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Abstract

This paper provides a type theoretic foundation for descriptive types that appear in Linked Data. Linked Data is data
published on the Web according to principles and standards supported by the W3C. Such Linked Data is inherently
messy: this is due to the fact that instead of being assigned a strict a priori schema, the schema is inferred a posteriori.
Moreover, such a posteriori schema consists of opaque names that guide programmers, without prescribing structure.
We employ what we call a descriptive type system for Linked Data. This descriptive type system differs from a
traditional type system in that it provides hints or warnings rather than errors and evolves to describe the data while
Linked Data is discovered at runtime. We explain how our descriptive type system allows RDF Schema inference
mechanisms to be tightly coupled with domain specific scripting languages for Linked Data, enabling an interactive
feedback to Web developers.
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1. Introduction

This paper is the second of two journal papers that address RDF Schema [9] from a type theoretic perspective.
RDF Schema is a data-modelling vocabulary for the Resource Description Framework (RDF) [16], where RDF is a
W3C recommended data format for publishing data on the Web.

This work spans two journal papers, since certain aspects of RDF Schema are best treated using a conventional
approach to typing, whereas other aspects are quite unconventional even to the seasoned type theorist. The previ-
ous paper in the series [14] treated the conventional typing aspects of RDF Schema that concern familiar simple
datatypes [43] such as integers and strings. As we know, if a type system guarantees that a variable is a string, but
the same variable appears in an expression for integers, then a type error arises. We call such conventional type sys-
tems prescriptive type systems, since the type system prescribes that the variable concerned must be a particular type,
hence can only be used in the manner prescribed. A prescriptive type system is appropriate for aspects of RDF Schema
concerning simple data types. However prescriptive typing is less appropriate for other aspect of RDF Schema.

In this second paper in the series, that may be read independently of the first, we address less conventional aspects
of RDF Schema types. The aspects we model concern opaque names, where there is no difference in the underlying
structure of names that inhabit distinct types. In this paper, all resources are named by a URI — a Web address
such as res:Vitali Klitschko or res:Udar . Since all URIs are URIs, no runtime type error would arise if one
URI is accidentally used in place of another URI. However, these URIs are intended to represent resources that are
understandable to human beings. If resources are used in the wrong place in data, then the data may not make sense.

The descriptive type system we introduce enables simple routine data-modelling slips to be detected. RDF is
based on triples of URIs that represent how two URIs are related to each other. Here the property that relates the two
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URIs is also a URI, e.g. free:government/politician/party . The programmer may simply have accidentally switched
the expected order of the two URIs related to imply something nonsensical, such as: “ res:Udar is a member of the
political party res:Vitali Klitschko ”. Since our descriptive type system would describe that the above property relates
politicians to political parties, then our type system issues a warning suggesting that either res:Udar is politician, or
there is some problem with the data. In another scenario, the wrong person may be used. For example, the statement
“ res:Wladimir Klitschko is a member of the political party res:Udar ” would result in a warning, since Wladimir
Klitschko, Vitali’s brother, is not a politician. From meaningful warnings a human is likely to spot the problem with
the data. Note that types are themselves named using URIs that do not impose any structure on the data itself. For
example, the type politician can be represented by the URI free:government.politician .

The descriptive type approach illustrated above differers from the standard approach to RDF Schema infer-
ence [25]. In both of the above examples, standard RDF Schema inference would wrongly infer that res:Udar
and res:Wladimir Klitschko are politicians. In the descriptive typing approach a warning that presents a menu of
options is generated. From the menu, the human reading the warning can select the best option, where the options
include the standard RDF Schema inference along with several other possible courses of action. Furthermore, since,
unlike errors, warnings may be ignored, the choice of inference may be suspended while the program continues. At
a later point more illuminating data may be obtained that helps resolve the warnings; or, perhaps, the warning can be
ignored indefinitely citing imperfect schema information.

This line of work also considers how descriptive types can be of assistance to programming languages that con-
sume Linked Data [19, 24, 28]. Linked Data is data published on the Web according to certain principles and standards.
The main principle laid down by Berners-Lee in a note [6] is to use HTTP URIs to identify resources in data. By
using HTTP URIs, anyone can use the HTTP protocol to look up (dereference) resources that appear in data in order
to obtain more data. All URIs that appear in this paper are real dereferenceable URIs that you can dereference by
following the links in the electronic version of this article.

The descriptive type system introduced in this work can be used for typing programs, as well as data. For example,
the descriptive type system can raise warnings when a query over RDF data involves properties that make no sense
according the their schema, for example the subject and object of a statement are accidentally reversed. When a
program is well typed, the program can be used in confidence that there will be no warnings and hence unwanted RDF
Schema inferences will never be applied.

If you ask the Linked Data scientist whether there is any link between types in RDF and type systems, they will
explain that there is almost no connection. Traditionally, type systems are used for static analysis to prescribe a space
of constraints on data and programs. In contrast, types in RDF change to describe the data instead of prescribing
constraints on the data. In this work, we provide a better answer to the question of the type-theoretic nature of
types in Linked Data, by distinguishing between prescriptive type systems and descriptive type systems. The idea of
descriptive types arose in joint work with Giuseppe Castagna and Giorgio Ghelli. Here we instantiate it for our Linked
Data scripting language [14]. Descriptive type systems, not formally related to this work, appear in work on logic
programs, tree data structures and dynamically typed objects [22, 33, 15, 5, 17, 26].

This work is an extended version of the invited conference version presented at PSI 2014 [13]. This version of the
paper closes further the gap between the descriptive type system in the conference version and W3C standards. The
new contributions compared to the conference version are:

• An extended introduction that presents the W3C standard RDF Schema inference mechanism called simple
entailment and, by intuitive examples, compares the standards to the approach enabled by the descriptive type
system in this work.

• An extended syntax and type system covering a larger subset of the RDF Schema standard, with features cor-
responding to not only rdf:type triples but also triples with rdfs:subClassOf , rdfs:domain and rdfs:range as
the property.

• A proposition formally relating W3C standard simple entailment to inference for descriptive types; accompa-
nied by common-sense recommendations about good practice for designing ontologies to work well with both
descriptive type systems and the W3C standards.

This version also expands considerably the discussion and deals more carefully with algorithmic issues regarding
generating and solving subtype constraints. Hence this version fully supersedes the invited conference version.

2

A descriptive type foundation for RDF schema

http://rdf.freebase.com/ns/government/politician/party
http://live.dbpedia.org/resource/Udar
http://live.dbpedia.org/resource/Vitali_Klitschko
http://live.dbpedia.org/resource/Udar
http://live.dbpedia.org/resource/Wladimir_Klitschko
http://live.dbpedia.org/resource/Udar
http://rdf.freebase.com/ns/government.politician
http://live.dbpedia.org/resource/Udar
http://live.dbpedia.org/resource/Wladimir_Klitschko
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#domain
http://www.w3.org/2000/01/rdf-schema#range


In Section 2, we provide a self-contained section that explains this work in the context of existing work on type
systems for semi-structured data and RDF Schema. We present a motivating example of a scenario where descriptive
typing can be applied to Linked Data to present meaningful warnings to a programmer that would like to interact
with Linked Data. This section can be read separately without going into details of the type system or the scripting
language.

In Section 3, we develop technical prerequisites for our descriptive type system. In particular, we require a notion
of type and a consistent notion of subtyping. We develop these notions and present supporting results.

In Section 4, we continue the technical development of the type system. We introduce a simple scripting language
for dereferencing resources over the Web and querying Linked Data in a local store. We devise an algorithmic type
system that we use as part of our typing and inference mechanism. This section formally connects the descriptive
type system developed with the standard RDF Schema inference mechanisms and justifies differences between the
approaches.

In Section 5, we specify the behaviour of scripts using a novel operational semantics. This section formalises the
real novelty of descriptive types as a means to support the inference of schema at runtime. The operational semantics
allows us to refine the type system during execution in response to warnings about potential mismatches between the
data and schema. We describe an algorithm for deriving warnings based on constraints generated by the operational
semantics and algorithmic type system. We conclude with a type reduction result that proves that, if the type system
is sufficiently refined, then the script will run without unnecessary warnings; and hence no new inferences need be
applied.

2. Type Systems for Semi-Structured Data

Schema for the Resource Description Framework (RDF) are considerably different from schema for other popular
forms of data representation including XML and relational databases. We firstly review the state of the art of XML
Schema as a type system for XML and also types for relational databases, before explaining why such approaches do
not directly translate across to RDF Schema.

Types for XML. XML is essentially a standardised syntax for serialising abstract syntax trees [45]. XML Schema [23]
is used to describe the permitted structure of abstract syntax trees as well as the primitive datatypes that may appear
inside the tree.

XML Schema are types for data, as clarified and formalised in a line of work where type systems for programming
languages have been extended with types inspired by XML Schema. Notable contributions include the prototype
functional programming languages XDuce [29] and CDuce [4]. In these prototype languages, it is possible to statically
type check functions that manipulate XML. To consider an example, suppose also that we would like to transform
SPARQL Query XML Results into GraphML format2. When defining a function performing the transformation,
CDuce will infer the type of the function. If there is a problem with the function, then either a type checking error
will occur, or the wrong type will be inferred, suggesting to the programmer how the function may be fixed.

The investigation into XML Schema and type systems have lead to non-trivial developments in the theory of types.
The theory of semantic subtyping [21] was originally motivated by the problem of developing a subtype system for
XML Schema. Semantic subtyping employs a denotational model of types to derive a subtype relation.

Types for relational data. Languages for relational databases have long been endowed with type systems [1]. Rows in
a table, or relations, can be typed using record types [12]. A combination of record types and type constructors for lists,
bags and sets can be used to type complex query languages and database programming languages as demonstrated
in [10]. For example the language Kleisli [49] incorporates a type system and has inspired the development of modern
query languages. Related work on types for RDF [36] suggested a distinct approach to ours based on record types.

2For SPARQL XML results schema see http://www.w3.org/2007/SPARQL/result.xsd, for GraphML see http://graphml.
graphdrawing.org/xmlns/1.0/graphml.xsd.
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Why Types for RDF Schema are Different. This work proposes quite a different use of type systems compared to
existing systems for XML and relational databases mentioned above. In the context of XML Schema and relational
databases, the method for integrating the type system with programming languages is conventional, in the sense that
the types are used to prescribe a space in which only certain structures are permitted to exist, and if a structure is not
inhabited by the given type, then a type error occurs.

RDF Schema is designed for messy data that is combined from multiple heterogeneous datasets published on the
Web. RDF Schema is only intended to be used as a guideline for how data may be used, rather than a prescription
for how data must be used. For example, suppose that data is discovered from one source stating that a resource has
type boxer, while in another source statements are made about the resource that can only apply to politicians. In this
scenario, a type error need not be thrown. Instead of generating an error, RDF Schema is used to infer that person is
both a boxer and a politician. The fundamental difference to the type systems described above is that the type of the
resource itself (the person) has been refined at runtime; in contrast, type information in traditional prescriptive type
systems is static.

This work builds on the conference version of this paper [13] to establish a formal system that respects RDF
Schema inference [9]. Further to respecting standard RDF Schema inference, the system enables some new forms
of inference that are useful for completing missing schema information. This paper formalises and illustrates the
underlying system, called a descriptive type system, that reflects the requirements of RDF Schema inference as well
as enabling tight integration with domain specific scripting languages.

A triple is the basic unit for representing data in RDF. It consists of a subject, a property and an object. The subject
is a URI that names the resource being described, the property is a URI indicating how the subject is related to another
resource that appears in the object position.

Suppose that we have the following triple that states that Vitali Klitschko has the boxing category Heavyweight.

res:Vitali Klitschko dbp:boxerCategory res:Heavyweight .

A property can be assigned type information that indicates the type of resource that should appear in the subject
and object position when the resource appears as the property. Suppose that dbp:boxerStyle is a property with domain
dbp:Boxer and range dbp:BoxingCategory . In RDF Schema notation this may be represented by the following two
triples.

dbp:boxerCategory rdfs:domain dbp:Boxer .
dbp:boxerCategory rdfs:range dbp:BoxingCategory .

