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a b s t r a c t

Taking different system structures in different Markovian modes into consideration, this paper studies
the structured stabilisation of a class of superlinear hybrid stochastic delay systems by feedback
control based on discrete-time state observations. The controller is designed in a bounded state area,
rather than every observable state, in order to reduce control cost. The time delay is more general in
terms of the classical differentiability assumption being relaxed. Compared with the existing papers
on discrete-state-feedback stabilisation problem, a new method to estimate the difference between
current-time state and discrete-time state is presented, as a result of which the conditions imposed on
the underlying system and the control function are less restrictive. Meanwhile, the Lyapunov functional
used in this paper is modified to adapt to this change. Finally, an application to stochastic structured
neural networks is given to demonstrate the practicability of the developed theory.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Given an unstable hybrid stochastic delay differential equation
SDDE)

x(t) =f (x(t), x(t − δ), t, r(t))dt

+ g(x(t), x(t − δ), t, r(t))dW (t), (1.1)

compared with the continuous-time state feedback control
u(x(t), t, r(t)), it is more practical and less costly to use a state
feedback control based on discrete-time observations, say at
times 0, τ , 2τ , . . ., to achieve the stabilisation of the controlled
system

dx(t) =(f (x(t), x(t − δ), t, r(t)) + u(x(tτ ), t, r(t)))dt

+ g(x(t), x(t − δ), t, r(t))dW (t). (1.2)

Here x(t) ∈ Rd, r(t) is a Markov chain taking values in S, W (t) is a
Brownian motion, the non-negative constant δ stands for system
time lag, tτ = [t/τ ]τ , where [t/τ ] is the integer part of t/τ . This
stabilisation problem for stochastic systems was first proposed
by Mao (2013). Traditionally, the system coefficients f and g
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should satisfy the linear growth condition (see, e.g. Li and Kou
(2017) and You, Liu, Lu, Mao, and Qiu (2015)). But recently, Mei,
Fei, Fei, and Mao (2020) eased this restriction and brought this
stabilisation problem into superlinear area. Although the theory
developed therein has made great progress and more real models
could be included, such as competitive model (Liu & Bai, 2017;
Zhang & Teng, 2011) and ocean temperature oscillator (Suarez &
Schopf, 1988), there are still four questions deserved our further
discussion.

Q1. Structured stabilisation
Firstly, we emphasise the key ingredient in Mei et al. (2020)

for stabilisation purpose, namely, the condition:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xTf (x, y, t, i) +
1
2
|g(x, y, t, i)|2

≤χi1|x|2 + χi2|y|2 − χi3|x|p+1
+ χi4|y|p+1

xTf (x, y, t, i) +
p
2
|g(x, y, t, i)|2

≤χ̄i1|x|2 + χ̄i2|y|2 − χ̄i3|x|p+1
+ χ̄i4|y|p+1

(1.3)

for every (x, y, t, i) ∈ Rd
×Rd

×R+ × S. Condition (1.3) is indeed
more advanced than the conventional linear growth condition.
However, it is required for all modes, in particular, χi3 and χ̄i3
should be strictly positive for any i ∈ S. This seems a little
restrictive in reality as this structure might be lost in some modes.
For example, Fei, Hu, Mao, and Shen (2018) studied a population
system described by dx(t) = −2x(t)dt+0.8x(t−δ)dW (t) in mode
1 (dry); dx(t) =

(
x(t) − 2x3(t)

)
dt + 1.2x2(t − δ)dW (t) in mode 2

(rain). It is clear that condition (1.3) cannot be satisfied in mode
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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since χ13 = χ̄13 = 0. Thus to deal with this situation, we need
o consider structured stabilisation.

To the best of the authors’ knowledge, although the struc-
ured stability has drawn many researchers’ interest (e.g. Fei
t al. (2018), Lu, Song, and Zhu (2022) and Shen, Mei, and Deng
2019)), there are few results on structured stabilisation. While
ecently, Shi, Mao, and Wu (2022) made some efforts to this prob-
em. They successfully designed a discrete-time state feedback
ontrol for hybrid stochastic differential equations with different
tructures in different modes. But they have not considered time
elay in their systems, which could actually influence the mode-
tructure classification (see Assumption 4, Example 1 later on).
s a result, the structured stabilisation of hybrid SDDEs deserves
ur investigation.
Q2. Estimation of discrete-time state observations
Secondly, let us say more about condition (1.3). The reader

ight wonder why we need to give two similar inequalities at
he same time, particularly, the first one can be deduced from
he other. It is actually arisen from the effect of discrete-time
tate observations. To deal with this effect, we usually decompose
he drift coefficient of the controlled system (1.2) as (f (x(t), x(t −
δ), t, r(t))+u(x(t), t, r(t)))+ (u(x(tτ ), t, r(t))−u(x(t), t, r(t))) and
hope the second term (or |x(t) − x(tτ )|) could be small enough
if the observation duration τ is sufficiently small. Currently, one
popular method to estimate the second term is to compute
E|x(t) − x(tτ )|2. Then the estimation result (see, e.g. equation (56)
in Mei et al. (2020) and equation (4.27) in Shi et al. (2022)) forces
us to give two inequalities in condition (1.3) unavoidably. But is
it possible for us to modify the estimation so that condition (1.3)
could be relaxed? In this paper, we will give a positive answer
to this question (see Lemma 5 ). Owing to this modification, only
the first inequality of condition (1.3) is required in the stability
analysis.

Q3. Bounded-state-area control
Thirdly, we highlight that in many papers studying discrete-

state-feedback stabilisation such as Mao (2013), Mei et al. (2020),
Ren, Yin, and Sakthivel (2018), Shi et al. (2022) and You et al.
(2015), the control function u(x, t, i) is usually designed on every
observable discrete-time state, such as the linear form νix(tτ ) in
the example of Mei et al. (2020). But this sometimes seems a little
rough and would lead to some unnecessary cost. In general, the
control cost is proportional to |u(x(tτ ), t, r(t))|. Thus the control
cost goes up as system state value |x(tτ )| increases. Particularly, if
the initial data is given large, the cost on the beginning stage will
be relatively high. This then begs a question: is it really necessary
to impose control on every discrete-time state? The answer at
least in this paper is negative. We will design the feedback control
in a bounded state area (see Rule 1 and Remark 1).

Q4. Variable time delays
Finally, let us comment on the delay function in Mei et al.

