necessary for
the scientific publishing of model-generated quantitative
assessments and is regarded as excellent modeling practice
(Troost et al., 2015).

Observational data are the foundation of our understanding of
environmental systems, but their scarcity and unpredictability limit
their study and practical applications. The accuracy of atmospheric data
is crucial for the validity of hydro-meteorological and climatological
investigations, among other factors (Zandler et al., 2019). The flaws in
the input rainfall data utilised might be reduced or amplified by the
non-linearity of hydrological modelling processes, which can lead to a
good or bad depiction of the hydrological responses and, consequently,
lead to inadequate water resource policy and adaptation measures
(Maggioni and Massari, 2018). In order to improve the
spatiotemporal process representation, distributed observational
datasets must be used to inform and assess distributed hydrological
models, created to enable large watershed forecasts (Baroni et al., 2019;
Ocio et al., 2019). In this instance, determining whether meteorological
data are adequate and coherent to accurately reproduce basin-scale
hydrology is a requirement before choosing data for managing water
resources (Laiti et al., 2018). Integrated modelling is useful in many
areas of study on global climate change, and in this article, we define
integrated modelling as an interdisciplinary technique of linking
accurately curated empirical data and mathematical models that are
founded on disciplinary notions to present amore thorough and precise
picture of interactions between people and their environment (Moss
et al., 2010; Laniak et al., 2013).

Uncertainty can manifest and build up across any chosenmodelling
framework, which makes it a significant problem for integrated
modelling. Uncertainty is mostly dealt with in two ways using
existing integrated modelling frameworks (IMFs). The first is by
using scenarios to measure the uncertainty of future changes, e.g.,
various alternative descriptions of how the future might look are
provided, which are internally consistent with projections (Reilly and
Willenbockel, 2010; Mitter et al., 2019). Second, contributions from
research teams of how outputs of hydrologic models are compared with
observations defined based on recommended key performance
indicators across the scientific community and the techniques are
utilised to address uncertainty due to the application of various
alternative data with designed models (Elliott et al., 2014; Folberth
et al., 2019). The full identification and tracking of uncertainties in
integrated modelling, i.e., the manner in which uncertainty spreads
among climate models as applied to hydrologic modelling in data-sparse
regions, has received very little attention (Holzkämper et al., 2015;
Karner et al., 2019; Mitter and Schmid, 2019). Such analysis was
previously acknowledged as a serious research quest in the early
phases of integrated modelling, particularly for the propagation of
uncertainty from land use optimisation models to the construction of
hydrologic models.

In connection with this effort, numerous studies that provide a
unique methodology to define and understand the various hydrologic
model processes and the relationships between the various hydrological
variables are important (Bierkens et al., 2015). It was also emphasised

that one of the major scientific difficulties is continually refining the
depiction of hydrologic model processes in the model design (Clark
et al., 2015). The hydrologic community has agreed on the necessity for
additional datasets along with associated signature measurements to
enhance the portrayal of the key physical model processes (Clark et al.,
2016). The fact that climate models still struggle to accurately replicate
important climate processes is of greater concern. While precipitation
estimates are widely variable, temperature projections are similar across
all climate models and are thought to be more reliable, and future
hydro-meteorological conditions can be uncertainly predicted because
of the significant degree of variability in general circulation model
(GCM) outputs.

In order to create an integrated modelling framework, it is often
necessary to work on individual model modifications, model
connections that are improved, and the application of the integrated
modelling framework to particular research issues, whose outcome can
be relied upon for the basin-scale assessment of water security,
sustainability, and other related applications to achieve better water
policy decisions in response to projected climate change. For a
meaningful comprehension of basin weather patterns and their
future trends based on feature extraction by training the historical
dataset using artificial intelligence to track water resource indicators, a
prediction model that can deliver actionable information is necessary
(Kratzert et al., 2018; Ali et al., 2020). In this study, we created a
convincing framework or strategy to deal with the difficulties of
modelling in areas with little or sparse data, appropriate ways to use
alternative research datasets to evaluate models, and considerations for
data uncertainty and incompatibility between models and
measurements. The framework integrates a machine learning
technique, Boruta random forest (BRF) optimiser, and a hydrologic
model, Soil and Water Assessment Tool (SWAT), to refine the data
input process mechanism for the creation of a reliable model for basin
water resource assessment. The methodology will be applied to four
sub-watersheds that encompass the Lake Chad hydrologic basin in Sub-
Saharan Africa, with variable morphological properties.

The objective is to provide a novel pathway to increase transparency
and improve uncertainty communication of long-term water balance
models in an easily understood way without compromising scientific
accuracy in data-sparse watersheds, which have not been adequately
studied. This idea seeks to be general and adaptable enough within the
allowable uncertainty band to permit its use in other basins with
comparable modelling problems. Finally, the integrated model
framework will provide a crucial link between hydrology and human
activities at local watershed levels to assess and monitor the implications
and dynamic changes from baseline, the projected blue and green water
resources and their sustainability, in response to changes in climate at
annual and monthly timescales in the Yobe-Komadugu sub-watershed.

2 Case study area and data

2.1 Case study area

The Lake Chad basin, with an estimated area of over 2,500,000 km2,
is one of the largest endorheic basins in the world (Coe and Foley, 2001;
Gao et al., 2011). It is located between the Sahara and the Sudano-
Sahelian areas of West Africa, between latitudes of 5.2⁰–25.3⁰ N and
longitudes of 6.9⁰–24.5⁰ E (Figure 1). The basin receives the majority of
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its annual rainfall between July and September. The region is renowned
for being particularly susceptible to climate change, which frequently
results in severe drought and water shortage circumstances (Ndehedehe
et al., 2018), and the lake is a freshwater source for livestock grazing, fish
farming, and other socioeconomic activities (Buma et al., 2016). The
major contributors of discharge to the lake are the Chari River (~90%),
with an annual streamflow of 860 m3/s between 1960 and 2013, and the
Yobe River (~2–5%), with an annual streamflow of 18 m3/s between
1961 and 2013 (Lemoalle, 2014). Other rivers that contribute supplies of
between 1% and 2% are Gubio, Yedseram, Ngadda, and El-Beid.
However, there are a few rivers like the Batha River and other rivers
situated in the Saharan zone that do not have an outlet to Lake Chad

(Figure 1). The precipitation in the basin varies geographically and
seasonally between <100 and 1,500 mm/yr (Nkiaka et al., 2018).

2.2 Dataset description

2.2.1 MODIS evapotranspiration
The state of observed streamflow data is quite poor and inadequate,

withmanymissing data points, which undermines the confidence in the
output of hydrologic modelling results temporally and spatially in the
entire basin. Alternatively, the availability of high spatial variability of
satellite-derived land surfaceMODIS-NASAEvapotranspiration data at

FIGURE 1
Lake Chad basin showing sub-basins, lake, major river networks, and MODIS Evapotranspiration (ET) data points.
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a monthly timescale was extracted by overlaying the 1.0 × 1.0 grids with
the basin map. A total of 100 observation points (Figure 1) were
generated and aggregated to develop 59 simulation sub-basin points
across the entire watershed, as recommended by Abbaspour et al.
(2019), and the data were divided into 1983–1998 for calibration and
1999–2006 for validation of the models. A more accurate hydrologic
model simulation may be obtained by taking into account the
geographical distribution of the AET throughout the watershed. The
MODIS-NASA ET data also takes into account factors like plant
transpiration and the evaporation of soil moisture (Autovino et al.,
2016).