The URIs rdfs:domain and rdfs:range are special keywords from the RDF Schema vocabulary [9]. According to
the specification, a triple of the form p rdfs:domain t indicates that the URI t is a type and resources that appear as
subject of triples with property p have the type t. Similarly, a triple of the form p rdfs:range t indicates that the URI t
is a type and resources that appear as the object of triples with property p have the type t.

Now consider that the type of res:Vitali Klitschko is currently unknown, so assumed to be only the top type
rdfs:Resource that is a special top type that can be assigned to all URIs. By RDF Schema inference described
informally above we can deduce that, since res:Vitali Klitschko appears as the subject of a triple with property
dbp:boxerCategory and furthermore the domain of that property is dbp:Boxer, we can infer that res:Vitali Klitschko
is of type dbp:Boxer. In RDF this may be represented by the following inferred triple.

res:Vitali Klitschko a dbp:Boxer .

The notation we use for representing RDF triples is inspired by the W3C standard notation Turtle [3]. In this notation
the keyword ‘a’ is a synonym for the URI rdf:type from the RDF vocabulary [16] which is used to indicate that the
resource that appears in the subject position is an instance of the type that appears in the object position.

Triples can be of the following forms, where the tokens ranging over type form a distinguished finite subset of the
tokens ranging over uri.

• Simple triples consisting of three URIs: uri uri uri.

• Type declarations that indicate a type associated with a URI: uri a type.

• Subclass assertions relating two classes: type rdfs:subClassOf type.
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• Assertions about the domain of URI naming a property: uri rdfs:domain type.

• Assertions about the range of URI naming a property: uri rdfs:range type.

Notice that to avoid circular definitions, we treat rdfs:subClassOf , rdfs:domain and rdfs:range like keywords. Only
in the ontology for RDF Schema itself, do we need to make statements about these properties as if they are any other
URI; hence the price paid is small.

2.1. W3C Recommended RDF Schema inference

In Figure 1, we present a version of the W3C recommended semantics for RDF Schema. Similarly to the work of
Munoz et al. [37] on minimal deductive systems for RDF Schema, rules are presented as a deductive system. In such
deductive systems, if all the triples that appear above the horizontal line hold, then the rules below the horizontal line
hold. If there are no rules above the horizontal line, then an axiom is defined that always holds.

uri1 rdfs:domain type uri0 uri1 uri2
(rdfs2)

uri0 a type

uri1 rdfs:range type uri0 uri1 uri2
(rdfs3)

uri2 a type

(rdfs8)
uri a rdfs:Resource

uri a type0 type0 rdfs:subClassOf type1
(rdfs9)

uri a type1

(rdfs10)
type rdfs:subClassOf type

type0 rdfs:subClassOf type1 type1 rdfs:subClassOf type2
(rdfs11)

type0 rdfs:subClassOf type2

Figure 1: A deductive system for RDF Schema inference. Rule names correspond to the names of the equivalent patterns of entailment in the W3C
recommendation [25].

There are two axioms in the deductive system defined in Fig. 1. The axiom rdfs8 defines that all resources have the
supertype rdfs:Resource. The axiom rdfs10 states that all types are a subtype of themselves; thereby rdfs:subClassOf
is a reflexive relation. The relation rdfs:subClassOf is also a transitive relation, as defined by the rule rdfs11.

The rdfs9 rule in Fig. 1 performs subsumption, which allows a weaker type for a resource to be inferred, by using
the rdfs:subClassOf relation. Subsumption is a common feature of subtype systems [11, 35, 2] — an observation key
to the formal system developed in the body of this work. The remaining rules rdfs2 and rdfs3 formalise that if the
given URI is used as a property in a triple then the object of the triple, respectively the subject of the triple, has the
type indicated. See above for the examples regarding boxer categories.

Notice that rules involve two sorts of variables: classes that range over the variables type, type0, type1, type2; and
URIs that range over the variables uri, uri0, uri1. Classes form a subset of all URIs, thus a variable for a class may
appear as a URI. This allows triples that describe classes to be expressed, such as the following triples.

dbp:Boxer prov:wasDerivedFrom mapping:Boxer .
dbp:Boxer a prov:Entity .
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The above triples state that type information about the class Boxer was derived from a particular ontology wiki page,
and is also of type prov:Entity. This metadata is taken from the W3C recommended provenance ontology [32] that is
used to express the origin of resources, including classes.

By treating classes as an explicit finite subset of URIs, several rules become more concise than in the recommen-
dation, and two rules called rdfs4a and rdfs4b become redundant. The remaining rules in the recommendation rdfs5,
rdfs6, rdfs7 concern a relation called rdfs:subPropertyOf , which can be added straightforwardly to this work, however
contribute little to the type system. The final remaining rule rdfs1 concerns literals, such as strings and integers which
are treated thoroughly by the prescriptive type system in [14]. The prescriptive type system may co-exist with the
descriptive type system in this work: the descriptive type system generating warnings; the prescriptive type system
generating errors. Literals must be treated prescriptively, since for example adding an integer to a string can cause
serious runtime errors.

Several papers already provide related formal models of RDF Schema addressing known issues with the W3C
recommendations. The inference mechanisms are analysed from a model theoretic perspective by ter Horst [48]. The
main result of the model theoretic analysis is that RDF Schema inference, as defined in the W3C recommendation
is incomplete. The incompleteness is caused by an interaction between two features of RDF Schema – the property
rdfs:subPropertyOf and blank nodes. Blank nodes are local identifiers that appear in RDF in place of URIs, but not in
the property position in a triple. With a more complete reasoning mechanism blank nodes should be allowed to appear
in the property position. In the latest W3C recommendation [25], the notion of a generalised triple is proposed that
allows blank nodes to appear in the property position, addressing the concerns of ter Horst. In this work, we cover
neither blank nodes nor rdfs:subProperty , since the associated problems are perpendicular to those in this work. For
a discussion on blank nodes and their associated problems we refer to Mallea et al. [34].

Pan et al. [40] address issues with the higher-order nature of the official W3C recommendation for RDF Schema.
A major point of contention is that the top level types are defined in a circular fashion. In particular, there is a type
rdfs:Class which is a type of itself meaning making the system higher-order. Fortunately, there is little descriptive
power to gain by treating rdfs:Class like any other URI, since its main use is to describe the RDF Schema vocabulary
itself. For example, rdfs:subClassOf has domain rdfs:Class and range rdfs:Class – a fact that can be implicitly built
into the deductive system itself by using a separate sort for classes, as in Fig. 1. In this work, rdfs:Class is built into
the formal system implicitly, by maintaining a finite set of known URIs that can be used as classes. In this way, we
are able to avoid the descriptive type system in this work becoming higher-order.

2.2. Extending inference to infer the RDF Schema itself.

In the body of this work, we formally define a type system that supports RDF Schema inference. RDF Schema
inference is one of several other modes of inference enabled by our type system. We argue that firstly these new
modes of inference are no less natural than the recommended RDF Schema inference; and, in common scenarios, an
alternative mode of inference is more appropriate. Unlike OWL [27] we are not extending the vocabulary used to
describe schema; we are simply providing an alternative method for using the existing vocabulary, that furthermore,
remains sound with respect to the W3C recommendation.

Consider the following triple that states that Vitali Klitschko was born in the Kyrgyz SSR.

res:Vitali Klitschko dbp:birthPlace res:Kyrgyz SSR .

We know that Vitali Klitschko has the type dbp:Boxer . Furthermore, from the DBpedia ontology, we obtain the
following triples.

dbp:birthPlace rdfs:domain dbp:Person .
dbp:birthPlace rdfs:range dbp:Place .

From the above RDF Schema information, the standard behaviour is to apply RDF Schema inference, whence we
infer that Klitschko has the types dbp:Boxer and dbp:Person .

In this scenario, there is an alternative stronger mode of inference. Consider the following subclass assumption.

dbp:Boxer rdfs:subClassOf dbp:Person .
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If we add the above assumption to our dataset, then every boxer can be used as a person. Therefore, by the rdfs9 rule in
Fig. 1, we can infer that Klitschko is person, without using the rdfs2 rule from Fig. 1. Thus, no new type information
regarding Klitschko need be added to the dataset.

In the example, more general schema information has been extracted that can be applied to other resources of the
same type. So, for example, suppose that the following triples are retrieved about Wladimir the brother of Vitali.

res:Wladimir Klitschko a dbp:Boxer .
dbp:Kazakh SSR a dbp:Place .
res:Wladimir Klitschko dbp:birthPlace dbp:Kazakh SSR .

Since Wladimir is a boxer and all boxers are people, no further type information need to be added to the dataset. The
type system developed in this work identifies such well-typed systems where no further inference is required.

Now suppose that by using freebase [8] we obtain the following triple, where free:m/0j1b9hc is name in freebase
for the political party Ukrainian Democratic Alliance for Reform.

res:Vitali Klitschko free:government/politician/party free:m/0j1b9hc .

Suppose furthermore that, from the freebase ontology, we obtain the following triples indicating the usage of the
above property.

free:government/politician/party rdfs:domain free:government/politician .
free:government/politician/party rdfs:range free:government/political party .

Now, since Klitschko is a boxer and appears as the subject of a triple with property free:government/politician/party ,
we can apply one of the two modes of inference described.

• Add the triple dbp:boxer rdfs:subClassOf free:government/politician.

• Infer that Vitali Klitschko has types free:government/politician and dbp:boxer .

By adding the above subclass assumption to our dataset, every boxer would also be a politician. Clearly, this is not
what is intended since most boxers have no political ambitions. In this scenario, what is intended is clearly the second
case above.

A question that a machine cannot answer easily is which option is best. In both the examples in this section, to a
human, it is immediately clear that all boxers are people but not all boxers are politicians. The descriptive type system
formalised and explained in the rest of this paper provides a mechanism for involving humans in the decision process.
Whenever inference may be performed, the required inference is presented to the user of a program as a warning.
The warning presents the option of applying standard RDF Schema inference or possibly a stronger inference mode
as described in this section. Furthermore, since the message is a warning about a type violation, rather than an error,
the user may choose to ignore the warnings and only resolve warnings that they believe are necessary. Thereby, we
introduce the basis of a tool that assists rather than restricts programmers.

3. Types and Subtyping for the Descriptive Type System

In this section, we introduce the types that are used in our type system. We explain the intuition behind each
construct and how they are useful for describing resources. We also define how types are arranged into a hierarchy by
using a subtype system.

3.1. Types for Classifying Resources

Many type systems are intimately connected to the form of data. For example, in XML Schema, the lexeme
3 has the type xsd:integer, whereas the lexeme "Ershov" has the type xsd:string. RDF does allow XML Schema
datatypes [43] to appear as objects in triples. Such literals should be typed prescriptively, since it should be forbidden
to add a string to an integer or evaluate an integer using a regular expression.
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Now consider the types of resources. Resources in RDF are represented by a URI that identifies the resource.
The simplest answer is to say that the type of a resource is xsd:anyURI , in which case a prescriptive type system is
sufficient, as defined in [14].

In contrast, this work concerns types that classify resources represented as URIs. Using RDF types, one resource
can be classified using the type dbp:IceHockeyPlayer and another using the type yago:SovietComputerScientists .
Both resources are represented as URIs, so there is nothing about the syntax of the resources that distinguishes their
type. Classes themselves are a distinguished finite set of URIs that form the atomic types of our type system. The full
syntax for types is presented in Fig. 2.

TypeF class atomic type
rdfs:Resource top type
IntersectionOf(Type,Type) intersection type
UnionOf(Type,Type) union type
Property(Type,Type) property type

Figure 2: The syntax of descriptive types. Variables C, D, E are used to range over types.

In Fig. 2, there are three type constructors, namely intersection, union, and property types. There is also a top type
rdfs:Resource that represents the type of all resources. This type for all resources includes classes; hence all classes
are also resources as in the W3C recommendation [25].

