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The article bridges between two major paradigms in computation, the functional, at basis computation from

input to output, and the interactive, where computation reacts to its environment while underway. Central to

any compositional theory of interaction is the dichotomy between a system and its environment. Concurrent

games and strategies address the dichotomy in fine detail, very locally, in a distributed fashion, through

distinctions between Player moves (events of the system) and Opponent moves (those of the environment). A

functional approach has to handle the dichotomy more ingeniously, via its blunter distinction between input

and output. This has led to a variety of functional approaches, specialised to particular interactive demands.

Through concurrent games we can see what separates and connects the differing paradigms, and show how:

• to lift functions to strategies; how to turn functional dependency to causal dependency.

• several paradigms of functional programming and logic arise naturally as full subcategories of concurrent

games, including stable domain theory; nondeterministic dataflow; geometry of interaction; the dialectica

interpretation; lenses and optics, and their extensions to containers in dependent lenses and optics.

• the enrichments of strategies (e.g. to probabilistic, quantum or real-number computation) specialise to the

functional cases.

1 INTRODUCTION

The view of computation as functions is at the very foundation of computer science: the Church-
Turing thesis expresses the coincidence of different notions of computable function; programming
with higher-order functions is now taken for granted.

In contrast the view of computation as interaction is more recent and less settled, and often
obscured by adherence to one syntax or another, perhaps each with its own mechanism of inter-
action. Instead our approach is maths-driven. Its tools are those of distributed/concurrent games
and strategies [53], a causal model which allows for highly distributed interaction. Concurrent
games and strategies are built on the mathematical foundations of categories of models for inter-
action [65], chiefly on the central model of event structures [57].1

Whereas the basicmechanismof interaction of functions is clear—ultimately by function composition—
a functional approach can struggle with finding quite the right way to approach computation
which isn’t simply from input to output. The literature includes approaches via lenses, optics,
combs, containers, dependent lenses, open games and learners [2, 14, 25–27, 46, 50]. The difficul-
ties are compounded by enrichments to, say, probabilistic, quantum or real-number computation.
In functional approaches new patterns of interaction are often achieved by extending the usual

input/output of functions with extra parameters to permit exchanges with the environment while
computation is underway; the environment may comprise another similar parameterised function.
But the types of functions tend only to give a static, rather rigid, partial picture of the dynamics of
interaction. This handicaps the expression of and search for more complicated patterns of interac-
tion within functional languages: for instance, patterns of interaction that may change over time,
perhaps with one pattern of interaction replacing another, or perhaps being chosen nondetermin-
istically or probabilistically. And if we are to allow very general interactions how are we to avoid
functional loops which may not be sensible for the functions of interest?
By adopting a model which addresses interaction from the outset, we can better understand

and explore the space of possible interactions, functional or otherwise. Concurrent games and

1A core language for concurrent strategies derives from the mathematical structure, although we shall only glimpse it here

in Section 4.7: it is higher-order and an interesting hybrid of dataflow, cf. TensorFlow [1], concurrent process calculi, cf. CSP,

CCS and Session Types [9, 13, 41].
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strategies provide a way to describe and orchestrate temporal patterns of interaction between
functions, their fine-grained dependencies and dynamic linkage—Sections 6 and 7. They support
enrichments to strategies for probabilistic, quantum and real-number computation.
This article bridges between the two paradigms of computation, the functional and the interac-

tive. In broad terms it shows:

• How to convert a general class of functions to concurrent strategies—Section 5; this helps
in the programming of strategies via functional techniques and is of potential further use in
describing sub(bi)categories of strategies through functions.

• How in many cases we can describe concurrent strategies as interacting patterns of func-
tions; it reveals many paradigms in functional programming arise as full subcategories asso-
ciated with special cases of concurrent games; in these cases composition of strategies can
be described via simpler function composition—Section 6.

• How concurrent strategies enriched in a symmetric monoidal category M determine inter-
acting patterns of “functions” (maps inM ) and how these compose through the composition
of strategies; in this sense a sub(bi)category of strategies determines its own functional par-
adigm. This can be used to systematise the way we explore interaction between functions—
Section 7.

Amplifying the second point above, it was a surprise to the author how neatly and automatically
many functional paradigms arise simply by specialising to full subcategories of concurrent games.
For example:

• We shall see how by restricting to deterministic strategies between concurrent games where
all moves are Player moves we rediscover stable functions and Berry’s stable domain theory,
of which Girard’s qualitative domains and coherence spaces are special cases. For such re-
stricted games, general, possibly nondeterministic, strategies correspond to stable spans, a
model discovered and rediscovered in compositional accounts of nondeterministic dataflow.

• Only marginally more complicated than those purely Player games are games which consist
of two parallel components, one a purely Player game and the other with purely Opponent
moves. Strategies between such games yield models for Geometry of Interaction built on
stable functions and stable spans [3, 4, 6, 28].

• Adjoining winning conditions and imperfect information to these games, so Opponent can
see the moves of Player but not the converse, we recover a dialectica category [21], so Gödel’s
dialectica interpretation [7], from deterministic strategies. We obtain from Gödel’s work an
interpretation of proofs in first-order arithmetic as winning strategies. Dialectica categories,
studied by Valeria de Paiva in her Cambridge PhD [21], mark an early occurrence of lenses
used in functional programming, where they were invented independently to make compos-
able local changes on data-structures [26, 46].

• The newer paradigm of optics appears in characterising arbitrary, not just deterministic,
strategies between dialectica games and when wemove to more general container games, as-
sociated with container types [2]. Deterministic strategies between container games amount
to dependent lenses and nondeterministic strategies to a form of dependent optics. The defi-
nition of dependent optic is derived as a characterisation of general strategies between con-
tainer games; it appears to be new [30].

After the basics on event structures, the tools of stable families, and concurrent strategies, the new

contribution comes in three parts which can roughly be described as: how to describe strategies by func-

tions; how to describe functions and functional paradigms by strategies; and, how enriched strategies

describe interacting patterns of functions. The first, rather technical part, Section 5, introduces a pow-

erful method for lifting a very broad class of functions to strategies, turning functional into causal
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dependency. It makes essential use of stable families and the Scott order intrinsic to a concurrent

game. The second part, Section 6, concerns how causal dependency determines functional dependency,

and shows how many paradigms discovered in making functions interactive arise as subcategories of

concurrent games. The final, much shorter, third part, Section 7, shows how to enrich strategies in a

symmetric monoidal category. An enriched strategy imposes a dynamic pattern of interaction between

arrows in the monoidal category; the pattern of interaction has the form of an event structure. Such

patterns of interaction compose well and won’t contain loops of functional dependency because they

are determined by strategies.

2 EVENT STRUCTURES

An event structure [57] comprises (�퐸,≤,Con), consisting of a set �퐸 of events which are partially
ordered by ≤, the causal dependency relation, and a nonempty consistency relation Con consisting
of finite subsets of �퐸. The relation �푒 ′ ≤ �푒 expresses that event �푒 causally depends on the previous
occurrence of event �푒 ′; the consistency relation, those events which may occur together. We insist
that the partial order is finitary, i.e.

• [�푒] ≔ {�푒 ′ | �푒 ′ ≤ �푒} is finite for all �푒 ∈ �퐸 ,

and that consistency satisfies

• {�푒} ∈ Con for all �푒 ∈ �퐸 ,
• �푌 ⊆ �푋 ∈ Con implies �푌 ∈ Con, and
• �푋 ∈ Con & �푒 ≤ �푒 ′ ∈ �푋 implies �푋 ∪ {�푒} ∈ Con .

There is an accompanying notion of state or history. A configuration is a, possibly infinite, subset
�푥 ⊆ �퐸 which is:

• consistent, �푋 ⊆ �푥 & �푋 is finite implies �푋 ∈ Con ; and
• down-closed, �푒 ′ ≤ �푒 ∈ �푥 implies �푒 ′ ∈ �푥 .

Two events �푒, �푒 ′ are called concurrent if the set {�푒, �푒 ′} is in Con and neither event is causally
dependent on the other; then we write �푒 co �푒 ′. In games the relation of immediate dependency
�푒 _ �푒 ′, meaning �푒 and �푒 ′ are distinct with �푒 ≤ �푒 ′ and no event in between, plays a very important
role. We write [�푋 ] for the down-closure of a subset of events �푋 . WriteC (�퐸) for the configurations
of �퐸 and C (�퐸)�표 for its finite configurations. (Sometimes we shall need to distinguish the precise
event structure to which a relation is associated and write, for instance, ≤�퐸 , _�퐸 or co�퐸 .)
Let �퐸 and �퐸 ′ be event structures. A map of event structures �푓 : �퐸 → �퐸 ′ is a partial function on

events �푓 : �퐸 ⇀ �퐸 ′ such that for all �푥 ∈ C (�퐸) its direct image �푓 �푥 ∈ C (�퐸 ′) and

if �푒, �푒 ′ ∈ �푥 and �푓 (�푒) = �푓 (�푒 ′) (with both defined), then �푒 = �푒 ′ .

Maps of event structures compose as partial functions. Notice that for a total map �푓 , i.e. when
the function �푓 is total, the condition on maps says it is locally injective, in the sense that w.r.t. any
configuration �푥 of the domain the restriction of �푓 to a function from �푥 is injective; the restriction
of total �푓 to a function from �푥 to �푓 �푥 is thus bijective.
Although a map �푓 : �퐸 → �퐸 ′ of event structures does not generally preserve causal dependency,

it does reflect causal dependency locally: whenever �푒, �푒 ′ ∈ �푥 , a configuration of �퐸, and �푓 (�푒) and
�푓 (�푒 ′) are both defined with �푓 (�푒 ′) ≤ �푓 (�푒), then �푒 ′ ≤ �푒 . Consequently, �푓 preserves the concurrency
relation: if �푒 co �푒 ′ in �퐸 then �푓 (�푒) co �푓 (�푒 ′), when defined.
A total map of event structures is rigidwhen it preserves causal dependency. Rigid maps induce

discrete fibrations:
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Proposition 2.1. A total map �푓 : �퐸 → �퐸 ′ of event structures is rigid iff for all �푥 ∈ C (�퐸) and
~ ∈ C (�퐸 ′),

~ ⊆ �푓 �푥 =⇒ ∃�푧 ∈ C (�퐸). �푧 ⊆ �푥 and �푓 �푧 = ~ .

The configuration �푧 is necessarily unique by local injectivity.

3 STABLE FAMILIES

In an event structure, defined above, an event �푒 has a unique causal history, the prime configuration
[�푒]. Constructions directly on such event structures can be unwieldy, as often an event is more
immediately associated with several mutually inconsistent causal histories. In this case the broader
model of stable families is apt, especially so, as any stable family yields an event structure [56, 57].
A subset �푋 of a family of sets F is compatible if there is an element of F which includes all

elements of �푋 ; we say �푋 is finitely compatible if every finite subset of �푋 is compatible.
A stable family is a non-empty family of sets F which is
• Complete: ∀�푍 ⊆ F . if �푍 is finitely compatible,

⋃
�푍 ∈ F ;

• Stable: ∀�푍 ⊆ F . �푍 ≠ ∅ & �푍 is compatible =⇒
⋂
�푍 ∈ F ;

• Finitary: ∀�푥 ∈ F , �푒 ∈ �푥∃�푥0 ∈ F . �푥0 is finite & �푒 ∈ �푥0 ⊆ �푥 ;
• Coincidence-free: For all �푥 ∈ F , �푒, �푒 ′ ∈ �푥 with �푒 ≠ �푒 ′,

∃�푥0 ∈ F . �푥0 ⊆ �푥 & (�푒 ∈ �푥0 ⇐⇒ �푒 ′ ∉ �푥0) .

We call elements of F its configurations,
⋃

F its events and write F�표 for its finite configurations.
A map �푓 : F → G between stable families F and G is a partial function �푓 from the events of

F to those of G such that for all �푥 ∈ F its direct image �푓 �푥 ∈ G and if �푒, �푒 ′ ∈ �푥 and �푓 (�푒) = �푓 (�푒 ′)

then �푒 = �푒 ′. The choice of map ensures an inclusion functor from the category of event structures
to that of stable families. The inclusion functor has a right adjoint Pr giving a coreflection (an
adjunction with unit an isomorphism). The construction Pr(F ) essentially replaces the original
events of a stable family F by the minimal, prime configurations at which they occur. Let �푥 be a
configuration of a stable family F . Define the prime configuration of �푒 in �푥 by

[�푒]�푥 ≔
⋂
{~ ∈ F | �푒 ∈ ~ & ~ ⊆ �푥} .

By coincidence-freeness, the function top : C (Pr(F )) → F which takes a prime configuration
[�푒]�푥 to �푒 is well-defined; it is the counit of the adjunction [56, 57].

Theorem 3.1. Let F be a stable family. Then, Pr(F ) ≔ (�푃,Con,≤) is an event structure where

�푃 = {[�푒]�푥 | �푒 ∈ �푥 & �푥 ∈ F } ,

�푍 ∈ Con iff �푍 ⊆ �푃 &
⋃
�푍 ∈ F , and

�푝 ≤ �푝 ′ iff �푝, �푝 ′ ∈ �푃 & �푝 ⊆ �푝 ′ .

There is an order isomorphism �휃 : (C (Pr(F )), ⊆) � (F , ⊆) where �휃 (~) ≔ top y =
⋃

y for

~ ∈ C (Pr(F )); its mutual inverse is �휑 where �휑 (�푥) = {[�푒]�푥 | �푒 ∈ �푥} for �푥 ∈ F .

The partial orders represented by configurations under inclusion are the samewhether for event
structures or stable families. They are Gérard Berry’s dI-domains [8, 56, 57].

3.1 Hiding—the defined part of a map

Let (�퐸,≤,Con) be an event structure. Let �푉 ⊆ �퐸 be a subset of ‘visible’ events. Define the projec-
tion on �푉 , by �퐸↓�푉 ≔ (�푉 , ≤�푉 ,Con�푉 ), where �푣 ≤�푉 �푣 ′ iff �푣 ≤ �푣 ′ & �푣, �푣 ′ ∈ �푉 and �푋 ∈ Con�푉 iff �푋 ∈

Con & �푋 ⊆ �푉 . The operation hides all events outside �푉 . It is associated with a partial-total factor-
ization system. Consider a partial map of event structures �푓 : �퐸 ⇀ �퐸 ′. Let

�푉 ≔ {�푒 ∈ �퐸 | �푓 (�푒) is defined} .
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Then �푓 clearly factors into the composition

�퐸
�푓0 / �퐸↓�푉

�푓1 // �퐸 ′

of �푓0, a partial map of event structures taking �푒 ∈ �퐸 to itself if �푒 ∈ �푉 and undefined otherwise,
and �푓1, a total map of event structures acting like �푓 on �푉 . Note that any �푥 ∈ C (�퐸↓�푉 ) is the image
under �푓0 of a minimum configuration, viz. [�푥]�퐸 ∈ C (�퐸). We call �푓0 a projection and �푓1 the defined
part of the map �푓 .

3.2 Pullbacks

The coreflection from event structures to stable families is a considerable aid in constructing limits
in the former from limits in the latter. The pullback of total maps of event structures is essential
in composing strategies. We can define it via the pullback of stable families, obtained as a stable
family of secured bijections. Let �휎 : �푆 → �퐵 and �휏 : �푇 → �퐵 be total maps of event structures. There
is a composite bijection

�휃 : �푥 � �휎�푥 = �휏~ � ~ ,

between �푥 ∈ C (�푆) and ~ ∈ C (�푇 ) such that �휎�푥 = �휏~; because �휎 and �휏 are total they induce
bijections between configurations and their image. The bijection is secured when the transitive
relation generated on �휃 by (�푠, �푡) ≤ (�푠 ′, �푡 ′) if �푠 ≤�푆 �푠 ′ or �푡 ≤�푇 �푡 ′ is a finitary partial order.

