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Abstract—In recent times, several applications requiring highly 
accurate indoor positioning systems have been developed. Since 
global positioning system (GPS) is unavailable/less accurate in the 
indoor environment, alternative techniques such as visible light 
positioning (VLP) is considered. The VLP system benefts from 
wide availability of illumination infrastructure, energy effciency 
and absence of electromagnetic interference. However, there is a 
limited number of studies on three dimensional (3-D) VLP and 
the effect of multipath propagation on the accuracy of the 3-D 
VLP. This paper proposes a supervised artifcial neural network 
(ANN) to provide accurate 3-D VLP whilst considering multipath 
propagation using receiver diversity. The results show that the 
proposed system can accurately estimate the 3-D position with 
an average RMS error of 0.0198m and 0.021m for line-of-sight 
(LOS) and non-line-of-sight (nLOS) link respectively. For 2-D 
localisation, the average RMS errors are 0.0103m and 0.0133m, 
respectively. 

Index Terms—Visible light positioning, Indoor 3-D position-
ing, Artifcial neural network, multipath propagation, receiver 
diversity 

I. INTRODUCTION 

In recent years, there has been an increase in demand for 
location-based services (LBSs) for autonomous robot control, 
indoor and underground parking, shopping centres and health 
applications. Although global positioning system (GPS) is 
one of the successful means of tracking objects in outdoor 
environments, GPS signals suffer signifcant attenuation and 
multipath fading in an indoor environment which results 
in large errors [1]. There are several radio-frequency (RF) 
based indoor positioning techniques such as Wi-Fi, Bluetooth, 
Radio frequency identifcation (RFID) which fnd applications 
in the indoor environment but exhibit certain limitations. 
Conventionally, the localisation accuracy of an RF system 
is in the decimeter range, due to multipath propagation and 
interferences [2]. However, applications such as autonomous 
robot and drone require accuracy in the cm to mm range. In 
addition to conventional two-dimensional (2-D) positioning, 
some of these applications require three-dimensional (3-D) 

This work is supported by Petroleum Technology Development Fund 
(PTDF). 

A. Mahmoud and O. Haas are with the Research Institute for Future 
Transport and Cities, Coventry University, Coventry CV1 5FB, U.K. (email: 
mahmou14@uni.coventry.ac.uk; csx259@coventry.ac.uk). 

Z. Ahmad is with School of Computing, Electronics and 
Mathematics, Coventry University, Coventry CV1 2JH, UK. (email: 
ab7175@coventry.ac.uk). 

S. Rajbhandari is currently with Huawei Technologies Sweden AB, 
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positioning. Visible light positioning (VLP) has been shown 
to offer the high accuracy required by these applications and 
hence has been an active research topic for indoor positioning 
[3]. The suitability of VLP lies in its precision, ubiquity 
and cost-effectiveness. VLP is also free from electromagnetic 
interference but may suffer from ambient light interference. 

Most works on indoor VLP focused on 2-D localisation 
assuming a fxed receiver height which ignores the position 
error introduced by variation in the height [4], [5]. There is 
limited reported work on 3-D localisation using VLP. An ac-
celerometer in combination with light-emitting diodes (LEDs) 
was studied in [6] for 3-D positioning. The aforementioned 
work required the received power to be measured twice at 
different receiver orientation and a smartphone accelerometer 
was used to determine the receiver’s orientation. Such work 
relies on the accuracy of the accelerometer which is less 
reliable if the target device is affected by a signifcant amount 
of movement [7]. An angle of arrival (AOA) approach to 3-
D VLP was investigated using aperture-based receiver in [8]. 
Using multiple positioning algorithms such as triangulation, 
maximum likelihood and AOA, their model yielded an average 
root mean square (RMS) error of 0.1m in a room of 5m×5m× 
2m. A hybrid indoor localisation method was proposed in [4] 
using AOA and received signal strength (RSS) with multiple 
optical receivers. Their study demonstrated that an RMS error 
of less than 0.06m was achievable for a 2m× 2m× 2.5m 
room. However, their proposed system required information 
on the angles of the receiver prior to positioning. In [9], a 3-D 
VLP was proposed based on fngerprinting using K-means and 
random forest. However, the process of using fngerprinting 
technique is considered labour intensive and time consuming 
with respect to the size of the room. A recent study in [10] 
considered the use of receiver tilt to establish a 3-D VLP using 
RSS. Using receiver tilt, their mathematical model analysis 
shows an RMS error of 0.0795m in a 2.5m× 2.5m× 3m room. 
Note that most of the aforementioned studies did not consider 
the effect of refection on the accuracy of the positioning. 
A recent study in [11] considered the effect of non-line-
of-sight (nLOS) link to VLP using geometric relationship. 
The simulated and experimental results demonstrated that 
the positioning error increased linearly with respect to the 
refection coeffcient of the walls. In a room of 6m × 6m 
× 3m, their model yielded RMS errors up to 0.06843m. To 
achieve this accuracy, the coordinates of the LEDs were made 
irregular which is done to avoid having a symmetric matrix. 
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This, in turn, limits its practicality for real-life applications. 
The adaptability and self-learning capability of artifcial 