Intersection types. The intersection type constructor is used to combine several types. For example, according to DB-
pedia, res:Andrey Ershov has several types, including yago:SovietComputerScientists and yago:FellowsOfTheBritishComputerSociety
. In this case, the following intersection type can be assigned to res:Andrey Ershov .

IntersectionOf ( yago:SovietComputerScientists ,
yago:FellowsOfTheBritishComputerSociety )

Intuitively, the resource res:Andrey Ershov is a member of the intersection of the set of all resources that have the
type yago:SovietComputerScientists and the set of all resources of type yago:FellowsOfTheBritishComputerSociety .

Note that intersections and unions form part of the OWL [27] recommendation. The semantics for intersections
and unions in OWL are the same as the semantics for intersection and union types, in the sense that they are the
greatest lower bounds and least upper bounds respectively in a preorder.

Property types. The property type is inspired by the rdfs:domain and rdfs:range properties in RDF Schema [9],
which declare the type of data that may appear in the respective subject and object position of a triple. In RDF [16],
the basic unit of data is a triple, such as:

res:Vitali Klitschko dbp:birthPlace res:Kyrgyz SSR .

The elements of a triple are the subject, property and object respectively. Here the subject is expected to be of type
dbp:Person , the object is expected to be of type dbp:Settlement , while the property dbp:birthPlace is assigned the
following type.

Property(dbp:Person, dbp:Settlement)

In RDF Schema, this type represents two statements: one that declares that the domain of the property is dbp:Person
; and another that declares that the range of the property is dbp:Settlement .

Union types. If we inspect the data in DBpedia, we discover that the following triple also appears.

res:Vitali Klitschko dbp:birthPlace res:SovietUnion .
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Observe that res:SovietUnion is not a settlement. We can use the union type to refine the above type so that the range
of the property is either a settlement or a country. The refined type for dbp:birthPlace, involving union, is as follows.

Property(dbp:Person, UnionOf(dbp:Settlement, dbp:Country))

Notice that intersection would not be appropriate above. If we replace UnionOf with IntersectionOf in the above
example, the range of the property is restricted to resources that are both a settlement and a country (e.g. Singapore),
which is not the intended semantics of dbp:birthPlace . We return to this common modelling slip when we discuss
properties with multiple domains and ranges, towards the end of the next section.

Top type. Intuitively the top type ranges over the set of all resources. If a resource has no descriptive type information,
then it can be assigned the top type. The resource yago:Random access machine in the Yago dataset [47] has no type
other than rdfs:Resource .

In Yago the following triple relates Ershov to the random access machine.

yago:Andrei Ershov yago:linksTo yago:Random access machine .

The property yago:linksTo is very general, relating any resource to any resource, as indicated by the property type
Property(rdfs:Resource, rdfs:Resource).

Notice that the syntax of types is liberally expressive. We can express types that are both resources and property
types, allowing multiple uses of one URI. This design decision accommodates the subjective nature of human knowl-
edge and data representation, without the system becoming higher order. A descriptive type system is expected to
evolve, hence we do not want to restrict unforeseeable developments in its evolution.

3.2. A Subtype Relation over Descriptive Types

Types form a lattice defined by a subtype relation. The subtype relation, defined in Fig. 3, determines when a
resource of one type can be used as a resource of another type. In subsequent sections, this relation is important for
both the type system for data and scripts that is introduced, and also for refining the type system itself at runtime in
response to warnings.

top
` C ≤ rdfs:Resource

class0 ≤ class1 ∈ SC∗
subclass

` class0 ≤ class1

` C ≤ D
left injection

` C ≤ UnionOf(D, E)

` C ≤ E
left projection

` IntersectionOf(C,D) ≤ E

` C ≤ E
right injection

` C ≤ UnionOf(C, E)

` D ≤ E
right projection

` IntersectionOf(C,D) ≤ E

` C ≤ E ` D ≤ E
least upper bound

` UnionOf(C,D) ≤ E

` C ≤ D ` C ≤ E
greatest lower bound

` C ≤ IntersectionOf(D, E)

` C0 ≤ C1 ` D0 ≤ D1
property

` Property(C1,D1) ≤ Property(C0,D0)

Figure 3: Axioms and rules of the subtype system.
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Axioms. We assume that there are a number of subtype inequalities that relate atomic types to each other. For example,
we may assume that the following subtype inequalities hold.

dbp:Settlement ≤ dbp:PopulatedPlace dbp:Country ≤ dbp:PopulatedPlace

yago:CitiesAndTownsInMoscowOblast ≤ dbp:Settlement

Clearly a settlement is a populated places, as is a country. Cities and towns in Moscow oblast are also populated
places, but are more specifically settlements.

These inequalities are inspired by the rdfs:subClassOf property from RDF Schema, which defines a reflexive
transitive relation. We call a subclass relation SC the set of subtype assumptions. We denote the reflexive transitive
closure of SC as SC∗. Notice that SC is a relation over a finite number of atomic types, hence SC∗ can be calculated
in cubic time [30]. The relation SC∗ is used in the subclass rule in Fig. 3.

The top axiom states that every resource is of type rdfs:Resource .

Rules for union, intersection and properties. Suppose that a hint leads to the type of the property dbp:birthPlace
to be refined further. The hint suggests that the range of the property should include dbp:PopulatedPlace . From the
subtype rules, we can derive the following inequality.

`
Property( dbp:Person ,

dbp:PopulatedPlace ) ≤
Property( dbp:Person ,

UnionOf( dbp:Settlement
dbp:Country ) )

The derivation of the above subtype relation follows from applying first the property rule, that swaps the direction of
subtyping in each component, generating the following subtype constraint, and an axiom.

` UnionOf(dbp:Settlement, dbp:Country) ≤ dbp:PopulatedPlace

The above subtype inequality between properties suggests that a property with range dbp:PopulatedPlace can also
range over resources that are settlements or countries.

The above constraint is solved by applying the least upper bound rule. The least upper bound rule generates two
inequalities between classes that were declared to be in SC∗ above, hence the following hold by the subclass rule.

dbp:Settlement ≤ dbp:PopulatedPlace and dbp:Country ≤ dbp:PopulatedPlace

Now suppose that the following inequality is added to the relation SC.

yago:SovietComputerScientists ≤ dbp:Person

By the left projection rule and the above subtype inequality, we can derive the following subtype inequality.

`
IntersectionOf ( yago:SovietComputerScientists ,

yago:FellowsOfTheBritishComputerSociety ) ≤ dbp:Person

The above inequality suggests that Ershov can be treated as a person, although his type does not explicitly mention
the class dbp:Person .

The cut rule. A subtype relation is expected to be a transitive relation. To prove that subtyping is transitive, we
assume that there is a rule called the cut rule in our subtype system and then show that any subtype inequality that is
derived using cut can also be derived without using cut. The cut rules is defined as follows.

` C ≤ D ` D ≤ E
cut

` C ≤ E

In proof theory, the result that show that the cut rule is redundant is known as cut elimination, and is central to
establishing desirable properties of systems including consistency.
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Theorem 1 (Cut elimination). The cut rule can be eliminated from the subtype system in Fig. 3 using an algorithmic
procedure.

Proof. The proof works by transforming the derivation tree for a subtype judgement into another derivation tree with
the same conclusion. The transformation is indicated by ~·�. The symbol πi above a subtype inequality represents a
proof tree with the subtype inequality as its conclusion.

Without loss of generality, assume that the rule applied at the base of the proof tree is the cut rule. The proof
proceeds by induction over the structure of the proof tree.

Consider the case of cut applied across two subclass rules. Since SC* is transitively closed, if a ≤ b ∈ SC∗ and
b ≤ c ∈ SC∗, then we know that a ≤ c ∈ SC∗. Hence the following transformation simplifies subclass rules.�������a ≤ b ∈ SC∗

` a ≤ b
b ≤ c ∈ SC∗

` b ≤ c
` a ≤ c

������� −→ a ≤ c ∈ SC∗
` a ≤ c

The above case is a base case for the induction. The other base case is when the top rule is applied on the right
branch of the cut rule. In this case, the cut can be absorbed by the top type axiom, as follows.��������� π

` C ≤ D ` D ≤ rdfs:Resource
` C ≤ rdfs:Resource

��������� −→ ` C ≤ rdfs:Resource

The result of the above transformation step is clearly cut free.
Consider the case where the left branch of a cut is another cut rule. The nested cut rule can be normalised first, as

demonstrated by the transformation bellow.��������������
π0

` C ≤ D
π1

` D ≤ E
` C ≤ E

π2
` E ≤ F

` C ≤ F

�������������� −→
�������������
��������� π0
` C ≤ D

π1
` D ≤ E

` C ≤ E

��������� π2
` E ≤ F

` C ≤ F

�������������
By induction, the resulting nested tree is transformed into a cut free derivation tree; hence another case applies. This
induction step is symmetric when a nested cut appears on the right branch of a cut.

Consider the case where the least upper bound rule appears on the left branch of a cut. In this case, the transfor-
mation can be applied separately to each of the premises of the union introduction rule, as demonstrated below.���������������

π0
` C0 ≤ D

π1
` C1 ≤ D

` UnionOf(C0,C1) ≤ D
π2

` D ≤ E
` UnionOf(C0,C1) ≤ E

��������������� −→
��������� π0
` C0 ≤ D

π2
` D ≤ E

` C0 ≤ E

���������
��������� π1
` C1 ≤ D

π2
` D ≤ E

` C1 ≤ E

���������
` UnionOf(C0,C1) ≤ E

By induction, the result of the transformation is a cut free proof. The case for the greatest lower bound is symmetric,
with the order of subtyping exchanged and union exchanged for intersection.

Consider the case of the injection rules. Without loss of generality, consider the left injection rule. In this case, the
cut is pushed up the proof tree, as demonstrated below.��������������� π0

` C ≤ D

π1
` D ≤ E0

` D ≤ UnionOf(E0, E1)
` C ≤ UnionOf(E0, E1)

��������������� −→
��������� π0
` C ≤ D

π1
` D ≤ E0

` C ≤ E0

���������
` C ≤ UnionOf(E0, E1)

By induction, the result is a cut free proof. The cases for right injection, left projection and right projection are similar.
Consider when the injection rule is applied on the left of a cut, and least upper bound rule is applied on the right of

a cut. This is a principal case of the cut elimination procedure. Without loss of generality, consider the left projection.
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The result of the transformation is that only the left premise of the union introduction rule is required; the irrelevant
branch is removed by the elimination step, as demonstrated below.��������������

π0
` C ≤ D0

` C ≤ UnionOf(D0,D1)

π1
` D0 ≤ E

π2
` D1 ≤ E

` UnionOf(D0,D1) ≤ E
` C ≤ E

�������������� −→
��������� π0
` C ≤ D0

π1
` D0 ≤ E

` C ≤ E

���������
By induction, the result of the transformation is a cut-free proof. The principal case for intersection is similar to union.

Consider the case of cut applied to two predicate subtype rules. In this case, the contravariant premises of each
subtype rule are cut individually, as follows.��������������

π0
` D0 ≤ C0

π′0
` D1 ≤ C1

` Property(C0,C1) ≤ Property(D0,D1)

π1
` E0 ≤ D0

π′1
` E1 ≤ D1

` Property(D0,D1) ≤ Property(E0, E1)
` Property(C0,C1) ≤ Property(E0, E1)

��������������

−→

��������� π1
` E0 ≤ D0

π0
` D0 ≤ C0

` E0 ≤ C0

���������
��������� π′0
` E1 ≤ D1

π′1
` D1 ≤ C1

` E1 ≤ C1

���������
` Property(C0,C1) ≤ Property(E0, E1)

By induction, each of the new transformations on the right above have a cut-free proof, so the result of original
transformation on the left above has a cut-free proof.