Theorem 3.2. Let �휎 : �푆 → �퐵, �휏 : �푇 → �퐵 be total maps of event structures. The family R of

secured bijections between �푥 ∈ C (�푆) and ~ ∈ C (�푇 ) such that �휎�푥 = �휏~ is a stable family. The

functions �휋1 : Pr(R) → �푆 , �휋2 : Pr(R) → �푇 , taking a secured bijection with top to, respectively, the

left and right components of its top, are maps of event structures. Pr(R) with �휋1, �휋2 is the pullback

of �휎 , �휏 in the category of event structures.

Notation 3.3. W.r.t. �휎 : �푆 → �퐵 and �휏 : �푇 → �퐵, define �푥 ∧ ~ to be the configuration of their
pullback which corresponds via this isomorphism to a secured bijection between �푥 ∈ C (�푆) and
~ ∈ C (�푇 ), necessarily with �휎�푥 = �휏~; any configuration of the pullback takes the form �푥 ∧ ~ for
unique �푥 and ~.

4 CONCURRENT GAMES AND STRATEGIES

The driving idea is to replace the traditional role of game trees by that of event structures. Both
games and strategies will be represented by event structures with polarity, which comprise (�퐴, pol�퐴)
where �퐴 is an event structure and a polarity function pol�퐴 : �퐴 → {+,−, 0} ascribing a polarity
+ (Player) or − (Opponent) or 0 (neutral) to its events. The events correspond to (occurrences of)
moves. It will be technically useful to allow events of neutral polarity; they arise, for example, in a
play between a strategy and a counterstrategy. Maps are those of event structures which preserve
polarity. A game is represented by an event structure with polarities restricted to + or −, with no
neutral events.

Definition 4.1. In an event structure with polarity, with configurations �푥 and ~, write �푥 ⊆− ~ to
mean inclusion in which all the intervening events ~ \ �푥 are Opponent moves. Write �푥 ⊆+ ~ for
inclusion in which the intervening events are neutral or Player moves. For a subset of events �푋
we write �푋+ and �푋− for its restriction to Player and Opponent moves, respectively. The Scott order
will play a central role: between �푥,~ ∈ C (�퐴), where �퐴 is a game, define

~ ⊑�퐴 �푥 ⇐⇒ ∃�푧 ∈ C (�퐴). ~ ⊇− �푧 & �푧 ⊆+ �푥

—it is not hard to show that �푧 is unique and equal to �푥 ∩~. The Scott order is also characterised by

~ ⊑�퐴 �푥 ⇐⇒ ~− ⊇ �푥− & ~+ ⊆ �푥+ ,
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whichmakes clearwhy it is a partial order. The Scott order is so named because it reduces to Scott’s
order on functions in special cases and plays a central role in relating games to Scott domains and
“generalised domain theory” [32].

There are two fundamentally important operations on games. One is that of forming the dual
game. On a game �퐴 this amounts to reversing the polarities of events to produce the dual �퐴⊥.
The other operation, a simple parallel composition �퐴‖�퐵, is achieved on games �퐴 and �퐵 by simply
juxtaposing them, ensuring a finite subset of events is consistent if its overlaps with the two games
are individually consistent; any configuration �푥 of �퐴‖�퐵 decomposes into �푥�퐴‖�푥�퐵 where �푥�퐴 and �푥�퐵
are configurations of �퐴 and �퐵 respectively.
A strategy in a game �퐴 is a total map �휎 : �푆 → �퐴 of event structures with polarity such that

(i) if �휎�푥 ⊆− ~, for �푥 ∈ C (�푆),~ ∈ C (�퐴), there is a unique �푥 ′ ∈ C (�푆) with �푥 ⊆ �푥 ′ and �휎�푥 ′
= ~;

(ii) if �푠 _�푆 �푠 ′ and (pol (�푠) = + or pol (�푠 ′) = − ) , then �휎 (�푠) _�퐴 �휎 (�푠 ′).

The conditions prevent Player from constraining Opponent’s behaviour beyond the constraints of
the game. Condition (i) is receptivity, ensuring that the strategy is open to all moves of Opponent
permitted by the game. Condition (ii), called innocence in [22], ensures that the only additional
immediate causal dependencies a strategy can enforce beyond those of the game are those in
which a Player move awaits moves of Opponent. A map �푓 : �휎 ⇒ �휎 ′ of strategies �휎 : �푆 → �퐴

and �휎 ′ : �푆 ′ → �퐴 is a map �푓 : �푆 → �푆 ′ such that �휎 = �휎 ′�푓 ; this determines when strategies are
isomorphic.
Following [18, 35], a strategy from a game �퐴 to a game �퐵 is a strategy in the game �퐴⊥‖�퐵. Given

a strategy from �퐵 to a game �퐶 , so in �퐵⊥‖�퐶 , we compose the two strategies essentially by playing
them against each other in the common game �퐵, where if one strategy makes a Player move the
other sees it as a move of Opponent. The conditions of receptivity and innocence precisely ensure
that the copycat strategy behaves as identity w.r.t. composition, detailed below [53].

4.1 Copycat

Let �퐴 be a game. The copycat strategy �푐�푐 �퐴 : CC�퐴 → �퐴⊥‖�퐴 is an instance of a strategy from �퐴 to
�퐴. The event structure CC�퐴 is based on the idea that Player moves in one component of the game
�퐴⊥‖�퐴 always copy corresponding moves of Opponent in the other component. For �푐 ∈ �퐴⊥‖�퐴 we
use �푐 to mean the corresponding copy of �푐 , of opposite polarity, in the alternative component. The
event structure CC�퐴 comprises �퐴⊥‖�퐴 with extra causal dependencies �푐 ≤ �푐 for all events �푐 with
pol�퐴⊥ ‖�퐴 (�푐) = +; with the original causal dependency they generate a partial order; a finite subset

is consistent in CC�퐴 iff its down-closure w.r.t. ≤ is consistent in �퐴⊥‖�퐴. The map �푐�푐 �퐴 acts as the
identity function. In characterising the configurations of CC�퐴 we recall the Scott order of Defn 4.1.

Lemma 4.2. Let �퐴 be a game. Let �푥 ∈ C (�퐴⊥) and ~ ∈ C (�퐴). Then

�푥 ‖~ ∈ C (CC�퐴) iff ~ ⊑�퐴 �푥 .

4.2 Composition

Two strategies �휎 : �푆 → �퐴⊥‖�퐵 and �휏 : �푇 → �퐵⊥‖�퐶 compose via pullback and hiding, summarised
below.

�푇 ⊛ �푆
�휋1

zz✉✉✉
✉✉

/❴❴❴❴❴

�휏⊛�휎

��

❄⑧
�휋2

$$■■
■■

■ �푇⊙�푆

�휏⊙�휎

��✤
✤

✤

✤

�푆 ‖�퐶

�휎 ‖�퐶 $$❍❍
❍❍

❍
�퐴‖�푇

�퐴 ‖�휏zz✈✈✈
✈✈

�퐴‖�퐵‖�퐶 / �퐴‖�퐶
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Ignoring polarities, by forming the pullback of �휎 ‖�퐶 and �퐴‖�휏 we obtain the synchronisation of
complementary moves of �푆 and �푇 over the common game �퐵; subject to the causal constraints of
�푆 and �푇 , the effect is to instantiate the Opponent moves of �푇 in �퐵⊥ by the corresponding Player
moves of �푆 in �퐵, and vice versa. Reinstating polarities we obtain the interaction of �휎 and �휏

�휏 ⊛ �휎 : �푇 ⊛ �푆 → �퐴⊥‖�퐵0‖�퐶 ,

where we assign neutral polarities to all moves in or over �퐵. Neutral moves over the common part
�퐵0 remain unhidden. The map �퐴⊥‖�퐵0‖�퐶 ⇀ �퐴⊥‖�퐶 is undefined on �퐵0 and otherwise mimics the
identity. Pre-composing this map with �휏 ⊛�휎 we obtain a partial map�푇 ⊛�푆 ⇀ �퐴⊥‖�퐶; it is undefined
on precisely the neutral events of�푇 ⊛ �푆 . The defined parts of its partial-total factorization yields

�휏⊙�휎 : �푇⊙�푆 → �퐴⊥‖�퐶

—this is the composition of �휎 and �휏 .

Notation 4.3. For �푥 ∈ C (�푆) and ~ ∈ C (�푇 ), let �휎�푥 = �푥�퐴‖�푥�퐵 and �휏~ = ~�퐵 ‖~�퐶 where �푥�퐴 ∈ C (�퐴),
�푥�퐵, ~�퐵 ∈ C (�퐵), ~�퐶 ∈ C (�퐶). Define ~⊛�푥 = (�푥 ‖~�퐶 ) ∧ (�푥�퐴‖~). This is a partial operation only defined
if the ∧-expression is. It is defined and glues configurations �푥 and ~ together at their common
overlap over �퐵 provided �푥�퐵 = ~�퐵 and a finitary partial order of causal dependency results. Any
configuration of�푇 ⊛ �푆 has the form ~ ⊛ �푥 , for unique �푥 ∈ C (�푆),~ ∈ C (�푇 ).

4.4 A bicategory of strategies

We obtain a bicategory Strat for which the objects are games, the arrows �휎 : �퐴 + //�퐵 are strate-
gies �휎 : �푆 → �퐴⊥‖�퐵; with 2-cells �푓 : �휎 ⇒ �휎 ′ maps of strategies. The vertical composition of
2-cells is the usual composition of maps. Horizontal composition is the composition of strategies
⊙ (which extends to a functor via the universality of pullback and partial-total factorisation). We
can restrict the 2-cells to be rigid maps and still obtain a bicategory. The bicategory of strategies
is compact-closed, though with the addition of winning conditions—Section 4.5—this weakens to
∗-autonomous.
A strategy �휎 : �푆 → �퐴 is deterministic if �푆 is deterministic, viz.

∀�푋 ⊆fin �푆. [�푋 ]− ∈ Con�푆 =⇒ �푋 ∈ Con�푆 ,

where [�푋 ]− ≔ {�푠 ′ ∈ �푆 | ∃�푠 ∈ �푋 . pol�푆 (�푠
′) = − & �푠 ′ ≤ �푠}. So, a strategy is deterministic if consistent

behaviour of Opponent is answered by consistent behaviour of Player. Copycat �푐�푐 �퐴 is deterministic
iff the game �퐴 is race-free, i.e. if �푥 ⊆− ~ and �푥 ⊆+ �푧 in C (�퐴) then ~ ∪ �푧 ∈ C (�퐴). The bicategory of
strategies restricts to a bicategory of deterministic strategies between race-free games.
There are several ways to reformulate strategies. Deterministic strategies coincide with the re-

ceptive ingenuous strategies of Melliès andMimram based on asynchronous transition systems [40,
60]. Via the Scott order, we can see strategies as a refinement of profunctors: a strategy in a game�퐴
induces a discrete fibration, so presheaf, on (C (�퐴)�표 ,⊑�퐴), a constructionwhich extends to strategies
between games [63].

4.5 Winning conditions

Winning conditions of a game �퐴 specify a subset�푊 of its configurations, an outcome in which is a
win for Player. Informally, a strategy (for Player) iswinning if it always prescribes moves for Player
to end up in a winning configuration, no matter what the activity or inactivity of Opponent.
Formally, a gamewith winning conditions (�퐴,�푊�퐴) comprises a concurrent game�퐴with winning

conditions �푊�퐴 ⊆ C (�퐴). A strategy �휎 : �푆 → �퐴 is winning if �휎�푥 is in �푊�퐴 for all +-maximal
configurations �푥 of �푆 ; in general, a configuration is +-maximal if no additional Player, or neutral,
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moves can occur from it. That �휎 is winning can be shown equivalent to: all plays of �휎 against any
counterstrategy of Opponent result in a win for Player [16, 64].
As the dual of a game with winning conditions (�퐴,�푊�퐴) we again reverse the roles of Player

and Opponent, and take its winning conditions to be the set-complement of�푊�퐴, i.e. (�퐴,�푊�퐴)
⊥
=

(�퐴⊥, C (�퐴) \�푊�퐴).
In a parallel composition of games with winning conditions, we deem a configuration �푥 of �퐴‖�퐵

winning if its component�푥�퐴 is winning in�퐴 or its component�푥�퐵 is winning in �퐵: (�퐴,�푊�퐴)‖(�퐵,�푊�퐵) ≔

(�퐴‖�퐵,�푊 ) where�푊 = {�푥 ∈ C (�퐴‖�퐵) | �푥�퐴 ∈�푊�퐴 or �푥�퐵 ∈�푊�퐵}.
With these extensions, we take a winning strategy from a game (�퐴,�푊�퐴) to a game (�퐵,�푊�퐵), to

be a winning strategy in the game �퐴⊥‖�퐵 —its winning conditions form the set

{�푥 ∈ C (�퐴⊥‖�퐵) | �푥�퐴 ∈�푊�퐴 ⇒ �푥�퐵 ∈�푊�퐵} .

When games are race-free, copycat will be a winning strategy. The composition of winning strate-
gies is winning [16, 64]. In the proof the following lemma is critical:

Lemma 4.3. Let �휎 : �푆 → �퐴⊥‖�퐵 and �휏 : �푇 → �퐵⊥‖�퐶 be strategies. Suppose ~ ⊛ �푥 ∈ C (�푇 ⊛ �푆) where

�푥 ∈ C (�푆) and ~ ∈ C (�푇 ). Then, ~ ⊛ �푥 is +-maximal iff both �푥 and ~ are +-maximal.

One can extend winning conditions to payoff functions [17] or to allow draws, where neither
player wins [61].

4.6 Imperfect information

In a game of imperfect information some moves are masked, or inaccessible, and strategies with
dependencies on unseen moves are ruled out. One can extend games with imperfect information
in a way that respects the operations of concurrent games and strategies [61]. Each move of a
game is assigned a level in a global order of access levels; moves of the game or its strategies can
only causally depend on moves at equal or lower levels.
In more detail, a fixed preorder of access levels (Λ, �) is pre-supposed. A Λ-game comprises a

game�퐴with a level function �푙 : �퐴 → Λ such that if �푎 ≤�퐴 �푎′ then �푙 (�푎) � �푙 (�푎′) for all moves �푎, �푎′ in�퐴.
A Λ-strategy in the Λ-game is a strategy �휎 : �푆 → �퐴 for which if �푠 ≤�푆 �푠 ′ then �푙�휎 (�푠) � �푙�휎 (�푠 ′) for all
�푠, �푠 ′ in �푆 . The access levels of moves in a game are left undisturbed in forming the dual and parallel
composition of Λ-games. As before, a Λ-strategy from a Λ-game �퐴 to a Λ-game �퐵 is a Λ-strategy
in the game �퐴⊥‖�퐵. It can be shown that Λ-strategies compose [61].