2.2.2 Digital elevation model and soil, land use, and
land cover data

The watershed was delineated using the ArcSWAT program in the
ArcMap 10.8 environment using the topography information from the
basin that was collected from the ASTER Global Digital Elevation
Model version 3, with a spatial resolution of 30 m. The soil data were
obtained from the Harmonized World Soil Database (HWSD)
(Table 1), with a 1 km resolution, founded by the Food and
Agricultural Organization (FAO) and notable research centres
(Abbaspour et al., 2019). Land use and land cover data were
obtained from the European Space Agency (Table 1), which was an

TABLE 1 Input data required for hydrologic model development.

Data used Description Resolution Source

Topography Digital elevation model 30 m × 30 m ASTER Global Digital Elevation Model V003

Land use data GlobeCover land use map 5⁰ × 5⁰ GlobeCover 2009

Soil data Digital soil map 1 km HWSD v1.12

Meteorological data Precipitation Daily CMIP6 esgf project

Maximum temperature

Minimum temperature

ET data Actual evapotranspiration mm/month MODIS-NASA Data

FIGURE 2
Description of morphological data in the study: (A) digital elevationmodel andmeteorological points, (B) soil types, and (C) land use and cover data.
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initiative that was developed from global composite land cover maps
using observations from the 300-m MERIS sensor onboard the
ENVISAT satellite mission. The GlobeCover map contains 23 land
cover types (Bontemps et al., 2011). The description, resolution, and
data source are shown in Table 1, and the links to the source can be
found in Abbaspour et al. (2019).

2.2.3 Climate data
The gridded precipitation and temperature data used here were

recommended from a previous study by Lawal et al. (2021) at a daily
time-step between 1979 and 2011 and were extracted at a 1° × 1° grid

resolution for the pre-processing of general circulation models for
baseline (1979–2011) and projected (2021–2080) climate change
scenario data considering two shared socioeconomic pathways
based on carbon dioxide emission scenarios SSP2(4.5) and
SSP5(8.5), supported by the World Climate Research Programme
in the ESGF database, and the data are available and can be extracted
from the source provided in Table 1.

3 Research methodology

3.1 Pre-processing of input data

The dataset required for the integrated model framework
needs to be checked and prepared to fit the model specifications

FIGURE 3
Schematic overview of the integrated SWAT and BRF modelling framework (IMF) for reliable water balance modelling in data-sparse regions.

TABLE 2 SWAT model basin parametrisation.

Basin Area (km2) No of sub-basins No of HRUs

Yobe-Komadugu 145,908.9 30 160

Magay–Ngadda 84,793.1 27 171

Chari–Logone 739,129.4 91 572

Bodou–Dillia 1,327,055 167 799

Total 2,296,886 315 1702

The bold values are the sum of total basin area, sub-basin and hydrologic response unit

(HRU) of the entire basin respectively.

TABLE 3 Sectoral water use information in Chad and Nigeria.

Sector Chad (%) Nigeria (%)

Domestic use 21 58

Industrial use 0 4

Agricultural use 79 39

Source: GWP (2013).
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for efficient and accurate output of the model hydrologic
variables. The primary input data required are pre-processed
to depict the status of the watershed land management and
vegetation properties.

3.1.1 Climate models, downscaling, and bias
correction

The general circulation models (GCMs) used in this assessment
were the ensemble of four (MPI-ESM1.2-LR, INM-CM4.8, MRI-
ESM2.0, and INM-CM5.0) Coupled Model Intercomparison Project
Phase 6 (CMIP6) models and were extracted at 210 data points
(Figure 2A) for the historical (1979–2011) and projected climate
change scenarios (2021–2080) for two shared socioeconomic
pathways (SSP4.5 and SSP8.5) corresponding to total radiative
forcings of 4.5 and 8.5 W/m2 (approximately equal to mean CO2

emission concentrations of 650 and 1,370 ppm), respectively, in
2100. Before predicting the future climate, it was necessary tomodify
the climate model’s outputs because they contain biases. The delta
and quantile mapping methods were used to downscale and correct
the known biases in the precipitation and temperature data,
respectively, based on a study conducted in the basin using CPC
and PGF gridded data in line with study requirements (Lawal et al.,
2023). The methods are non-parametric and corrected the predicted
climate data based on point-wise empirical cumulative distribution
functions. The downscaling strategies were found to significantly

improve the forms of the linked frequency distributions and
minimise systematic biases and indices of extreme events by
approximately one order of magnitude (Themeßl et al., 2012).

3.1.2 Land use, soil, and DEM data
The soil characteristics for the entire watershed were extracted

from the world HWSD dataset and include two soil profiles
(0–30 cm and 30–100 cm depths), the available water capacity,
and the bulk density, along with the majority of the soil
information needed for the SWAT model. The majority of the
primary soil classifications include clay, loam, sand, clay–loam,
sandy-clay, loamy-sand, sandy-loam, sandy-clay-loam, and rock
that make up the watershed (Figure 2B). The watershed’s land
use and land cover data were extracted to match the sub-
watershed extent and categorised into six different land uses that
work with the SWAT model (Figure 2C), including artificial area
(URMD) 0.013%, barren land (BARR) 52.873%, agricultural land
(AGRL) 3.743%, forest land (FRST) 15.636%, vegetation (PAST)
27.842%, and water bodies (WATR) 0.166%. In order to extract the
topographic features of the terrain, which are a necessity for
hydrological research, basin elevation information is crucial. The
30 m spatial resolution digital elevation model (DEM) was extracted
(Figure 2A) and transformed into a Universal Transverse Mercator
system of coordinate representation to aid the delineation of the
watershed boundary.

TABLE 4 Model sensitive parameters, ranges, and best-fitted values at sub-watersheds.

Parameter name Sub-basin fitted parameter values Parameter range

Yobe-Komadugu Magay–Ngadda Chari–Logone Bodou–Dillia

r__CN2.mgt −0.01** 0.01** −0.15* −0.02** −0.2–0.2

v__GW_DELAY.gw 88.66** 182.56 63.28 88.66** 0.0–500.0

v__ALPHA_BF.gw 0.84* 0.50 0.71 0.84* 0.0–1.0

r__GWQMN.gw −1.37 0.04 −0.38 −1.37 0.0–5,000

v__GW_REVAP.gw 0.19 0.10 0.05 0.12 0.02–0.2

v__REVAPMN.gw 199.36 - - - 0.0–500

r__RCHRG_DP.gw 0.80 - - - 0.0–1.0

r__SOL_Z().sol −0.03 - - - 0.0–3,500

v__SOL_BD().sol 1.08** 0.60** 1.12** 1.08** 0.9–2.50

v__SOL_AWC().sol 0.58 0.58 0.42 0.39 0.0–1.0

v__SOL_K().sol 285.93** 4.36* 1,435.35** 285.93** 0.0–2000

v__CH_N2.rte 0.22 0.18 0.27* 0.17 −0.01–0.3

v__CH_K2.rte 367.65* 260.33 387.82 367.65* −0.01–500

v__ALPHA_BNK.rte 0.86 0.32 0.32 0.86 0.0–1.0

r__SLSUBBSN.hru 0.21* −0.01 0.09** 0.21* 10.0–150

v__OV_N.hru 0.05 0.05** 0.02 0.05 0.01–1.0

v__ESCO.hru 0.92** 0.27** 0.52** 0.92** 0.0–1.0

v__EPCO.hru 0.24 0.14** 0.22** 0.24 0.0–1.0

r__HRU_SLP.hru 0.05 0.05 0.27** −0.02** 0.0–1.0
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3.2 Integrated modelling framework

We combined a machine learning optimiser (BRF) and SWAT
model to refine the input process of the baseline and projected
climate data to reduce input uncertainties in the modelling process
(i.e., technical uncertainties) to enhance the simulation process and
improve the confidence in the modelling output for the reliable
assessment of basin-scale hydrologic features. This approach is
necessary to further lower the danger of misinterpreting climate
signals and improve adaptation assessments. Our goal is to create an
integrated modelling framework that satisfies these criteria for
evaluating the effects of anticipated regional water balance
changes brought on by climate-projected scenarios on the
sustainability of green and blue water in data-sparse regions

under uncertainty. The two integrated processes are discussed
briefly in the following sub-section, and the schematic overview
is shown in Figure 3.