(2020), which is assumed to be a constant δ. In a slew of real-
world SDDE models, the time delay is a variable function of time
such as Dong and Mao (2022), Gugat and Dick (2011), Gugat,
Dick, and Leugering (2013), Gugat and Tucsnak (2011), Min, Xu,
Zhang, and Ma (2018), Sun, Sun, and Chen (2020) and Wang, Liu,
and Liu (2008). Therefore, it seems a little unreasonable to con-
tinue considering the constant delay. Moreover, rather than the
widely imposed condition on delay systems that the time delay
is differentiable with derivative less than one (see, e.g. Min et al.
(2018) and Wang et al. (2008)), in this paper, we will consider
the time delays recently studied in Dong and Mao (2022), which
meet a weaker assumption (namely Assumption 1). This allows us
to include more practical time delays, such as periodic switching
delay (Gugat & Tucsnak, 2011) and sawtooth delay (Sun et al.,
2020). But differently, the delay function here is no longer needed

to be bounded below by a positive number.

2

This paper is devoted to addressing these four issues. In the-
ory, conditions on the original system and the control function
are less restrictive. In reality, not only could a much wider class
of hybrid stochastic systems be covered, but could also the control
costs be reduced significantly.

2. Model description

2.1. Notation

Throughout this paper, we will work on a complete prob-
ability space (Ω,F, P) with a filtration {Ft}t≥0 satisfying the
usual conditions (that is, it is increasing, right-continuous and F0
contains all P-null sets). We let W (t) = (W1(t), . . . ,Wm(t))T be
an m-dimensional Brownian motion, and r(t) a right-continuous
Markov chain taking values in a finite state space S = {1, . . . ,N}

with transition rate matrix Q = (qij)N×N given by

P (r(t + ϵ) = j|r(t) = i) =

{
1 + qijϵ + o(ϵ), if i = j,
qijϵ + o(ϵ), if i ̸= j,

as ϵ ↓ 0. Here qij ≥ 0 is the transition rate from i to j if i ̸= j,
while qii = −

∑
j̸=i qij. We assume that the Markov chain r(t) and

he Brownian motion W (t) are independent.
We use Rd to signify the d-dimensional Euclidean space with

Euclidean norm | · |. For any a, b ∈ R, we denote by a ∧ b =

min{a, b} and a ∨ b = max{a, b}. Everyone agrees that R+ =

[0, ∞). If A is a vector or matrix, AT is its transpose. If A is
a matrix, |A| =

√
trace(ATA) is its trace norm. For a subset

F1 included in some universal set F , 1F1 denotes its indicator
function, that is, 1F1 (a) = 1 if a ∈ F1, otherwise, 0. For some
positive constant h, we let C

(
[−h, 0];Rd

)
represent the family of

all continuous functions φ from [−h, 0] to Rd with norm ∥φ∥ =

sup−h≤θ≤0 |φ(θ )|.

2.2. Structures on original system

A general hybrid SDDE is described by

dx(t) =f (x(t), x(t − δ(t)), t, r(t))dt

+ g(x(t), x(t − δ(t)), t, r(t))dW (t). (2.1)

Here, δ : R+ → [0, ∆] denotes the system delay, f : Rd
× Rd

×

R+ ×S → Rd is the drift coefficient, and g : Rd
×Rd

×R+ ×S →

Rd×m is the diffusion coefficient. As a standing hypothesis, we
assume that the coefficients f (x, y, t, i) and g(x, y, t, i) are locally
Lipschitz continuous in x and y (see Theorem 3.15 in Mao and
Yuan (2006)). In order to drive this equation, we need to know
the initial data, which is given by {x(t)| − ∆ ≤ t ≤ 0} = ξ ∈

C([−∆, 0];Rd) and r(0) = r0 ∈ S.
The delay function considered in this paper should satisfy the

following assumption, which is clearly less restrictive than the
widely imposed differentiability condition.

Assumption 1. Assume the delay function δ(t) is a Borel mea-
surable function satisfying that

∆∗
= lim sup

ϵ→0+

(
sup
s≥−∆

Leb(Is,ϵ)/ϵ
)

< ∞, (2.2)

where Leb(·) denotes the Lebesgue measure on the real line and
Is,ϵ = {t ∈ R+|t − δ(t) ∈ [s, s + ϵ)}.

Assumption 1 is not so strong and can be met by many time-
variable delay functions in practice. For example, the piecewise
constant function δ(t) =

∑
∞

k=0 1[(2k+1),(2k+2))(t) satisfies with
∆∗

= 2. Moreover, if δ(t) is a Lipschitz continuous function with
Lipschitz coefficient ĥ ∈ (0, 1), then Assumption 1 is satisfied
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ith ∆∗
= 1/(1 − ĥ). For more details about Assumption 1,

e refer the reader to Dong and Mao (2022). But differently,
he delay function δ(t) considered in this paper is not needed
o be bounded below by a positive constant. Next, we need
resent a useful lemma to tackle time delay effect under our new
ssumption 1. One can use the similar analysis of Lemma 2.2
n Dong and Mao (2022) to show it, so we omit the proof given
he page limit.

emma 1. Under Assumption 1, for any T > 0 and continuous
unction φ : [−∆, T ] → R+, we have∫ T

0
φ(v − δ(v))dv ≤ ∆∗

∫ T

−∆

φ(v)dv. (2.3)

Although the linear growth condition is not of our interest, we
till do not want system coefficients to grow very sharply. Hence
he following polynomial growth condition is required.

ssumption 2. Assume that there exist non-negative constants
j (j = 1, . . . , 8) and p > 1 such that for every (x, y, t, i) ∈

Rd
× Rd

× R+ × S,

|f (x, y, t, i)| ≤ K1|x| + K2|y| + K3|x|p + K4|y|p, (2.4)

g(x, y, t, i)|2 ≤ K5|x|2 + K6|y|2 + K7|x|p+1
+ K8|y|p+1. (2.5)

But note that Assumption 2 cannot guarantee hybrid SDDE
2.1) has a unique global solution. For this purpose, the
hasminskii-type condition is always needed, which arises widely
ow in the study of superlinear stochastic systems (see, e.g. Fei
t al. (2018), Mao and Yuan (2006) and Mei et al. (2020)). But
ifferently from these references, in this paper, we are more
nterested in that the structure of hybrid SDDE (2.1) does not al-
ays remain the same type in all modes. For simplicity, we divide
he mode space S into two parts, S1 = {1, . . . ,N1} and S2 = {N1+

, . . . ,N}, where 1 ≤ N1 < N . The subsystems of hybrid SDDE
2.1) in S1-modes and S2-modes satisfy the classical Khasminskii-
ype condition and the generalised Khasminskii-type condition,
espectively.

ssumption 3. Let q ≥ p + 1. For i ∈ S1, suppose that there
xist constants ãi ∈ R and b̃i ≥ 0 such that for all (x, y, t) ∈

Rd
× Rd

× R+

xTf (x, y, t, i) +
q + p − 2

2
|g(x, y, t, i)|2 ≤ ãi|x|2 + b̃i|y|2 (2.6)

and for Ã = −(q+ p− 1)diag(ã1, . . . , ãN1 )− (qij)i,j∈S1 to be a non-
singular M-matrix. For i ∈ S2, assume that there exist constants
γ̃i, b̃i, d̃i ≥ 0 and c̃i > 0 such that for any (x, y, t) ∈ Rd

×Rd
×R+

xTf (x, y, t, i) +
q − 1
2

|g(x, y, t, i)|2

γ̃i|x|2 + b̃i|y|2 − c̃i|x|p+1
+ d̃i|y|p+1. (2.7)

For the theory of M-matrix, the reader can refer to Section 2.6
in Mao and Yuan (2006). We have mentioned before that time
delay could influence our mode-structure classification. Let us
now give an example to explain this.