intelligence (AI) has recently led to the development of a 
number of 2-D and 3-D positioning applications using AI. For 
example, high-precision 2D VLP using deep neural network 
(DNN) based on Bayesian regularization with sparse training 
point was studied in [12]. A modifed particle swarm optimi-
sation (PSO) algorithm was used in [13] for 3-D positioning. 
However, only 605 points were tested in a room of 3m× 3m 
×4m. Similarly, a modifed genetic algorithm proposed in [14] 
required up to 76 iterations to provide optimal positioning. A 
high-precision 3-D positioning using artifcial neural network 
(ANN) was studied in [5]. Their work required a large 
transmitter and receiver array with 4 × 4 LEDs grid at the 
ceiling with 1m spacing and a 19 × 19 receiver grid. Three 
ANNs (one for each dimension), each with 16 nodes in the 
input layer and 19 nodes in the output layer were required to 
determine the 3-D position. This made the approach complex 
as well as impractical due to the large ANN structure and the 
requirement for a large number of transmitters and receivers 
arrays. A recent study in [15] demonstrated the feasibility 
of 3-D VLP using a two-layer ANN. It was assumed that 
the room was divided into multiple trilateral positioning cells 
and only considered receivers below 0.8m in a room with 
a ceiling height of 2.7m hence only containing 30% of the 
room. Furthermore, the effect of multipath propagation was 
not considered in their study. 

Hence, in this work, we propose a highly accurate 3-D VLP 
using the existing illumination infrastructure that is commonly 
available in a typical home/offce/industrial environment. We 
also study the effect of multipath refection on 3-D positioning 
and demonstrated that receiver diversity (i.e. multiple receivers 

Fig. 1: Indoor localisation model for VLP 

from various transmitter. For a typical room with both LOS 
and nLOS propagation paths, the received power Pr,i from the 
ith transmitter to the rth receiver at the given location is given 
by: 

Pr,i = (Hlos(0) + Hnlos(0))Pt,i (1) 

where Pt,i is the transmitted optical power from the ith LED, 
Hlos(0) and Hnlos(0) are the line-of-sight (LOS) and nLOS 

ith thchannel DC gain between the LED and the r receiver, 
respectively. 

The DC channel gain depends on the link distance, the 
channel confguration and the angle of incidence. For a LOS 
link with Lambertian radiation pattern, the DC channel gain 
is given by [17]: ⎧ ⎪⎨ ⎪⎩ 

(m+1)Ar ρΔA cosm(φ1)cos(ψ1)cos(φ2)wall 2π2d2d2 
1 2multiplex (FDM) signals encoded with their unique position 

(m+1)Areach at different position) with ANN is very effective in cosm(φ)Ts(φ)g(ψ)2πd2 

providing accurate 3-D localisation with average room mean (2)Hlos(0) = cos(ψ) 0 ≤ ψ ≤ Ψc 
square (RMS) error of 0.021m for a typical room. To the best 

0, ψ > Ψcof the authors knowledge, this is the frst study of 3-D indoor 
VLP combining receiver diversity with ANN to overcome the where is the Lambertian emission order, Ar is the PDs m 
effect of multipath refection. 

The rest of this paper is structured as follows; the system 
description is provided in Section II. Section III describes the 
proposed application of supervised feed-forward back propa-
gation multi-layer perceptrons (MLP) for 3-D localisation. The 
performance of the proposed system is discussed in Section 
IV. Finally, conclusions are drawn in Section V. 