3.2.1 Boruta random forest optimizer
The Boruta feature selection method was created as a wrapper

for the random forest algorithm, which is used to identify important
features of the predictors. Every input predictor’s Z-score
distribution relative to the shadow property is calculated. The
distribution of the Z-score metrics establishes the key
components of the predictors (Kursa and Rudnicki, 2010). It
involves developing a stepwise model using a minimal-optimal
feature selection technique that rates the salient features of the
model and the residual according to the optimization-determined
factors (Kursa, 2016). It is an effective feature selection technique
that makes it easier to categorize high-dimensional data.
Information gain is used to gauge each feature’s contribution and
establish its association using a novel extension of balanced
information gain. This is very significant when analyzing a vast
amount of data to achieve high generalization accuracy.

The methodology of the optimization process of the input
dataset is discussed in Lawal et al. (2023). The proposed strategy
is required to address potential shortcomings of the conventional
modelling methodologies, such as their incapacity to analyze

FIGURE 4
Comparison of the observed and simulated results (95% prediction uncertainty band) of actual evapotranspiration between 1983 and 2006) in the
basin. (A) Yobe-Komadugu watershed, (B) Magay–Ngadda watershed, (C) Chari–Logone watershed, and (D) Bodou–Dillia Watershed.

TABLE 5 Median of the projected changes in annual precipitation and
temperature in the Yobe-Komadugu watershed.

Variable Precipitation (mm) Temperature (⁰C)

Scenarios SSP2(4.5) SSP5(8.5) SSP2(4.5) SSP5(8.5)

2021–2050 29.89 41.32 0.69 0.89

2051–2080 31.53 56.62 1.17 1.78
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stochastic aspects, complicated variable input features, and
interrelated climatic and hydrological properties that restrict the
process’ ability to address crucial temporal behaviour (Adamowski
et al., 2012). As demonstrated in Lawal et al. (2023), the BRF feature
selection technique has been proven to retain the climatic signals by
filtering out redundant downscaled GCMs that may create a dip in
the capability of selected ensembles developed to accurately
represent basin-scale hydrologic features like extreme events
(return period of flood and drought) and their trends and
magnitudes. Thus, integrating the feature extraction algorithms
with SWAT modelling may provide an improved output of
calibrated and validated water balance models for a reliable and
accurate prediction of baseline and projected hydrologic features in
data-sparse watersheds for water security assessment.

3.2.2 SWAT hydrologic model
The model is a semi-distributed and continuous time-step

hydrological model known as SWAT. The model is utilised to
study water quality (sediment load and nutrient flow), water
quantity (streamflow, evapotranspiration, water yield, aquifer

recharge, etc.), and crop growth processes in different watersheds
(Veettil and Mishra, 2018; Gesualdo et al., 2019). Surface runoff in
the model is generated by the use of the SCS curve number method,
and ET is estimated by various approaches based on the source of the
data and basin conditions, such as the Priestley–Taylor,
Penman–Monteith, or Hargreaves methods. All flow variables are
evaluated using the mass balance equation of the model system
(Swain et al., 2020). The water balance equation conceptualises
SWAT’s simulation of the hydrological processes as

SWt � SWo +∑t
i�0

Pi − Qi − ETi − Gi − Ri( ), (1)

where SWt is the residual water content in the soil (mm), SWo is
the initial soil water content, t is the time in days, Pi denotes
precipitation, Qi denotes surface runoff, ETi denotes
evapotranspiration, Gi is the subsurface flow from the soil profile,
and Ri is the return flow on the ith day all in mm.

SWAT primarily analyses each hydrologic response unit (HRU),
which is a division of the sub-basin with similar groups of soil and
vegetation types, to estimate the water availability at each sub-main

FIGURE 5
Delineated Yobe-Komadugu watershed with sub-basin locations.
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basin’s channel for a particular time phase. To regulate the flow of
water, the water is subsequently channelled to the basin exit via the
river and subsurface systems. SWAT’s model optimisation process
and analysis are often performed using SWAT-CUP or calibration
and uncertainty programs (Abbaspour et al., 2015). The Sequential
Uncertainty Fitting version 2 (SUFI-2) tool, an optimisation
algorithm based on stochastic procedures within the SWAT-CUP
interface, was utilised for adjusting independent parameter sets by
Latin hypercube sampling (LHS). The interface used global or one-
factor-at-a-time sensitivity analysis during calibration and
validation. The model performance was evaluated by the
statistical metrics coefficient of determination (R2) and
Nash–Sutcliffe efficiency coefficient (NSE), whose equations are
as follows:

R2 �
∑n
i�1

x − �x( ) yi − �y( )[ ]
2

∑n
i�1

xi − �x( )2∑n
i�1

yi − �y( )2, (2)

NSE �
∑n
i�1

xi − �x( )2 − ∑n
i�1

yi − xi( )2
∑n
i�1

xi − �x( )2
, (3)

where �x is the observed mean value, xi is the value of the ith
observation, yi is the modelled value of the ith observation, �y is the
mean of the simulated model values, and n is the total number of
sample sets of the observation.

3.3 Integrated model setup and calibration,
validation, and uncertainty analysis

3.3.1 Integrated model simulation
The model was set up by importing the DEM to the ArcSWAT

interface, and the watershed boundary was delineated. However, the
basin was divided into four major watersheds based on the climatic
zones: the Yobe-Komadugu, Magay–Ngadda, Chari–Logone, and
Bodou–Dillia sub-basins (Figure 1). The main river networks and
tributaries were generated based on a threshold drainage area of
3,000 km2, and all were connected to Lake Chad. The HRUs’
adjusted threshold of soil type, land use, and slope were set at
15% to fairly retain the characteristics of the land use features and
slope classes of 0%–2%, 2%–8%, 8%–15%, and >15%. The
catchment was discretised into 315 sub-basins, with a sub-
division of 1,702 HRUs (Table 2).

FIGURE 6
Changes in the spatial distribution of annual green water flow in the Yobe-Komadugu watershed.
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The Boruta random forest filter was integrated to optimise the
climate dataset used in this study. Initially, 16 GCM datasets at a daily
time-step were parsed through the algorithms by utilising the observed
gridded and GCM datasets as the target and dependent features,
respectively, at the 210 grid points considered, to screen and extract
the significant input features (GCMs). The optimisation process
(i.e., dependent and target) features are considered to be statistically
significant if the lagged values delay them. All input predictors’ Z-scores
are computed by the algorithm, and the distribution defines the shadow
characteristics derived from the target variable. At each grid point, an
input feature is deemed important if and only if the feature importance
score (Z-score) is greater than the shadow attributes generated from the
target feature after 500 iterations.

The ensemble of the four best GCMs at each grid point was
formed for both baseline 1979–2011 and the projected scenarios
SSP2(4.5) and SSP5(8.5) at two-time slices of 2021–2050 and
2051–2080 and integrated into the hydrologic model. The
optimisation process is important to screen through antecedent

lagged memories within the datasets (GCM inputs) after the
application of the algorithms to potentially correlate the time
series arising from meteorological factors without necessarily
misrepresenting the basin climate features. Owing to the lack of
observation data, like wind speed, solar radiation, relative humidity,
and reservoir operation data, default model values were maintained,
and the influence of the reservoir was neglected. The Hargreaves
temperature-based approach was set up within the model in the
simulation of the evapotranspiration variable to prevent the
influence of the aforementioned weather data in the ET simulation.