Example 1. Consider a scalar hybrid SDDE with f (x, y, t, 1) =

−x − 3xy2, g(x, y, t, 1) = 0.5xy; f (x, y, t, 2) = x − 4.5x3,
g(x, y, t, 2) = x2; f (x, y, t, 3) = −x3, g(x, y, t, 3) = y, with

= [−2, 1, 1; 9, −18, 9; 5, 5, −10]. In this situation, time delay
vanishes in mode 2. There are actually two classification schemes.
Case 1: S1 = {1, 2}, S2 = {3}. Case 2: S1 = {1}, S2 = {2, 3}.
However, if we consider time delay into subsystem in mode 2
and let g(x, y, t, 2) = y2, then we only have one scheme, S1 = {1},
S = {2, 3}.
2

3

2.3. Existence of global solution

Let
(
η̃1, . . . , η̃N1

)T
= Ã−1(1, . . . , 1)T. Since Ã is a non-singular

M-matrix, all η̃i are positive (i ∈ S1). Along with the properties
of transition rate matrix and c̃i > 0 for all i ∈ S2, µ̃ := qc̃m/(1 +

maxi∈S2 (
∑N1

j=1 qijη̃j)) is also positive, where c̃m = mini∈S2 c̃i. Now,
we show that hybrid SDDE (2.1) has a unique global solution.

Theorem 1. Let Assumptions 1, 2, 3 hold. Further assume that
D̃ = 1 − (q + p − 3 + 2∆∗)maxi∈S1 (b̃iη̃i) > 0 and q(q − 2 +

(p + 1)∆∗)d̃M/(q + p − 1) ≤ µ̃D̃. Then hybrid SDDE (2.1) has a
unique global solution x(t) such that for all t ≥ 0

sup
−∆≤s≤t

E
(
|x(s)|q + |x(s)|q+p−11{r(s)∈S1}

)
< ∞. (2.8)

Proof. Set a function Ũ : Rd
× S → R+ by Ũ(x, i) = |x|q +

µ̃η̃i|x|q+p−11{i∈S1} and define a function LŨ : Rd
×Rd

×R+×S → R
by LŨ(x, y, t, i) = Ũx(x, i)f (x, y, t, i) +

1
2 trace(g

T(x, y, t, i)Ũxx(x, i)
(x, y, t, i)) +

∑N
j=1 qijŨ(x, j). For i ∈ S1, we could derive from

ondition (2.6) that LŨ(x, y, t, i) ≤ q|x|q−2(ãi|x|2+ b̃i|y|2)+µ̃((q+

−1)ãiη̃i+
∑N1

j=1 qijη̃j)|x|q+p−1
+ (q+p−1)µ̃b̃iη̃i|x|q+p−3

|y|2. Since
q + p − 1)ãiη̃i +

∑N1
j=1 qijη̃j = −1, we further have

LŨ(x, y, t, i)

(qãi + (q − 2)b̃i)|x|q + 2b̃i|y|q − µ̃|x|q+p−1

+ (q + p − 3)µ̃b̃iη̃i|x|q+p−1
+ 2µ̃b̃iη̃i|y|q+p−1. (2.9)

or i ∈ S2, we have LŨ(x, y, t, i) ≤ q|x|q−2(γ̃i|x|2 + b̃i|y|2 −

˜i|x|p+1
+ d̃i|y|p+1) + µ̃

∑N1
j=1 qijη̃j|x|q+p−1 by (2.7). From the def-

nition of µ̃, we deduce that for i ∈ S2, µ̃ + µ̃
∑N1

j=1 qijη̃j ≤

µ̃ + µ̃maxi∈S2
(∑N1

j=1 qijη̃j

)
= qc̃m ≤ qc̃i. This implies that

LŨ(x, y, t, i)

≤

(
qγ̃i + (q − 2)b̃i

)
|x|q + 2b̃i|y|q − µ̃|x|q+p−1

+
qd̃i

q + p − 1
((q − 2)|x|q+p−1

+ (p + 1)|y|q+p−1). (2.10)

Combining (2.9) with (2.10), we could derive that

LŨ(x, y, t, i) ≤ ζ1|x|q + ζ2|y|q − ζ3|x|q+p−1
+ ζ4|y|q+p−1, (2.11)

where ζ1 = qãmax + (q − 2)b̃max, ζ2 = 2b̃max, ζ3 = µ̃ − (q + p −

3)µ̃maxi∈S1 (b̃iη̃i)−q(q−2)d̃M/(q+p−1), ζ4 = 2µ̃maxi∈S1 (b̃iη̃i)+
(p + 1)d̃M/(q + p − 1). Here ãmax =

(
maxi∈S1 ãi

)
∨

(
maxi∈S2 γ̃i

)
,

b̃max = maxi∈S b̃i, d̃M = maxi∈S2 d̃i.
Since the system coefficients are locally Lipschitz continuous,

there is a unique maximal local solution x(t) on t ∈ [0, σe) by
Theorem 7.12 in Mao and Yuan (2006), where σe is the explosion
time. Let k0 > 0 be sufficiently large for k0 ≥ ∥ξ∥. For each inte-
ger k ≥ k0, define stopping time σk = inf

{
t ∈ [0, σe)

⏐⏐|x(t)| ≥ k
}
.