4.7 A language for strategies

We recall briefly the language for strategies introduced in [12]. Games �퐴, �퐵,�퐶, · · · play the role of
types. Operations on games include forming the dual �퐴⊥, simple parallel composition �퐴‖�퐵, a sum
Σ�푖 ∈�퐼�퐴�푖 as well as recursively-defined games.
Terms, denoting strategies, have typing judgements

�푥1 : �퐴1, · · · , �푥�푚 : �퐴�푚 ⊢ �푡 ⊣ ~1 : �퐵1, · · · ,~�푛 : �퐵�푛 ,

where all the variables are distinct, interpreted as a strategy from ®�퐴 = �퐴1‖ · · · ‖�퐴�푚 to ®�퐵 = �퐵1‖ · · · ‖�퐵�푛 .
We can picture the term �푡 as a box with input and output wires for the variables ®�푥 and ®~:

✲

✲✲

✲
�퐴1

�퐴�푚

�퐵1

�퐵�푛

...
...

The term �푡 denotes a strategy �휎 : �푆 → ®�퐴⊥‖ ®�퐵. It does so by describing witnesses, configurations

of �푆 , to a relation between configurations ®�푥 of ®�퐴 and ®~ of ®�퐵. For example, the term

�푥 : �퐴 ⊢ ~ ⊑�퐴 �푥 ⊣ ~ : �퐴
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denotes the copycat strategy on a game�퐴; it describes configurations of copycat,CC�퐴, as witnesses,
viz. those configurations �푥 ‖~ ofCC�퐴 forwhich~ ⊑�퐴 �푥 in the Scott order. There are other operations,
such as sum [] and pullback ∧ on strategies of the same type.
Duality is caught by the rules

Γ, �푥 : �퐴 ⊢ �푡 ⊣ Δ

Γ ⊢ �푡 ⊣ �푥 : �퐴⊥,Δ

Γ ⊢ �푡 ⊣ �푥 : �퐴,Δ

Γ, �푥 : �퐴⊥ ⊢ �푡 ⊣ Δ

and composition of strategies by

Γ ⊢ �푡 ⊣ Δ Δ ⊢ �푢 ⊣ H

Γ ⊢ ∃Δ. [ �푡 ‖ �푢 ] ⊣ H

which, in the picture of strategies as boxes, joins the output wires of one strategy to input wires
of the other. Simple parallel composition of strategies arises when Δ is empty.

5 FROM FUNCTIONS TO STRATEGIES

The language for strategies in [12] included a judgement

�푥 : �퐴 ⊢ �푔(~) ⊑�퐶 �푓 (�푥) ⊣ ~ : �퐵

for building strategies out of expressions �푓 (�푥) and �푔(~) denoting “affine functions.” It breaks down
into a composition

�푥 : �퐴 ⊢ ∃�푧 : �퐶. [ �푔(~) ⊑�퐶 �푧 ‖ �푧 ⊑�퐶 �푓 (�푥) ] ⊣ ~ : �퐵 .

Here we present a considerably broader class of affine-stable functions �푓 and “co-affine-stable”
functions �푔 with which to define strategies in this manner. It hinges on the Scott order to convert
functional dependency to causal dependency, in the sense captured by Theorem 5.2 below.

5.1 Affine-stable maps and their strategies

Definition 5.1. An affine-stable map between games from�퐴 to �퐵, is a function �푓 : C (�퐴) → C (�퐵)

which is
• polarity-respecting: for �푥,~ ∈ C (�퐴),

�푥 ⊆− ~ ⇒ �푓 (�푥) ⊆− �푓 (~) and �푥 ⊆+ ~ ⇒ �푓 (�푥) ⊆+ �푓 (~) ;

• +-continuous: for �푥 ∈ C (�퐴),

�푏 ∈ �푓 (�푥) & pol�퐵 (�푏) = + ⇒ ∃�푥0 ∈ C (�퐴)�표 . �푥0 ⊆ �푥 & �푏 ∈ �푓 (�푥0) ;

• −-image finite: for all finite configurations �푥 ∈ C (�퐴)�표 the set �푓 (�푥)− is finite;
• affine: for all compatible families {�푥�푖 | �푖 ∈ �퐼 } in C (�퐴),

⋃
�푖 ∈�퐼 �푓 (�푥�푖) ⊆

+ �푓 (
⋃

�푖 ∈�퐼�푥�푖 )

—when �퐼 is empty this amounts to ∅ ⊆+ �푓 (∅); and
• stable: for all compatible families {�푥�푖 | �푖 ∈ �퐼 } ≠ ∅ in C (�퐴),

�푓 (
⋂

�푖 ∈�퐼�푥�푖) ⊆
− ⋂

�푖 ∈�퐼 �푓 (�푥�푖) .

When all the moves of games�퐴 and �퐵 are those of Player, the definition reduces to that of stable
function. If all moves are those of Opponent, it becomes that of demand maps—see Section 6.2 [59].
Affine-stable maps include maps of event structures with polarity, including partial maps between
games, and the affine maps of [12]. They are the most general maps out of which we can construct
a corresponding strategy, in a way we now describe.
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Theorem 5.2. Let �푓 : C (�퐴) → C (�퐵) be an affine-stable map between games �퐴 and �퐵. Then

F ≔ {�푥 ‖~ ∈ C (�퐴⊥‖�퐵) | ~ ⊑�퐵 �푓 (�푥)}

is a stable family. The map top : Pr(F ) → A⊥‖B is a strategy �푓! : �퐴 + //�퐵. The strategy �푓! is

deterministic if �퐴 and �퐵 are race-free and �푓 reflects −-compatibility, i.e. �푥 ⊆− �푥1 and �푥 ⊆− �푥2 in

C (�퐴) and �푓 �푥1 ∪ �푓 �푥2 ∈ C (�퐵) implies �푥1 ∪ �푥2 ∈ C (�퐴).

The theorem above explains how to convert functional dependency, expressed as ~ ⊑�퐵 �푓 (�푥),
to causal dependency between moves Pr(F ), obtained as primes of the stable family F . The
expression of functional dependency as causal dependency is quite subtle; the direction of causal
dependency hinges critically on the polarities of events.
For �푓 an affine-stable map from �퐴 to �퐵 we can write �푓! as

�푥 : �퐴 ⊢ ~ ⊑�퐵 �푓 (�푥) ⊣ ~ : �퐵 .

Through suitable �푓 we can create strategies from structural maps, injections and projections as
strategies, for conditional and case statements and, generally, much of the causal wiring that is
often explained informally in diagrammatic reasoning. If �휎 is a strategy in�퐴 then �푓!⊙�휎 is its “push-
forward” to a strategy in �퐵. Some basic examples:

Example 5.3. (Projectors) Let �푓 : �퐴‖�퐵 → �퐵 be the function undefined on game �퐴 but acting as
identity on game �퐵. Let �휎 be a strategy in the game �퐴‖�퐵. The strategy �푓!⊙�휎 is its projection to a
strategy in �퐵. �

Example 5.4. (Duplicators) Let �퐴 be a game. Consider the function �푑�퐴 : �푥 ↦→ �푥 ‖�푥 from C (�퐴)

to C (�퐴‖�퐴). It is easily checked to be affine-stable. Hence there is a duplicator strategy �훿�퐴 = �푑�퐴! :

�퐴 + / /�퐴‖�퐴. (The strategy �훿�퐴 is not natural in �퐴 as ‖ is not a product, except in subcategories.) �

Example 5.5. (Detectors) Let�퐴 be a game. Let�푋 ∈ Con�퐴 with�푋 ⊆ �퐴+. Let⊞ be a single “detector”
event, of +ve polarity. Let

�푑�푋 : C (�퐴) → C (⊞)

be the function such that

�푑�푋 (�푥) =

{
⊞ if �푋 ⊆ �푥 ,

∅ otherwise.

The function �푑�푋 is affine-stable. There is a detector strategy

�푑�푋 ! : �퐴 + //⊞ .

The strategy simply adjoins extra causal dependencies �푎 _ ⊞ from �푎 ∈ �푋 . It detects the presence
of �푋 . In a similar way, one can extend detectors to detect the occurrence of one of a family 〈�푋�푖〉�푖 ∈�퐼
of �푋�푖 ∈ Con�퐴 provided �푋�푖 ∪ �푋 �푗 ∈ Con�퐴 =⇒ �푖 = �푗 for �푖, �푗 ∈ �퐼 . �

Example 5.6. (Blockers) Let �퐴 be a game and �푌 ⊆ �퐴−. Let

ℎ�푌 : C (�퐴) → C (⊟)

be the function which acts so

ℎ�푌 (�푥) =

{
⊟ if �푥 ∩ �푌 ≠ ∅ ,

∅ otherwise.

ℎ�푌 is a map of event structures so affine-stable. The blocker strategy ℎ�푌 ! adjoins causal dependen-
cies ⊟_ �푎 from ⊟ to each �푎 ∈ �푌 . The absence of move ⊟ blocks all moves �푌 . �

Theorem 5.7. The operation (_)! is a (pseudo) functor from the category of affine-stable maps to

concurrent strategies Strat.
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5.2 co-Affine-stability

We examine the dual, or co-notion, to affine-stability. An affine-stable map �푓 from�퐴⊥ to �퐵⊥ yields a
strategy �푓! : �퐴

⊥ + //�퐵⊥, so by duality a strategy �푓 ∗ : �퐵 + //�퐴. We obtain the dual to Theorems 5.2,5.7
as a corollary:

Corollary 5.8. Let �푔 : C (�퐴) → C (�퐵) be such that �푔 : C (�퐴⊥) → C (�퐵⊥) is affine-stable, then

G ≔ {~‖�푥 ∈ C (�퐵⊥‖�퐴) | �푔(�푥) ⊑�퐵 ~}

is a stable family. The map top : Pr(G ) → B⊥‖A is a strategy �푔∗ : �퐵 + //�퐴. The strategy �푔∗ is

deterministic if �퐴 is race-free and �푔 reflects +-compatibility. The operation (_)∗ is a contravariant

(pseudo) functor from the category of affine-stable maps to Strat.

For �푔 an affine-stable map from �퐴⊥ to �퐵⊥ we can write �푔∗ as

~ : �퐵 ⊢ �푔(~) ⊑�퐵 �푥 ⊣ �푥 : �퐴 .

For a strategy �휎 in game �퐵 the operation �푔∗⊙�휎 yields the strategy in �퐴 got as the pullback of �휎
along �푔. In particular, if�퐴 prefixed game �퐵 by some initial move, �푔∗⊙�휎 would be a prefix operation
on strategies.

5.3 An adjunction

An affine-stable map �푓 from �퐴 to �퐵 is not generally an affine-stable map from �퐴⊥ to �퐵⊥. The next
definition, of an additive-stable map �푓 from �퐴 to �퐵, bluntens affine-stability to ensure �푓 is also a
additive-stable map from �퐴⊥ to �퐵⊥; and hence is associated with both a strategy �푓! : �퐴 + //�퐵 and a
converse strategy �푓 ∗ : �퐵 + //�퐴. Together they form an adjunction.

Definition 5.9. A additive-stable map between event structures with polarity, from �퐴 to �퐵, is a
function �푓 : C (�퐴) → C (�퐵) which is
• polarity-respecting: for �푥,~ ∈ C (�퐴),

�푥 ⊆− ~ ⇒ �푓 (�푥) ⊆− �푓 (~) and �푥 ⊆+ ~ ⇒ �푓 (�푥) ⊆+ �푓 (~) ;

• image finite: if �푥 ∈ C (�퐴)�표 then �푓 (�푥) ∈ C (�퐵)�표 ;
• additive: for all compatible families {�푥�푖 | �푖 ∈ �퐼 } in C (�퐴),

⋃
�푖 ∈�퐼 �푓 (�푥�푖) = �푓 (

⋃
�푖 ∈�퐼�푥�푖 ) ;

• stable: for all compatible families {�푥�푖 | �푖 ∈ �퐼 } ≠ ∅ in C (�퐴),

�푓 (
⋂

�푖 ∈�퐼�푥�푖) =
⋂

�푖 ∈�퐼 �푓 (�푥�푖 ) .

The usual maps of games are additive-stable, including those which are partial, as are Girard’s
linear maps. Additive-stability is indifferent to a switch of polarities:

Proposition 5.10. An additive-stable map �푓 from �퐴 to �퐵 is an additive-stable map �푓 from �퐴⊥ to

�퐵⊥ and vice versa.

Given an additive-stable map �푓 from �퐴 to �퐵 we obtain a strategy �푓! : �퐴 + //�퐵 and, via �푓 from �퐴⊥

to �퐵⊥, �푓 ∗ : �퐵 + //�퐴.

Theorem 5.11. Let �푓 be an additive-stable map from�퐴 to �퐵 between event structures with polarity.

The strategies �푓! and �푓 ∗ form an adjunction �푓! ⊣ �푓 ∗ in the bicategory Strat.

This says Strat forms a pseudo double category [34, 48]. In Section 6.3.1 we apply Theorem 5.11
to relate deterministic strategies in general, to those of Geometry of Interaction. The adjunction
in Strat of Theorem 5.11 yields a traditional adjunction:
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Corollary 5.12. Let �푓 be an additive-stable map from game �퐴 to game �퐵. Let Strat�퐴 be the

category of strategies in the game�퐴, and Strat�퐵 that in �퐵. Then there are functors �푓!⊙(_) : Strat�퐴 →

Strat�퐵 and �푓 ∗⊙(_) : Strat�퐵 → Strat�퐴 with �푓!⊙(_) left adjoint to �푓 ∗⊙(_).

6 FROM STRATEGIES TO FUNCTIONS

We recover familiar notions of games from those based on event structures. A game is tree-like
when any two events are either inconsistent or causally dependent. When such a game is race-
free, at any finite configuration, the next possible moves, if there are any, belong purely to Player,
or purely to Opponent. Then, at each position where Player may move, a deterministic strategy
either chooses a unique move or to stay put. In contrast to many presentations of games, in a
concurrent strategy Player isn’t forced to make a move, though that can be encouraged through
suitable winning conditions. A counterstrategy, as a strategy in the dual game, picks moves for
Opponent at their configurations. The interaction �휏 ⊛ �휎 of a deterministic strategy �휎 with a de-
terministic counterstrategy �휏 determines a finite or infinite branch in the tree of configurations,
which in the presence of winning conditions will be a win for one of the players.

On tree-like games we recover familiar notions. More surprising is that by exploiting the richer
structure of concurrent games we can recover other familiar paradigms, not traditionally tied to
games, or if so only somewhat informally. We start by rediscovering Berry’s stable domain the-
ory, of which Jean-Yves Girard’s qualitative domains and coherence spaces are special cases. The
other examples, from dataflow, logic and functional programming, concern ways of handling in-
teraction within a functional approach. We shall restrict to race-free games, so guaranteeing that
deterministic strategies have an identity w.r.t. composition, given by copycat.

6.1 Stable functions

Consider games in which all moves are Player moves. Consider a strategy �휎 from one such purely
Player game �퐴 to another �퐵. This is a map �휎 : �푆 → �퐴⊥‖�퐵 which is receptive and innocent. Notice
that in �퐴⊥‖�퐵 all the Opponent moves are in �퐴⊥ and all the Player moves are in �퐵. By receptivity
any configuration of�퐴 can be input. The only new immediate causal connections, beyond those in
�퐴⊥ and �퐵, that can be introduced in a strategy are those from Opponent moves of �퐴⊥ to a Player
move in �퐵. Beyond the causal dependencies of the games, a strategy �휎 can only make a Player
move in �퐵 causally depend on a finite subset of moves in �퐴⊥.
When �휎 is deterministic, all conflicts are inherited from conflicts between Opponent moves.