3.3.2 Model calibration, validation, and uncertainty
analysis

The four watershed models were optimised using SUFI-2
algorithms against the observed ET data extracted at 100 points and
reaggregated to form 59 test points based on the delineated watershed
boundaries and with a balanced spatial distribution that covers the
entire basin to increase confidence in the model output. The primary

FIGURE 7
Changes in the temporal distribution of mean monthly green water flow during (A) 2021–2050 and (B) 2051–2080 in the Yobe-Komadugu
watershed.
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objective was to identify sensitive model parameters in the watershed
that controls the basin hydrology. Preselection of sensitive parameters
was performed in accordance with the recommendation by Abbaspour
et al. (2017), Jiang et al. (2020), and López et al. (2017), and a one-
parameter-at-a-time sensitivity analysis using five simulation runs was
conducted. The observed ET data were sub-divided for calibration and
validation at a point having a homogeneous representation of ET
characteristics capturing wet, moderate, and dry years across the
available data period. The sensitivity analysis was used to assess the
statistical significance of the model parameters based on the t-stat and
p-value analysed.

The uncertainty in the simulation was estimated by adjusting the
model parameters determined at 97.5% and 2.5% levels of
confidence. The integrated model capability was determined by
the efficiency criteria in Eqs (2) and (3), and the uncertainty
range was quantified by the P-factor and R-factor. The P-factor
indicates the percentage of observed data enclosed within the 95PPU
band, and the R-factor is the ratio of the average thickness of the
95PPU band to the standard deviation of the observed and simulated
data. The optimum values of 1 and 0 indicated a perfect model. The
analysis was conducted for the period 1982–1999 for calibration and
2000–2006 for validation. The model results of the calibrated and
validated ET and the most sensitive parameter for each watershed
are presented and explained in Section 4.

3.4 Assessment of water footprint
environmental sustainability

The output of the hydrologic model was used to evaluate the
impact of climate change on spatial and temporal variations in green
and blue water footprint environmental sustainability of the Yobe-
Komadugu watershed. The watershed is dominated by agricultural
land and situated within the two-climate extreme of the basin. The
sustainability index (Supporting Material) is a summary index that
assesses the sustainability of water resource systems (da Cunha e
Silva et al., 2022). It can be used to calculate the sustainability for
water consumers and determine changes in sustainability by
comparing the index among various suggested water policies (de
O. Vieira and Sandoval-Solis, 2018). The sustainability index will
help decision-makers to highlight policies that will maintain or
enhance the basin’s desired future water management characteristics
(Sandoval-Solis et al., 2011).

Geographic hotspots that lead to water resource conflict were
identified by defining the environmental sustainability of blue and
green water at the basin size in relation to freshwater provision levels
(threshold available water for human use). To evaluate the
environmental sustainability, we used a sustainability index
(Supporting Material), which compared specific sub-basin WF to
its corresponding water availability (WA) in terms of the water

FIGURE 8
Changes in the spatial distribution of green water storage in the Yobe-Komadugu watershed.
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footprint concept, as demonstrated in Liu et al. (2020) based on the
following equation:

SIi,jblue � 1 − WFi,j
blue

WAi,j
blue

, (4)

SIi,jgreen � 1 − WFi,j
green

WAi,j
green

. (5)

Here, SIi,jblue and SIi,jgreen represent the indices that define watershed
blue and green water environmental sustainability in sub-basin i at
time j; WFblue, WFgreen, WAblue, and WAgreen represent blue and
green water footprint and availability, respectively. When the blue
and green water footprints exceed the availability, i.e., (SIi,jblue < 0)
and (SIi,jgreen < 0), then the water footprint is unsustainable in the
sub-basin because human water usage contravenes the needs of
ecosystems and environmental flow regulations (Hoekstra et al.,
2011). Here, we categorize the green and blue water sustainability
thresholds into extremely (ES) (0.75≤ SI≤ 1), highly (HS)
(0.5≤ SI< 0.75), and moderately (MS) (0.0≤ SI< 0.5) sustainable
indices, which are referred to as viable water security points, and

extremely (EU) (SI< − 1), highly (HU) (−1≤ SI< − 0.5), and
moderately (MU) (−0.5≤ SI< 0.0) unsustainable indices, which
are referred to and identified as high-, medium-, and low-risk
geographic water security hotspots, respectively.

3.4.1 Blue water footprint and availability
assessment

Blue water is determined from the output of the modelling
framework (Figure 3). Blue water is the sum of groundwater storage
and water yield (WYLD), referred to as blue water flow (BWF). The
water yield (WYLD) defines the threshold amount of water that
leaves the HRU and enters the main channel, and groundwater
storage is the difference between aquifer recharge (GW_RCHG) and
the main channel flow (GW-Q) (Rodrigues et al., 2014). The basin
blue water security is evaluated by the sustainability indicators in
terms of the blue water footprint or water abstraction restriction
based on satisfying absolute environmental demand, i.e., the concept
of both abstraction (demand) and consumption (withdrawal minus
return flow). The blue water footprints were referred to as water
appropriated or consumed by different sectors at the river basin

FIGURE 9
Changes in the temporal distribution of the mean monthly green water storage during (A) 2021–2050 and (B) 2051–2080 in the Yobe-Komadugu
watershed.
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scale, and the spatial distribution of water uses was determined by
sectoral water demand information (Table 3), 1-km gridded world
population density (CIESIN) data for baseline and projected future
periods consistent with the CO2 emission scenarios related to the
middle of the road (SSP2) and fossil-fuelled development (SSP5)
available at http://sedac.ciesin.columbia.edu/gpw (Balk et al., 2006;
Jones and O’Neill, 2016), and a conservative value of 92 L/capita/day
was used to quantify absolute basic water consumption for the
domestic blue water footprint to meet the minimum target during
stringent water restrictions (Crouch et al., 2021). This concept was
adopted here and can be applied to basins where actual sectoral
water demand information cannot be established or is inadequate
for long-term water security assessment at the basin scale.

The basin’s annual blue water footprint was determined based
on the following equation:

WFi,j
blue � ∑n

i�1
365CiAbPdQw × 1.15741 × 10−8 m3/s( ), (6)

whereCi is the proportion of sectoral water use,Ab is the area of the
sub-basin (km2),Pd denotes the long-termmean population density per
square km,Qw is the per capita water use (L/capita/day), and n denotes
the number of sectors utilising the freshwater resources. However,

owing to inadequate data, monthly variations were not accounted for in
the assessment of blue water sustainability at a monthly scale.

The blue water availability was estimated as proposed in Hoekstra
et al. (2011), where WAblue was determined by considering the
proportion of safe natural runoff (streamflow) that is available for
consumptive use at each sub-basin, as shown in Eq. 7.

WAi,j
blue � Qi,j − EFRi,j, (7)

where Q represents the long-term sub-basin natural runoff
(streamflow) (m3/s) and EFR is the environmental flow
requirement to maintain a healthy river ecosystem. In this case,
EFR was estimated using the presumed standard method proposed
in Richter et al. (2012), stating that 20% of the long-term mean
monthly natural runoff can be made available and considered
appropriate for withdrawal.

EFRi,j � 0.8Qmean i,j( ). (8)

3.4.2 Green water footprint and availability
assessment

Green water has two components defined as green water flow
(withdrawal) and green water storage (availability). According to the

FIGURE 10
Changes in the spatial distribution of blue water flow in the Yobe-Komadugu watershed.
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HRU output of the SWAT model, the green water withdrawal
represents actual evapotranspiration and is defined as the green
water footprint (Rodrigues et al., 2014; Veettil and Mishra, 2016).
The amount of soil moisture or green water storage (GWS) that can
support crop development and soil evapotranspiration, which
represents the original soil water (SW) content, is referred to as
“green water availability.” It was acquired from the output of the
SWAT model and applied to the water sustainability assessment
(Abbaspour et al., 2015; Veettil and Mishra, 2018).