Clearly, σk is increasing as k → ∞. Set σ∞ = limk→∞ σk, whence
σ∞ ≤ σe a.s. If we can show that σ∞ = ∞ a.s., then σe = ∞ a.s.,
and the solution x(t) is global. Then, for any k ≥ k0 and t ≥ 0, we
derive from the Itô formula and (2.11) that

EŨ(x(t ∧ σk), r(t ∧ σk)) − Ũ(ξ (0), r0)

≤E
∫ t∧σk

0
(ζ1|x(s)|q + ζ2|x(s − δ(s))|q − ζ3|x(s)|q+p−1

+ ζ4|x(s − δ(s))|q+p−1)ds. (2.12)

aking use of Lemma 1, we have that EŨ(x(t ∧ σk), r(t ∧ σk)) ≤

C + E
∫ t∧σk (ζ |x(s)|q + ζ |x(s − δ(s))|q − (ζ − ζ ∆∗)|x(s)|q+p−1)ds,
1 0 1 2 3 4
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here C1 = Ũ(ξ (0), r0) + ζ4∆
∗∆∥ξ∥

q+p−1. It is easy to compute
3 − ζ4∆

∗
≥ 0. Then

sup
−∆≤s≤t

EŨ(x(s ∧ σk), r(s ∧ σk))

C1 + (ζ1 + ζ2)
∫ t

0
sup

−∆≤u≤s
E|x(u ∧ σk)|qds. (2.13)

his implies that sup−∆≤s≤t E|x(s ∧ σk)|q ≤ (C1 + ∥ξ∥
q) + (ζ1 +

2)
∫ t
0 sup−∆≤u≤s E|x(u ∧ σk)|qds. The Gronwall inequality gives

|x(t ∧ σk)|q ≤ sup−∆≤s≤t E|x(s ∧ σk)|q ≤ (C1 + ∥ξ∥
q) e(ζ1+ζ2)t <

. This implies that kqP(σk ≤ t) = E
(
|x(t ∧ σk)|q1{σk≤t}

)
≤

E|x(t ∧ σk)|q < ∞. We can let k → ∞ to obtain that P(σ∞ ≤

t) = 0, namely, P(σ∞ > t) = 1. Since t is arbitrary, we have
(σ∞ = ∞) = 1 as required. Letting k → ∞ in (2.13) gives
up−∆≤s≤t EŨ(x(s), r(s)) < ∞. Then the required assertion (2.8)
ollows since

(
1 ∧ µ̃mini∈S1 η̃i

) (
|x|q + |x|q+p−11{i∈S1}

)
≤ Ũ(x, i).

The proof is therefore complete. □

From now on, since the subsequent stability analysis will be
our main focus, we will not mention the conditions of Theorem 1
explicitly and assume they are true.

3. Design of discrete-time feedback control

Suppose hybrid SDDE (2.1) is unstable, we want to design a
feedback control to stabilise it. In theory, the design of the feed-
back control is based on continuous-time state observations. But
in practice, the state can only be observed at discrete times, say
0, τ , 2τ , . . .. Letting tτ = [t/τ ]τ , our controlled system actually
becomes

dx(t) =(f (x(t), x(t − δ(t)), t, r(t)) + u(x(tτ ), t, r(t)))dt

+ g(x(t), x(t − δ(t)), t, r(t))dW (t) (3.1)

on t ≥ 0 with initial data ξ and r0.

3.1. Bounded-state-area feedback control

Before giving our control design, in addition to all conditions
in Theorem 1, we need to give another assumption on our original
unstable system (2.1) for the stabilisation aim.

Assumption 4. For i ∈ S1, there are constants ai, âi ∈ R and
bi, b̂i ≥ 0 such that for any (x, y, t) ∈ Rd

× Rd
× R+,⎧⎪⎨⎪⎩

xTf (x, y, t, i) +
1
2
|g(x, y, t, i)|2 ≤ ai|x|2 + bi|y|2

xTf (x, y, t, i) +
p
2
|g(x, y, t, i)|2 ≤ âi|x|2 + b̂i|y|2

(3.2)

nd for A1 = −2diag(a1, . . . , aN1 ) − (qij)i,j∈S1 , Â = −(p +

)diag(â1, . . . , âN1 ) − (qij)i,j∈S1 to be non-singular M-matrices.
ssume that D̂ := 1 − (p − 1 + 2∆∗)maxi∈S1 (b̂iη̂i) and Db := 1 −

∆∗ maxi∈S1 (bi
∑N1

j=1(A
−1
1 )ij) are positive, where (η̂1, . . . , η̂N1 )

T
=

Â−1(1, . . . , 1)T.
For i ∈ S2, there are non-negative constants γi, bi, di, positive

constant ci so that for all (x, y, t) ∈ Rd
× Rd

× R+

xTf (x, y, t, i) +
1
2
|g(x, y, t, i)|2

≤γi|x|2 + bi|y|2 − ci|x|p+1
+ di|y|p+1. (3.3)

urther, letting Dq = 1 + maxi∈S2 (
∑N1

j=1 qijη̂j), assume that Dd :=

min c − D ∆∗ max d /D̂ > 0.
i∈S2 i q i∈S2 i

4

But the reader might find that condition (3.2) could be de-
duced by condition (2.6) with ai = âi = ãi and bi = b̂i = b̃i.
Is it necessary to give them at the same time? Actually, these
parameters also influence the value of τ . Thus we need to give
them separately. The same reason is applicable for condition (3.3).
On the other hand, the positivity of Db, D̂ and Dd cannot be
derived from Assumption 3, whose roles will be explained in
Remark 3. In other words, Assumptions 3 and 4 are different,
and any one cannot be deduced from the other. As a result,
Assumption 4 is indeed required.

Next, we will introduce how to design the feedback control
u(x, t, i) according to mode-structure classification in Assump-
tion 4. For convenience, for any 0 < a < b, we denote by
Ba =

{
x ∈ Rd

⏐⏐|x| ≤ a
}
, Bc

a =
{
x ∈ Rd

⏐⏐|x| > a
}
, Bb − Ba ={

x ∈ Rd
⏐⏐a < |x| ≤ b

}
.

Rule 1. For i ∈ S1, let u(x, t, i) ≡ 0. For i ∈ S2, choose a constant
κi ≥ 0 and set Ri = (2(γi + κi)/ci)1/(p−1). The control in this mode
can be designed as: (i) when x ∈ BRi , design u(x, t, i) such that we
can find a constant K > 0 to let

|u(x, t, i) − u(y, t, i)| ≤ K |x − y|, (3.4)

xTu(x, t, i) ≤ −κi|x|2 (3.5)

hold for any (x, y, t) ∈ BRi × BRi × R+, and moreover u(0, t, i) ≡ 0;
(ii) when x ∈ B2Ri − BRi , let u(x, t, i) = u((2Ri/|x| − 1)x, t, i), where
(2Ri/|x| − 1)x ∈ BRi ; (iii) when x ∈ Bc

2Ri
, let u(x, t, i) = 0 for all

t ∈ R+.

Here, when Ri = 0, we think u(x, t, i) = 0 for all x ∈ Rd. Next,
let us make some comments on this control rule.