II. SYSTEM DESCRIPTION 

This section describes the modelling of the VLP system 
and the factors that affect the reliability and accuracy of 3-
D VLP. A typical indoor room with M (where M > 1) 
LED luminaries and N ≥ 1 photodiodes (PD) based receiver 
proposed for this study is shown in Fig. 1. The transmitters 
transmit time division multiplex (TDM) or frequency division 

physical area, φ is the irradiance angle Ts(ψ) is the optical 
flter gain, ψ is the angle of incidence, g(ψ) is the optical 
concentrator gain, d is the distance between the receiver and 
the transmitter, Ψc is the PDs feld of view. The Lambertian 
emission order and optical concentrator gain is given by: 

−ln2 n2 
c m = , g(ψi) = (3)

ln(cosφ1/2) sin2ψ 

where φ1/2 represents the half-power angle of the LED, nc 

is the concentrator’s refractive index. Under the assumption 
that the walls are composed of several refectors ΔA and a 
refection coeffcient of ρ, the nLOS channel model is given 
by: 

P⎧ ⎪⎨ 
Hnlos(0) = cos(ψ2)Ts(φ2)g(ψ2) 0 ≤ ψ2 ≤ Ψcinformation as outlined in [16]. ⎪⎩The VLP in this study is based on received signal strength 0, ψ2 > Ψc 

(RSS), which requires the estimation of the received power (4) 



Fig. 2: Schematic of proposed VLP using ANN 

where ψ1 and ψ2 are the angles of incidence, d1 and d2 are 
the distances, and φ1 and φ2 are angles of irradiance. 

The accuracy of VLP is also affected by the additive white 
Gaussian noise (AWGN). The AWGN noise in the VLP system 
consists of thermal and shot noises. The noise generated by 
the background light and the desired optical signal is known 
as shot noise and its variance is given by: 

σ2 (5)shot,i = 2qIbgI2B + 2qRpPr,iB 

where B represents the bandwidth, Rp is the responsivity of 
the PD, I2 is a noise bandwidth factor of the current, Ibg is 
the background current and q is the electronic charge. The 
thermal noise that arises from the amplifer at the receiver is 
given as: 

8πkTk 16π2kTkΓ 
σ2 = ηAI2B

2 + η2A2I3B
3 (6)thermal G gm 

where k represents the Boltzmann’s constant. η, G and Tk 

represent the fxed capacitance of the PD, the open-loop gain 
and the absolute temperature respectively. I3 is the noise 
bandwidth factor. gm and Γ represent FET trans-conductance 
and FET channel noise factor, respectively. 

III. THREE DIMENSIONAL LOCALISATION BASED ON 
ARTIFICIAL NEURAL NETWORK 

This section describes the proposed supervised feed-forward 
back propagation MLP ANN for 3-D localisation as shown 
in Fig. 2. TDM or FDM are assumed to be applied at the 
transmitter to be able to differentiate signals from individual 
transmitters. The received signal from the transmitters (in our 
case, four transmitters) at various receivers given by (1) are 
frst de-multiplexed and then fed to an ANN. 

We consider a MLP ANN with an input layer, hidden 
layer(s) and output layers. The number of neurons in the input 
layer is equal to the number of received signals from the 
transmitters to the receivers (i.e. M ×N ). The output layer has 
three neurons corresponding to the three coordinates that are 
required to be estimated. Log-sigmoid is used as the activation 
function for the hidden layers and linear transfer function for 
the output layer. The ANN is frst trained by selecting 1000 

TABLE I: Simulation parameters for the ANN-based localisa-
tion 

Parameter Value 
Room parameters [L × W× H] (m) 5 × 5 × 5 
Number of transmitters (M ) 4 
Transmitter power (W) 10 
Transmitter semi-angle (degree) 60 
No of receiver (N) [1, 4] 
Receiver area, A (cm3) 1 
Optical flter gain 1 
Receiver separation (m) [0.02, 0.2] 
Noise bandwidth, B (Hz) 0.6 
Noise bandwidth factor (I2) 0.562 
FET channel noise factor Γ 1.5 
Fixed capacitance of PD (pF/cm2) 112 
Temperature (Tk) (K) 295 
FET transconductance (mS) 30 
Background current (Ibg )µ A) 740 
Noise bandwidth factor (I3) 0.0868 

random 3-D location within the room. A feed-forward back-
propagation method is initiated with the received signal as an 
input vector. Levenberg-Marquardt back-propagation is used 
as the training function which updates the weights and bias 
values over 100 epochs. The details of the ANN structure and 
training algorithm can be found in [18]. 