4 Results

4.1 Calibration and validation of the
integrated model

The model optimisation process is quite challenging and, to a
certain extent, subjective in complex hydrology, especially in a
region with inadequate multi-variable observed data. We
therefore aim to produce a model whose simulation reflects the
natural conditions of the watershed. As a first step, we integrated
the Boruta random forest feature selection approach as an
interface to assess and filter out redundant downscaled GCM
data across the 210 selected grid points of the entire watershed.
According to Lawal et al. (2023), this procedure was required to

improve and preserve the internal variability of climate data
signals that may be affected by reparameterisation to utilise the
right number of GCM ensembles capable of evaluating the
complex interactions within hydrologic models and ensure all
uncertainty (conceptual model, input data, and parameters)
ranges are mapped onto and bracketed by most of the
observed data within the accepted range of uncertainty
(Abbaspour et al., 2007), for an accurate understanding of
long-term changes in baseline and projected watershed
hydrology, especially in data-sparse and climate-sensitive
regions, which are not adequately studied.

The one-at-a-time sensitivity analysis adopted for the
preselection of sensitive model parameters was relied on here,
partly due to the use of different observed data for calibration
and validation processes from previous hydrologic studies of
watersheds with similar features around the world (Abbaspour
et al., 2017; 2015; López et al., 2017; Jiang et al., 2020), variations
in watershed features, and a homogeneous representation of the
evapotranspiration characteristics capturing wet, moderate, and dry
years across the available data period. The built-in sensitivity
analysis tool utilised algorithms (SUFI-2) in SWAT-CUP and
identified 19 parameters in the four sub-watersheds analysed,
with different levels of sensitivities outlined in Table 4, and this
may have alluded to the variations in land use and land cover and
terrain and slope features across the watershed.

FIGURE 11
Changes in the temporal distribution of the mean monthly blue water flow during (A) 2021–2050 and (B) 2051–2080 in the Yobe-Komadugu
watershed.
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The result of the model global sensitivity analysis of the
calibration process across the four sub-watersheds analysed
indicated that the combination of the parameters rendered some
less sensitive in the simulation run. Thus, we categorised the level of
parameter sensitivity based on the p-value of the model run as
(p-value = 0) highly sensitive (**), (0 < p-value ≤10−5) moderately
sensitive (*), and (p-value > 10−5) less sensitive. The sensitivity
threshold applied indicated that the SCS runoff curve number for
average moisture condition (CN2.mgt), moist bulk density (SOL_
BD().sol), saturated hydraulic conductivity (SOL_K().sol), and soil
evaporation compensation factor (ESCO.hru) are the most
important modelling parameters in the entire watershed, as
shown in Table 4.

Other important sensitive parameters to note based on the sub-
watershed modelling process are highlighted with a single asterisk,
and they differ across the watersheds, which may be related to the
distinct morphological features that change the hydrologic
behaviour. However, the optimised watershed’s sensitive
parameter ranges were varied, and this lack of uniqueness is a
characteristic of the calibration of hydrologic models. This assertion
was supported in Abbaspour et al. (2009), stating that there will be
numerous such models with various parameter ranges if a model
that fits the measurements exists.

The sub-watershed performance of the simulation process, as
shown in Figures 4A–D, was calculated based on the observed and

“best” simulated monthly actual evapotranspiration values of the
objective function across the 59 measured points spatially
distributed across the basin. The calibrated and validated model
results depicted by the correlation coefficient (R2) and
Nash–Sutcliffe efficiency (NSE) criteria were in the range of R2 =
0.69–0.88, NSE = 0.45–0.77 and R2 = 0.62–0.79, NSE =
0.34–0.63 across all the watersheds, respectively. Moreover, a
large number of the achieved model results fell within a
satisfactory uncertainty range, with P-factor and R-factor values
in the range of 0.68–0.93 and 0.73–1.31 in 83%, 67%, 85.7%, and
81.3% of the sub-watershed, respectively. There are a few sub-basins
with poor simulated output whose R2 and NSE values are as low as
0.25 and 0.14, respectively, although they exhibited a good
representation of the data uncertainty band with encouraging
P-factor and R-factor values in the range of 0.53–0.78 and
1.21–1.95, respectively. Even the region with better objective
functions faces difficulty in simulating and matching the peak
values of the observed evapotranspiration values, and this may be
due to simplification of the model by reaggregation of the land use
features and inadequate data that account for some of the important
basin-scale processes like lack of sufficient information, such as
reservoir operations, dams, water transfers, and irrigation process,
and this is generally classed as technical modelling uncertainties and
natural heterogeneity in the hydrologic modelling process and has
been corroborated in Schuol et al. (2008) and Abbaspour et al.

FIGURE 12
Spatial risk map of changes in baseline and projected green water environmental sustainability in the Yobe-Komadugu watershed.
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(2015). However, our results are generally quite realistic for the
basin-scale assessment of water-related hazards.

The obvious reason for the large variability in NSE estimates
across the four basins or model results could be related to the “actual
evapotranspiration only” calibrations. The modelling issue can be
significantly “improved” by incorporating additional observation
datasets into the distributed calibration modelling schemes
(Kunnath-Poovakka et al., 2016; Rajib et al., 2016), where reliable
data are made available. However, Koppa et al. (2019) argued that
the ability of a model to simultaneously reproduce the included
water balance components is not assessed by any limits of
acceptability or error thresholds in multivariate calibration.

The result presented here is a step forward and improvement to
earlier studies by Faramarzi et al. (2013) and Schuol et al. (2008),
using a stand-alone SWATmodel with the direct use of climate data,
where the results from the studies indicate a poor watershed
representation of the portion of the Lake Chad basin, which
depicted a large uncertainty range with a correlation value
greater than 0.6 at only 38% of the calibration point and poor
objective function value (NSE) of between 0 and 0.2 in the larger
Lake Chad region, and this may be attributed to the use of climate
data with coarse resolution and distorted signals of watershed
features where the complex orographic and land–sea distribution
was not accounted for and may lead to local variation in basin water

balance outputs and affect projected climate change assessment
studies. Our result has shown a wider spatial coverage of good
P-factor and R-factor values relative to the previous study, which
was reported to be 0.6 or higher at only 61% and 1.5 at only 69% of
the basin area. However, there are differences in model variables and
parameters adopted for calibration, and these studies are conducted
on a wider scale. Interestingly, the optimisation approach used here
by incorporating machine learning into the integrated modelling
strategy could reduce large model uncertainty propagation and
provide a new direction to modelling issues in data-sparse
regions with variable morphological features by providing high-
valued water resource information at the local basin scale to drive
sustainable water policy decisions.

4.2 Assessment of climate change impact on
projected green and blue water resources

The assessment of climate change impact on the spatial and
temporal distribution of blue and green water resources will be of
great significance at the sub-watershed level to provide the necessary
information for decision support for water authorities. The
confidence in the output of the model results was reinforced by
investigating variations in the projected mean changes in the near

FIGURE 13
Spatial risk map of changes in baseline and projected blue water environmental sustainability in the Yobe-Komadugu watershed.
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future (2021–2050) and far future (2051–2080) annual precipitation
and average temperature from baseline (1982–2011) of the ensemble
GCM refined by the Boruta random forest feature selection
approach of the Yobe-Komadugu watershed. The results of the
projected changes in annual precipitation and temperature for the
two scenarios based on shared socioeconomic pathways are shown
in Table 5.