For every cut one of the above cases applies. Furthermore, in each transformation a finite number of proof trees are
considered after a transformation step, each of which has a smaller depth than the original proof tree; hence by a stan-
dard multiset ordering argument [18] it is easy to see that the procedure terminates. Therefore, by structural induction
on the derivation tree, a cut free derivation tree with the same conclusion can be constructed for any derivation. �

Notice that the base case in the proof above would not be possible without taking the transitive closure of the
subclass relation. Pre-computing the transitive closure is equivalent to applying in advance the cut rule exhaustively
over atomic types, which works since there are finitely many atomic classes at any time and the resulting relation is
finite.

Cut elimination proves that the subtype system is transitive. It is straightforward to prove that the subtype system
is reflexive, by structural induction. Also, the direction of subtyping is preserved (monotonicity) by conjunction
and disjunction, while the direction of subtyping is reversed (antitonicity) for property types. Monotonicity and
antitonicity can be established by a direct proof.

Proposition 2. For any type ` C ≤ C is derivable. Also, if ` C0 ≤ D0 and ` C1 ≤ D1 then the following hold:

• ` IntersectionOf(C0,C1) ≤ IntersectionOf(D0,D1) is derivable.

• ` UnionOf(C0,C1) ≤ UnionOf(D0,D1) is derivable.

• ` Property(D0,D1) ≤ Property(C0,C1) is derivable.

Proof. Reflexivity of subtyping follows by induction on the structure of types. The base cases are as follows.
There are two base cases. Consider the case for class types a. Since SC∗ is reflexively closed, a ≤ a ∈ SC∗;

hence by the subclass rule ` a ≤ a holds. Consider the case for rdfs:Resource. By the top rule, ` rdfs:Resource ≤
rdfs:Resource as required.

The remaining cases follow by induction. Assume that ` C ≤ C and ` D ≤ D, then by the property rule,
` range(C) D holds. Also by the left projection, right projection and greatest lower bound rules, we can derive the
following.

` C ≤ C

IntersectionOf(C,D) ≤ C

` D ≤ D

` IntersectionOf(C,D) ≤ D

` IntersectionOf(C,D) ≤ IntersectionOf(C,D)
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A symmetric argument holds for union types and similar argument or property types. Therefore, by induction on the
structure of the type, the subtype relation is reflexive.

The antitonicity of property types and monotonicity of intersection and union types follow directly from the rules
for each type constructor. �

Theorem 1 and Proposition 2 are sufficient to establish the consistency of the subtype system, i.e. subtyping is a
well defined preorder.

Corollary 3. The relation defined by subtyping is a preorder over types.

Our subtype system is closely related to the functional programming language with intersection and union types
presented by Barbanera et al. [2]. Our subtype system without properties coincides with the subtype system of
Barbanera et al. without implication. Implication corresponds to fully fledged function types, which, of course, is
much more expressive than our property types. Properties can be encoded using implication, so our system is a
restriction of the system presented in [2]. However, the system of Barbanera et al. types all terminating functions;
hence is undecidable, and therefore inappropriate to use directly.

4. An Algorithmic Type System for Scripts and Data

We introduce a simple scripting language for interacting with Linked Data. The language enables resources to
be dereferenced and for data to be queried. This language is a restriction of the scripting language presented in [14];
which is based on process calculi presented in [19, 28]. We keep the language here simple to maintain the focus on
descriptive types.

4.1. The Syntax of a Simple Scripting Language for Linked Data

The syntax of scripts is presented in Fig. 4. Terms in the language are URIs which are identifiers for resources, or
variables of the form $x. RDF triples [16] and triple patterns are represented as three terms separated by spaces. The
where keyword prefixes a triple pattern. The keyword ok, representing a successfully terminated script, is dropped in
examples. Data is simply one or more triples, representing an RDF graph.

termF variable | uri

scriptF ok

| where term term term script
| from term script
| select variable : type script

dataF term term term
| term a term
| class rdfs:subClassOf class
| term rdfs:domain class
| term rdfs:range class
| data data

Figure 4: The syntax of scripts and data.

The keyword from represents dereferencing the given resource. The HTTP protocol is used to obtain some data
from the URI, and the data obtained is loaded into a graph local to the script (see [14] for an extensive discussion of
the related from named construct).

The keyword where represents executing a query over the local graph that was populated by dereferencing re-
sources. The query can execute only if the data in the local graph matches the pattern. Variables representing resources
to be discovered by the query are bound using the select keyword (see [28] for the analysis of more expressive query
languages based on SPARQL [24, 42]).
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4.2. An Algorithmic Type System for Scripts and Data

We type scripts for two purposes. Firstly, if the script is correctly typed, the script is consistent with the schema
information currently known by the type system. Therefore, when the script is executed, no warning will be thrown,
where a warning indicates that there is an inconsistency between the current schema information and the data or script
hence some form of inference should be applied. Secondly, if the script is not well typed, we can use the type system
as the basis of an algorithm for generating the warnings and inferences themselves. Scripts and data are typed using
the system presented in Fig. 5. There are typing rules for each form of term, script and data.

` C ≤ D
Env, $x : C ` $x : D variable

` Ty(uri) ≤ C
Env ` uri : C

resource
Env ` ok

success

Env, $x : C ` script
Env ` select $x : C script select

Env ` script
Env ` from uri script

from

Env ` term0 : C Env ` term1 : Property(C,D) Env ` term2 : D Env ` script
Env ` where term0 term1 term2 script where

Env ` term0 : C Env ` term1 : Property(C,D) Env ` term2 : D
Env ` term0 term1 term2

triple

Env ` data0 Env ` data1

Env ` data0 data1
compose Env ` term : class

Env ` term a class
ascription

Env ` class0 ≤ class1

Env ` class0 rdfs:subClassOf class1
subclass

Env ` term : Property(class0, class1)
Env ` term rdfs:domain class0

domain
Env ` term : Property(class0, class1)

Env ` term rdfs:range class1
range

Figure 5: The type system for scripts and data.

Typing data. To type resources we require a partial function Ty from resources to types. This represents the current
type of resources assumed by the system. We write Ty(uri) for the current type of the resource, and call Ty the type
assumptions. The type rule for resources states that a resource can assume any supertype of its current type. For
example Ershov and Klitschko are people even though their type is the intersection of several professions.

The type rule for triples states that a triple is well typed as long as the subject and object of a triple can match the
type of the property type assumed by the predicate. Well typed triples are then composed together.

Triples with the reserved keywords in the property position are typed differently from other triples. In the ascrip-
tion rule, the object is an atomic type and the subject is a term of the given atomic type. This rule is used to extract
type information from data during inference, and can be viewed as a form of type ascription or casting [44]. Recall
that a type ascription indicates that we expect a resource to be a particular type, when it could possibly take on several
other types.

The type rule for triples where rdfs:subClassOf appears in the predicate position forces the corresponding asser-
tion to appear in the subclass relation. The type rules for triples with rdfs:domain and rdfs:range in the property
position, force the domain and range of a property respectively to permit the type indicated. Notice that for the domain
rule the corresponding range is not specified, and similarly for the range rule. This leaves considerable flexibility in
determining the type of a property. Further rules could be added to extract more refined types based on OWL [27]
including rules covering intersection and union types.
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Typing scripts. Variables may appear in scripts. The type rule for variables is similar to the type rule for resources,
except that the type of a variable is drawn from the type environment, which appears on the left of the turnstile in a
judgement. A type environment consists of a set of type assignments of the form $x : C. As standard in type systems,
a variable is assigned a unique type in a type environment. Type assumptions are introduced in the type environment
using the type rule for select.

The rule for where is similar to the type rule for triples, except that there is a continuation script. A script
prefixed with from is always well typed as long as the continuation script is well typed, since we work only with
dereferenceable resources. A prescriptive type system involving data, such as numbers which cannot be dereferenced
as in [14], takes more care at this point. The terminated script is always well typed.

The subsumption rule. Derivation trees in an algorithmic type system are linear in the size of the syntax. Suppose
that we included the following subsumption rule that relaxes the type of a term at any point in a typing derivation,
thereby explicitly applying subtyping at any point.

Env ` term : C ` C ≤ D
Env ` term : D

subsumption

The type system extended with the subsumption rule, gives rise to type derivations of an unbounded size. By showing
that subsumption is not necessary hence can be eliminated from any type derivation, as with the cut rule in the previous
section, we establish that the type system is algorithmic [44].

Proposition 4 (Algorithmic typing). For any type assumption that can be derived using the type system in Fig. 5 plus
the subsumption rule, we can construct a type derivation with the same conclusion where the subsumption rule has
been eliminated from the derivation tree.

Proof. There are three similar cases to consider, namely when a subsumption immediately follows: another subsump-
tion rule; or a type rule for resources, or a type rule for variables. In each case notice that, by Theorem 1, if ` C ≤ D
and ` D ≤ E, then we can construct a cut-free derivation for ` C ≤ E. Hence, in each of the following, the type
derivation of the left can be transformed into the type derivation on the right.

1.
Env ` term : C ` C ≤ D

Env ` term : D ` D ≤ E
Env ` term : E

yields Env ` term : C ` C ≤ E
Env ` term : E

2.
` Ty(uri) ≤ D
Env ` uri : D ` D ≤ E

Env ` uri : E
where Ty(uri) = C yields ` Ty(uri) ≤ E

Env ` term : E

3.
` C ≤ D

Env, $x : C ` $x : D ` D ≤ E
Env, $x : C ` $x : E

yields ` C ≤ E
Env, $x : C ` $x : E

For other type rules subsumption cannot be applied, so the induction step follows immediately. Hence, by induction
on the structure of a type derivation, all occurrences of the subsumption rule can be eliminated. �

Since the type system is algorithmic, we can use it efficiently as the basis for inference algorithms that we will
employ in Section 5.

Monotonicity. We define an ordering over type assumptions and subtype assumptions. This ordering allows us to
refine our type system by enlarging the subtype assumptions; by enlarging the domain of the type assumptions; and
by tightening the types of resources with respect to the subtype relation. Refinement can be formalised as follows.

Definition 5. When we would like to be explicit about the subtype assumptions SC and type assumptions Ty used in a
type judgement Env ` script and subtype judgement ` C ≤ D, we use the following notation:

Env `Ty
SC script `SC C ≤ D

We define a refinement relation (Ty′, SC′) ≤ (Ty, SC), such that:
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1. SC ⊆ SC′.

2. For all uri such that Ty(uri) = D, there is some C such that Ty′(uri) = C and `SC′ C ≤ D.

We say that (Ty′, SC′) is a refinement of (Ty, SC).

In a descriptive type system, we give the option to refine the type system in response to warnings that appear. The
following two lemmas are steps towards establishing soundness of the type system in the presence of refinements of
subtype and type assumptions. These lemmas establish that anything that is well typed remains well typed in a refined
type system.

Lemma 6. If `SC C ≤ D and SC ⊆ SC′, then `SC′ C ≤ D.

Proof. Observe that only the atom rule uses SC. Also notice that if a ≤ b ∈ SC∗, and SC ⊆ SC′, then a ≤ b ∈ SC′∗.
Hence if the subtype axiom on the left below holds, then the subtype axiom on the right below holds.

a ≤ b ∈ SC∗

`SC a ≤ b
yields a ≤ b ∈ SC′∗

`SC′ a ≤ b

All other cases do not involve SC, hence the induction steps are immediate. Hence, by structural induction, the set of
subtype assumptions can be enlarged while preserving the subtype judgements. �

Lemma 7. The following monotonicity properties hold for scripts and data respectively.

1. If `Ty
SC script and (Ty′, SC′) ≤ (Ty, SC), then `Ty′

SC′ script.

2. If `Ty
SC data and (Ty′, SC′) ≤ (Ty, SC), then `Ty′

SC′ data.

Proof. For type assumptions, observe that the only rule involving Ty is the rule for typing resources. Assume that
(Ty′,SC′) ≤ (Ty,SC). By definition, if Ty(uri) = D then Ty′(uri) = C and `SC′ C ≤ D where SC ⊆ SC′. Hence
if `SC D ≤ E, by Lemma 6, `SC′ D ≤ E. Hence, by Theorem 1, we can construct a cut free proof of `SC′ C ≤ E.
Therefore if the type axiom on the left below holds, then the type axiom on the right also holds.