Finally, the proposed system is also evaluated for 2D VLP 
assuming a receiver at the height of 0m. At frst, the ANN is 
trained within 1000 random samples with the room to estimate 
the x and y co-ordinates of the receiver. Subsequently the 
algorithm was evaluated to apprehend the accuracy of the 
model, see Section IV. Note that the number of neurons in 
the output layer is two, corresponding to x and y co-ordinates 
required for 2-D localisation. 

IV. RESULTS AND DISCUSSION 

In this section, we evaluate the performance of the proposed 
3-D VLP in a typical room environment. The criteria adopted 
to evaluate the results include the RMS error across the room 
and the cumulative distributive function (CDF) of the RMS 
error. The RMS error is defned as: p

RMSerror = (x − x̂)2 + (y − ŷ)2 + (z − ẑ)2 (7) 

where (x, y, z) is the real position and (x̂, ˆ z) is the estimated y, ˆ
position. 

A 5m×5m×5m room with uniformly distributed four 
LED transmitters located at (1.25, 1.25)m, (3.75, 1.25)m, 
(1.25, 3.75)m and (3.75, 1.25)m on the ceiling is considered 
so that the illumination is uniform [17]. We considered 8 mil-
lion random locations within the room with a height ranging 
from 0m up to 2.5m covering 50% of the rooms height. We 
also consider receiver diversity with N = [1, 4], where all 
receivers point towards the ceiling. Additional parameters used 
for the simulation are shown in Table I. 

A. Artifcial Neural Network Tuning 

In this subsection, we optimise the parameters of the MLP-
ANN. Increasing the number of neurons tends to offer bet-
ter performance at the cost, however, of higher complexity, 
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Fig. 3: Average RMS error of 3-D VLP as a function of the 
number of neurons in the hidden layer. 

larger training set, longer training time and higher memory 
requirement. Hence, it is necessary to optimise the ANN for 
optimum performance. The simulation shows that two hidden 
layers offer the optimum performance. In order to simplify 
the optimisation problem, the number of neurons in the hidden 
layers are made equal and is taken as a multiple of the diversity 
order (i.e. M × N ). We varied the number of neurons in the 
hidden layer from 8 to 80 (i.e. 10M × N ), without changing 
the training length and other parameters, then estimated the 
RMS error for various number of neurons. Fig. 3 shows the 
RMS error as a function of the number of neurons in the 
hidden layers. The fgure clearly demonstrates that increasing 
the number of neurons improves the performance. There is a 
sharp reduction in RMS error when the number of neurons 
in the hidden layer is increased from 8 to 16, then the slope 
reduces. Beyond 32, there is only a marginal improvement 
in the performance. Therefore, an MLP with 32 neurons 
in the hidden layers was adopted in the rest of the study 
as this provides the best trade-off between complexity and 
performance. 

B. Results 

Fig. 4 shows the RMS error versus CDF for 3-D VLP 
obtained using the proposed ANN with a diversity order of 
1 to 4 for LOS link. The receivers are located in a rectangular 
grid with separation of 0.02m. This separation between the 
receivers is considered in order to make the receiver system 
as compact as possible. As demonstrated in Fig. 4, there is a 
signifcant improvement in VLP using receiver diversity. For 
example, the RMS error using a single receiver is 0.037m 
at 0.95 CDF. This value reduces to less than 0.033m when 
two or more receivers are used. Furthermore, increasing the 
number of receivers beyond two does not improve the per-
formance signifcantly. For example, the RMS error values at 
0.95 CDF (and average RMS errors) are 0.0312(0.0124)m, 
0.029(0.0122)m and 0.0329(0.0136)m for diversity order of 
2, 3 and 4, respectively. The diversity order of 4 results in 
higher errors due to the requirement of longer training length 
and larger ANN size for the optimum performance. Hence, we 
consider only two receivers in the rest of the studies as this 

Fig. 4: RMS error versus the CDF for 3-D VLP with diversity 
order of N = [1, 4] receivers for LOS link. 

Fig. 5: RMS error versus the CDF for 3-D VLP with diversity 
order of two and different receiver separation distance. 
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provide the best trade-off between complexity, computational 
requirements and system performance. 