The results of the projected changes in precipitation indicated an
increasing trend with an annual shift of 7.1% and 7.40% in the near
future to 13.25% and 27.68% in the far future, associated with the
increased warming scenario of average temperature in the range of
0.69 ± 0.15°C and 0.89 ± 0.11°C between 2021 and 2050 and 1.17 ±
0.22°C and 1.78 ± 0.24°C between 2051 and 2080 for SSP2(4.5) and
SSP5(8.5), respectively. The range of projection here is similar and
consistent with the reported findings of previous studies (Vizy et al.,
2013; Sylla et al., 2016; Almazroui et al., 2020), and the projected
changes may be linked to variability and changes in West African
Monsoon features, like changes in the intensity and localisation of
the African easterly waves and jets, monsoon flows, and integrated
moisture flux divergence (Teichmann et al., 2013; Mariotti et al.,
2014; Sylla et al., 2015).

The result of the changes in spatial and temporal distributions
from the baseline of projected green and blue water components

under the two climate change emission scenarios SSP2(4.5) and
SSP5(8.5) for the near future (2021–2050) and far future
(2051–2080) periods of the Yobe-Komadugu watershed is
displayed in Figures 6–11, respectively. The watershed was
chosen because it is characterised by incidences of climate
extremes. The most recent and notable events were the reported
heavy windstorm in April 2022 and the downpour in May 2022 that
affected approximately 180 communities and resulted in the loss of
lives, food, buildings, livestock, and farmlands (SEMA, 2022). In
addition, it is an important agriculture production region and, as a
main contributor of water resources to replenish the larger Lake
Chad, understanding the hydrologic variability and present and
future water resource environmental footprint sustainability status
at the desired watershed levels will enhance adequate river basin
planning and management. The delineated watershed boundary and
the sub-basins are shown in Figure 5.

4.2.1 Spatial and temporal variations in green water
flow under different climate change scenarios

The hydrological cycle is expected to intensify due to increased
rainfall and a warmer atmosphere, as evidenced by the projected
increase in atmospheric temperature as a result of CO2 emissions,
which indicates a greater evaporative demand and increases GWF,

FIGURE 14
Heat map showing temporal changes in mean monthly baseline and projected green water environmental sustainability in the Yobe-Komadugu
watershed.
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consistent with the findings of Ogutu et al. (2021), Pham-Duc et al.
(2020), and Todzo et al. (2020). It is projected to increase at different
levels based on the emission scenario and time slices, e.g., the
baseline period (1982–2011) depicted a mean annual GWF of
393.55 mm for the entire basin, as shown in Figure 6A.
Assessment of the climate change emission scenarios indicated a
projected increase in the spatial changes in mean GWF of
417.02 mm and 425.03 mm for SSP2(4.5), as shown in Figures
6B,D, accounting for 6.0% and 8.0% relative to the baseline period,
while a projected increase was observed in spatial changes of mean
GWF of 418.75 mm and 457.86 mm for SSP5(8.5), as shown in
Figures 6C,E, accounting for 6.4% and 16.34% mean increases
relative to the baseline period in near and far future time slices,
respectively. Few exceptions were noted with contrasting GWF
hydrologic features where declining GWF was predicted,
especially in the downstream (sub-basin 20, 21, and 25–30) of
the watershed.

Analysis of the distribution and changes in the mean monthly
variation of GWF in the near (2021–2050) and far future
(2051–2080) relative to the baseline (1982–2011) period, as
depicted in Figure 7, showed a consistent projected increase
between spring and summer months in the range of 12.95%–
33.54% and 5.93%–31.02% (Figure 7A) in the near future for
SSP2(4.5) and SSP5(8.5), respectively, while a projected increase
in the mean monthly GWF in the range of 23.25%–65.76% and
26.39%–87.43%, as shown in Figure 7B, in the far future was
estimated for SSP2(4.5) and SSP5(8.5), respectively. However,
there is generally a projected sharp decline of GWF in autumn
and winter seasons across the basin, projected to be approximately
53.38% and 54.10% in the near future and 54.72% and 36.0% in the
far future for SSP2(4.5) and SSP5(8.5), respectively. The reason for
the enhanced projected GWF may be related to the increased
temperature in the tropical regions between April and September
due to an increase in CO2 emission concentration. The projected

FIGURE 15
Heat map showing temporal changes in mean monthly baseline and projected blue water environmental sustainability in the Yobe-Komadugu
watershed.
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increase in precipitation events also enhances vegetation cover and
the activity of actual plant transpiration.

4.2.2 Spatial and temporal variations in greenwater
storage under different climate change scenarios

The result of the mean annual GWS, represented by the soil
moisture conditions, which changes over time, indicated a
substantial projected decline in all sub-basins of the watershed
from the baseline period, with an annual average value of
341.89–324.79 mm (Figure 8A) and 302.43 mm for SSP2(4.5), as
shown in Figures 8B, D, and 299.45 mm and 293.45 mm for
SSP5(8.5) in Figures 8C,E, accounting for the projected decline of
4.99% and 11.54% in basin GWS for SSP2(4.5) and 12.41% and
14.17% for SSP5(8.5) in the near and far future periods, respectively.
This decline may not be unconnected to the huge overexploitation of
groundwater resources for irrigation practices by further lowering
the water table level in the basin, and possibly increasing surface air
temperature could also affect soil water flow regimes, thereby
increasing the groundwater evaporative demands.

Analysis of the distribution and changes in the mean monthly
variation of GWS of the near and far future periods relative to the
baseline scenario, as depicted in Figure 9, showed a consistent
projected decline in most months in the range of 2.75%–44.11%
at a mean rate of 6.95 mm/month and 24.97%–69.99% at a mean
rate of 15.65 mm/month (Figure 9A) in 2021–2050 and 5.47%–
54.45% at a mean rate of 6.28 mm/month and 26.47%–70.59% at a
mean rate of 15.85 mm/month (Figure 9B) in 2051–2080 for
SSP2(4.5) and SSP5(8.5), respectively. However, there is an
exception in the monsoon season across the basin, with projected
increases in GWS of approximately 53.28% (18.58 mm/month) and
60.02% (20.71 mm/month) in 2021–2050 and 15.87% (5.72 mm/
month) and 56.83% (23.91 mm/month) in 2051–2080 based on the
two emission scenarios, respectively. The projected increase in the
monsoon season is generally significant between the month of July
and September, which is associated with high rainfall intensities and
interannual seasonal variability, as corroborated by Almazroui et al.
(2020).

4.2.3 Spatial and temporal variations in blue water
flow in different climate change scenarios

The climate change impact on spatial and temporal variations in
blue water flow was quantified at the sub-basin level in the
watershed. BWF showed high variability, and the dynamics are
quite distinct in the upstream and downstream parts of the
watershed. For example, BWF is projected to decline at mean
annual rates of 38.9 mm/year and 37.25 mm/year at the sub-
basin (1–13, 15, 18, and 22) upstream, while associated projected
increases of 54.66 mm/year and 55.27 mm/year at sub-basin (14, 16,
17, 19–21, and 23–30) downstream, in 2021–2050, as shown in
Figures 10B,C, for SSP2(4.5) and SSP5(8.5), respectively, from the
baseline period (1982–2011) depicted a mean annual BWF of
37.83 mm for the entire basin (Figure 10A). Similarly, the
dynamics remain the same for the far future but with reduced
magnitudes of decline from the baseline of 25.98 mm/year and
29.69 mm/year upstream and increased magnitudes of 77.23 mm/
year and 98.97 mm/year downstream in 2051–2080 (Figures 10D, E)
for SSP2(4.5) and SSP5(8.5) emission scenarios, respectively.
However, analysis of changes in BWF in the entire watershed

depicted projected increases from the baseline period of
2.85 mm/year and 4.76 mm/year in 2021–2050 and 20.21 mm/
year and 52.01 mm/year in 2051–2080 for the CO2 emission
scenarios, respectively.