`SC Ty(uri) ≤ E

Env `Ty
SC uri : E

yields
`SC′ Ty′(uri) ≤ E

Env `Ty′

SC′ uri : E

Consider the type rule for variables. By Lemma 6, if `SC C ≤ D then `SC′ C ≤ D. Therefore if the type axiom on the
left below holds, then the type axiom on the right also holds.

`SC C ≤ D
Env, $x : C ` $x : D

yields
`SC′ C ≤ D

Env, $x : C ` $x : D

All other rules do not involve Ty or SC, hence follow immediately. Therefore, by structural induction, refining the
type system preserves well typed scripts and data. �

4.3. Simple Entailment as a Mode of Inference

This work presents a mechanism that complementary RDF Schema in a more flexible fashion, rather than con-
flicting with existing standards. Here we clarify the connection between conventional RDF Schema inference defined
in Section 2 and the inference problem in terms of descriptive types. The inference problem is: given some data D
can we calculate type assignments and subtype assumptions Ty and SC such that `Ty

SC D.
A solution to the inference problem for descriptive types is based on applying standard RDF Schema inference as

defined in Fig. 1. To use the Fig. 1 formally, we introduce the following standard terminology regarding RDF Schema.

Definition 8. Given data D, as defined in Fig. 4, assume that any triple in D can be taken to be axioms in the inference
system defined in Fig. 1. If a triple, say T , can be derived using that system, then we say that D simply entails T .
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The formal statement relating simple entailment and inference is provided in Proposition 9. Intuitively, given
any data, we can construct some type assignment and any subclass relation such that the data is well-typed; and
furthermore, if a triple may be inferred using simple entailment, then that triple is also well typed. Notice that the
statement is stronger for subclass relations than type assignments, since any subclass relation that allows the data to
be typed also respects simple entailment; in contrast, there may exist other type assignments that type the data but do
not respect simple entailment. Further discussion of this discrepancy follows after the proof below.

Proposition 9. For any data D, there exists Ty such that, for any SC such that `Ty
SC D and, for any triple T such that D

simply entails T , it holds that `Ty
SC T.

Proof. Firstly, consider triples of the form class0 rdfs:subClassOf class1 simply entailed by D, for any SC such that
`

Ty
SC D. Intuitively, simply entailed triples of the given form must either appear in D, follow by reflexivity, or follow by

applying transitivity to rdfs:subClassOf triples in D. This is formally established by the induction in the following
paragraph, where we establish the stronger invariant that, if class0 rdfs:subClassOf class1 is simply entailed by D such
that `Ty

SC D, then it holds that class0 ≤ class1 ∈ SC∗.
The base case is that the triple is in D. In this case, by the subclass rule in Fig. 5, this triple is well typed only if

`SC class0 ≤ class1, which by the subclass subtype rule in Fig. 3 holds only if class0 ≤ class1 ∈ SC∗. In the base case
for reflexivity (rule rdfs10 in Fig. 1), class rdfs:subClassOf class is simply entailed and, since SC∗ is reflexively closed
over all atomic types, class ≤ class ∈ SC∗ holds by definition. Consider the case of transitivity (rdfs11 from Fig. 1),
where class0 rdfs:subClassOf class2 follows from class0 rdfs:subClassOf class1 and class1 rdfs:subClassOf class2.
By the induction hypothesis, class0 ≤ class1 ∈ SC∗ and class1 ≤ class2 ∈ SC∗ hence, since SC∗ is transitively closed,
class0 ≤ class2 ∈ SC∗. By induction, for any inferred triple of the form class0 rdfs:subClassOf class2, it holds that
class0 ≤ class2 ∈ SC∗, as required.

Now consider the construction of the subtype assumptions. For some data D, construct Ty such that Ty(uri) is
defined to be the intersection of all atomic types class such that one of the following hold:

• uri a class appears in D,

• uri uri1 uri2 and uri1 rdfs:domain class appear in D,

• uri0 uri1 uri and uri1 rdfs:range class appear in D;

and, furthermore, if uri0 uri uri1 or uri rdfs:domain class or uri rdfs:range class appears in D, then Ty(uri) should
also intersect with Property(rdfs:Resource, rdfs:Resource).

Now consider triples of the form uri a class and any SC such that `Ty
SC D. There are four base cases. Assume

that uri a class is in D. By the ascription rule in Fig. 5, this hold only if `Ty
SC uri : class, which holds only if `SC

Ty(uri) ≤ class which holds by construction of Ty. Assume that uri a class follows from uri rdfs:domain class and
uri uri1 uri2 which are in D by rdfs2. To force `Ty

SC uri a class to hold, as in the previously case, it must be the case
that Ty(uri) ≤ class. Furthermore, since `Ty

SC uri1 rdfs:domain class and `Ty
SC uri uri1 uri2, it must be the case that the

following hold.
`

Ty
SC uri1 : Property(class, rdfs:Resource) `

Ty
SC uri2 : rdfs:Resource

In the above, the former holds since Ty(uri1) ≤ Property(class, rdfs:Resource), by construction of Ty, and the latter
holds since Ty(uri2) ≤ rdfs:Resource, by the top rule in the subtype system. The inductive case is when uri a class1
follows from rule rdfs9. For the induction hypothesis, assume that uri a class0 and class0 rdfs:subClassOf class1
are well typed. By the argument in the first paragraph of this proof, `SC class0 ≤ class1 and also `Ty

SC uri : class0.
Therefore, by subsumption, `Ty

SC uri : class1, as required.
Finally, Property(rdfs:Resource, rdfs:Resource) is the bottom property type since it is a lower bound with re-

spect to subtyping for Property(class0, class1), for any classes class0 and class1. By the above construction of
Ty, Ty(uri) ≤ Property(rdfs:Resource, rdfs:Resource) for any uri used as a property. Hence, by Theorem 1,
Ty(uri) ≤ Property(class, rdfs:Resource). Thereby by construction of Ty, `Ty

SC uri rdfs:domain class. A similar
argument holds for rdfs:range.

If uri0 uri1 uri2 appears in D, then by construction of Ty, `Ty
SC uri1 : Property(rdfs:Resource, rdfs:Resource).

Since also `Ty
SC uri0 : rdfs:Resource and `Ty

SC uri2 : rdfs:Resource, `Ty
SC uri0 uri1 uri2. �
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To the RDF Schema purist, the above result is likely to be much weaker than expected. As expected, every subclass
assumption that well types data will type the subclass triples entailed by the data by standard simple entailment.
However, Proposition 9 only states that there exists some type assignment that types all simply entailed triples. There
are many type assignments that type the data but do not type all simply entailed triples. In particular, triples with
properties rdfs:domain and rdfs:range need not necessarily force the URIs appearing as the subject and object
respectively to take on exactly the type indicated.

Furthermore, the assignment constructed in the proof is not the most general assignment, for which standard RDF
Schema inferences are well-typed. In the construction in the proof, any URI used as a property is intersected with the
type Property(rdfs:Resource, rdfs:Resource), which is the bottom property type with respect to the subtype relation,
i.e. the least property type with respect to the subtype relation. A property type that is more explicit about the range
and domain are more general in the sense that they are greater in the subtype hierarchy.

A justification for the more flexible choice of Ty is that standard RDF Schema inference is only one of many
natural inference modes. Another more technical issue is that there are differences in the handling of properties with
multiple domains and ranges that we explain thoroughly in the next section.

4.4. Note on Recommendations for Multiple Domain and Range Properties
Restricting ourselves strictly to the recommended RDF Schema inference, called simple entailment, introduces

difficulties for systems with dynamically changing data. The problem arises due to the handling of multiple domain
and range triples. The W3C recommendation [9] states the following.

Where a property P has more than one rdfs:domain property, then the resources denoted by subjects of
triples with predicate P are instances of all the classes stated by the rdfs:domain properties.

A similar quote appears for rdfs:range .
In light of the above statement, suppose that we have a property with domain t0 and range t1. Now suppose that a

further rdfs:domain and rdfs:range triple are discovered for the same property, indicating types t2 and t3 respectively.
Under a strict interpretation of RDF Schema inference, the type of the property should be as follows.

Property(IntersectionOf(t0, t2), IntersectionOf(t1, t3))

Unfortunately, (assuming that t0 is not a subclass of t2, or t1 is not a subclass of t3) it is not the case that the above
type is a subtype of the original type for the property. Since the above type is a supertype of Property(t0, t1), then
all type judgements made earlier involving the property concerned may be invalidated and hence must be checked
again, i.e. we cannot apply the monotonicity condition in Lemma 7. This would break the static aspects of the
type checking mechanisms, making RDF Schema inference and descriptive type checking for a dynamically growing
dataset prohibitively expensive. At each discovery of new rdfs:domain or rdfs:range triples, inferences would need
to be recalculated for the entire dataset and all scripts that interact with the dataset.

There are a number of approaches to avoiding the above problem, all of which are within the scope of our descrip-
tive type system. We can instead interpret multiple domains in the following disjunctive manner.

Where a property P has more than one rdfs:domain property, then the resources denoted by subjects of
triples with predicate P are instances of one of the classes stated by the rdfs:domain properties.

In practice, many real life data sets imply our more relaxed interpretation above. For example, the Bioportal [38]
contains many properties with multiple domains and ranges that make no sense when they are intersected, or are even
unsatisfiable. In the Bioportal, the property bpo:has event has three classes indicated as its domain: bpo:person
, bpo:event and bpo:disease or disorder . It is clearly not the intention of the publishers of the ontology that any
resource that appears in the subject position of a triple with property bpo:has event , has a type bounded above by the
intersection of all three of these types. Common sense says that the three classes are intended to be disjoint. Instead
the intended meaning is clearly that bpo:has event has one domain that is the union of the three types. Elsewhere, for
example the provenance ontology [32], the above interpretation is made explicit by using owl:unionOf frequently
for the domain and range triples, for example property prov:wasInfluencedBy has the following range:

UnionOf ( prov:Activity, prov:Agent, prov:Entity )
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Many ontologies, such as the DBpedia ontology [7] avoid discrepancies with respect to the W3C recommendation
by only ever stating one domain or range for any property. The reader may observe for themselves the real usage of
multiple domains for a property by using the following query on various SPARQL endpoints exposing ontologies.

select ?p ?x ?y where { ?p rdfs:domain ?x . ?p rdfs:domain ?y . filter (?x != ?y) }

We recommend that ontology designers use the explicit approaches to domains and ranges where either an explicit
union is used, as in the provenance ontology; or only one range or property appears, as in the DBpedia ontology.
Multiple domain or range properties discovered from separate sources about the same property are best treated as a
single domain and range with a union type, rather than an intersection type. This permits a more accommodating
approach to inference and a monotonic approach to descriptive typing, where the time complexity of inference is
proportional to size of the new data added rather than the entire dataset. Note that this problem means that standard
RDF Schema inference would cope poorly with big evolving datasets, as typical of Linked Data applications.

In related work [41] that explores a model theoretic semantics for schema.org, the interpretation for handing
multiple ranges does not match the RDF Schema standard for rdfs:range . As explained in that work: “domains
for a property are constructed by taking all the types that mention the property and producing a disjunctive property
domain for the property from them.” This matches the alternative handing of multiple ranges discussed in this section;
and suggests that an alternative model theoretic semantics could be provided for descriptive types following [41].
Furthermore, this suggests that schema.org, who have deliberately not fully adopted W3C standards, have found
that a disjunctive semantics for multiple ranges suits their needs. Since descriptive types produce warnings with
suggestions, a combination of heuristics and human responses to options can enable a consumer to draw from both
W3C standard compliant datasets and datasets conforming to a more accommodating semantics for multiple ranges,
as discussed in this section.

5. An Operational Semantics using Descriptive Types at Runtime

This section is the high point of this paper. We illustrate how descriptive typing is fundamentally different from
prescriptive typing.