Then the strategy �휎 gives rise to a stable function from the configurations of �퐴 to the configu-
rations of �퐵. Conversely, such a stable function �푓 yields a deterministic strategy �푓! : �퐴 + //�퐵, by
Theorem 5.2.

Theorem 6.1. The category dI of dI-domains and stable functions, enriched by the stable order, is

equivalent to the bicategory of deterministic strategies between purely Player games with rigid 2-cells.

(The bicategory of deterministic strategies between purely Player games with all 2-cells is equivalent
to the category of dI-domains enriched by the Scott—or pointwise—order.)

The category of dI-domains and stable functions is well-known to be cartesian-closed; its func-
tion space and product are realised by constructions [�퐴 → �퐵] and�퐴‖�퐵 on event structures. When
the games are further restricted to have trivial causal dependency we recover Girard’s qualitative
domains and, with conflict determined in a binary fashion, his coherence spaces. Girard’s models
for polymorphism there generalise to dI-domains, with dependent types Π�푥 :�퐴�퐵(�푥) and Σ�푥 :�퐴�퐵(�푥)

on event structures [19, 20, 57]—see Appendices A.1, A.2.
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6.2 Stable spans

When between games in which all the moves are Player moves, a general, nondeterministic, strat-
egy corresponds to a stable span, a form of many-valued stable functionwhich has been discovered,
and rediscovered, in giving semantics to higher-order processes and especially nondeterministic
dataflow [44, 55, 59]; the trace of strategies, derived from their compact closure, specialises to the
feedback operation of dataflow. Recall a stable span comprises

�퐸

dem

����
��
��
�� out

��❄
❄❄

❄❄
❄❄

❄

�퐴 �퐵 ,

with event structure �퐸 relating input given by an event structure�퐴 and output by an event structure
�퐵. The map out : �퐸 → �퐵 is a rigidmap. The map dem : �퐸 → �퐴, associated to input, is of a different
character. It is a demandmap, i.e., a function fromC (�퐸) toC (�퐴) which preserves unions and finite
configurations; dem (�푥) is the minimum input for �푥 to occur and is the union of the demands of
its events. The occurrence of an event �푒 in �퐸 demands minimum input dem ( [�푒]) and is observed
as the output event out (�푒). Spans from �퐴 to �퐵 are related by the usual 2-cells, here (necessarily)
rigid maps �푟 making the diagram below commute:

�퐸 ′

dem′

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

�푟

��

out ′

��❄
❄❄

❄❄
❄❄

❄

�퐴 �퐸
dem

oo
out

// �퐵

Stable spans compose via the usual pullback construction of spans, as both demand and out-
put maps extend to functions between configurations. A stable span �퐸 corresponds to a (special)
profunctor

�퐸 (�푥,~) = {�푤 ∈ C (�퐸)�표 | dem (�푤) ⊆ �푥 & out �푤 = ~} ,

between the partial-order categories C (�퐴)�표 and C (�퐵)�표 —a correspondence that respects compo-
sition. Recalling the view of profunctors as Kleisli maps w.r.t. the presheaf construction [24], we
borrow from Moggi [42] and describe the composition of stable spans �퐹 : �퐴 + //�퐵, �퐺 : �퐵 + //�퐶 as

�퐺⊙�퐹 (�푥) = let ~ ⇐ �퐹 (�푥) in �퐺 (~)

—which, via the correspondence with profunctors, stands for the coend
∫ ~∈C (�퐵)>

�퐹 (�푥,~) ×�퐺 (~, _).
In using let-notation we can take account of the shape of the configuration ~ in the definition of
�퐺 , in effect an informal pattern matching.

Stable spans are monoidal closed [44, 45]: w.r.t. an event structure �퐴, the functor (_‖�퐴) has a
right adjoint, the function space [�퐴 ⊸ _]. The construction [�퐴 ⊸ �퐵] is recalled in Appendix B
along with a more general dependent product Π�푠

�푥 :�퐴�퐵(�푥) for stable spans: the type of stable spans
which on input �푥 : �퐴 yield output ~ : �퐵(�푥) nondeterministically. Stable spans are trace monoidal
closed; their trace is described in [55].
Let �퐴 and �퐵 be purely Player games. A strategy �휎 : �푆 → �퐴⊥‖�퐵 gives rise to a stable span

�퐴 �퐸
demoo out // �퐵 ,

where �퐸 = �푆+, and out gives the image of its events in �퐵 and dem those events in �퐴 on which they
casually depend. Conversely given a stable span, as above, we obtain a strategy as the composition
out !⊙dem

∗, by the results of Section 5; as regarding �퐸 and�퐴 as purely Player games, both out and
dem : C (�퐸⊥) → C (�퐴⊥) are affine-stable. In the strategy out !⊙dem

∗ : �푆 → �퐴⊥‖�퐵 so obtained,

13
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�푆 comprises the disjoint union of �퐴 and �퐸 with the additional causal dependencies of �푒 ∈ �퐸 on
�푎 ∈ �퐴⊥ prescribed by dem .

Theorem 6.2. The bicategory Stab of stable spans is equivalent to the bicategory of strategies

between purely Player games with rigid 2-cells.

We show that in a similar way, we obtain geometry of interaction, dialectica categories, con-
tainers, lenses, open games and learners, optics and dependent optics by moving to slightly more
complicated subcategories of games, sometimes with winning conditions and imperfect informa-
tion.

6.3 Geometry of Interaction

Let’s now consider slightly more complex games. A GoI game comprises a parallel composition
�퐴 := �퐴1‖�퐴2 of a purely Player game �퐴1 with a purely Opponent game �퐴2. Consider a strategy �휎

from a GoI game �퐴 := �퐴1‖�퐴2 to a GoI game �퐵 := �퐵1‖�퐵2. Rearranging the parallel compositions,

�퐴⊥‖�퐵 = �퐴⊥
1
‖�퐴⊥

2
‖�퐵1‖�퐵2 � (�퐴1‖�퐵

⊥
2
)⊥‖(�퐴⊥

2
‖�퐵1) .

So �휎 , as a strategy in �퐴⊥‖�퐵, corresponds to a strategy from the purely Player game �퐴1‖�퐵
⊥
2
to the

purely Player game�퐴⊥
2
‖�퐵1. We are back to the simple situation considered in the previous section,

of strategies between purely Player games.
Strategies between GoI games, from �퐴 to �퐵, correspond to stable spans from �퐴1‖�퐵

⊥
2
to �퐴⊥

2
‖�퐵1.

The maps are familiar from models of geometry of interaction built as free compact-closed cate-
gories from traced monoidal categories [3, 6], though here lifted to the bicategory Stab of stable
spans.

Theorem 6.3. The bicategory of strategies on GoI games with rigid 2-cells is equivalent to the free

compact-closed bicategory built on the trace monoidal bicategory Stab.

When deterministic, strategies from GoI game �퐴 to GoI game �퐵 correspond to a stable function
from C (�퐴1‖�퐵

⊥
2
) to C (�퐴⊥

2
‖�퐵1). Note that a configuration of a parallel composition of games splits

into a pair of configurations:

C (�퐴1‖�퐵
⊥
2 ) � C (�퐴1) × C (�퐵2), C (�퐴⊥

2 ‖�퐵1) � C (�퐴2) × C (�퐵1).

Thus deterministic strategies from �퐴 to �퐵 correspond to stable functions

�푆 = 〈�푔, �푓 〉 : C (�퐴1) × C (�퐵2) → C (�퐴2) × C (�퐵1) ,

associated with a pair of stable functions �푔 : C (�퐴1) ×C (�퐵2) → C (�퐴2) and �푓 : C (�퐴1) × C (�퐵2) →

C (�퐵1), summarised diagrammatically by:

�퐴1

��
�푆

;; �퐵1�푓

�퐴2 �퐵2

AA

{{
�푔

Such maps are obtained by Abramsky and Jagadeesan’s GoI construction, here starting from stable

domain theory [4].
The composition of deterministic strategies between GoI games, �휎 from �퐴 to �퐵 and �휏 from �퐵 to

�퐶 coincides with the composition of GoI given by “tracing out” �퐵1 and �퐵2. Precisely, supposing �휎
corresponds to the stable function

�푆 : C (�퐴1) × C (�퐵2) → C (�퐴2) × C (�퐵1)

14



Making Concurrency Functional

and �휏 to the stable function

�푇 : C (�퐵1) × C (�퐶2) → C (�퐵2) × C (�퐶1) ,

we see a loop in the functional dependency at �퐵:

�퐴1

��
�푆

;; �퐵1

��
�푇

;;�퐶1

�퐴2 �퐵2

AA

{{
�퐶2

AA

{{

Accordingly, the composition �휏⊙�휎 corresponds to the stable function taking (�푥1, �푧2) ∈ C (�퐴1) ×

C (�퐶2) to (�푥2, �푧1) ∈ C (�퐴2) × C (�퐶1) in the least solution to the equations

(�푥2, ~1) = �푆 (�푥1, ~2) and (~2, �푧1) = �푇 (~1, �푧2)

—given, as in Kahn networks, by taking a least fixed point.

Theorem 6.4. The bicategory of deterministic strategies on GoI games with rigid 2-cells is equiva-

lent to the free compact-closed category Int(dI) of [6] and the Geometry of Interaction category G (dI)
of [3] built on the category dI of dI-domains and stable functions.

Geometry of Interaction started as an investigation of the nature of proofs of linear logic, under-
stood as networks [28]. It has subsequently been tied to optimal reduction in the �휆-calculus [29],
and inspired implementations via tokenmachines on networks [39, 43]; when the two components
of a GoI game match events of exit and entry of a token at a link.
It is straightforward to extend GoI games with winning conditions. A winning condition on a

GoI game �퐴 = �퐴1‖�퐴2 picks out a subset of the configurations C (�퐴), so amounts to specifying a
property�푊�퐴 (�푥1, �푥2) of pairs (�푥1, �푥2) in C (�퐴1) × C (�퐴2). That a deterministic strategy from GoI
game �퐴 to GoI game �퐵 = �퐵1‖�퐵2 is winning means

�푊�퐴 (�푥,�푔(�푥,~)) =⇒ �푊�퐵 (�푓 (�푥,~),~) ,

for all �푥 ∈ C (�퐴1),~ ∈ C (�퐵2), when expressed in terms of the pair of stable functions the strategy
determines. In particular, a deterministic winning strategy in the individual GoI game �퐵, with
winning conditions�푊�퐵 , corresponds to a stable function �푓 : C (�퐵2) → C (�퐵1) such that ∀~ ∈

C (�퐵2). �푊�퐵 (�푓 (~), ~).
With stable spans, unlike with dI-domains with stable functions, the operation of parallel com-

position ‖ is no longer a product; stable spans are monoidal-closed and not a cartesian-closed.
While general, not just deterministic, strategies �휎 : �퐴 + //�퐵 between GoI games are expressible as
stable spans �퐴1‖�퐵

⊥
2

+ //�퐴⊥
2
‖�퐵1, their expression doesn’t project to an equivalent pair of separate

components as with lenses.

6.3.1 The GoI adjunctions. For any game �퐴 there is a map of event structures with polarity

�푓�퐴 : �퐴 → �퐴+‖�퐴− ,

where �퐴+ is the projection of �퐴 to its +ve events and �퐴− is the projection to its −ve events: the
map �푓�퐴 acts as the identity function on events; it sends a configurations �푥 ∈ C (�퐴) to �푓�퐴�푥 = �푥+‖�푥−.
It determines an adjunction �푓! ⊣ �푓 ∗ from �퐴 to �퐴+‖�퐴−. Because the game �퐴 is race-free, both �푓�퐴!

and �푓�퐴
∗ are deterministic strategies. This provides a lax functor from deterministic strategies in

general, to those between GoI games. Let �휎 : �퐴 + //�퐵 be a deterministic strategy between games�퐴
and �퐵. Defining goi (�휎) = �푓�퐵 !

⊙ �휎 ⊙�푓�퐴
∗ we obtain a deterministic strategy

goi (�휎) : �퐴+‖�퐴− + //�퐵+‖�퐵− .
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Then, the strategy goi (�휎) corresponds to a stable function from �퐴+‖�퐵− to �퐴−‖�퐵+, so to a GoI map.
The operation goi only forms a lax functor however: for �휎 : �퐴 + //�퐵 and �휏 : �퐵 + //�퐶 , there is, in
general, a nontrivial 2-cell goi (�휏⊙�휎) ⇒ goi (�휏)⊙goi (�휎). This puts pay to goi being right adjoint
to the inclusion functor in a pseudo adjunction from the category of GoI games to deterministic
strategies. But, there is a lax pseudo adjunction, of potential use in abstract interpretation.

6.4 Dialectica games

Dialectica categories were devised in the late 1980’s by Valeria de Paiva in her Cambridge PhD
work with Martin Hyland [21]. The motivation then was to provide a model of linear logic under-
lying Kurt Gödel’s dialectica interpretation of first-order logic [7]. They have come to prominence
again recently because of a renewed interest in their maps in a variety of contexts, in formalisa-
tions of reverse differentiation and back propagation, open games and learners, and as an early
occurrence of maps as lenses. The dialectica interpretation underpins most proof-mining tech-
niques [23, 37].
We obtain a particular dialectica category, based on Berry’s stable functions, as a full subcate-

gory of deterministic strategies on dialectica games. Dialectica games are obtained as GoI games
of imperfect information, intuitively by not allowing Player to see the moves of Opponent.
A dialectica game is a GoI game �퐴 = �퐴1‖�퐴2 with winning conditions, and with imperfect in-

formation given as follows. The imperfect information is determined by particularly simple order
of access levels: 1 ≺ 2. All Player moves, those in �퐴1, are assigned to 1 and all Opponent moves,
those in �퐴2, are assigned to 2. It is helpful to think of the access levels 1 and 2 as representing
two rooms separated by a one-way mirror allowing anyone in room 2 to see through to room 1.
In a dialectica game, Player is in room 1 and Opponent in room 2. Whereas Opponent can see
the moves of Player, and in a counterstrategy make their moves dependent on those of Player, the
moves of Player are made blindly, in that they cannot depend on Opponent’s moves.
Although we are mainly interested in strategies between dialectica games it is worth pausing

to think about strategies in a single dialectica game �퐴 = �퐴1‖�퐴2 with winning conditions �푊�퐴.
Because Player moves cannot causally depend on Opponent moves, a deterministic strategy in �퐴

corresponds to a configuration �푥 ∈ C (�퐴1); that it is winning means ∀~ ∈ C (�퐴2). �푊�퐴 (�푥,~). So to
have a winning strategy for the dialectica game means

∃�푥 ∈ C (�퐴1)∀~ ∈ C (�퐴2). �푊�퐴 (�푥,~) .

Consider now a deterministic winning strategy �휎 from a dialectica game �퐴 = �퐴1‖�퐴2 with win-
ning conditions�푊�퐴 to another �퐵 = �퐵1‖�퐵2 with winning conditions�푊�퐵 . Ignoring access levels, �휎
is also a deterministic strategy between GoI games, so corresponds to a pair of stable functions

�푓 : C (�퐴1) × C (�퐵2) → C (�퐵1) and �푔 : C (�퐴1) × C (�퐵2) → C (�퐴2) .