The separation between the receiver elements also plays a 
critical role in VLP position (i.e. the distance between two 
receivers can also affect the positioning accuracy). We consid-
ered both practicality and functionality of the system. Hence, 
we optimise the separation between the receiver elements for 
the diversity order of two. We only consider the separation 

http:accuracy).We


0 0.02 0.04 0.06 0.08 0.1

RMS error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

h = [0,1] m

h = [1,2] m

h = [2,2.5] m

h = [0,2.5] m

((a)) ((b)) ((c)) 

((d)) ((e)) 

Fig. 7: CDF versus RMS error for 3D VLP using the optimum system parameters for a LOS link: a) error across the three 
different axes, b) error across various height c) average RMS distribution across the room averaged over the height of 0 m to 
1 m d) average RMS distribution across the room averaged over the height of 1 m to 2 m and e) average RMS distribution 
across the room averaged over the height of 2 m to 2.5 m) 

from 0.02m to 0.2m, as a receiver separation of less than 
0.02m is not possible due to photodiode size and a separation 
beyond 0.2m would make the receiver separations too large 
for practical applications. Fig. 5 shows the positioning RMS 
error against the CDF for the various receiver separations. For 
example, at 0.95 CDF, the 3-D position accuracy improves 
from 0.034m to 0.033m when the receiver separation is 
increased from 0.02m to 0.05m, respectively. Increasing the 
receiver separation beyond 0.05m provides some improve-
ments. This illustrates that increasing the receiver separation 
improves the accuracy of the model. The average RMS errors 
for the receiver separation of 0.02m, 0.05m, 0.1m and 0.2m 
are 0.012m, 0.012m, 0.013m and 0.015m, respectively. The 
error is seen to reduce with respect to increasing the receiver 
separation because the receivers take advantage of a very 
low probability of simultaneous dropouts with larger distances 
between them. Hence, in the following discussion, we will 
only consider the diversity receiver with separation of 0.2m. 

The performance of 3D VLP also depends on the FOV 
of the receiver. Fig. 6 shows the CDF of 3-D VLP against 
the receiver FOV of 40◦ to 90◦. In order to differentiate the 
performance improvement due to FOV from single strength 
gain (in increase in signal-to-noise ratio), the optical gain at 
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all the FOVs are considered unity. Note that the optical gain 
and FOV are related and the maximum gain for a given FOV 
is governed by Etendue [19]. Fig. 6 shows that increasing the 
receivers FOV from 40◦ to 60◦ offers a signifcant improve-
ment in performance. However, FOVs beyond 60◦ degrade 
the performance. Hence, in the rest of the paper, we selected 
a receiver FOV of 60◦ as this provides near the optimum 
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Fig. 9: CDF versus RMS error for 2D VLP using ANN and 
receiver diversity: a) CDF of RMS error for LOS and non-
LOS link with 1 and 2 receivers. b) RMS error distribution 
for an nLOS link in a quarter of the room with 1 receiver and 
c) RMS error distribution for the nLOS link in a quarter of 
the room with 2 receivers. 

performance. 
Using the optimum parameters obtained for the 3-D VLP 

ANN, the performance of 3-D VLP using receiver diversity 
and ANN is simulated considering LOS link and results are 
shown in Fig. 7. Fig. 7(a) shows the contribution of errors 
in x, y and z-axis separately to the overall performance. As 

it can be seen from Fig. 7(a), each axis contributes almost 
equally to the overall error. Fig. 7(b) shows the CDF of the 
estimation error at various height range, separated into the 
region of [0, 1]m, [1, 2]m and [2, 2.5]m. Fig.7 (c) to (e) shows 
the average RMS error distributions across the room over the 
height of [0, 1]m, [1, 2]m and [2, 2.5]m. As can be seen from 
Fig. 7(b), the average error for the height of [0, 1]m and [1, 2]m 
are almost equal with the values of 0.0119m and 0.0091m. 
However, the position error in the range of 2 to 2.5m is 
higher than the height less than 2m with the average error 
of 0.0198m. Average RMS error distribution in Fig. 7 (c) and 
(d) shows that the proposed system can accurately estimate the 
3D position across the room. There is an interesting pattern 
found in the error distribution. The highest position estimation 
error occurs across the diagonal where the signal strength from 
two transmitters to the receivers are identical. However, there 
is a higher estimation error at the edge of the room and the 
highest error occurs at the corner of the room. Throughout the 
room the estimation error is higher for heights above 2m than 
it is for height below 2m. At the height of 2m, due to the 
limited divergence angle of the LEDs and limited FOV of the 
receiver, the received signal strength from one or more LEDs 
is very weak leading to higher estimation error. In order to 
reduce the estimation error above this height, the number of 
transmitters needs to be increased. 