Remark 1. If we pay attention to hybrid SDDE (2.1) on S1, we
find these subsystems might become stable. There is no need to
impose any control when i ∈ S1. But this does not mean the
whole system is stable. Thus we need to design control for S2-
modes, which is imposed in the bounded state area. In fact, we
could rewrite the right-hand side of (3.3) as −κi|x|2 + bi|y|2 −
ci
2 |x|p+1

− di|y|p+1
+ ((γi + κi)|x|2 −

ci
2 |x|p+1). It is then easy to see

that (γi + κi)|x|2 −
ci
2 |x|p+1 < 0 when |x| > Ri. This implies that

xTf (x, y, t, i)+ 1
2 |g(x, y, t, i)|

2
≤ −κi|x|2+bi|y|2−

ci
2 |x|p+1

−di|y|p+1.
e hence do not need to impose any control when |x| exceeds Ri.

emark 2. It should also be pointed out that we could in fact
et u(x, t, i) = 0 for x /∈ BRi and (t, i) ∈ R+ × S2. But in our
control scheme, we set an additional connect area B2Ri − BRi and
require u(x, t, i) to vanish when |x| ≥ 2Ri. This is needed for the
purpose of continuity of u(x, t, i) in x to guarantee the existence of
unique global solution of the controlled system (3.1), and can also
guarantee the global Lipschitz continuity of u(x, t, i) in x with the
same Lipschitz coefficient K assumed in x ∈ BRi , which is stated
as Lemma 2.

From Rule 1 and the above discussions, after giving an appro-
priate κi, we see that the design of u(x, t, i) for Rd

×R+ × S1 and
Bc
Ri

× R+ × S2 is very clear. The remaining question is whether
we could design a u(x, t, i) for BRi × R+ × S2. Actually, there
are lots of control functions available. For example, design the
control function in the linear form u(x, t, i) = −Aix with constant
Ai ≥ κi. Then (3.4) and (3.5) are satisfied. Certainly, for the
stability purpose, the constant κi we pick up should satisfy some
additional rules later on.

Lemma 2. Let Rule 1 hold. Then for all (x, y, t, i) ∈ Rd
×Rd

×R+×

S,

|u(x, t, i) − u(y, t, i)| ≤ K |x − y|. (3.6)



H. Xu and X. Mao Automatica 159 (2024) 111409

b
F

L
a

≤

x

−

h
i
D
p
n

4

4

o
d

ε
e
u
m
F

4

n
{

f
T

V

f
ϖ
p

c
o

d

w

L

a
H

By discussing the positions of x and y, it is easy to show this
lemma so we omit it. We also observe from Lemma 2 that u(x, t, i)
meets the linear growth condition, namely,

|u(x, t, i)| ≤ K |x|, ∀(x, t, i) ∈ Rd
× R+ × S. (3.7)

Conditions (2.4) and (2.5) tell us that f (0, 0, t, i) ≡ 0 and
g(0, 0, t, i) ≡ 0. Therefore, the controlled system (3.1) admits a
trivial solution. Moreover, in analogy to the proof of Theorem 1,
we can show that there exists a global solution of the controlled
system (3.1), satisfying sup−∆≤s≤t E

(
|x(s)|q + |x(s)|q+p−11{r(s)∈S1}

)
< ∞ for any t ≥ 0, under Assumption 4 and Rule 1.

3.2. Additional rules on control function

From Assumption 4 and Rule 1, we observe that the controlled
system (3.1) also has different structures in different modes. For
i ∈ S1, since u(x, t, i) ≡ 0, we then derive that for every (x, y, t) ∈

Rd
×Rd

×R+, xT(f (x, y, t, i)+u(x, t, i))+ 1
2 |g(x, y, t, i)|

2
≤ ai|x|2+

i|y|2, xT(f (x, y, t, i) + u(x, t, i)) +
p
2 |g(x, y, t, i)|

2
≤ âi|x|2 + b̂i|y|2.

or S2-modes, we have the following lemma.

emma 3. Let Assumption 4 and Rule 1 hold. For i ∈ S2, let
i = γi − κi. Then for all (x, y, t, i) ∈ Rd

× Rd
× R+ × S

xT(f (x, y, t, i) + u(x, t, i)) +
1
2
|g(x, y, t, i)|2

ai|x|2 + bi|y|2 − ci|x|p+1
+

di
2

|y|p+1.

It is easy to show this lemma by discussing the positions of
, so we leave it to the reader. The control function u(x, t, i)
designed by Rule 1 might still not stabilise the original system
(2.1). Hence we need to impose some additional conditions.

Rule 2. Ensure that κi we choose in Rule 1 make A =

2diag(a1, . . . , aN ) − Q be a non-singular M-matrix, where ai are
the same in Assumption 4 or Lemma 3.

Let (η1, . . . , ηN )T = A−1(1, . . . , 1)T. Define a function U :

Rd
× S → R+ by U(x, i) = ηi|x|2 + µ̂η̂i|x|p+11{i∈S1} with

µ̂ = mini∈S2 (ciηi)/Dq, where η̂i and Dq have been given in
Assumption 4. While define a function LU : Rd

× Rd
× R+ ×

S → R by LU(x, y, t, i) = Ux(x, i)(f (x, y, t, i) + u(x, t, i)) +
1
2 trace(g

T(x, y, t, i)Uxx(x, i)g(x, y, t, i)) +
∑N

j=1 qijU(x, j). The esti-
mation of LU(x, y, t, i) is the key ingredient for subsequent sta-
bility analysis. Here, for the convenience of the reader, we state
it as the following lemma.

Lemma 4. Let Assumption 4 and Rules 1 and 2 hold. Let β1 =

maxi∈S (biηi), β2 = maxi∈S1 (b̂iη̂i), β3 = maxi∈S2 (diηi). Then for
any (x, y, t, i) ∈ Rd

× Rd
× R+ × S,

LU(x, y, t, i) ≤ − |x|2 + 2β1|y|2 − (1 − (p − 1)β2)µ̂|x|p+1

+ (2β2µ̂ + 2β3)|y|p+1. (3.8)

The proof of Lemma 4 is quite similar to the estimation of
LŨ(x, y, t, i) in (2.11), so we omit it. For the stability aim, we
always want LU(x, y, t, i) to be negative, which forces us to give
the following rule.

Rule 3. Also ensure that κi in Rule 1 can make the numbers
D1 = 1 − 2∆∗β1 and D2 = D̂µ̂ − 2∆∗β3 positive.