In a prescriptive type system, we only permit the execution of programs that are well typed. In contrast, in this
descriptive type system, if a program is not well typed, then the program can still be executed. During the execution
of an ill-typed program, warnings are generated. At runtime, the program provides the option to, at any point during
the execution of the program, address the warnings and refine the type system to resolve the warnings.

In this section, we informally motivate the problems descriptive types address at runtime using examples, we then
introduce the formal operational semantics, and revisit the same examples formally using the operational semantics.
Finally, we refine the example further to explain how an algorithm can be used to generate warnings.

5.1. Descriptive Typing for Linked Data Scripting Languages
We first intuitively illustrate a scenario involving descriptive typing for scripts that interact with Linked Data. De-

scriptive typing generates meaningful warnings during the execution of a script, that can assist programmers without
imposing obligations.

Suppose that at some point we would like to obtain data about Andrei Ershov. Our script firstly dereferences the
URI dbp:Andrei Yershov (in Russian Ershov and Yershov are transliterations of the same Cyrilic characters). From
this we obtain some data including the following triples.

res:Andrei Yershov dbp:birthPlace res:Soviet Union .
res:Andrei Yershov dbp:league res:Kazakhstan Major League .
res:Andrei Yershov a dbp:IceHockeyPlayer .

The reader familiar with Ershov the academician will find the above data strange, but the script that performs the
dereferencing has no experience to judge the correctness of the data.

The script then tries to query the data that has just been obtained, as follows:

select $place
where res:Andrei Yershov dbp:birthPlace $place .

19

A descriptive type foundation for RDF schema

schema.org
http://www.w3.org/2000/01/rdf-schema#range
schema.org
http://live.dbpedia.org/ontology/Andrei_Yershov
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/resource/Soviet_Union
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/league
http://live.dbpedia.org/resource/Kazakhstan_Major_League
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/IceHockeyPlayer
http://live.dbpedia.org/resource/Andrei_Yershov
http://live.dbpedia.org/ontology/birthPlace


The above query uses a property dbp:birthPlace that can relate any person to any location. The database is aware,
due to the DBPedia ontology [7], that dbp:IceHockeyPlayer is a subtype of dbp:Person. Hence the query is considered
to be well typed. The query produces the result $place 7→ res:Soviet Union, which appears to be correct.

Next the script tries a different query.

select $book
where res:Andrei Yershov free:book.author.works written $book .

Before the query is executed, it is type checked. The type system knows that the property free:book.author.works written
relates authors to books. The type system also knows, from the data obtained earlier, that res:Andrei Yershov is an
ice hockey player, which is not a subtype of author. The subject of the triple and the property appear not to match.

In a prescriptive type system the query would be automatically rejected as being wrong. In contrast, a descriptive
type system provides warnings at runtime with several options to choose from other than outright rejection.

1. Change the type of res:Andrei Yershov so that the resource is both an ice hockey player and an author.

2. Change the type of the property free:book.author.works written so that ice hockey players can author books.

3. Change the subtype relations so that ice hockey player is a subtype of author, hence all ice hockey players are
automatically inferred to be authors.

4. Change the data so that a different resource or property is used.

The default option for RDF Schema [37] is to infer that, because the subject of free:book.author.works written is
an author and res:Andrei Yershov appears as the subject, then res:Andrei Yershov must also be an author. The type
of res:Andrei Yershov would be refined to the following intersection of types.

IntersectionOf(dbp:IceHockeyPlayer, free:book.author)

Academics can have colourful lives, so the above type may appear plausible to an observer unfamiliar with Ershov’s
life. However, this is a case of mistaken identity. Ershov the academician was never a professional ice hockey player.

The correct way to resolve the above conflict is instead to change the data. A query to freebase [8] and DBpedia [7]
asking resources with name Ershov in Cyrillic that are book authors reveals that the intended Ershov was identified
by res:Andrey Ershov in DBpedia and free:m.012s3l in freebase.

We return to this example after developing introducing the rules of the operational semantics.

5.2. The Operational Semantics

The rules of the operational semantics are presented in Fig. 6. The first three are the operational rules for select,
where and from respectively. The fourth rule is the optional rule that refines the type system in response to warnings.
We quotient data by the relation ≡ defined such that the composition of data is associative and commutative, i.e. ≡ is
a congruence relation such that (data1 data2) data3 ≡ data1 (data2 data3) and data1 data2 ≡ data2 data1.

Configurations. A configuration (script, data,Ty,SC) represents the state of the system, which can change during the
execution of a script. It consists of four components:

• The script script that is currently being executed.

• The data data representing triples that are currently stored locally.

• A partial function Ty from resources to types, representing the current type assumptions about resources.

• A relation over atomic types SC, representing the current subtype assumptions.
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`
Ty
SC uri : C

(select uri : C script, data,Ty,SC) −→ (script
{
uri/$x

}
, data,Ty,SC)

select

data ≡ term0 term1 term2 data′

(where term0 term1 term2 script, data,Ty,SC) −→ (script, data,Ty,SC) where

(Ty′,SC′) ≤ (Ty,SC) `
Ty′

SC′ data1

(from uri script, data0,Ty,SC) −→ (script, data0 data1,Ty′,SC′)
from

(Ty′,SC′) ≤ (Ty,SC) `
Ty′

SC′ script

(script, data,Ty,SC) −→ (script, data,Ty′,SC′)
optional

Figure 6: The operational semantics for scripts. Note that, in the from rule, data1 is the data obtained at runtime by dereferencing the resource uri.

Type assumptions and subtype assumptions can be changed by the rules of the operational semantics, since they are
part of the runtime state.

The rules are best explained by the examples in the rest of the section. Notice that a novel feature of this operational
semantics are the type assertions in the premise of the rules select, from and optional. We briefly highlight these
novelties below.

For the rule select, the type assertion in the premise represents a dynamic type check that cannot always be
checked statically, for example assume that the type of the bound variable is dbp:Boxer, that the variable appears
in a subsequent where clause as the subject or object of a property foaf:knows that relates two resources of type
foaf:Person, and also that dbp:Boxer ≤ foaf:Person. In this case, the well-typed data involving foaf:knows may
match the pattern in the where clause, but the people related may not necessarily be boxers, hence a dynamic type
check needs to be performed. Notice that static analysis could eliminate the dynamic type check when the type of
the variable is of the greatest type that the variable may assume according to how the variable is used in subsequent
where clauses.

For the rule from, the type assertion in the premise is required to deal with potential new type assumption and
subtype assertions that accommodate the new data. For example, there may be no type assumption for a uri in the
newly discovered data that is used as the subject in a triple that may only refer to authors, hence the type assumptions
should be refined in one of a number of ways to accommodate this new schema information. The premise is a
declarative specification from which constraints can be generated which are then solved algorithmically, according a
method explained and illustrated later in this section. Scenarios where it is useful to have multiple options, rather than
selecting default RDF Schema inference, are presented by examples in this section.

For the optional rule, satisfying the type assertion in the premise ensures that the remaining parts of the script
are well typed. By unfolding the rules of the algorithmic type system, constraints are generated for which several
options are algorithmically generated, using the same approach as for the from rule as explained in the rest of this
section through examples and algorithms. For example, a query may involve triple with property foaf:knows which
forces constraints on the types of variables and resources that appear in the context of the triple that cannot be resolved
without refining the type system. Thus the rule optional anticipates refinements that may be applied later in the script
and also assists the human in spotting data modelling errors in the queries in scripts themselves.

5.3. A Worked Example of a Good Script

We explain the interplay between the operational rules using a concrete example. Suppose that initially we have a
configuration consisting of:
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• a script:
from res:Andrey Ershov
select $place : dbp:PopulatedPlace
where res:Andrey Ershov dbp:birthPlace $book

• some data data0 including triples such as the following:

dbp:birthPlace rdfs:domain dbp:Person .
dbp:birthPlace rdfs:range dbp:PopulatedPlace .
res:SovietUnion a dbp:PopulatedPlace .

• some type assumptions Ty such that:

Ty(dbp:birthPlace) = Property(dbp:Person, dbp:PopulatedPlace )
Ty(res:Andrey Ershov) = rdfs:Resource
Ty(res:SovietUnion) = dbp:PopulatedPlace

• an empty set of subtype assumptions.

The above script is not well typed with respect to the type assumptions, since the strongest type for res:Andrey Ershov
is the top type, which is insufficient to establish that the resource represents a person.

There are several options other than rejecting the ill typed script. We can inspect the warning, which provides a
menu of options to refine the type system so that the script is well typed. At this stage of execution, there are two
reasonable solutions: either we can refine the type of res:Andrey Ershov , so that he is of type dbp:Person ; or we
can refine the type of dbp:birthPlace so that it can relate any resource to a populated place.

A further option is available. Since these are warnings, we can ignore them and continue executing the script.
Assuming we choose to ignore the warnings at this stage, we apply the operational rule for from.

The rule involves some new data data1 that is obtained by dereferencing resource with URI dbp:Andrey Ershov .
This includes triples such as:

res:Andrei Ershov a yago:FellowsOfTheBritishComputerSociety .
res:Andrei Ershov dbp:birthPlace res:SovietUnion .

The rule must calculate (Ty′,SC′) such that (Ty′,SC′) ≤ (Ty,SC) and `Ty′

SC′ data1. Again there are several options for
resolving the above constraints, presented below.

1. Refine the type assumptions such that the resource res:Andrey Ershov is assigned the intersection of the types
yago:FellowsOfTheBritishComputerSociety and dbp:Person as its type.

2. Refine the type of Ershov to the type yago:FellowsOfTheBritishComputerSociety and refine the type of property
dbp:birthPlace such that it is of the following type:

IntersectionOf( Property( dbp:Person,
dbp:PopulatedPlace ),

Property( yago:FellowsOfTheBritishComputerSociety,
dbp:PopulatedPlace ) )

3. Refine the subtype assumptions to SC′ such that it contains the following subtype inequality:

yago:FellowsOfTheBritishComputerSociety ≤ dbp:Person

The first option above is the default option taken by RDF Schema [9]. It assumes that, since the domain of the
property was dbp:Person, Ershov must be a person. The second option above makes the property more accommodat-
ing, so that it can also be used to relate fellows of the British Computer Society to populated places. The third option
is the most general solution, since it allows any fellow of the British Computer Society to be used as a person in all
circumstances.

The appropriate option is subjective, so the choice is delegated to a human. Suppose that the programmer selects
the third option. This results in the following configuration:
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• a script where the leading from keyword has been removed:

select $place : dbp:PopulatedPlace
where res:Andrey Ershov dbp:birthPlace $place

• some data data0 data1 including the new data obtained by dereferencing the resource dbp:Andrey Ershov :

dbp:birthPlace rdfs:domain dbp:Person .
dbp:birthPlace rdfs:range dbp:PopulatedPlace .
res:SovietUnion a dbp:PopulatedPlace .
res:Andrei Ershov a yago:FellowsOfTheBritishComputerSociety .
res:Andrei Ershov dbp:birthPlace res:SovietUnion .

• a refined type assumption Ty′, such that:

Ty′(dbp:birthPlace) = Property(dbp:Person, dbp:PopulatedPlace )
Ty′(res:Andrey Ershov) = yago:FellowsOfTheBritishComputerSociety
Ty′(res:SovietUnion) = dbp:PopulatedPlace

• the refined subtype assumptions SC′ suggested in the third option above, such that:

yago:FellowsOfTheBritishComputerSociety ≤ dbp:Person

Having resolved the warning we are now in the fortunate situation that the remainder of the script is also well typed
with respect to the new type and subtype assumptions. Thus we can continue executing without further warnings.

We apply the operational rule for select. This rule dynamically checks that the following holds.

`
Ty′

SC′ res:SovietUnion : dbp:PopulatedPlace

Since the above type judgement holds, the substitution is applied to obtain a configuration with the following script.

where res:Andrey Ershov dbp:birthPlace res:SovietUnion

Finally, since the triple in the where clause matches a triple in the data, we can apply the operational rule for where.
This successfully completes the execution of the script.