But moves in �퐵2 have access level 2, moves of �퐵1 access level 1; a causal dependency in the strategy
�휎 of a move in �퐵1 on a move in �퐵2 would violate the access order 1 ≺ 2. That no move in �퐵1 can
causally depend on a move in �퐵2 is reflected in the functional independence of �푓 on its second
argument. As a deterministic strategy between dialectica categories, �휎 corresponds to a pair of
stable functions

�푓 : C (�퐴1) → C (�퐵1) and �푔 : C (�퐴1) × C (�퐵2) → C (�퐴2) ,

which we can picture as:

�퐴1

�푔

�푓 // �퐵1

�퐴2 �퐵2
rr
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That �휎 is winning means, for all �푥 ∈ C (�퐴1),~ ∈ C (�퐵2),

�푊�퐴 (�푥,�푔(�푥,~)) =⇒ �푊�퐵 (�푓 (�푥),~) .

Pairs of functions �푓 , �푔 satisfying this winning condition are precisely the maps of de Paiva’s con-
struction of a dialectica category from Berry’s stable functions.
Such pairs of functions are the lenses of functional programming where they were invented

to make composable local changes on data-structures [26, 46]. We recover their at-first puzzling
composition from the composition of strategies. Let �휎 be a deterministic strategy from dialectica
game �퐴 to dialectica game �퐵; and �휏 a deterministic strategy from �퐵 to another dialectica game
�퐶 . Assume �휎 corresponds to a pair of stable functions �푓 and �푔, as above, and analogously that �휏
corresponds to stable functions �푓 ′ and �푔′. Then, the composition of strategies �휏⊙�휎 corresponds to
the composition of lenses: with first component �푓 ′ ◦ �푓 and second component taking �푥 ∈ C (�퐴1)

and ~ ∈ C (�퐶2) to �푔(�푥,�푔
′(�푓 (�푥),~)).

Theorem 6.5. The bicategory of deterministic strategies on dialectica games with rigid 2-cells is

equivalent to the dialectica category of [21] built on dI-domains and stable functions.

Girard’s variant. In the first half of de Paiva’s thesis she concentrates on the construction of dialec-
tica categories. In the second half, she follows up on a suggestion of Girard to explore a variant.
This too is easily understood in the context of concurrent games: imitate the work of this sec-
tion, with GoI games extended with imperfect information, but now with access levels modified
to the discrete order on 1, 2. Then the causal dependencies of strategies are further reduced and
deterministic strategies from �퐴 = �퐴1‖�퐴2 to �퐵 = �퐵1‖�퐵2 correspond to pairs of stable functions

�푓 : C (�퐴1) → C (�퐵1) and �푔 : C (�퐵2) → C (�퐴2) .

Combs. Discussions of causality in science, and quantum information in particular, are often con-
cernedwith what causal dependencies are feasible; then structures similar to orders of access levels
are used to capture one-way signalling, as in dialectica games, and non-signalling, as in Girard’s
variant. In this vein, through another variation of gameswith imperfect information, we obtain the
generalisation of lenses to combs, used in quantum architecture and information [14, 36]. Combs
provide a common method for imposing higher-order structure on quantum circuits or string dia-
grams.
Combs arise as strategies between comb games which, at least formally, are an obvious gener-

alisation of dialectica games; their name comes from their graphical representation as structures
that look like (hair) combs, with teeth representing successive transformations from input to out-
put. An �푛-comb game, for a natural number �푛, is an �푛-fold parallel composition �퐴1‖�퐴2‖ · · · ‖�퐴�푛

of purely Player or purely Opponent games �퐴�푖 of alternating polarity; it is a game of imperfect
information associated with access levels 1 ≺ 2 ≺ · · · ≺ �푛 with moves of component �퐴�푖 having
access level �푖 . Dialectica games are 2-comb games with winning conditions.

Open games and learners. Open games and learners [25, 27] have recently been presented as param-

eterised lenses or optics, in the case of open games with some concept of equilibrium or winning
condition [10]. As an example, we obtain a form of open game between dialectica games�퐴 and �퐵 as
a strategy�퐴‖�푃 + //�퐵, where �푃 is a dialectica game of which the configurations specify strategy pro-
files. A variation based on optimal strategies between dialectica games with payoff, following [17],
introduces Nash equilibria and takes us into game-theory territory, and to a testing ground for
open games and the notions being developed there.
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6.5 Optics

Now we show that general, possibly nondeterministic, strategies between dialectica games are
precisely optics [50, 54] based on stable spans [44, 55, 59]. Recall that a dialectica game comprises
�퐴1‖�퐴2 where�퐴1 is a purely Player game, all events of which have access level 1 and�퐴2 is a purely
Opponent game with all events of access level 2, w.r.t. access order Λ specifying 1 ≺ 2. We ignore
winning conditions.

Let �퐴 and �퐵 be dialectica games. Let �푄 be a purely Player Λ-game. Recall that nondeterministic
strategies between purely Player games correspond to stable spans. Consider strategies

�퐹 : �퐴1 + //�퐵1‖�푄 and�퐺 : �푄 ‖�퐵⊥
2

+ //�퐴⊥
2 .

Then the strategies �퐹 and �퐺 are between purely Player games, so correspond to stable spans—
Appendix B. As any causal dependencies of �퐹 or �퐺 respect Λ, they are Λ-strategies.

Hence the composition

�퐴1‖�퐵
⊥
2

+
�퐹 ‖�퐵⊥

2 // �퐵1‖�푄 ‖�퐵⊥
2

+
�퐵1 ‖�퐺 // �퐵1‖�퐴

⊥
2

is also a Λ-strategy and, being between purely Player games, corresponds to a stable span. The
composition, rearranges to a strategy

�휎 : �퐴1‖�퐴2 + //�퐵1‖�퐵2 ,

which is a Λ-strategy, so to a strategy between the original dialectica games �퐴 and �퐵. We call this
strategy optic(�퐹,�퐺) and call (�퐹,�퐺) its presentation from �퐴 to �퐵 with residual �푄 . The terminol-
ogy is apt, as we’ll show strategies obtained in this way coincide with optics as usually defined.
Presentations can be represented diagrammatically:

�퐴1

�퐹 //
��

�퐵1

�푄

�퐴2 �퐵2 ,
�퐺

oo

illustrating how �퐹 and �퐺 are “coupled” via the residual �푄 .
As usually defined, an optic is an equivalence class of presentations. Let (�퐹,�퐺) and (�퐹 ′,�퐺 ′) be

presentations from �퐴 to �퐵 with residuals �푄 and �푄 ′ respectively. The equivalence relation ∼ on
presentations is that generated by taking (�퐹,�퐺) ∼ (�퐹 ′,�퐺 ′) if, for some �푓 : �푄 + //�푄 ′, the following
triangles commute

�퐴1 +
�퐹 ′

//

×
❉❉

❉❉

�퐹 ""❉
❉❉

❉

�퐵1‖�푄
′ �푄 ′‖�퐵2 +

�퐺′
// �퐵1

�퐵1‖�푄

+�퐵1 ‖�푓

OO

�푄 ‖�퐵2 .

+�푓 ‖�퐵2

OO

×②②②②
�퐺

<<②②②②

(∼ def)

Presentations of optics compose. Let�퐴, �퐵 and�퐶 be dialectica games. Given a presentation (�퐹,�퐺)
from �퐴 to �퐵 with residual �푄 and another (�퐹 ′,�퐺 ′) from �퐵 to �퐶 with residual �푃 we obtain a presen-
tation from �퐴 to �퐶 with residual �푃 ‖�푄 guided by the diagram

�퐴1

�퐹 //
��

�퐵1
�퐹 ′

//
��

�퐶1

�푄 �푃

�퐴2 �퐵2
�퐺

oo �퐶2 ,
�퐺′

oo

precisely, as ((�퐹 ′‖�푄)⊙�퐹, �퐺⊙(�푄 ‖�퐺 ′)⊙(�푠�푃�푄 ‖�퐶2)), where �푠�푃�푄 expresses the symmetry �푃 ‖�푄 � �푄 ‖�푃 .
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Composition preserves ∼ and has the evident identity presentation, with residual the empty
game. It follows that optic is functorial and that if (�퐹,�퐺) ∼ (�퐹 ′,�퐺 ′) then

optic(�퐹,�퐺) � optic(�퐹 ′,�퐺 ′) .

To show any strategy between container games is an optic, we exploit the monoidal-closure
of stable spans—see Appendix B. A presentation (�퐹,�퐺) is ∼-equivalent to a canonical presentation
(�퐹 ′,�퐺 ′) with residual �푄 ′

= [�퐵⊥
2
⊸ �퐴⊥

2
] and �퐺 ′ as application apply: in (∼def), take �푓 = curry�퐺

and �퐹 ′
= (�퐵1‖ �푓 )⊙�퐹 .

Now, strategies �휎 : �퐴 + //�퐵, between dialectica games �퐴 and �퐵, correspond to canonical presen-
tations. To see this, ignoring the access levels for the moment, a general strategy

�휎 : �퐴1‖�퐴2 + //�퐵1‖�퐵2

corresponds to a strategy between purely Player games

�휎1 : �퐴1‖�퐵
⊥
2

+ //�퐵1‖�퐴
⊥
2
,

so to a stable span. From the monoidal-closure of stable spans we can curry �휎1, to obtain a corre-
sponding strategy

�휎2 : �퐴1 + // [�퐵⊥
2
⊸ (�퐵1‖�퐴

⊥
2
)]

with the property

�휎1 � apply�퐵1 ‖�퐴
⊥
2
⊙(�휎2‖�퐵

⊥
2
) .

Recalling the access levels, no event of �퐵1 can causally depend on an event of �퐵2, ensuring that �휎2
corresponds to

�휎+ : �퐴1 + //�퐵1‖[�퐵
⊥
2
⊸ �퐴⊥

2
]

where

�휎1 � apply�퐵1 ‖�퐴
⊥
2
⊙(�휎2‖�퐵

⊥
2
) � (�퐵1‖apply�퐴⊥

2
)⊙(�휎+‖�퐵⊥

2
) .

It follows that (�휎+, apply�퐴⊥
2
) is a canonical presentation for which

�휎 � optic(�휎+, apply�퐴⊥
2
) ,

giving a correspondence between strategies �휎 : �퐴 + //�퐵 between dialectica games and canonical
presentations (�휎+, apply�퐴⊥

2
).

Via canonical presentations we obtain a bicategory of optics. Its objects are dialectica games. Its
maps are stable spans �퐴1 + //�퐵1‖ [�퐵

⊥
2
⊸ �퐴⊥

2
] , with the associated 2-cells, from dialectica game �퐴

to dialectica game �퐵.

Theorem 6.6. The bicategories of strategies on dialectica games with rigid 2-cells and that of optics

built on stable spans are equivalent.

6.6 Containers

A container game is a game of imperfect information �퐴 w.r.t. access levels 1 ≺ 2; each Player move
of �퐴 is sent to 1 and each Opponent move to 2. So in �퐴 the only causal dependencies between
moves of different polarity are ⊞ ≤ ⊟.
The configurations of a container game�퐴 have a dependent-type structure. Opponentmoves can

causally depend on Player moves, but not conversely. Let �퐴1 denote the subgame comprising the
initial substructure of purely Player moves of�퐴. A configuration �푥 ∈ C (�퐴1) determines a subgame
�퐴2(�푥) comprising the substructure of�퐴 based on all those Opponentmoves forwhich all the Player
moves on which they depend appear in �푥 . A configuration of�퐴 breaks down uniquely into a union
�푥 ∪ ~, so a pair (�푥,~), where �푥 ∈ C (�퐴1) and ~ ∈ C (�퐴2 (�푥)). We can see the configurations
of a container game �퐴 as forming a dependent sum Σ�푥 :�퐴1

�퐴2(�푥). In this way a container game
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represents a container type, familiar from functional programming [2]; configurations �푥 of �퐴1 are
its “shapes,” indexing “positions” ~ ∈ �퐴2 (�푥).

2

We can of course extend a container game �퐴 with winning conditions which we identify with a
property�푊�퐴 of the dependent sum Σ�푥 :�퐴1

�퐴2(�푥). A deterministic winning strategy in the container
game corresponds to a configuration �푥 ∈ C (�퐴1) such that ∀~ ∈ C (�퐴2 (�푥)). �푊�퐴 (�푥,~).
Strategies between container games respect � on access levels. A deterministic strategy �휎 from

a container game �퐴 to a container game �퐵 corresponds to a map of container types, also called a
dependent lens, having type

Σ�푓 :[�퐴1→�퐵1 ]Π�푥 :�퐴1
[�퐵2 (�푓 (�푥)) → �퐴2(�푥)] ; (∗)

so �휎 corresponds to a pair of stable functions

�푓 : [�퐴1 → �퐵1] and �푔 : Π�푥 :�퐴1
[�퐵2 (�푓 (�푥)) → �퐴2(�푥)] ,

where we are using the function space, dependent sum and product of stable functions—see Ap-
pendix A.2. With winning conditions�푊�퐴 and�푊�퐵 , the strategy from �퐴 to �퐵 would be winning iff,
for all �푥 ∈ C (�퐴1), ~ ∈ C (�퐵2(�푓 (�푥))),

�푊�퐴 (�푥,�푔�푥 (~)) =⇒ �푊�퐵 (�푓 (�푥),~) .

The correspondence respects composition. Container types built on dI-domains and stable func-
tions arise as a full subcategory of deterministic concurrent games.

Theorem 6.7. The bicategory of deterministic strategies on container games with rigid 2-cells is

equivalent to a full subcategory of containers of dI-domains and stable functions [2].

6.7 Dependent optics

What about general, nondeterministic, strategies between container games? A way to motivate
their characterisation is to observe the isomorphism of the type of a dependent lens (∗) above
with

Π�푥 :�퐴1
Σ~:�퐵1

[�퐵2 (~) → �퐴2(�푥)] .

It is this nonstandard way to present the type of lenses that generalises to the monoidal-closed bi-
category of stable spans, oncewemove to the dependent productΠ�푠 of stable spans—Appendix A.2.
Ignoring winning conditions, a general strategy between container games corresponds to a new

form of optic. A dependent optic between container games, from �퐴 to �퐵, is a stable span of type

dOp[�퐴, �퐵] = Π
�푠
�푥 :�퐴1

Σ~:�퐵1
[�퐵2 (~) ⊸ �퐴2(�푥)] ,

so a rigid map into dOp[�퐴, �퐵]. A 2-cell �푓 : �퐹 ⇒ �퐹 ′ between dependent optics �퐹, �퐹 ′ : dOp[�퐴, �퐵] is
a 2-cell of stable spans. Composition of dependent optics is the stable span

◦ : dOp[�퐵,�퐶] ‖ dOp[�퐴, �퐵] + //dOp[�퐴,�퐶]

described by
�퐺◦�퐹 ≔ �휆�푥 : �퐴1 . let (~, �퐹

′) ⇐ �퐹 (�푥) in

let (�푧,�퐺 ′) ⇐ �퐺 (~) in (�푧, �퐹 ′⊙�퐺 ′) ,

where �퐹 ′⊙�퐺 ′ : [�퐶2(�푧) ⊸ �퐴2 (�푥)] is the composition of stable spans �퐺 ′ : [�퐶2(�푧) ⊸ �퐵2 (~)] and
�퐹 ′ : [�퐵2(~) ⊸ �퐴2 (�푥)]. The identity optic of container game�퐴 acts on �푥 : �퐴1 to return the identity
at the �푥-component of Σ�푥 :�퐴1

[�퐴2 (�푥) ⊸ �퐴2 (�푥)].
The equivalence of strategies between container games with dependent optics, hinges on recast-

ing dOp[�퐴, �퐵] as a strategy do[�퐴, �퐵] : �퐴 + //�퐵 between container games �퐴 and �퐵. Any strategy

2We won’t treat symmetry in concurrent games at all here, but it is important in many applications. With the addition of

symmetry, configurations form a nontrivial category, not merely a partial order based on inclusion [11].
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between container games is of course a strategy where we forget the access levels. We can express
that a strategy �휎 : �퐴 + //�퐵 respects the access levels, so is truly a strategy between container games,
precisely through the presence of a rigid 2-cell

�퐴

+
�휎

&&

+
do[�퐴,�퐵 ]

88⇓ �푟 �퐵 .