As mentioned in the previous section, the multipath propa-
gation also affects the position estimation especially close to 
the wall where the refected signal strength is at the highest. 
We evaluate the performance of receiver diversity VLP con-
sidering a) LOS path only and b) LOS and nLOS propagation 
path for one and two receivers with the results presented 
in Fig. 8. Fig. 8 clearly shows that multipath propagation 
reduces the accuracy in the position estimation for a single 
receiver. The RMS error value at CDF of 0.95 increases from 
0.037m for a LOS link to 0.094m for a nLOS, using a single 
receiver. However, diversity receiver signifcantly improves the 
performance for both LOS and nLOS link with an RMS error 
of 0.0198m and 0.021m, respectively. 

The CDF of the RMS error for 2D VLP considering the 
LOS and non-LOS link using receiver diversity and ANN and 
receiver diversity is shown in Fig. 9(a). There is a reduction in 
performance between LOS and nLOS link for a single receiver 
with RMS error values of 0.033m and 0.066m respectively at 
CDF of 0.95. The average errors for LOS and nLOS links 
with two receivers are 0.0103m and 0.0133m, respectively. 
The RMS error distributions in Fig. 9(b) and (c) shows that 
receiver diversity reduces error close to the walls yielding to 
a lower average and RMS errors. 

We performed a comparative study of the proposed tech-
nique with other states of the art 3-D-VLP techniques and 
summarised the results in Table II. Note that some of the work 
in the literature considered small room dimension (e.g. [9], 
[15]), which tends to improve the accuracy. Though the best 
performance is achieved in [5], this is largely impractical due 
to the requirement for a large number of transmitters (16) and 
receivers (361). Most of the existing work does not include 



TABLE II: Comparative study of the proposed system with published work. 

Paper Method Channel 
model Transmitter Receiver Room di-

mension(m) 
RMS error 
(m) 

[5] Three ANN LOS 4 × 4 19 × 19 4 × 4 × 3 0.0004 
[8] AOA LOS 4 1 5 × 5 × 2 0.1 
[9] Fingerprinting LOS 4 1 2 × 2 × 5 0.0445 

[11] Geometrical 
relationship LOS+nLOS 4 1 6 × 6 × 3 0.06843 

[14] Genetic 
algorithm LOS 4 1 3 × 3 × 4 0.021 

[15] 2-layer ANN LOS 4 1 0.9×1 ×0.4 0.009 
[20] Trilateration 

Differential 
LOS 4 1 5 × 5 × 5 0.091 

[21] evolution 
algorithm 
ANN with 

LOS 4 1 4 × 4 × 3 0.01 

This work receiver 
diversity 

LOS+nLOS 4 2 5 × 5 × 5 0.021 

nLOS link. However, as reported in [11], the inclusion of 
nLOS increases the RMS error up to 0.06843m. Therefore, 
whilst the work in [21] yielded an average RMS error of 
0.01m, including nLOS link and a larger room volume would 
likely increase the stated error. By comparison, simulating the 
system using the identical condition to that presented in [21], 
results in average RMS error of 0.007m is compared to 0.01m 
in [21]. Based on these results, the proposed solution is not 
only practical but also offer the best 3-D positioning results 
among the algorithms that had been studied so far whilst 
accounting for LOS and nLOS. 

V. CONCLUSIONS 
In this paper, we proposed an indoor visible light locali-

sation using receiver diversity with ANN. We have evaluated 
the performance of the proposed system in a typical room 
environment. For optimum performance, the ANN parameters 
and FOV were optimised. The study clearly shows that the 
receiver diversity signifcantly improves the 3-D localisation. 
The performance improvement is even more signifcant when 
multipath propagation is considered. The study shows that 
the receiver diversity with ANN can provide accurate 2-
D positioning with an average RMS error of 0.0103m and 
0.0133m for LOS and nLOS links, respectively. For the 3-D 
localisation, the average RMS errors are 0.0198m and 0.021m, 
respectively. Hence, in this study, we have demonstrated using 
simulation, the feasibility of precise localisation even in the 
link affected by multipath propagation using receiver diversity 
and neural network. 
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