But the reader may wonder if we can find the appropriate κi
to make Rules 2 and 3 fulfilled. The following remark will deny
this worry.
 a

5

Remark 3. Since A1 is a non-singular M-matrix required in
Assumption 4, there is a constant κ large enough such that
−2diag(a1, . . . , aN1 , γN1+1 − κ, . . . , γN − κ)−Q is a non-singular
M-matrix. Therefore, we can choose κi = κ for all i ∈ S2. Rule 2
ence holds. Then for sufficiently large κ , ηi ≈

∑N1
j=1(A

−1
1 )ij for

∈ S1, and ηi ≈ 1/(2κ) for i ∈ S2. As a result, D1 ≈ Db and
2 ≈

1
κ
(D̂mini∈S2 ci/Dq − ∆∗ maxi∈S2 di). Since Db, D̂ and Dd are

ositive, Rule 3 could be satisfied. Certainly, in application, we
eed to make use of the special forms of f and g to take κi wisely.

. Stabilisation results

.1. The upper bound of observation duration

Now, we introduce a method on how to determine the value
f τ ∗, the upper bound of τ . Let ηM = maxi∈S2 ηi and set a
omain E = (0,D1/(KηM )). Define three functions on E by ϕ(ε) =

1
KηM

(
D1−KηM ε

ϕ1(ε)
∧

D2
ϕ2(ε)

)
, ϕ1(ε) =

D1
ηM

+ 2K + 2K1 + (1 + ∆∗)K2 +

K5+∆∗K6
ε

and ϕ2(ε) =
D2
ηM

+ 2K3 +
2(1+p∆∗)K4

p+1 +
K7+∆∗K8

ε
. It is clear

that ϕ is a positive continuous function and |ϕ(ε)| ≤ 1/K . When
tends to D1/(KηM ) or 0, ϕ(ε) goes to zero. Therefore, there

xists a number ε∗
∈ E such that ϕ(ε∗) = maxε∈E ϕ(ε). Then the

pper bound of observation duration is given by τ ∗
= ϕ(ε∗) =

axε∈E ϕ(ε). It will also be very useful later that τ < τ ∗
≤ 1/K .

rom now on, we always have τ < τ ∗.

.2. Lyapunov functional

The main method to study stability in this paper is the tech-
ique of Lyapunov functional. For this purpose, we define xt =

x(t + θ )| − τ − ∆ ≤ θ ≤ 0} for t ≥ 0. For xt to be well defined
or t ∈ [0, τ + ∆], we set x(θ ) = ξ (−∆) for θ ∈ [−τ − ∆, −∆).
he Lyapunov functional will be

(xt , t, r(t)) = U(x(t), r(t)) +

∫ 0

−τ

∫ t

t+s
H1(v)dvds

or any t ≥ 0, where H1(t) = ϖ ∗

1 |x(t)|2 + ϖ ∗

2 |x(t − δ(t))|2 +
∗

3 |x(t)|p+1
+ ϖ ∗

4 |x(t − δ(t))|p+1. Here, ϖ ∗

1 , ϖ ∗

2 , ϖ ∗

3 , ϖ ∗

4 are
ositive constants to be determined later.
By the generalised Itô formula and the fundamental theory of

alculus, we can show that V (xt , t, r(t)) is in fact an Itô process
n t ≥ 0 with its Itô differential

V (xt , t, r(t)) = LV (xt , t, r(t))dt + dM(t), (4.1)

here

V (xt , t, r(t)) =LU(x(t), x(t − δ(t)), t, r(t)) + Ū(t)

+ τH1(t) −

∫ t

t−τ

H1(v)dv (4.2)

nd M(t) is a continuous local martingale vanishing at t = 0.
ere Ū(t) = Ux(x(t), r(t))(u(x(tτ ), t, r(t))−u(x(t), t, r(t))), and the

explicit form of M(t) is of no use in this paper so we omit it here,
but it can be found in Theorem 1.45 in Mao and Yuan (2006). Also
from (4.2), we have to estimate Ū(t).

Lemma 5. Under Assumption 4 and Rules 1, 2, 3, we have

E|Ū(t)| ≤

∫ t

t−τ

EH2(v)dv + Λ5E|x(t)|2 + Λ6E|x(t)|p+1

for any t ≥ 0, where H2(t) = Λ1|x(t)|2 + Λ2|x(t − δ(t))|2 +

Λ3|x(t)|p+1
+Λ4|x(t − δ(t))|p+1 with Λ1 =

KηM
1−Kτ

(
K1 +

K5
ε∗

)
, Λ2 =

KηM
1−Kτ

(
K2 +

K6
ε∗

)
, Λ3 =

KηM
1−Kτ

(
2pK3
p+1 +

K7
ε∗

)
, Λ4 =

KηM
1−Kτ

(
2pK4
p+1 +

K8
ε∗

)
,

nd Λ =
KηM ((2K + K + K )τ + ε∗), Λ =

KηM 2(K3+K4)τ .
5 1−Kτ 1 2 6 1−Kτ p+1
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roof. For any fixed t ≥ 0, we can find a non-negative integer
such that kτ ≤ t < (k + 1)τ . Hence x(tτ ) = x(kτ ), and also
(vτ ) = x(kτ ) for any kτ ≤ v ≤ t . Then it is easy to derive from
3.6) that

Ū(t)| ≤
(
2ηr(t)|x(t)| + (p + 1)µ̂η̂r(t)|x(t)|p1{r(t)∈S1}

)
× K |x(t) − x(kτ )|1{r(t)∈S2}

≤2KηM |x(t)||x(t) − x(kτ )|. (4.3)

sing (2.4) and (3.7) and letting Mk =
∫ t
kτ g(x(v), x(v − δ(v)), v,

(v))dW (v), compute

|x(t)||x(t) − x(kτ )|

ε∗

2
|x(t)|2 +

|Mk|
2

2ε∗
+

∫ t

kτ
|x(t)|(K |x(kτ )| + K1|x(v)|

+ K2|x(v − δ(v))| + K3|x(v)|p + K4|x(v − δ(v))|p)dv

≤
(2K + K1 + K2)τ + ε∗

2
|x(t)|2 +

|Mk|
2

2ε∗

+
(K3 + K4)τ

p + 1
|x(t)|p+1

+ Kτ |x(t)||x(t) − x(kτ )|

+

∫ t

kτ

(K1

2
|x(v)|2 +

K2

2
|x(v − δ(v))|2

+
pK3

p + 1
|x(v)|p+1

+
pK3

p + 1
|x(v − δ(v))|p+1

)
dv.