The 2-cell �푟 is unique, making the strategy do[�퐴, �퐵] terminal amongst strategies �휎 between con-
tainer games, from �퐴 to �퐵. By restricting �푟 to Player moves we obtain the dependent optic �휎+ :

dOp[�퐴, �퐵] which corresponds to �휎 .

Theorem 6.8. The bicategory of strategies between container games, with rigid 2-cells, is equiva-

lent to the bicategory of dependent optics.

Proof. (Sketch)
The proof relies on position functions of strategies [64]—see §4.5.1 of op. cit.. The position func-

tion�푑 of a strategy �휎 : �푆 → �퐴⊥‖�퐵 is given by�푑 (�푥) = �휎 [�푥]�푆 for �푥 ∈C (�푆+)�표 ; the event structure �푆+ is
the projection of �푆 to its Player moves. A position function�푑 is characterised as a union-preserving
function �푑 : C (�푆+)�표 → C (�퐴)�표 which restricts to a map �푓 : �푆+ → �퐴+ of event structures that on
�푠 ∈ �푆+ gives the unique event of Player amongst the ≤�퐴-maximal events in �푑 ( [�푠]�푆 ).

We describe the strategy do[�퐴, �퐵] associated with dOp[�퐴, �퐵] via its position function.
Recall that dOp[�퐴, �퐵] is built using Pr out of primes of the stable family

Π
�푠
�푥 ∈C (�퐴1)

Σ~∈C (�퐵1) [C (�퐵2 (~)) ⊸ C (�퐴2 (�푥))] ,

whose events take the form (�푥,�푏) or (�푥, (~, �푎)) where �푥 ∈ C (�퐴1)
�표 , ~ ∈ C (�퐵2)

�표 , �푏 ∈ �퐵1 and �푎 ∈ �퐴2.
The position function �푑�표 takes a prime with top element (�푥,�푏) to �푥 ‖[�푏]�퐵 and one with top element
(�푥, (~, �푎)) to �푥 ‖(~ ∪ [�푎]�퐴).
Showing do[�퐴, �퐵] is terminal amongst strategies �휎 : �푆 → �퐴⊥‖�퐵 between container games, rests

on there being a unique rigid map �휎+ such that

�푆+

�푑 &&▲▲
▲▲

▲▲
▲

�휎+
// dOp[�퐴, �퐵]

�푑>��
�퐴⊥‖�퐵

commutes, where �푑 : �푆+ → �퐴⊥‖�퐵 is the position function of �휎 . The map �휎+
= Pr(�휎0), where �휎0 is

the map of stable families

�휎0 : C (�푆+) → Π�푥 ∈C (�퐴1)Σ~∈C (�퐵1) [C (�퐵2(~)) ⊸ C (�퐴2(�푥))] ,

defined as follows. For notational simplicity, assume�퐴 and �퐵 have disjoint sets of events so we can
regard the events of �퐴‖�퐵 as �퐴 ∪ �퐵. Let �푠 ∈ �푆+. Either �휎 (�푠) ∈ �퐵1 or �휎 (�푠) ∈ �퐴2. Accordingly, define

�휎0(�푠) =





(�푥,�푏) if �휎 (�푠) = �푏 ∈ �퐵1 & �푥 = �휎 [�푠]−
�푆
;

(�푥, (~, �푎)) if �휎 (�푠) = �푎 ∈ �퐴2 & �푥 = �휎 [�푠]−�푆 ∩ �퐴1

& ~ = �휎 [�푠]−�푆 ∩ �퐵2 .

The fact that do[�퐵,�퐶]⊙do[�퐴, �퐵] � do[�퐴,�퐶] is key in showing the correspondence of �휎 with �휎+

respects composition. �

The results on optics for container games specialise to those for dialectica games.

21



Winskel

7 ENRICHMENT

Games and strategies support enrichments, to: probabilistic strategies, also with continuous dis-
tributions [49, 62]; quantum strategies [15]; and strategies on the reals [5]. The enrichments spe-
cialise to the cases above. Work on enriched concurrent strategies transfers to situations of interest
in functional programming, domain theory and geometry of interaction. In explaining how, we can
take advantage of a general method for enriching strategies.
The enrichments named above were developed individually and are not always the final story.

For instance, the assignment of quantum operators to configurations of strategies in [15] is not
functorial w.r.t. inclusion on configurations, a defect when it comes to understanding how the
operator of a configuration is built up. The authors’ remedy also achieves all the enrichments just
named, now uniformly by the same construction.
The construction is w.r.t. a symmetric monoidal category (M , ⊗, I). For example, M can be the

monoid ( [0, 1], ·, 1) comprising the unit interval under multiplication (for probabilistic strategies);
measurable spaces withMarkov kernels (for probabilistic strategies with continuous distributions);
CPM, finite-dimensional Hilbert spaces with completely positive maps (for quantum strategies);
or Euclidean spaces with smooth maps, to support (reverse) differentiation.
We first extend M to allow interaction beyond that from argument to result. The parameterised

category Para (M ) has the same objects, now with maps (�푃, �푓 ,�푄) : �푋 → �푌 consisting of �푓 :

�푋 ⊗ �푃 → �푄 ⊗ �푌 in M ; the parameters �푃 and �푄 allow input and output with the environment.
Composition accumulates parameters: (�푅,�푔, �푆) ◦ (�푃, �푓 ,�푄) ≔ (�푃 ⊗ �푅, (�푄 ⊗ �푔) ◦ (�푓 ⊗ �푅), �푄 ⊗ �푆).
Then,

(1) moves �푎 of a game �퐴 are assigned objects H (�푎) in M , extended to �푋 ∈ Con�퐴 by H (�푋 ) ≔⊗
�푎∈�푋 H (�푎). (Neutral moves, appearing in interaction, are assigned the tensor unit I.)

(2) an M -enriched strategy �휎 : �푆 → �퐴 is accompanied by a functor Q : ( C (�푆)�표 , ⊆) →

Para (M ). To an interval �푥 ⊆ �푥 ′ inC (�푆)�표 this assigns a parameterised map Q(�푥 ⊆ �푥 ′) from
Q(�푥) toQ(�푥 ′)with input parametersH (�휎 (�푥 ′ \ �푥)−) and output parametersH (�휎 (�푥 ′ \ �푥)+).

The assignment in (2) describes how the internal state is transformed in moving from �푥 to �푥 ′ under
interaction with the environment through events �푥 ′\�푥 . The assignment in (2) is assumed oblivious,
i.e.Q(�푥 ⊆− �푥 ′) is always an isomorphism inM , expressing that all the input from �푥 ′\�푥 is adjoined
to the internal state Q(�푥) to produce a new internal state Q(�푥 ′) = Q(�푥) ⊗ H (�휎 (�푥 ′ \ �푥)). This is
needed to ensure that the enriched version of copycat acts as identity w.r.t. composition.
In the quantum and probabilistic cases, observation is contextual, reflected in the presence of

an extra drop condition, a form of inclusion-exclusion principle [15, 62]; it requires M be enriched
over, at least, cancellative commutative monoids.
Moves, their positions, dependencies and polarities, orchestrate the functional dependency and

dynamic linkage in composing enriched strategies. Consider an enriched strategy �휎 : �푆 → �퐴⊥‖�퐵.
In the enrichment the interval �푥 ⊆ �푥 ′ of �푆 is assigned a parameterised map Q(�푥 ⊆− �푥 ′) pictured
below, in which the input parameters �푃�퐴 ⊗ �푃�퐵 and output parameters�푄�퐴 ⊗�푄�퐵 have been factored
into those over �퐴 and those over �퐵:

�푄�퐴

�푃�퐴 �푄�퐵

�푃�퐵

Q(�푥 ′)

Q(�푥)

⊞

⊟ ⊞

⊟

�푥 ′

�푥

⊆
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Consider now the interaction of enriched strategies �휎 : �푆 → �퐴⊥‖�퐵 and �휏 : �푇 → �퐵⊥‖�퐶 . An interval
~ ⊛ �푥 ⊆ ~′ ⊛ �푥 ′ in the interaction �푇 ⊛ �푆 breaks down into two intervals �푥 ⊆ �푥 ′ of �푆 and ~ ⊆ ~′ of
�푇 . Their assignments compose together as shown to give the assignment to ~ ⊛ �푥 ⊆ ~′ ⊛ �푥 ′:

⊞

⊟ ⊞

⊟

~′ ⊛ �푥 ′

~ ⊛ �푥

⊆ =

⊞

⊟ ⊞

⊟

�푥 ′

�푥

⊆

⊞

⊟ ⊞

⊟

~′

~

⊆

For this composition to be well-defined we need that it involves no functional loops. But this is
assured through the absence of causal loops in the interaction. Suppose �푧 ⊆ �푧′ is an interval of
�푇⊙�푆 . The event structure�푇⊙�푆 is the projection of�푇 ⊛ �푆 . Take~ ⊛ �푥 = [�푧]�푇⊛�푆 and ~

′
⊛ �푥 ′

= [�푧′]�푇⊛�푆
the down-closures of �푧 and �푧′ in �푇 ⊛ �푆 . By definition, the interval �푧 ⊆ �푧′ of �푇⊙�푆 is assigned the
same parameterised map as ~ ⊛ �푥 ⊆ ~′ ⊛ �푥 ′ in �푇 ⊛ �푆 .
Enrichments achieved in this way specialise automatically to sub(bi)categories, and the func-

tional cases we have considered, without needing extra demands on the category M . Some of the
specialisations are known. For example, stable spans when enriched by probability, via the monoid
( [0, 1], ·, 1), become Markov kernels, and this enrichment extends to the various forms of optics
we have uncovered. Others deserve further exploration. Enrichment w.r.t. CPM, yielding quantum
strategies, specialises to nondeterministic strategies between GoI games. This provides an enrich-
ment of Geometry of Interaction with quantum effects, and a likely candidate with which to give
a semantics for the more operational, multi-token machine treatment of [38]. Concurrent games
and strategies enrich with Euclidean spaces and (partial) smooth maps and via them connect with
forwards and reverse differentiation. An easier subcase to explore first is the enrichment of stable
functions; here one already encounters many of the issues of differential programming.
Enriched strategies provide a general framework in which to explore the interaction patterns

of “functions” (maps in M ) and realisations of approaches to causal inference through string dia-
grams [33, 36].

8 CONCLUSION

Functional paradigms help tame the wild world of interactive computation. On the other hand,
discovering the simplifying paradigms has often required considerable ingenuity, for example, by
Gödel in his Dialectica Interpretation, or Girard in Geometry of Interaction.
The challenges to a functional approach are even more acute with enrichments, say to proba-

bilistic, quantum or real number computation. The traditional categories of mathematics do not
often support all the features required by computation. They often don’t have function spaces or
support recursion. Their extension to computational features has often to be dealt with separately,
and ingeniously, for example, by replacing Borel spaces by quasi Borel spaces to support recur-
sion and higher-order with probability [31] or the category CPM of completely positive maps by
a completion for quantum lambda calculi [47]. Concurrent games and strategies provide enough
computational infrastructure that traditional symmetric monoidal categories suffice (the unit in-
terval for probability, Markov kernels for general distributions, CPM for quantum, or smoothmaps
for differentiation).
As amodel of interaction, concurrent games and strategies are more technically challenging and

require a new, more local, way of thinking. But, as has been demonstrated here, they can provide
a broad general context for interaction which can be specialised to functional paradigms, also in
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providing enrichments to probabilistic, quantum and real number computation, without requiring
clever extensions to the traditional categories of mathematics.
Concurrent games and strategies can also provide a rationale for new definitions. The form

of dependent optic described here appears to be new. It is derived as a characterisation of non-
deterministic strategies between container games. Contrast this with the incomplete search for
a categorical axiomatics of dependent optics described in the blog post [30]. This is not a criti-
cism of axiomatisations but does make the obvious point that they are best guided by concrete
examples—of which concurrent games and strategies and their enrichments are a rich source. (A
broader characterisation of dependent optics would ensue if games carried symmetry; then the
configurations of a game would form a proper category rather than a partial order.)
There is work to do, specifically in extending the work here to games with symmetry [11]. But a

lot can be said for a single, expressive, intrinsically higher-order framework which readily adapts
to enrichments.
One challenge is that of connecting concurrent games and strategies with the theory of ef-

fects [42, 51], specifically with understanding effect handlers [52] as concurrent strategies. Though
superficially rather different, effect handlers and concurrent strategies have very similar roles: both
are concerned with orchestrating the future of a computation contingent on its past and its envi-
ronment. Through the work of this paper, the language of strategies outlined in Section 4.7 is able
to express complex functional dependencies—see Section 7: how can it best be extended to exist-
ing theories of effects and effect handlers? As a beginning, the “detectors” of Example 5.5 extend
to a form of “event handler.” In the other direction, such an investigation should suggest ways to
enhance effects and effect handlers to support richer forms of parallel computation.
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A DI-DOMAINS AND STABLE FUNCTIONS

That dI-domains are exactly the partial orders of configurations of an event structure was first
published in [56]—see the extended version or [58] for the proof. A stable function between dI-
domains is a Scott continuous function (i.e. preserves least upper bounds of directed sets) which
preserves greatest lower bounds of compatible pairs of elements. Gérard Berry developed stable
domain theory axiomatically, following operational guidelines [8]. For the reader’s convenience,
we include the constructions on event structures which realise the cartesian-closure of dI-domains
and their dependent types.

A.1 Stable function space

Berry’s cartesian-closed category of dI-domains3 and stable functions can be presented as an equiv-
alent category of event structures [57]. We summarise the product and stable function space con-
structions on stable families and event structures.
LetA andB be stable families with events�퐴 and�퐵 respectively. The product of their domains of

configurations is easily realised as a simple parallel composition:A ‖B ≔ {�푥 ‖~ | �푥 ∈ A & ~ ∈ B}.
We construct the stable function space of domains as a stable family [A → B]. The stable

family [A → B] comprises those �푓 ⊆ A �표 × �퐵 for which, for all �푥 ∈ A ,

• {�푏 | ∃�푥 ′ ⊆ �푥. (�푥 ′, �푏) ∈ �푓 } ∈ B and
• if (�푥 ′, �푏), (�푥 ′′, �푏) ∈ �푓 with �푥 ′, �푥 ′′ ⊆ �푥 then �푥 ′

= �푥 ′′.

Theorem A.1. The construction [A → B] above is a stable family with ( [A → B], ⊆) order
isomorphic to [(A , ⊆) → (B, ⊆)], the stable function space of stable functions, ordered by the stable

order, between dI-domains (A ,⊆) and (B, ⊆).

Given event structures �퐴 and �퐵, we define

[�퐴 → �퐵] ≔ Pr( [C (�퐴) → C (�퐵)]) .

The configurations of [�퐴 → �퐵] under inclusion are isomorphic to the stable function space of
dI-domains (C (�퐴),⊆) and (C (�퐵), ⊆).