5.4. A Worked Example of a Bad Script
Now consider the motivating example at the beginning of this section. We begin with the following configuration,

where the wrong URI has been used for Ershov, mistaking Andrei Yershov and Andrei Ershov for the same person:

• the following script:

from res:Andrei Yershov
select $book : free:book
where res:Andrei Yershov free:book.author.works written $book .

• some initial data data0 including triples such as:

free:book.author.works written rdfs:domain free:book.author
free:book.author.works written rdfs:range free:book

• initial type assumptions Ty such that:

Ty(free:book.author.works written) = Property( free:book.author,
free:book )

23

A descriptive type foundation for RDF schema

http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/resource/Andrey_Ershov
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/Andrey_Ershov
http://live.dbpedia.org/ontology/birthPlace
http://www.w3.org/2000/01/rdf-schema#domain
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/birthPlace
http://www.w3.org/2000/01/rdf-schema#range
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/resource/SovietUnion
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/resource/Andrei_Ershov
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://live.dbpedia.org/resource/Andrei_Ershov
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/resource/SovietUnion
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/resource/Andrey_Ershov
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://live.dbpedia.org/resource/SovietUnion
http://live.dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/class/yago/FellowsOfTheBritishComputerSociety
http://live.dbpedia.org/ontology/Person
http://live.dbpedia.org/resource/SovietUnion
http://live.dbpedia.org/ontology/PopulatedPlace
http://live.dbpedia.org/resource/Andrey_Ershov
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/resource/SovietUnion
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book
http://live.dbpedia.org/resource/Andrei_Yershov
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author.works_written
http://www.w3.org/2000/01/rdf-schema#domain
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book.author.works_written
http://www.w3.org/2000/01/rdf-schema#range
http://rdf.freebase.com/ns/book
http://rdf.freebase.com/ns/book.author.works_written
http://rdf.freebase.com/ns/book.author
http://rdf.freebase.com/ns/book


• an empty set of subtype assumptions.

The programmer has not yet realised that res:Andrei Yershov represents an ice hockey player who is not the
intended scientist. At runtime, the programmer initially ignores a menu of warnings that would enable the optional
rule to be applied. One option suggests that the type of res:Andrei Yershov should be free:book.author ; another
option suggest refining the type of free:book.author.works written to the following type.

Property(rdfs:Resource, free:book)

The programmer decides to ignore the warnings and continue executing the script. As in the previous example,
we apply the from rule. This dereferences the resource res:Andrei Yershov obtaining some new data data1 including
the following triple.

res:Andrei Yershov a dbp:IceHockeyPlayer .

There is only one good option in this case, which that script automatically selects. It sets a refined type assumption
Ty′ such that the following holds.

Ty′(res:Andrei Yershov) = dbp:IceHockeyPlayer

In the new configuration, there are still warnings that are induced by attempting to apply the optional rule. The
following menu of options is presented to the programmer.

1. Refine the type assumptions such that the resource res:Andrei Yershov is assigned the intersection of the classes
yago:IceHockeyPlayer and free:book.author as its type.

2. Refine the type of the property free:book.author.works written such that it is of the following type.

IntersectionOf( Property( free:book.author,
free:book ),

Property( dbp:IceHockeyPlayer,
free:book ) )

3. Refine the subtype assumption to SC′ such that it contains the following subtype inequality.

dbp:IceHockeyPlayer ≤ free:book.author

The three options are similar to the options in the previous examples. The difference is that the programmer should
be suspicious. The first option above may be plausible, but the programmer will be asking whether Ershov was really
both an author and a professional ice hockey player. The second option above, which allows all ice hockey players to
author books, is highly questionable. It certainly does not make sense to take the third option above and make every
ice hockey player a book author.

A further reason to be alarmed is that, if the programmer attempts to ignore the strange warnings, then the script
cannot be executed further. There is no resource that can be selected that enables the where clause to be matched.

Given the evidence, the programmer can conclude that there was a mismatch between the query and the resource
dereferenced. The solution is therefore to change the scripts. By inspecting the data it is clear that the resource
represents the wrong Ershov, hence the programmer decides to change all appearances of the troublesome resource.

5.5. Calculating the Options in Warnings Algorithmically

The optional operational rule and the operational rule for from are specified declaratively in the operational
semantics. These rules permit any refined type system that satisfies the constraints to be chosen. By exploiting the
algorithmic type system defined in previous section, we can algorithmically generate a menu of good solutions that
fix some types while maximising others.

Firstly, we explain how the algorithm can be applied to generate the options in the examples above. Secondly, we
present the generalised algorithm.
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Example constraints. Consider a system of constraints from the running examples. Assume that SC is empty and we
have that Ty is such that:

Ty(res:Andrei Yershov) = dbp:IceHockeyPlayer
Ty(free:book.author.works written) = Property( free:book.author,

free:book )

The aim is to calculate Ty′ and SC′ such that (Ty′,SC′) ≤ (Ty,SC) and the following type assumption holds.

`
Ty′

SC′
select$book : free:book
where res:Andrei Yershov free:book.author.works written $book .

We then unfold the algorithmic type system, using type variables X and Y for types that could take several values, as
follows.

` Ty′(res:Andrei Yershov) ≤ X
` res:Andrei Yershov : X

` Ty′(free:book.author.works written) ≤ Property(X,Y)
` free:book.author.works written : Property(X,Y)

` free:book ≤ Y
$book : free:book ` $book : Y

$book : free:book ` where res:Andrei Yershov free:book.author.works written $book
` select$book : free:book where res:Andrei Yershov free:book.author.works written $book

From the above we generate the following constraints on Ty′, where X and Y are variables for types to be solved.

Ty′(res:Andrei Yershov) ≤ X free:book ≤ Y Ty′(free:book.author.works written) ≤ Property(X,Y)

Also, since (Ty′,SC′) ≤ (Ty,SC), we have the following constraints, by definition.

Ty′(res:Andrei Yershov) ≤ dbp:IceHockeyPlayer

Ty′(free:book.author.works written) ≤ Property(free:book.author, free:book)

Furthermore, SC ⊆ SC′.
From the above, we can generate the following scheme for upper bounds on Ty′.

Ty′(res:Andrei Yershov) ≤ IntersectionOf(dbp:IceHockeyPlayer, X)

Ty′(free:book.author.works written) ≤ IntersectionOf(
Property(free:book.author, free:book) ,
Property(X,Y) )

We use these upper bounds to generate the options that appear in warnings, by varying X and Y within the bounds set
by the constraints.

Notice that immediately the mapping for Y can be chosen such that both of the upper bounds are maximised
and the constraints are satisfied. In particular, the mapping Y 7→ free:book will maximise the upper bound on
free:book.author.works written and has no impact on the upper bound for res:Andrei Yershov. We can therefore
immediately apply this mapping for Y to refine the upper bound on the type of the property as follows.

Ty′(free:book.author.works written) ≤ IntersectionOf(
Property(free:book.author, free:book) ,
Property(X, free:book) )

In contrast to Y , there is no optimal solution for X, since X 7→ rdfs:Resource will maximise the upper bound for
res:Andrei Yershov, but X 7→ free:book.author will maximise the upper bound for free:book.author.works written.
Any type between these two types are potential solutions for X for which there are infinitely many possible solutions.
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Option no.1: Maximise type of property. To generate the first option Ty1, we maximise the type of properties by
ensuring that Ty1(uri) = Ty(uri) for any property uri. Hence we assume:

Ty1(free:book.author.works written) = Property(free:book.author, free:book)

This assumption yields the following type inequality.

Property(free:book.author, free:book) ≤ IntersectionOf(
Property(free:book.author, free:book) ,
Property(X, free:book) )

We use the cut-free subtype system to analyse the above constraints. We apply the greatest lower bound rule, then the
property rule to obtain the following subtype constraint: X ≤ free:book.author.

We then maximise the remaining type assignments with respect this these constraints. We seek the mapping for X
such that the constraints are satisfied and the new type assignment is maximised, with respect to the subtype relation.
Recall that the upper bound on the subject of the example triple is of the following form:

Ty1(res:Andrei Yershov) ≤ IntersectionOf(dbp:IceHockeyPlayer, X)

From this we derive the mapping X 7→ free:book.author, as an optimal solution for X that satisfies the constraints and
maximises the above upper bound on the type assignment. By substituting the variable for the optimal solution we
obtain a refined type system such that:

Ty1(res:Andrei Yershov) = IntersectionOf(dbp:IceHockeyPlayer, free:book.author)

The above type assignment is exactly what standard RDF Schema inference would infer [37].

Option no.2: Maximise type of subject/object. To generate the second option Ty2, we maximise the type of the subject
of our example triple be setting Ty2(res:Andrei Yershov) = Ty(res:Andrei Yershov), hence the following assumption
is made.

Ty2(res:Andrei Yershov) = dbp:IceHockeyPlayer

This yields the following subtype inequality, due to the upper bound on the resource.

dbp:IceHockeyPlayer ≤ IntersectionOf(dbp:IceHockeyPlayer, X)

As in option no.1, we unfold the rules of the algorithmic type system to derive the constraint dbp:IceHockeyPlayer ≤
X. We then maximise the type of the property with respect to this constraint. Recall that the upper bound on the
property is as follows.

Property(free:book.author, free:book) ≤ IntersectionOf(
Property(free:book.author, free:book) ,
Property(X, free:book) )

Hence, due to the contravariance of property types, the solution for X that maximises the above upper bound on the
type assignment is X 7→ dbp:IceHockeyPlayer. By applying this mapping to variable X, we obtain a refined type
system such that.

Ty2(free:book.author.works written) = IntersectionOf(
Property(free:book.author, free:book) ,
Property(dbp:IceHockeyPlayer, free:book))

This is more general than standard RDF Schema inference, since RDF Schema inference does not have the ability to
modify the types of properties according to the types of data related by the properties.
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Option no.3: Extend the subtype relation. The final option is to add subtype assumptions to the type system. We can
calculate these subtype assumptions algorithmically, by calculating the conditions under which the above two options
are equal, i.e. Ty1 = Ty2. Now Ty1 = Ty2 if and only if the following inequalities hold.

dbp:IceHockeyPlayer ≤ IntersectionOf(dbp:IceHockeyPlayer, free:book.author)

Property( free:book.author ,
free:book ) ≤

IntersectionOf(
Property(free:book.author, free:book) ,
Property(dbp:IceHockeyPlayer, free:book))

By unfolding the rules of the cut-free subtype system in Fig. 3, we can calculate that the above inequalities hold only
if the following subtype inequality holds.

dbp:IceHockeyPlayer ≤ free:author

Thus, if we include the above constraint in SC′, then the original Ty satisfies the necessary constraints to enable the
optional rule.

Note that the above algorithm does not always find a suitable set of constraints. For example, if we attempt to
apply the optional rule before executing from in the above example of a bad script, the algorithm gets stuck at the
following constraint.

rdfs:Resource ≤ free:book.author

Since rdfs:Resource is not an atomic type, the above inequality cannot be induced by extending the set of subtype
assumptions, so there is no solution to modifying SC. This is a positive feature since, in an open world of knowledge
like the Web, it makes no sense to state that every resource is an author.

Summary of all three options. The general algorithm works as follows.

1. We use the algorithmic type system and the constraint (Ty′,SC′) ≤ (Ty,SC) to generate a scheme (types with
type variables) for upper and lower bounds on Ty′. We consider the type assumption appearing in the premise
of the from and optional rules: the script — in the case of the optional rule; or the data — in the case of the from
rule. We unfold the rules of the algorithmic type system, in Fig. 5, using variables for any undetermined value
and thereby obtaining a set of subtype constraints, which include bounds on the types of URIs in Ty′. From the
assumption (Ty′,SC′) ≤ (Ty,SC), by definition, we deduce that all of the constraints in SC must also hold in
SC′ and also, for any uri in the domain of Ty, Ty′(uri) ≤ Ty(uri). For each URI in the domain of Ty′, we take
the intersection of all upper bounds and the union of all lower bounds generated to obtain the scheme for upper
and lower bounds.