Since τ < 1/K , we further have

|x(t)||x(t) − x(kτ )|

≤
1

1 − Kτ

∫ t

kτ

(K1

2
|x(v)|2 +

K2

2
|x(v − δ(v))|2

+
pK3

p + 1
|x(v)|p+1

+
pK4

p + 1
|x(v − δ(v))|p+1

)
dv

+
1

1 − Kτ

(
|Mk|

2

2ε∗
+

(2K + K1 + K2)τ + ε∗

2
|x(t)|2

+
(K3 + K4)τ

p + 1
|x(t)|p+1

)
.

e can substitute this into (4.3) and then take expectations on
oth sides to obtain

|Ū(t)| ≤
KηM

1 − Kτ

∫ t

kτ
(K1E|x(v)|2 + K2E|x(v − δ(v))|2

+
2pK3

p + 1
E|x(v)|p+1

+
2pK4

p + 1
E|x(v − δ(v))|p+1

+
1
ε∗

E|g(x(v), x(v − δ(v)), v, r(v))|2)dv

+ Λ5E|x(t)|2 + Λ6E|x(t)|p+1.

Then the required assertion follows if we use (2.5). □

4.3. Exponential stabilisation

In this part, we demonstrate that the original unstable system
(2.1) can be stabilised by the feedback control designed in this
paper in the sense of mean square exponential stability. For this
purpose, the following remark is helpful.

Remark 4. Let ηmax = maxi∈S ηi and η̂M = maxi∈S1 η̂i. Define
six functions on [0, 1/τ ) by ϖj(λ) = Λj/(1 − λτ ) (j = 1, 2, 3, 4),
and Φ1(λ) = 1 − Λ5 − ϖ1(λ)τ − (2β1 + ϖ2(λ)τ )∆∗eλτ

− ηmaxλ,
Φ2(λ) = (1 − (p − 1)β2)µ̂ − Λ6 − ϖ3(λ)τ − (2β2µ̂ + 2β3 +

4(λ)τ )∆∗eλτ
− η̂M µ̂λ.

It is easy to see that all ϖj(·) are positive increasing functions
and tend to infinity when λ → 1/τ . This observation implies that
6

the decreasing function Φ1(·) goes to negative infinity when λ
approaches its right bound. Next, compute Φ1(0) = D1 − Λ5 −

(Λ1 + ∆∗Λ2)τ . Recalling the determination of τ ∗ in Section 4.1,
we obtain that Φ1(0) > 0. Consequently, there exists a unique
solution λ∗

1 ∈ (0, 1/τ ) such that Φ1(λ) = 0. The same analysis ap-
plying to Φ2(λ) yields that there is a unique solution λ∗

2 ∈ (0, 1/τ )
so that Φ2(λ) = 0. Then Φ1(λ) and Φ2(λ) are non-negative for any
λ ∈ [0, λ∗

], where λ∗
= λ∗

1 ∧ λ∗

2.

Theorem 2. Under Assumption 4, let the control function u(x, t, i)
satisfy Rules 1, 2, 3. Then the solution of the controlled system (3.1)
has the property that

lim sup
t→∞

1
t
log

(
E|x(t)|2

)
≤ −λ∗. (4.4)

roof. We firstly choose the parameters set in the Lyapunov
functional as ϖ ∗

j = ϖj(λ∗) (j = 1, 2, 3, 4), which are all positive
from discussions in Remark 4. Applying the generalised Itô for-
mula and using (4.1), we obtain that for any t ≥ 0 (if necessary,
using the procedure of stopping times since EV (xt , t, r(t)) < ∞

and E|LV (xt , t, r(t))| < ∞)

eλ∗tEV (xt , t, r(t)) − V (x0, 0, r0)∫ t

0
eλ∗s(λ∗EV (xs, s, r(s)) + ELV (xs, s, r(s)))ds. (4.5)

y Lemmas 4 and 5, we derive from (4.2) that

LV (xs, s, r(s)) ≤ EJ1(s) −

∫ s

s−τ

E(H1(v) − H2(v))dv,

here J1(s) = −(1−ϖ ∗

1 τ−Λ5)|x(s)|2+(2β1+ϖ ∗

2 τ )|x(s − δ(s))|2−
(1 − (p − 1)β2)µ̂ − ϖ ∗

3 τ − Λ6)|x(s)|p+1
+ (2β2µ̂ + 2β3 +

∗

4 τ )|x(s − δ(s))|p+1. Recalling the definition of V (xs, s, r(s)) and
sing the fact that

∫ 0
−τ

∫ t
t+s φ(v)dvds ≤ τ

∫ t
t−τ

φ(v)dv for any
on-negative integrable function φ, we then have

λ∗EV (xs, s, r(s)) + ELV (xs, s, r(s))

≤EJ2(s) −

∫ s

s−τ

E((1 − λ∗τ )H1(v) − H2(v))dv, (4.6)

where J2(s) = λ∗U(x(s), r(s)) + J1(s). Noting that for j = 1, 2, 3, 4,
(1−λ∗τ )ϖ ∗

j −Λj = 0, and so (1−λ∗τ )H1(v) = H2(v), substituting
(4.6) into (4.5) shows that

eλ∗tEV (xt , t, r(t)) ≤ V (x0, 0, r0) + E
∫ t

0
eλ∗sJ2(s)ds. (4.7)

Since U(x, t) ≤ ηmax|x|2 + η̂M µ̂|x|p+1, we have∫ t

0
eλ∗sJ2(s)ds

≤ − (1 − ϖ ∗

1 τ − Λ5 − ηmaxλ
∗)

∫ t

0
eλ∗s

|x(s)|2ds

+ (2β1 + ϖ ∗

2 τ )
∫ t

0
eλ∗s

|x(s − δ(s))|2ds − ((1 − ϖ ∗

3 τ

− (p − 1)β2)µ̂ − Λ6 − η̂M µ̂λ∗)
∫ t

0
eλ∗s

|x(s)|p+1ds

+ (2β2µ̂ + 2β3 + ϖ ∗

4 τ )
∫ t

0
eλ∗s

|x(s − δ(s))|p+1ds.