Analysis of the distribution and changes in the mean monthly
variation in BWF of the near and far future periods relative to the
baseline scenario (Figure 11) showed that the projected decline is
prevalent between months in the winter and spring seasons (Figures
11A, B), where precipitation events are non-existent or sub-optimal
in the tropical regions. However, the summer and autumn months
showed a projected increase in BWF relative to the baseline period,
whichmay be associated with increased monsoon rainfall events and
intensities, thereby intensifying wet extremes and dry spell lengths
by shortening the Sahel rainy seasons, as predicted in previous
studies (Sarr, 2012; Sylla et al., 2016; Almazroui et al., 2020).

The projected declines oinBWF are in the range of
0.17–4.88 mm/month and 0.17–6.42 mm/month (Figure 11A)
between 2021–2050 and 0.13–6.0 mm/month and 0.07–5.49 mm/
month (Figure 11B) between 2051–2080 for SSP2(4.5) and
SSP5(8.5), respectively. However, there is a generally sharp
increase in BWF in the monsoon season across the basin,
especially in August, with a projected p of up to 4.76 and
4.96 mm/month between 2021–2050 and 11.66 and 23.8 mm/
month between 2051–2080 based on the two emission scenarios.
These sharp changes in BWF across the months validate the
significant increase in heavy rainfall events and changes in
seasonality that exacerbated incidences of frequent weather
extremes, i.e., flooding and droughts in the Sahel region (Boko
et al., 2007; Niang et al., 2014).

4.3 Climate change impact on and
socioeconomic drivers of spatial variation in
projected green and blue water
sustainability

Green and blue water sustainability was determined at the sub-basin
scale for baseline (1982–2011) and projected changes in the near
(2021–2050) and far (2051–2080) future based on the two CO2

emission scenarios using the Sustainability index, as shown by the
spatial maps in Figure 12 and Figure 13, respectively. The baseline
period showed that green water is moderate to extremely sustainable
(ES) in seven sub-basins, accounting for 16.50% of the watershed area,
with Sustainability index (SI) ranging from 0.19 to 0.3, 0.5 to 0.71, and
0.81 to 1.0 in sub-basins (10 and 27), (7 and 26), and (1, 2, and 8)
(Figure 12A), respectively. The remainder of the watershed was
characterized by a low level of green water sustainability, except sub-
basins 3, 20, and 24, which are high-risk geographic hotspots. The
favourable Sustainability index of the sub-basins located upstream of the
watershed may be due to land use and land cover features, which are a
mixture of scanty vegetation and bare land with associated low green
water footprints as a result of little to non-existent rainfed agricultural
practices.

Analysis of the projected green water sustainability indicated that
there is a 1–2-fold shift in the sustainability threshold across the basin,
with a steady to sharp decline of the favourable basin green water
sustainability status from the baseline of 16.50% to 15.9% for SSP2(4.5)
(Figure 12B) and 0% for SSP5(8.5) in 2021–2050 (Figure 12C), and the
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far future also indicated a decline of the watershed green water
sustainability threshold of 1.86% for SSP2(4.5) (Figure 12D) and 0%
for SSP5(8.5) (Figure 12E) in 2051–2080 of the watershed area. The
geographic hotspots (SI< − 0.5) are generally situated upstream of the
watershed in all scenarios and are an indication that climate changemay
have a more profound effect on the high to extremely unsustainable
green water status, which is evident from the continuous increase in
green water flow and decreased green water storage, which is a
phenomenon that may have been causing increased humidity and
affecting the timing, spatial pattern, and intensity of rainfall in a basin, as
suggested by Du et al. (2018), and as CO2 emissions rise, the efficiency
of the utilisation of water in the photosynthetic process increases,
resulting in CO2 fertilisation (Donohue et al., 2017).

The changes in blue water sustainability in the watershed for the
baseline period in Figure 13A were assessed to be 15.61% HS, 5.4%MS,
15.65% MU, and 63.34% HU–EU (potential blue water geographic
hotspots) of the watershed area. The high level of blue water
sustainability is predominant upstream of the watershed; however,
sub-basins 1, 2, and 6 are shown to be highly unsustainable, which
may be related to the absence of viable stream channels and the high
rate of evaporative demands, which characterized the basin as semi-arid
with severe drought events and high interannual rainfall variability due
to the effect of Intertropical Convergence Zone (ITCZ) migration
(Thompson and Polet, 2000).

Analysis of the influence of climate change and changes in
socioeconomic activities on projected blue water sustainability
indicated further increases in blue water geographic hotspots across
the watershed area of 71.53% and 75.38% (Figures 13B, C) between
2021 and 2050 and 73.51% and 76.35% (Figures 13D, E) between
2051 and 2080 for SSP2(4.5) and SSP5(8.5), respectively. Our model
results showed that the blue water security hotspots regions have
negative SIs ranging from 0.5 up to as high as 16.58 for both
SSP2(4.5) and SSP5(8.5), respectively. The blue water’s continued
unviability may be caused by major river systems drying up and
reduced flows brought on by the overuse of groundwater and surface
water resources as a result of intensive irrigation practices. These
consistent patterns could be scaled with the SSP emission scenarios,
which have shown a strong correlation between anthropogenic GHG
emissions and potential environmental impacts, as corroborated by
Adeyeri et al. (2019). Some of the viable blue water sustainable sub-
basins are characterised by interconnected large streams that form the
Komadugu-Yobe and Komadugu-Gana river sub-systems that support
different ecological processes and socioeconomic activities, such as fish
production, pastoralism, and forest regeneration, with a population of
over 20 million people depending on these activities in the basin. The
continued decline in sustainable blue water may be worrisome to local
and national strategic freshwater management plans and a threat to
diplomatic relationships among countries that share the basins.

4.4 Climate change impact on and
socioeconomic drivers of the temporal
variability of projected changes in green and
blue water sustainability

The green and blue water sustainability assessment at the local
basin scale will require an understanding of the temporal pattern of
freshwater circulation at a monthly timescale to improve and

stabilize the basin ecosystems. Figures 14A–E show a heat map
of the severity of the baseline and projected monthly changes in
green water sustainability across the 30 sub-basins of the watershed.
The results indicated that green water is more sustainable in the pre-
and post-monsoon months, with indices in the range of 0.15–0.95
(Figure 14A), although there is a consistent projected change in the
sustainability status from moderately unsustainable to highly and
extremely unsustainable green water in the monsoon months
between April and June, indicating a transition to potential
geographic water sustainability hotspots across all the climate
change scenarios, as shown in Figures 14B–E.

However, a gradual change in the favourable green water
sustainability status emerges in the July–August with 23%
(Figure 14B) and 80% (Figure 14C) in the near future and 16.7%
(Figure 14D) and 70% (Figure 14E) in the far future for SSP2(4.5)
and SSP5(8.5) emission scenarios, respectively, across the entire
watershed, and this may be connected to the sudden projected
increase in rainfall events and intensities in the semi-arid climate.
Assessment of the baseline blue water sustainability status
(Figure 15A) indicated that sub-basins 1–19 (upstream) showed a
moderate-to-high blue water sustainability in the monsoon months
of May–September, with indices that ranged from 0.47 to 0.98;
conversely, sub-basins 20–30 (downstream) generally exhibit the
potential for geographic blue water sustainability hotspots,
indicating highly to extremely unsustainable status 92.2% of the
time during the monsoon period with indices in the range of
0.78 to–4.2. However, our analysis of monthly blue water
availability indicated that the environmental flow requirement to
maintain a healthy aquatic ecosystem cannot be met in 60.3% of the
months in the baseline period and have been generally identified
during the low-flow periods between the months of November and
March and should have been classed as a “no abstraction period,”
and streams should be protected across the basin.