A.2 Dependent-type constructions

We base the constructions here on [19, 20] (though with the simplification w.l.o.g. of using the
substructure relation E between stable families [56, 57] in place of rigid embeddings between dI-
domains). Recall the definition A E B, where A and B are stable families with events �퐴 and �퐵

respectively:

A E B iff �퐴 ⊆ �퐵 and

∀�푥. �푥 ∈ A ⇐⇒ �푥 ⊆ �퐴 & �푥 ∈ B .

3Strictly speaking, Berry defined dI-domains to have a countable basis of finite elements. Countability plays no role in the

work here and we shall not impose it.
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The relation A E B specifies a rigid embedding from the dI-domain (A , ⊆) to the dI-domain
(B, ⊆) with projection ~ ↦→ ~ ∩ �퐴 from B to A .4

For event structures �퐴 and �퐵, we write �퐴 E �퐵 when C (�퐴) E C (�퐵). On event structures, �퐴 E �퐵

is equivalent to the events of �퐴 being included in those of �퐵 with

∀�푎 ∈ �퐴. [�푎]�퐴 = [�푎]�퐵 and ∀�푋 ⊆ �퐴. �푋 ∈ Con�퐴 ⇐⇒ �푋 ∈ Con�퐵 .

Let A be a stable family. Let B(_) be a stable functor from the partial-order category (A ,⊆) to
the (large) partial-order category of stable families related by E. We shall write �퐵(�푥) for the events
of B(�푥), where �푥 ∈ A . That the functor is stable means it is continuous and preserves pullbacks,
which in this case means it is a function which preserves least upper bounds of directed sets and
greatest lower bounds of compatible pairs. Correspondingly, for an event structure �퐴, a functor
from �푥 ∈ C (�퐴) to event structures �퐵(�푥) is stable when it is continuous and preserves pullbacks
w.r.t. E on event structures.

Dependent sum

Σ�푥 ∈A B(�푥) is the stable family

{�푥 ‖~ | �푥 ∈ A & ~ ∈ B(�푥)} .

Proposition A.2. Σ�푥 ∈A B(�푥) is a stable family with configurations corresponding to pairs (�푥,~),
where �푥 ∈ A and ~ ∈ B(�푥); the order of configurations corresponds to the coordinatewise order on

pairs.

We shall describe a typical configuration of Σ�푥 ∈A B(�푥) as a pair (�푥,~) where �푥 ∈ A and
~ ∈ B(�푥). It’s often convenient to describe an operation on configurations of the dependent sum
in terms of their decomposition into pairs.
For an event structure �퐴 and �퐵(�푥), stable in �푥 ∈ C (�퐴),

Σ�푥 :�퐴 �퐵(�푥) ≔ Pr(Σ�푥 ∈C (�퐴) C (�퐵(�푥))) .

By analysing the structure of the prime configurations of Σ�푥 ∈A B(�푥), we can see that the event
structure Σ�푥 :�퐴. �퐵(�푥) is isomorphic to the event structure comprising

• events, consisting of the set of �푎 ∈ �퐴 in disjoint union with the set of pairs (�푥,�푏), where
�푥 ∈ C (�퐴)�표 is a smallest configuration for which �푏 ∈ �퐵(�푥);

• causal dependency, that generated by the relations on events

�푎′ ≤�퐴 �푎 ,

(�푥 ′, �푏 ′) ≤ (�푥,�푏) if �푥 ′ ⊆ �푥 & �푏 ′ ≤�퐵 �푏 , and

�푎 ≤ (�푥,�푏) if �푎 ∈ �푥 ;

• consistency, a finite subset of events,

{�푎�푖 | �푖 ∈ �퐼 } ∪ {(�푥 �푗 , �푏 �푗 ) | �푗 ∈ �퐽 } ∈ Con iff

{�푎�푖 | �푖 ∈ �퐼 } ∈ Con�퐴 &
⋃

�푗 ∈�퐽

�푥 �푗 ∈ C (�퐴)�표 & {�푏 �푗 | �푗 ∈ �퐽 } ∈ Con�퐵 &

∀�푗 , �푘 ∈ �퐽 . �푏 �푗 = �푏�푘 =⇒ �푥 �푗 = �푥�푘 .

4The relation E does not have least upper bounds in general; there can be distinct minimal upper bounds.
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Dependent product
The obvious projection from Σ�푥 ∈A B(�푥) to A is a simple form of Grothendieck fibration. We
obtain Π�푥 ∈A B(�푥) as a stable family whose configurations correspond to stable sections of the
fibration, i.e. stable functions from (A , ⊆) to (Σ�푥 ∈A B(�푥),⊆) which send �푥 ∈ A to a configuration
�푥 ‖~ where ~ ∈ B(�푥). To this purpose, we can refashion the construction of the stable function
space of Section A.1 to restrict to stable functions which are sections.

Π�푥 ∈A B(�푥) is the stable family comprising those sets

�푓 ⊆ {(�푥,�푏) | �푥 ∈ A
�표 & �푏 ∈ �퐵(�푥)}

for which, for all �푥 ∈ A ,

• {�푏 | ∃�푥 ′ ⊆ �푥. (�푥 ′, �푏) ∈ �푓 } ∈ B(�푥) and
• if (�푥 ′, �푏), (�푥 ′′, �푏) ∈ �푓 with �푥 ′, �푥 ′′ ⊆ �푥 then �푥 ′

= �푥 ′′.

When B(�푥) is constantly B, for all �푥 ∈ A , we observe that

Π�푥 ∈A B(�푥) = [A → B] .

Theorem A.3. The configurations of Π�푥 ∈A B(�푥) correspond to stable sections of Σ�푥 ∈A B(�푥);
inclusion between configurations corresponds to the stable order on sections.

Hencewe can describe a typical configuration ofΠ�푥 ∈A B(�푥) as a stable section, using �휆-notation,
as �휆�푥 ∈ A . �푓 (�푥), provided �푓 (�푥) ∈ B(�푥) is stable in �푥 ∈ A ; we obtain its components by function
application.
For event structures �퐴 and �퐵(�푥), stable in �푥 ∈ C (�퐴), define

Π�푥 :�퐴 �퐵(�푥) ≔ Pr(Π�푥 ∈C (�퐴) C (�퐵(�푥))) .

B STABLE SPANS

Stable spans are monoidal-closed—see [44]§7.5. Their tensor is given by the simple parallel com-
position of event structures. We define the function space in slightly greater generality, between
stable families.
Let A and B be stable families. We construct the function space of stable spans as a stable

family. The stable family [A ⊸ B] comprises those �퐹 ⊆ A �표 × �퐵 for which

•
⋃

{�푥 | ∃�푏. (�푥,�푏) ∈ �퐹 } ∈ A ,
• ∀�푥 ∈ A . {�푏 | ∃�푥 ′ ⊆ �푥. (�푥 ′, �푏) ∈ �퐹 } ∈ B and
• ∀(�푥, �푏), (�푥 ′, �푏) ∈ �퐹 . �푥 = �푥 ′.

It can be checked that [A ⊸ B] is a stable family. For event structures �퐴 and �퐵, define [�퐴 ⊸
�퐵] ≔ Pr( [C (�퐴) ⊸ C (�퐵)]). The configurations of [�퐴 ⊸ �퐵] represent the possible paths the
computation of output in �퐵 from input in �퐴 can follow.
By broadening to nondeterministic computation we can often regard types as special maps. For

example [�퐴 ⊸ �퐵] becomes a stable span with the obvious demand and rigid map. As such it is
terminal within all stable spans from �퐴 to �퐵: for any span �푆,�푑, �푟 there is a unique 2-cell as shown

�푆
�푑

zz✈✈
✈✈
✈✈

��
�푟

$$■
■■

■■
■

�퐴 [�퐴 ⊸ �퐵]oo // �퐵 .

Deterministic stable spans coincide with stable functions.
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B.1 Dependent product for stable spans

The dependent product for stable spans is a refashioning of the definition of their function space,
to take account of the dependency of B(�푥) on �푥 ∈ A . The stable sections of the previous depen-
dent product above are replaced by stable spans, so giving a form of nondeterministic dependent
product.

Π
�푠
�푥 ∈A

B(�푥) is the stable family comprising those sets

�퐹 ⊆ {(�푥,�푏) | �푥 ∈ A
�표 & �푏 ∈ �퐵(�푥)}

for which

•
⋃

{�푥 | ∃�푏. (�푥,�푏) ∈ �퐹 } ∈ A ,
• ∀�푥 ∈ A . {�푏 | ∃�푥 ′ ⊆ �푥. (�푥 ′, �푏) ∈ �퐹 } ∈ B(�푥) and
• ∀(�푥, �푏), (�푥 ′�푏) ∈ �퐹 . �푥 = �푥 ′.

When B(�푥) is constantly B, for all �푥 ∈ A , we observe that

Π
�푠
�푥 ∈A

B(�푥) = [A ⊸ B] .

Proposition B.1. The configurations of Π�푠
�푥 ∈A

B(�푥) correspond to stable sections �푓 : �푋0 →

Σ�푥 ∈�푋0
B(�푥), where �푋0 = {�푥 ∈ A | �푥 ⊆ �푥0} for some �푥0 ∈ A , and for all �푥 ∈ �푋0, writing �푓 (�푥) =

(�푥, �푓 ′(�푥)) and �푓 (�푥0) = (�푥0, �푓
′(�푥0)), if �푓

′(�푥) = �푓 ′(�푥0) then �푥 = �푥0.

For event structures �퐴 and �퐵(�푥), stable in �푥 ∈ C (�퐴), define

Π
�푠
�푥 :�퐴 �퐵(�푥) ≔ Pr(Π�푠

�푥 ∈C (�퐴) C (�퐵(�푥))) .

C PROOFS FOR SECTION 5

Theorem C.1. Let �푓 : C (�퐴) → C (�퐵) be an affine-stable map between event structures with

polarity �퐴 and �퐵. Then

F ≔ {�푥 ‖~ ∈ C (�퐴⊥‖�퐵) | ~ ⊑�퐵 �푓 (�푥)}

is an infinitary stable family. The map top : Pr(F ) → A⊥‖B is a strategy �푓! : �퐴 + //�퐵. The strategy
�푓! is deterministic if �퐴 and �퐵 are race-free and �푓 reflects −-compatibility, i.e. �푥 ⊆− �푥1 and �푥 ⊆− �푥2 in

C (�퐴) and �푓 �푥1 ∪ �푓 �푥2 ∈ C (�퐵) implies �푥1 ∪ �푥2 ∈ C (�퐴).

Proof. In the proof we make frequent use of the following observations. Let �퐵 be an event
structure with polarity. Let ~�푖 ⊑�퐵 ~′�푖 , for all �푖 ∈ �퐼 . Then, (with �퐼 nonempty),

⋂

�푖 ∈�퐼

~�푖 ⊑�퐵

⋂

�푖 ∈�퐼

~′�푖 .

When both {~�푖 | �푖 ∈ �퐼 } and {~′�푖 | �푖 ∈ �퐼 } are compatible in C (�퐵),
⋃

�푖 ∈�퐼

~�푖 ⊑�퐵

⋃

�푖 ∈�퐼

~′�푖 .

We first show F is a stable family.
Completeness: Let {�푥�푖 ‖~�푖 | �푖 ∈ �퐼 } be a finitely compatible subset inF . From compatibility, it follows
that

⋃
�푖 ∈�퐼 �푥�푖 and

⋃
�푖 ∈�퐼 ~�푖 are configurations. By assumption ~�푖 ⊑�퐵 �푓 (�푥�푖 ), for all �푖 ∈ �퐼 , so

⋃

�푖 ∈�퐼

~�푖 ⊑�퐵

⋃

�푖 ∈�퐼

�푓 (�푥�푖) ⊆
+ �푓 (

⋃

�푖 ∈�퐼

�푥�푖) .

As the relation ⊆+ is included in ⊑�퐵 , by the latter’s transitivity we obtain
⋃

�푖 ∈�퐼

~�푖 ⊑�퐵 �푓 (
⋃

�푖 ∈�퐼

�푥�푖) ,
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so ⋃

�푖 ∈�퐼

(�푥�푖 ‖~�푖 ) = (
⋃

�푖 ∈�퐼

�푥�푖 ‖
⋃

�푖 ∈�퐼

~�푖 ) ∈ F .

Stability: Let {�푥�푖 ‖~�푖 | �푖 ∈ �퐼 } be a nonempty compatible subset in F . By assumption ~�푖 ⊑�퐵 �푓 (�푥�푖),
for all �푖 ∈ �퐼 , so ⋂

�푖 ∈�퐼

~�푖 ⊑�퐵

⋂

�푖 ∈�퐼

�푓 (�푥�푖 ) ⊇
− �푓 (

⋂

�푖 ∈�퐼

�푥�푖)

—it follows from the assumptions that {�푥�푖 | �푖 ∈ �퐼 } is a nonempty compatible family in C (�퐴), as is
required to apply the stability of �푓 . As ⊇− is included in ⊑�퐵 , we deduce

⋂

�푖 ∈�퐼

(�푥�푖 ‖~�푖 ) = (
⋂

�푖 ∈�퐼

�푥�푖 ‖
⋂

�푖 ∈�퐼

~�푖 ) ∈ F .

Finiteness: If �푥 ‖~ in the family F , then �푥 ∈ C (�퐴) and ~ ∈ C (�퐵) with ~ ⊑�퐵 �푓 (�푥). An element in
�푥 ‖~ is either (1, �푎) where �푎 ∈ �푥 or (2, �푏) where �푏 ∈ ~. We analyse these two cases.
Case �푎 ∈ �푥 . Observe the set �푓 ( [�푎])− is finite by −-image finiteness. It follows that [�푓 ( [�푎])−] ∈

C (�퐵)�표 is a finite configuration of �퐵 for which

[�푓 ( [�푎])−] ⊆+ �푓 [�푎] , so [�푓 ( [�푎])−] ⊑�퐵 �푓 [�푎] .

As also ~ ⊑�퐵 �푓 (�푥) we have

~ ∩ [�푓 ( [�푎])−] ⊑�퐵 �푓 (�푥) ∩ �푓 [�푎] = �푓 [�푎] ,

whence

[�푎] ‖ (~ ∩ [�푓 ( [�푎])−]) ∈ F

creating a finite subconfiguration of �푥 ‖~ containing (1, �푎).
Case �푏 ∈ ~.We prove a stronger result than is strictly needed for this part of the proof, in prepara-
tion for the proof of coincidence-freeness later. Letting �푏 ∈ ~, take

�푥0 ≔
⋂

{�푥 ′ ∈ C (�퐴) | [�푏]+ ⊆ �푓 (�푥 ′) & �푥 ′ ⊆ �푥} .

By the stability of �푓 ,

�푓 (�푥0) ⊆
−
⋂

{�푓 (�푥 ′) | �푥 ′ ∈ C (�퐴) & [�푏]+ ⊆ �푓 (�푥 ′) & �푥 ′ ⊆ �푥} .

Thus

[�푏]+ ⊆ �푓 (�푥0) ,

and �푥0 is the minimum subconfiguration of �푥 for which [�푏]+ ⊆ �푓 (�푥0). By +-continuity, �푥0 is a
finite configuration. Also

[�푓 (�푥0)
−] ⊆+ �푓 (�푥0)

where the configuration [�푓 (�푥0)
−] is also finite by −-image finiteness. We observe that all the ≤-

maximal events in �푥0 are +ve: supposing otherwise, there is a ≤-maximal −ve event in �푥0 so a
configuration �푥 ′

0
(
− �푥0; then, as �푓 preserves polarity, [�푏]+ ⊆ �푓 (�푥0) ⊆− �푓 (�푥 ′

0
) so [�푏]+ ⊆ �푓 (�푥 ′

0
),

contradicting the minimality of �푥0. Whatever the polarity of �푏 we obtain

[�푓 (�푥0)
−] ∪ [�푏] ⊇− [�푓 (�푥0)

−] ∪ [[�푏]+] ⊆+ �푓 (�푥0) ,

so

[�푓 (�푥0)
−] ∪ [�푏] ⊑�퐵 �푓 (�푥0) .