Using Lemma 1 and eλ∗s
≤ eλ∗∆eλ∗(s−δ(s)), we further have∫ t

0
eλ∗sJ2(s)ds ≤C2 − Φ1(λ∗)E

∫ t

0
eλ∗s

|x(s)|2ds

− Φ2(λ∗)E
∫ t

eλ∗s
|x(s)|p+1ds,
0
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Fig. 1. The neuron network connections at free mode (left) and busy mode
right).

here C2 = eλ∗τ∆∗τ ((2β1 + ϖ ∗

2 τ )∥ξ∥
2

+ (2β2µ̂ + 2β3 +
∗

4 τ )∥ξ∥
p+1). From Remark 4, we see that they are all non-

egative. Therefore, we obtain from (4.7) that ηmineλ∗tE|x(t)|2 ≤

C2 + V (x0, 0, r0), where ηmin = mini∈S ηi. Letting t → ∞ give the
desired assertion (4.4). The proof is hence complete. □

5. An application to neural networks

Consider a stochastic delay neural network with 10 neurons
perturbed by a scalar Brownian motion W (t), operating in two
modes, busy and free. In the jth neuron, it obeys the Hopfield
model in free mode dxj(t) =

(
−Ljxj(t) +

∑10
k=1 Πjkϑk(xk(t − δ(t)))

)
dt + σxj(t)dW (t), while in busy mode, it could be described by
the Cohen–Grossberg neuron network dxj(t) = −Γ xj(t)

(
P(x2j (t)−

ϱ)−
∑10

k=1 Π̃jkϑ̃k(xk(t−δ(t)))
)
dt+σ̃x2j (t−δ(t))dW (t). Here Πjk and

Π̃jk stand for the connection weight from neuron k to neuron j in
free mode and busy mode, respectively, Lj =

∑10
k=1 |Πjk|, ϑj(xj) =

ρ(1 − e−xj )/(1 + e−xj ) and ϑ̃j(xj) = ρ̃(exj − e−xj )/(exj + e−xj ) are
the transfer functions, δ(t) =

∑
∞

k=0(0.2(t − k)1[k,k+0.5)(t)+ (0.2−

0.2(t − k))1[k+0.5,k+1)(t)) is the system time lag. For more infor-
mation about these two types of neuron network, we cite (Blythe,
Mao, & Liao, 2001; Wang, Shu, Fang, & Liu, 2006; Ye, Michel, &
Wang, 1995) for references.

This neuron network switches from one mode into the other
according to a Markov chain r(t) on the state space S = {1, 2}
(1 for free mode, 2 for busy mode) with transition rate matrix
Q = [−8, 8; 1, −1]. The network parameters are given as ϱ =

0.15, ρ = 0.3, ρ̃ = 0.15, Γ = 3, P = 2.5, σ = 0.3, σ̃ = 0.1. The
connection weight Πjk and Π̃jk can be obtained from the network
connection graphs in Fig. 1.

Let x = (x1, . . . , x10)T, L = diag(L1, . . . , L10), ϑ(x) = (ϑ1(x1),
. . . , ϑ10(x10))T, ϑ̃(x) = (ϑ̃1(x1), . . . , ϑ̃10(x10))T, P = (ϱ, . . . , ϱ)T,
Π =

(
Πjk

)
10×10, Π̃ = (Π̃jk)10×10. Then rewrite the network into

a general form of hybrid SDDE as

dx(t) =f (x(t), x(t − δ(t)), r(t))dt

+ g(x(t), x(t − δ(t)), r(t))dW (t). (5.1)

Here g(x, y, 1) = σx, g(x, y, 2) = σ̃y2, f (x, y, 1) = −Lx + Πϑ(y),
f (x, y, 2) = −Γ diag(x)(P(x2 − P) − Π̃ ϑ̃(y)). It is easy to see that
Assumption 1 holds with ∆∗

= 1.25 and Assumption 2 is satisfied
with K1 = 1.151, K2 = 0.0861, K3 = 7.526, K4 = 0.026, K5 =

0.09, K6 = 0, K7 = 0, K8 = 0.01, p = 3. Next selecting q = 8 ≥ 2p,
we derive that ã1 = 0.4071, Ã = 3.9295, b̃1 = 0.043, γ̃2 = 1.125,
b̃2 = 0.052, c̃2 = 0.7448, d̃2 = 0.035. Then Assumption 3 is
satisfied. Moreover, η̃1 = 0.2544, µ̃ = 1.963, D̃ = 0.8851 and
µ̃D̃− q(q− 2+ (p+ 1)∆∗)d̃M/(q+ p− 1) = 1.4294. Until now, all
the conditions in Theorem 1 are fulfilled. Thus, neuron network
(5.1) has a unique global solution.

Then we want to design a state feedback control u(x, i) based
on discrete-time observations at 0, τ , 2τ , . . . to stabilise neuron
network (5.1). The controlled network then becomes

dx(t) =(f (x(t), x(t − δ(t)), r(t)) + u(x(t ), r(t)))dt
τ
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+ g(x(t), x(t − δ(t)), r(t))dW (t). (5.2)

Before that, we observe that S can be divided into two parts,
S1 = {1} and S2 = {2} (Hopfield structure and Cohen–Grossberg
structure, respectively). Through calculation, we obtain that for
i ∈ S1, a1 = 0.047, b1 = 0.043, â1 = 0.1371, b̂1 = 0.0431, and
A1 = 7.9059 Â = 7.4518, which are non-singular M-matrices. It
is then easy to derive that Db = 0.9864, D̂ = 0.974. While for
i ∈ S2, we get γ2 = 1.125, b2 = 0.052, c2 = 0.7448, d2 = 0.005,
Dd = 0.7375. As a result, Assumption 4 holds.

Then we choose κ2 = 2 and design the control function as
follows: for any x ∈ R10, u(x, 1) = 0, and u(x, 2) = −2x if x| ≤ R2,
u(x, 2) = −2(2R2/|x| − 1)x if R2 < |x| ≤ 2R2, u(x, 2) = 0 if
|x| > 2R2. Here R2 = 2.8968. Consequently, Rule 1 is satisfied
with K = 2. It is straightforward to derive that a2 = −0.875.
We then see that Rule 2 is true with A = [7.9058, −8; −1, 2.75]
being a non-singular M-matrix. Compute µ̂ = 0.8512, (η1, η2)T =

(0.7823, 0.6481)T, η̂1 = 0.1142. It is then easy to obtain that
D1 = 0.9157, D2 = 0.8243. Rule 3 is hence fulfilled. Up to
now, we have verified all the conditions in Theorem 2. Then we
conclude that controlled system (5.2) is exponentially stable in
mean square if τ < τ ∗

= 0.0387.

6. Conclusion

In this paper, we have designed the discrete-time state feed-
back control in a bounded state area to stabilise a kind of struc-
tured hybrid SDDEs with more general time delay. Not only
could more general stochastic systems be covered, but also the
control could be less costly. The conditions given on the original
system and the control function were less restrictive and could
also be verified easily in practice, in particular comparing with
Assumption 6 in Mei et al. (2020) or Lemma 4.3 in Shi et al.
(2022). For convenience, we only divided the system into two
proper subsystems, which satisfied the Khasminskii-type struc-
ture and the generalised Khasminskii-type structure, respectively.
But owing to mathematical restriction, we could not impose any
control in the former subsystem. Our future work will be devoted
to this problem.
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