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Abstract
Recent studies in additive manufacturing (AM) monitoring techniques have focussed on the identification of defects using 
in situ monitoring sensor systems, with the aim of improving overall AM part quality. Much work has focussed on the use 
of of camera-based monitoring systems; however, limitations such as the slow response rates of the sensors (1-10kHz) and 
the post-processing requirements of the collected images make it difficult to apply these developmental monitoring methods 
on production systems in real-time. Furthermore, the replication of results from camera-based monitoring systems (often 
obtained using deep learning models) in a production environment is limited by the need for specialised hardware with high 
computational capacity (e.g GPUs). Focussing specifically on laser powder bed fusion ( PBF-L/M ), photodiodes, with fast 
data collection rates (50–100kHz) and providing data that is relatively easy to process are potentially better suited to real-time 
monitoring systems. The current study, therefore, focuses on using data collected from photodiodes to identify defects in 
PBF-L/M builds. A predictive model with real-time potential is proposed that, having been validated on data from computer 
tomography (CT) images, can be used to locate porosity within layers of PBF-L/M builds.
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1 Introduction

Numerous process parameter combinations could lead to 
the generation of defects during the build [9, 13] , there-
fore, to produce high-quality parts, part quality needs to be 
monitored during the PBF-L/M build process. The level of 
porosity influences part quality indicators such as fatigue 
performance and crack growth characteristics of metal parts 
[5] and, as a result, porosity has received significant atten-
tion in the literature related to PBF-L/M [7, 10, 12]. This 
study also focuses on identifying porosity, especially gas 
pores, within parts built using PBF-L/M.

The proposed approach utilises a time-series model that 
aims to predict the value of future photodiode measurements. 
The underlying hypothesis of this study is that the difference 
between predicted and observed photodiode measurements 

could be used to infer regions of porosity. Interestingly, it 
was found that the model predictions were more accurate 
in regions of build porosity; with the rationale behind this, 
perhaps counter-intuitive observation is explained in subse-
quent paragraphs. Despite the counter-intuitive nature of our 
findings, the model was able to successfully predict the onset 
of porosity that occurred during ‘standard operation’ (in 
other words, the current study goes beyond simply detect-
ing porosity that has been deliberately introduced through 
the variation of PBF-L/M process parameters [1, 4, 6, 11] . 
We note that, for the interested reader, further details behind 
this study are detailed in the thesis [8].

2  Model

Various time-series modelling techniques (e.g. auto-regres-
sive (AR), moving average (MA), auto-regressive moving 
average (ARMA)) were initially considered as candidate 
model structures and assessed to identify the best structure. 
After verifying signal stationarity of the analysed photodi-
ode signal by reviewing summary statistics and conducting 
statistical tests (e.g the augmented Dickey–Fuller test), the 
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partial correlation of lagged components was observed in 
the graphs obtained from a partial auto-correlation func-
tion (PACF) analysis. The partial correlation of lagged 
components significantly dropped after the first two com-
ponents. If the signals were suitable to be modelled by MA 
or ARMA, a gradual decrease would have been observed in 
the partial correlation of lagged components [2]. Since such 
a behaviour was not observed in the photodiode signals, an 
AR model was chosen to generate predictions of photodiode 
measurements. According to the results of a PACF analysis, 
more complex models with a relatively higher order (e.g 5, 
50, 100) were incapable of making more accurate predic-
tions; therefore, a second-order model was selected.

The model was trained on a photodiode signal (captur-
ing melt-pool reflections in the 300–1000 nm wavelength 
range), of approximately 400 training data points. The model 
weighting coefficients were first estimated using a photodi-
ode signal collected on a non-defective hatch line, though 
further experiments were also conducted whereby the model 
was trained on defective hatch lines (i.e. those which were 
later found to have resulted in porous regions); see [8] for 
additional details.