The unsustainable blue water status may be closely related to the
mass exploitation of ground and surface water for domestic and
agricultural (irrigation) practices, high rate of surface water
evaporation, and plant transpiration due to increased surface air
temperature that triggered declining runoff contribution and
shrinkage to the major Lake Chad, which is consistent with the
findings of Lemoalle et al. (2012) and Zhu et al. (2017). The
assessment of the model output for blue water sustainability
status showed projected increases in the “no abstraction period”
to 74.4% (Figure 15B) and 65% (Figure 15C) for the near future and
66.11% (Figure 15D) and 65.3% (Figure 15E) in the far future for
CO2 emission scenarios SSP2(4.5) and SSP5(8.5), respectively.

The projections here indicate that the gradual increase in
precipitations may have a direct impact on the sustainability of
green water resources, where the monsoon months of July–August
experienced a projected change in green water sustainability status
from MU to MS, as shown in Figures 14C, E. However, blue water
sustainability status tends to be degraded relative to the baseline in
all emission scenarios considered, and a favourable blue water status
may only be achieved through enforcing regulations to protect
intense groundwater withdrawal, especially during low-flow
periods, and exploring innovative river basin water conservation
strategies. According to the anticipated changes in the sustainability
of green and blue water, more than half of the watershed will be
ecologically fragile. Without prompt action by water authorities to
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improve ecological resilience and adaptation to reduce the shrinkage
of wetlands and larger Lake Chad in the face of changing climate and
socioeconomic activities, some regions’ freshwater geographic
sustainability hotspot statuses may be beyond the recovery
points, which will make restoration quite difficult.

5 Discussion

This study has demonstrated that the introduction of data pruning
through machine learning in the hydrologic modelling process to
enhance the previous frameworks will be beneficial, especially in
data-sparse watersheds, where the climatological dynamics are highly
variable and vulnerable to climate change. Although it is a challenge to
understand the model stage that provides the majority of the overall
uncertainty, as alluded to by Martin et al. (2020), various sources of
uncertainty in climate impact modelling for water resource assessment
include GHG concentration pathways (scenario uncertainty), GCM
parameterisation (input uncertainty), and hydrologic model internal
processes (structural uncertainty) and their interlinkages. According to
Schewe et al. (2014), regional or local application may vary across
different parts of the globe. The modelling scheme objective of
managing scenarios and input uncertainty was prioritised in this
study because they are generally classed as medium to high
contributors of error propagation (Fang et al., 2018) and their
management can cover for the limitations of inadequate data in
order to prevent amplifying structural model uncertainty, although
these uncertainties will inevitably remain and need to be addressed in
practice through appropriate management actions by improved process
understanding and adequate implementation of expert feedback on
parameter calibration and model sensitivity mapping to narrow their
effect in impact studies, as corroborated by Smith et al. (2018).

The relationship between the simulated and observation data
based on the calibration statistics showed a satisfactory
performance, although varied across the sub-watersheds. The
result showed that a better uncertainty range (Figures 4A–D) was
achieved with wider spatial coverage represented by the P-factor and
R-factor values in the basin relative to the regionalisation modelling
approach adopted in previous studies (Schuol et al., 2008; Faramarzi
et al., 2013), which tend to be unrealistic and produce unsatisfactory
performance and uncertainty range. This approach has often
produced contradictory results, as suggested by Oudin et al.
(2008), which may portray poor water resource dynamics and
lead to a policy decision that affects resilience planning,
especially in watersheds characterised by high climate variability.

The spatial variation in the green and blue water flow and
storage in this study, as illustrated in Section 3.2, are quite intensified
downstream, and this may be attributed to the presence of arable
land, high population density, and intense agricultural activities, and
the trends in the temporal variation in monthly changes are
synonymous with semi-arid regions, as corroborated by
Muratoglu et al. (2022) in the Euphrates. The projected
unsustainable green and blue water status necessitates the review
of water use policies, especially awareness programmes for local
farmers on the willingness to change and adopt farming practices
and strategies that lessen pressure on green water resources to
prevent further intensification of current local basin water
conflicts, as suggested by Li et al. (2020), failure of which will

undoubtedly perpetuate the great uncertainty over how water
availability and demand will change in the future (Sorg et al.,
2014), and appropriate environmental flow regulations are critical
for improving projected blue water sustainability status, especially in
critical periods of the year, as suggested in previous studies (e.g.,
Hejazi et al., 2014).

6 Conclusion and future work

In this study, we developed a framework by integrating machine
learning-based Boruta random feature selection as an input data
refining process with process-based SWAT hydrologic models to
optimise the calibration process. The accepted or rejected model
parameter solutions based on a set error threshold were used to test
whether models developed based on this framework can
simultaneously improve baseline and future climate projections
and accurately simulate water balance components in watersheds
with insufficient ground-based modelling data, which is necessary
for successful and reliable hydrologic modelling at the local scale.

Applying the framework to four sub-watersheds that form the
larger Lake Chad basin defined by distinctmorphological properties, we
found that themodel simulates the hydrologic fluxes of ETwith varying
degrees of acceptability.While ET can be simulated accurately, there are
significant trade-offs in parameter sensitivity ranges in the calibration
process across the sub-watersheds. Some of the key findings and
conclusions in the research are summarized in this section. The
integrated hydrologic modelling process in this study can reliably
represent the spatiotemporal distribution of the watershed
hydrology, irrespective of the different morphological characteristics
of the four sub-watersheds, and reduce uncertainty from the input data
(e.g., precipitation and temperature), which are the main drivers of
water balance models. The feature selection mechanism could reduce
uncertainty propagation within acceptable thresholds in the data input
process and provide ensembles whose projections can be relied upon
and consistent with previous studies for water security assessment.

Green water is the dominant freshwater component across the
basin relative to blue water, and climate change may be a significant
factor influencing the spatial and temporal changes in projected
green water sustainability status. The combination of socioeconomic
drivers and climate change may have a significant impact on the
projected blue water sustainability status across the basin. High
GWF (ET), temperature, and the flat terrain in the Yobe-Komadugu
watershed may affect the spatial distribution of projected natural
runoff distribution, and thus, the projected blue water footprint
exceeds the blue water availability, and human water use can only be
met by using up the environmental flows, resulting in the
degradation of rivers and groundwater potential. Additionally,
given the WF hotspots found in this study, new appropriate
water abstraction targets should be quantified as part of future
research, as well as its impact on blue water, which has a higher
opportunity cost due to its potential as an input in many supply
chains for emerging industries other than agriculture to help
improve water management efforts at the local river basin scale.

We should also point out that the results and conclusions
reported in this study are based on certain configurations of the
model parameters, input dataset, reference data, and hydrologic
model. The established modelling framework, however, is
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independent of model and data type and may be used to assess the
effectiveness of hydrologic state variables and fluxes at small-scale
watershed levels. Nevertheless, some obvious limitations are that the
study does not consider the effects of some watershed management
practices like irrigation withdrawals and reservoir regulations due to
unavailability of data and future topographic changes in terrain and
slope, which will be significant driving factors governing the
hydrologic response to land use and land cover changes.

This research focuses on blue and green water sustainability;
however, efforts are required to extend the current work to grey
water assessment by developing innovative ways and building
observation datasets to further extend the model calibration and
validation efforts to increase the confidence of hydrologic variable
outputs required to reliably measure and quantify grey water
footprint and sustainability for managing wastewater discharge
and the application of fertilizers and pesticides for water
pollution control. The water Sustainability index and status could
be useful in the development of effective local river basin policies
and regulations. Future work should involve addressing some of the
limitations identified by extending the current study through the
incorporation of more water balance variables into the optimisation
process and analysing their effects on the general trade-offs in the
accuracy of modelling output.
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