2. We generate the first option (Ty1,SC) by, for every property uri in the domain of Ty, setting the type assignment
such that Ty1(uri) = Ty(uri). This generates a subtype inequality based on the upper bounds on Ty′ calculated
in the first step. We unfold the cut-free subtype system, in Fig. 3, to generate constraints on other URIs that
must be assigned types by Ty1. We then find a mapping from type variables to types that maximises the type
assigned to URIs that have not yet been assigned a type in Ty1, while respecting all constraints generated (this
can be done on a random or user/heuristic guided URI-by-URI basis). By applying the mapping generated to
the upper bounds from the first step above, we obtain the type assignment Ty1.

3. We generate the second option (Ty2,SC) by, for every subject and object uri in the domain of Ty, setting the
type assignment such that Ty2(uri) = Ty(uri). We then proceed as in the previous step to maximise the type
assignments for the URIs representing properties.

4. To generate the third option (Ty,SC′), we set Ty1 = Ty2 to obtain a system of subtype inequalities. If there is a
solution then, by unfolding the rules of the cut-free subtype system, we obtain a set of subtype inequalities over
atomic types and we extend SC with these constraints to obtain SC′. If there is no solution, then the unfolding
of the rules of the cut-free system will halt with neither a subtype inequality over atomic types nor an axiom, in
which case no third option is presented.
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The second point above generates classes for resources as expected by RDF Schema [9]; with the exception of the
handling of multiple domains and ranges as discussed in Section 4.4. The third and fourth points above provide
alternative, more general modes of inference. Thus the above algorithm extends RDF Schema inference. Note that
steps 2 and 3 above can be interleaved allowing the type of any URI that appears to be maximised in any order, thereby
mixing RDF Schema inference with more general inferences. Further analysis of the above algorithm is we believe is
best conducted by an implementation.

5.6. Subject Reduction
There are two reasons why a system is well typed. Either a priori the script was well typed before refining the type

system, or at some point during the execution the programmer acted to resolve all warnings. In either case, once the
script is well typed it can be executed to completion without generating any warnings other than unavoidable warnings
that occur from reading data from the Web.

The following proposition characterises the relationship between the type system and script after choosing to
resolve warnings, by selecting the optional rule. Recall that warnings are resolved by selecting one or more options
for refining the type system from a menu generated based on constraints imposed by the premise of the optional rule.
In particular, after choosing to resolve all warnings the script is also well typed with respect to the refined type system.

Proposition 10. If `Ty
SC data and the optional rule is applied, such that

(script, data,Ty, SC) −→ (script, data,Ty′, SC′),

then `Ty′

SC′ script and `Ty′

SC′ data.

Proof. Assume that `Ty
SC data and (script, data,Ty,SC) −→ (script, data,Ty′,SC′) due to the optional rule. Hence it

must be the case that (Ty′,SC′) ≤ (Ty,SC) and `Ty′

SC′ script. Hence, by Lemma 7, `Ty′

SC′ data holds, as required. �

We require the following substitution lemma. It states that if we assume that a variable is of a certain type, then
we can substitute a URI of that type for the variable and preserve typing.

Lemma 11. Assume that ` uri : C. Then the following statements hold:

1. If Env, $x : C ` script, then Env ` script
{
uri/$x

}
.

2. If Env, $x : C ` term : D, then Env ` term
{
uri/$x

}
: D.

Proof. Assume that ` uri : C. The proof proceeds by structural induction on the type derivation tree.
Consider the case of the type rule for variables, where the variable equals $x. In this case, the type tree on the left

can be transformed into the type tree on the right.

` C ≤ D
Env, $x : C ` $x : D yields

` uri : C ` C ≤ D
Env ` uri : D

Hence, by Proposition 4, Env ` uri : D holds in the algorithmic type system and clearly $x
{
uri/$x

}
= uri as required.

All other cases for terms are trivial.
Consider the case of the select rule. Assume that Env, $x : C ` select $y : D script holds. If $x = $y, then

$x does not appear free in select $x : D, hence Env ` select $x : D script as required. If $x , $y, then, by the
induction hypothesis, if Env, $x : C, $y : D ` script holds then Env, $y : D ` script

{
uri/$x

}
holds. Hence the proof tree

on the left below can be transformed into the proof tree on the right below.

Env, $x : C, $y : D ` script
Env, $x : C ` select $y : D script yields

Env, $y : D ` script
{
uri/x

}
Env ` select $y : D script

{
uri/x

}
Furthermore, since $x , $y, by the standard definition of substitution the following holds as required.

select $y : D script
{
uri/x

}
= (select $y : D script)

{
uri/x

}
The cases for other rules follow immediately by induction. �
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The property that a well-typed script will not raise unnecessary warnings, is formulated as the following subject
reduction result.

Theorem 12 (Subject reduction). If `Ty
SC script and `Ty

SC data, then if

(script, data,Ty, SC) −→
(
script′, data′,Ty′, SC′

)
,

then `Ty′

SC′ script′ and `Ty′

SC′ data′.

Proof. The proof is by case analysis, over each operational rule.
Consider the operational rule for select. Assume that the following hold.

` select $x : C script ` data ` uri : C

The above holds only if $x : C ` script, by the type rule for select. By Lemma 11, since $x : C ` script and ` uri : C,
it holds that ` script

{
uri/x

}
. Therefore the select rule preserves types.

Consider the operational rule for where. Assume that the following type assumption holds.

` where term0 term1 term2 script ` term0 term1 term2 data

The above holds only if ` script holds, hence the operational rule for where preserves well-typed scripts.
Consider the operational rule for from. Assume that the following assumptions hold.

`
Ty
SC from uri script `

Ty
SC data0 `

Ty′

SC′ data1 (Ty′,SC′) ≤ (Ty,SC)

The first assumption above holds only if `Ty
SC script holds, by the type rule for from. Since (Ty′,SC′) ≤ (Ty,SC), by

Lemma 7, `Ty′

SC′ script holds. By Lemma 7 again, `Ty′

SC′ data0 holds. Hence `Ty′

SC′ data0 data1 holds. Therefore the from
rule preserves types.

Consider the case of the optional operational rule. For some initial configuration (script, data,Ty,SC), we assume
that `Ty

SC data. The result then follows from Prop. 10. �

6. Future Work

This paper provides the foundational definitions and results required to introduce a descriptive type system. This
approach can be adapted to more expressive languages including the full W3C SPARQL recommendation [24] and
extensions of scripting languages for Linked Data developed by the authors [28, 14]. We now consider our line of
work to be mature, having enough supporting results to be confident in the correctness of the approach and the realistic
computational resources required. In related work, prescriptive type systems have been proposed for ensuring privacy
guarantees [31] and for provenance-based access control [19] in Linked Data. Observe that such type systems for
security guarantees are, necessarily, prescriptive.

Further investigations in the direction of descriptive types would best be pursued through prototype implemen-
tations. A prototype implementation would enable questions to be investigated regarding the presentation of type
information and warnings to users and also machine learning support to reduce, but not eliminate, decisions made by
humans. We highlight some challenges in the remaining paragraphs in this subsection.

How would type information best be presented to the user? RDF Schema and the descriptive types in this work
are essentially graphical, hence a graphical representation of type information would be appropriate. It makes sense
to use representations familiar to software engineers similar to entity-relationship diagrams. There is a wealth of tool
support for graphical modelling [39, 20] that can be adapted for this purpose.

How would the menu of options to resolve warnings be presented? The algorithm for generating warnings, par-
ticularly when larger queries and scripts are supported, is capable of generating many options for resolving warnings
about mismatches between the schema and data. Indeed in some cases there are infinitely many potential solutions.
This problem may require heuristics to select a small number of options, or perhaps present options visually as a
lattice, thereby assisting further the user in pinning down the appropriate schema.
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A third line of enquiry, that can be evaluated by using a prototype implementation, is to investigate the potential
of machine learning in the support for choosing correct inferences. The programmer is only asked about a minimal
number of inferences where only human knowledge of the context can distinguish the correct inference; most other
inferences are applied automatically. Furthermore, the schema for a dataset is generally much smaller than the dataset
itself. In many scenarios, ideally, once a few queries have been asked over a dataset, enough schema information will
have been inferred to proceed without applying many more inferences. However, in some use cases, the number of
warnings presented to the programmer by the type system may become prohibitively large. To support this scenario,
machine learning could be applied to support selecting or suggesting the best options for resolving warnings on
behalf of the programmer. We imagine that a collaborative or social approach would be most effective, assuming that
programmers are willing to share their warnings and any chosen resolutions.

We do not believe that human input to resolving warnings thrown by the descriptive type system should be replaced
entirely by machine learning. A philosophical argument from the field of semiotics [46] is that descriptive types
provide support for abductive reasoning to assist with moving between the levels of syntax and semantics. In the
philosophy of semiotics, syntax is the data which is typically intended for machine processing, while semantics refers
to the ontology that is intended for humans to make sense of the data. Semiotics emphasises the subjective nature
of the relationship between syntax and semantics by recording the interpretant. In this case, the interpretants are the
users resolving warnings to infer refinements to the ontology represented by the type system. The community who
originally introduced the RDF recommendations are directly inspired by semiotics, hence an additional result of our
work on descriptive types is to formally bring closer the fields of type theory in the tradition of Curry, and semiotics
in the tradition of Pierce. Future work emphasising the interpretant can draw from techniques in the field of semiotics.
For instance, the consequences of each refinement made by users can be recorded; thereby enabling decisions to be
reversed when desired changes to an ontology are not a monotonic refinement of the current ontology.

7. Conclusion

The contribution of this paper is motivation for and the technical development of a novel descriptive type system
for Linked Data. This descriptive type system is a seamless combination of run-time schema inference and scripting
languages that interact with Linked Data. The schema inference mechanism permits RDF Schema inference as one
of several modes of inference, where inference is performed by refining the type system itself at run-time. This
descriptive type system is quite different from a traditional prescriptive type system, since, in this descriptive type
system, types change to describe the data, whereas traditionally types fix static information about data.

Changes are made to data in a controlled fashion such that the descriptive type system can still benefit from many
properties enjoyed by a traditional prescriptive type system: in particular, when part of a system is well typed, it
remains well typed, and hence no more inferences need be applied to that part of the system. Furthermore, when part
of the system is not well-typed, instead of blindly applying one mode of inference, a menu of options is generated
and the options are presented as a warning rather than an error. This gives the ability to the programmer to inspect
the suggestions to decide whether they make sense conceptually, thereby possibly identifying mistakes in the data or
more general inferences than assumed by RDF Schema by default.

We bring a number of type theoretic results to the table. We establish the consistency of subtyping through a cut
elimination result (Theorem 1). We are able to tightly integrate RDF schema with executable scripts that dereference
and query Linked Data. This is formalised by a type system that we prove is algorithmic (Proposition 4) — hence
suitable for inference — and monotonic (Lemma 7) — hence permissive of refinements to the type system itself.
We specify the run-time behaviour of scripts using an operational semantics, and prove a subject reduction result
(Theorem 12) that proves that well-typed scripts do not raise unnecessary warnings; and hence no new inference need
be applied. We also provide an algorithm for solving systems of constraints to generate warnings at run-time.

A subtle point regarding the W3C recommendations themselves is discussed in Section 4.4. In particular, we
make recommendations for handling scenarios where multiple domain and range properties appear. The handling of
multiple domains and ranges is the only significant technical discrepancy between the standard and descriptive type
based approaches. We highlight how three major real life ontologies use three different approaches to handling this
discrepancy, which should cover the needs of ontology engineers.
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The Web is an open world of subjective knowledge, where it is impossible to globally agree schema a priori. Our
descriptive type system assists with subjective decisions that resolve inconsistencies between the data and schema
information a posteriori.
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