The vast majority of available studies are limited to 
the cases where defects are artificially induced by alter-
ing process parameters (e.g. [1, 6]). Such approaches may, 
however, provide poor representations of real defects, i.e. 

those that can still occur despite tuned build conditions 
and process parameters. To overcome this limitation, the 
current study analyses data collected during the fabrica-
tion of an PBF-L/M build, in which defects (captured via 
a CT image shown in Fig. 1 (a)) are naturally formed as a 
result of parallel fabrication of parts placed in a row with 
multiple laser beams.

A Bayesian approach for parameter estimation was 
adopted, whereby prior probability distributions over the 
model parameters are combined with a Gaussian likeli-
hood function such that a posterior distribution over the 
weighting coefficients and likelihood variance ( w and �2 ) 
can be realised. This approach allows us to quantify the 
uncertainty associated with our parameter estimates [3].

After training, the model was validated on signals col-
lected from defective and non-defective hatch lines. The 
predictive error was then calculated by taking the absolute 
value between predicted and measured photodiode read-
ings. An averaged predictive error, ēp(t) , was then calcu-
lated using a sliding window of multiple readings (20 read-
ings) belonging to the same hatch line and centred on the 
photodiode reading under consideration. The quantity ēp(t) 
was calculated to provide a measure of predictive error 
that is smoothed over a time window. This step has been 
added to improve the accuracy of the prediction, since the 
state of a melt-pool can be correlated with the state of the 
both prior and post melt-pools.
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Fig. 1  a A hatch line which passes through defective regions with dark pixel values (grayscale < 80) identified on a CT image. b Corresponding 
photodiode signal behaviour where blue line indicates, 1–defective and 0–non-defective
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3  Results and discussion

The average predictive error, ēp(t) , collected on Layer 42 of 
the PBF-L/M built part being considered, is plotted on the 
corresponding position co-ordinates in Fig. 2(a) to show an 
example of the results that were obtained. It can be seen that 
ēp(t) values below 20 often appear to be in regions that have 
been identified as defective via the CT scan (Figure 2(b)). 
We note that this is perhaps an unexpected outcome, as it 
indicates that the proposed model predictions are more accu-
rate in regions of porosity.

In general, the proposed predictive model was found to be 
capable of predicting gas pores, with a minimum diameter 
of approximately 100 � m, with an average true positive rate 
(TPR) of 88.47%. Although the capability of predicting non-
porous regions is slightly lower, 76.89%, on a layer where 
pores are not visible, the true negative rate (TNR) is 99.84%.

To understand these perhaps counter-intuitive results, 
we first note that, to the best of the authors’ understand-
ing, the photodiode signals relating to the porosity present 
were collected when a gas bubble was present on the powder 
bed. We hypothesise that this gas bubble has, in essence, 
acted as a filter, smoothing the signal and removing noise 
from the resulting photodiode measurements (and increas-
ing their predictability as a result). To further investigate 

this hypothesise, we independently trained the model on 
hatch lines where porosity was later detected, and hatch 
lines where no significant porosity was detected. Figure 3 
shows the posterior probability of the likelihood noise vari-
ance for these two cases, showing that the estimated noise 
variance for the defective hatch line is less than that of the 
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Fig. 2  a ēp(t) calculated along the hatch lines of layer 42. The defective regions of the corresponding CT image, with a gray scale value less than 
80, are shown in black. b ēp(t) less than 20 are indicated in red, whilst ēp(t) higher than 20 are indicated in green

Fig. 3  The posterior probability distribution over �2 inferred from 
data relating to a defective hatch line (red) and a non-defective hatch 
line (green)
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non-defective hatch line. Whilst this lends weight to our 
hypothesis, the authors accept this is not a definitive expla-
nation as to why the proposed model is more accurate in 
regions of porosity. The approach, however, does appear to 
work well.

Fundamentally, it appears that, for the build investigated 
here, the onset of porosity has led to a change in the struc-
ture of the resulting time-series photodiode data. The abil-
ity of more complex time-series modelling approaches to 
improve predictive accuracy and/or reveal more about the 
relationship between photodiode time histories and the onset 
of porosity in PBF-L/M builds is currently a topic of ongo-
ing work.
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