We now show that �푏 ∉ [�푓 (�푥0)
−] by cases on the polarity of �푏.

Suppose pol�푏 (�푏) = +. In this case [�푏] = [[�푏]+] and �푥0 is the minimum subconfiguration of �푥
such that �푏 ∈ �푓 (�푥0). If �푥0 = ∅, by affinity, in the case of the empty family, we have ∅ ⊆+ �푓 (∅)
which ensures [�푓 (�푥0)

−] is empty, so does not contain �푏. Otherwise, the ≤-maximal events in �푥0
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are +ve and there is a subconfiguration �푥 ′
0
(
+ �푥0. As �푓 respects polarity, �푓 (�푥 ′

0
) ⊆+ �푓 (�푥0). Hence

�푓 (�푥0)
− ⊆ �푓 (�푥 ′

0
) so [�푓 (�푥0)

−] ⊆+ �푓 (�푥 ′
0
). From the minimality of �푥0, we must have �푏 ∉ �푓 (�푥 ′

0
), so we

also have �푏 ∉ [�푓 (�푥0)
−], as required.

Suppose pol�퐵 (�푏) = −. We show �푏 ∉ �푓 (�푥0), from which �푏 ∉ [�푓 (�푥0)
−] follows directly. Suppose

otherwise that �푏 ∈ �푓 (�푥0). If �푥0 is empty, we have ∅ ⊆+ �푓 (∅) = �푓 (�푥0), contradicting the polarity of
�푏. When �푥0 is nonempty, as the ≤-maximal events in �푥0 are +ve, we must have a strictly smaller
subconfiguration �푥 ′

0
(
+ �푥0. But then as �푓 respects polarity �푓 (�푥 ′

0
) ⊆+ �푓 (�푥0). As �푏 is −ve, �푏 ∈ �푓 (�푥 ′

0
)

making [�푏]+ ⊆ �푓 (�푥 ′
0
),which contradicts the minimality of �푥0. This shows �푏 ∉ �푓 (�푥0), as required

to obtain �푏 ∉ [�푓 (�푥0)
−].

To complete the proof of the finiteness property, observe that~ ⊑�퐵 �푓 (�푥) with [�푓 (�푥0)
−] ∪ [�푏] ⊑�퐵

�푓 (�푥0) entail
~ ∩ ([�푓 (�푥0)

−] ∪ [�푏]) ⊑�퐵 �푓 (�푥) ∩ �푓 (�푥0) = �푓 (�푥0) .

It follows that

�푥0‖(~ ∩ ([�푓 (�푥0)
−] ∪ [�푏])) ∈ F ,

so yielding a finite subconfiguration of �푥 ‖~ containing (2, �푏). We note for later that �푥0 is the min-
imum subconfiguration of �푥 for which [�푏]+ ⊆ �푓 (�푥0) and from this it follows that

�푏 ∉ [�푓 (�푥0)
−] with [�푓 (�푥0)

−] ∪ [�푏] ⊑�퐵 �푓 (�푥0) .

Coincidence-free: Let �푥 ‖~ ∈ F . Consider two distinct events in �푥 ‖~. There are three cases: they
belong to the same component �푥 ; they belong to the same component~; or they belong to different
components.
If they both belong to the same �푥-component, from the argument above they are (1, �푎1) and

(1, �푎2) and belong to the respective subconfigurations

[�푎1] ‖(~ ∩ [�푓 ( [�푎1])
−]) and [�푎2] ‖(~ ∩ [�푓 ( [�푎2])

−])

of �푥 ‖~. If �푎1 and �푎2 are distinct, one of the subconfigurations must separate them in the sense of
containing one but not the other.
Assume they both belong to the same~-component, one being (2, �푏1) and the other (2, �푏2), with

�푏1, �푏2 ∈ ~. From the proof of the finiteness part above, they belong to respective subconfigurations
of �푥 ‖~ of the form

�푥1‖(~ ∩ ([�푓 (�푥1)
−] ∪ [�푏1])) and �푥2‖(~ ∩ ([�푓 (�푥2)

−] ∪ [�푏2]))

where �푥1 is the minimum subconfiguration of �푥 for which [�푏1]
+ ⊆ �푓 (�푥1) and �푥2 is the minimum

subconfiguration of �푥 for which [�푏2]
+ ⊆ �푓 (�푥2). Recall from earlier that

�푏1 ∉ [�푓 (�푥1)
−] with [�푓 (�푥1)

−] ∪ [�푏1] ⊑�퐵 �푓 (�푥1) and

�푏2 ∉ [�푓 (�푥2)
−] with [�푓 (�푥2)

−] ∪ [�푏2] ⊑�퐵 �푓 (�푥2) .

Imagine the two subconfigurations of �푥 ‖~ above do not separate (2, �푏1) and (2, �푏2), i.e.

(2, �푏2) ∈ �푥1‖(~ ∩ ([�푓 (�푥1)
−] ∪ [�푏1])) and

(2, �푏1) ∈ �푥2‖(~ ∩ ([�푓 (�푥2)
−] ∪ [�푏2])) .

Then
�푏2 ∈ [�푓 (�푥1)

−] ∪ [�푏1] ⊑�퐵 �푓 (�푥1) and

�푏1 ∈ [�푓 (�푥2)
−] ∪ [�푏2] ⊑�퐵 �푓 (�푥2) .

By the properties of ⊑�퐵 , we see that [�푏2]
+ ⊆ �푓 (�푥1) and [�푏1]

+ ⊆ �푓 (�푥2). From the minimality
properties of �푥1 and �푥2 we deduce that �푥1 = �푥2. Writing �푥0 ≔ �푥1 = �푥2 and recalling �푏1, �푏2 ∉

[�푓 (�푥0)
−] we obtain �푏1 ∈ [�푏2] and �푏2 ∈ [�푏1], so �푏1 = �푏2. Hence distinct (2, �푏1) and (2, �푏2) are

separated by the chosen subconfigurations of �푥 ‖~.
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Assume the two distinct events in �푥 ‖~ belong to different components, one being (1, �푎), with
�푎 ∈ �푥 , and the other (2, �푏), with �푏 ∈ ~. If �푏 ∉ �푓 ( [�푎]) then one argues, as frequently above, that
�푓 ( [�푎]) ⊑�퐵 �푓 ( [�푎]) together with ~ ⊑�퐵 �푓 (�푥) gives ~ ∩ �푓 ( [�푎]) ⊑�퐵 �푓 ( [�푎]) yielding [�푎] ‖(~ ∩ �푓 ( [�푎])) a
subconfiguration of �푥 ‖~, which moreover contains (1, �푎) but not (2, �푏). Thus suppose �푏 ∈ �푓 ( [�푎]).
If �푏 ∈ �푓 ( [�푎)) then [�푎)‖ (~∩ �푓 ( [�푎))) is a subconfiguration of �푥 ‖~ which contains (2, �푏) but not (1, �푎).

The remaining case is when �푏 ∈ �푓 ( [�푎]) and �푏 ∉ �푓 ( [�푎)). Then [�푎)
�푎

−−⊂ [�푎] and �푏 ∈ �푓 ( [�푎]) \ �푓 ( [�푎)).
If pol�퐴 (�푎) = + then, as �푓 respects polarity,

�푓 ( [�푎)) ⊆+ �푓 ( [�푎]), so �푓 ( [�푎)) ⊑�퐵 �푓 ( [�푎]) .

By the now familiar argument, this yields [�푎] ‖ (~ ∩ �푓 [�푎)) a subconfiguration of �푥 ‖~ containing
(1, �푎) but not (2, �푏).
Similarly, if pol�퐴 (�푎) = − then

�푓 ( [�푎)) ⊆− �푓 ( [�푎]), so �푓 ( [�푎]) ⊑�퐵 �푓 ( [�푎)) ,

yielding a subconfiguration [�푎)‖ (~ ∩ �푓 [�푎]) of �푥 ‖~ which contains (2, �푏) but not (1, �푎).
This completes the proof of coincidence-freeness.

We check the map top : Pr(F ) → A⊥‖B is a strategy. Observe that

�푥 ′ ⊒�퐴 �푥 & �푥 ‖~ ∈ F & ~ ⊒�퐵 ~′ =⇒ �푥 ′‖~′ ∈ F

as the l.h.s. clearly entails

~′ ⊑�퐵 ~ ⊑�퐵 �푓 (�푥) ⊑�퐵 �푓 (�푥 ′) ,

so the r.h.s.. In particular, when �푥 ‖~ ∈ F and (�푥 ′‖~′) ∈ C (�퐴⊥‖�퐵),
if (�푥 ‖~) ⊆− (�푥 ′‖~′), then (�푥 ′‖~′) ∈ F ; and
if (�푥 ′‖~′) ⊆+ (�푥 ‖~), then (�푥 ′‖~′) ∈ F .

Thus the composite map

C (Pr(F )) → F ↩→ C (�퐴⊥‖�퐵)

of stable families, where the first map is top and the second is an inclusion, satisfies the “lifting”
conditions needed of a strategy—see [64], ensuring that top : Pr(F ) → A⊥‖B is a strategy.

Assume now that�퐴 and �퐵 are race-free and that �푓 reflects −-compatibility. As�퐴⊥‖�퐵 is now also
race-free, to show �푓! a deterministic strategy it suffices to show that any two +ve event increments
of a configuration in F are compatible in F , i.e. if �푥 ‖~−⊂+�푥1‖~1 and �푥 ‖~−⊂+�푥2‖~2 in F , then
(�푥1 ∪ �푥2)‖(~1 ∪~2) ∈ F . Consider cases.

If the increments are ~
�푏1

−−⊂~1 and ~
�푏2

−−⊂~2, then �푏1 and �푏2 are +ve in �퐵. Because each ~�푖 ⊑�퐵 �푓 (�푥),
i.e. ~�푖 ⊇

− �푧 ⊆+ �푓 (�푥) where �푧 = ~∩ �푓 (�푥), we see both �푏1 ∈ �푓 (�푥) and �푏2 ∈ �푓 (�푥). Hence �푧∪{�푏1, �푏2} ∈

C (�퐵). Because �퐵 is race-free we obtain ~1 ∪ ~2 ∈ C (�퐵). Checking ~1 ∪ ~2 ⊑�퐵 �푓 (�푥), ensures
�푥 ‖(~1 ∪ ~2) ∈ F .

If the increments are �푥
�푎1

−−⊂ �푥1 and �푥
�푎2

−−⊂ �푥2 then �푎1 and �푎2 are −ve in �퐴 with ~ ⊑�퐵 �푓 (�푥1) and
~ ⊑�퐵 �푓 (�푥2). It follows that each �푓 (�푥�푖 ) \ �푓 (�푥) consists of solely −ve events in �퐵 and so are included
in ~. This ensures the compatibility of �푓 (�푥1) and �푓 (�푥2). That (�푥1 ∪ �푥2)‖~ ∈ F now follows from
�푓 reflecting −-compatibility and its affinity.

The final case is when the increments are, w.l.o.g. �푥
�푎1

−−⊂ �푥1 and ~
�푏2

−−⊂~2, when �푎1 is −ve in �퐴 and
�푏2 +ve in �퐵. Then ~ ⊑�퐵 �푓 (�푥1) and ~2 ⊑�퐵 �푓 (�푥), so ~2 ⊑�퐵 �푓 (�푥1), making �푥1‖~2 ∈ F . �
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C.1 A functor

Let �푓 : �퐴 → �퐵 and �푔 : �퐵 → �퐶 be affine stable maps. They determine stable families

F ={�푥 ‖~ | �푓 (�푥) ⊒�퐵 ~} and

G ={~‖�푧 | �푔(~) ⊒�퐶 �푧} ,

respectively. Consider the stable family determined by the composition of functions �푔�푓 , viz.

{�푥 ‖�푧 | �푔�푓 (�푥) ⊒�퐶 �푧} .

One can show straightforwardly that

{�푥 ‖�푧 | �푔�푓 (�푥) ⊒�퐶 �푧} ={�푥 ‖�푧 | ∃~ ∈ C (�퐵). �푓 (�푥) ⊒�퐵 ~ & �푔(~) ⊒�퐶 �푧}

{�푥 ‖�푧 | ∃~ ∈ C (�퐵). �푥 ‖~ ∈ F & ~‖�푧 ∈ G }

= G ◦ F ,

where the last composition is essentially the composition of stable families as relations: for in-
stance, regarding the stable family F as

{(�푥,~) ∈ C (�퐴) × C (�퐵) | �푓 (�푥) ⊒�퐵 ~} ,

observing the isomorphism C (�퐴) × C (�퐵) � C (�퐴⊥‖�퐵). We shall show that

Pr(G )⊙Pr(F ) � Pr(G ◦ F ) ,

so reducing the composition of strategies of affine-stable maps to relational composition; by defi-
nition, it follows directly that

�푔!⊙�푓! � (�푔�푓 )! .

For functoriality of (_)! we also require preservation of identities. However, the stable family de-
termined by id�퐴 : C (�퐴) → C (�퐴) is, by definition,

{�푥 ‖~ | �푥 ⊒�퐴 ~} = C (CC�퐴) ,

ensuring that id�퐴! � CC�퐴.

Lemma C.2. Let �휎 : �퐴 + //�퐵 and �휏 : �퐵 + //�퐶 be strategies. Suppose �휏1 is partial rigid (i.e., the

component �휏1 : �푇 → �퐵 preserves causal dependency when defined). Letting �푥 ∈ C (�푆)�표 , ~ ∈ C (�푇 )�표 ,

~ ⊛ �푥 is defined iff �휎2�푥 = �휏1~ .

Proof. Write �푥�퐴 = �휎1�푥 , �푥�퐵 = �휎2�푥 , ~�퐵 = �휏1~ and ~�퐶 = �휏2~. Recall ~ ⊛ �푥 is defined to be the
bijection

�푥 ‖~�퐶 � �푥�퐴‖�푥�퐵 ‖�푥�퐶 � �푥�퐴‖~

induced by �휎 and �휏 provided �푥�퐵 = ~�퐵 , i.e. �휎2�푥 = �휏1~, and the bijection is secured—see Theorem 3.2.
To simplify notation we can present the bijection as �푥 ∪~ in which we identify the two sets �푥 and
~ at their parts �휎−1�푥�퐵 and �휏−1~�퐵 via the common image �푥�퐵 = ~�퐵 .

To obtain a contradiction, suppose that the bijection were not secured, that there were a causal
loop in �푥 ∪ ~, i.e. that there were a chain

�푢1 _ �푢2 _ · · · _ �푢�푛 = �푢1

of events in �푥 ∪ ~, with �푛 > 1, w.r.t. causal dependency _ which is either _�푆 or _�푇 . The events
of �푥 ⊛ ~ and so of the chain are either over �퐴, �퐵 or �퐶 . As there are no causal loops in �푆 or �푇 the
causal loop must contain events over each of �퐴, �퐵 and �퐶 . W.l.o.g., we may assume �푢1 is over �퐵.
Part of the chain is over �퐶 . The whole chain has the form

�푢1 _ · · · _ �푢�푖−1 _�푇 �푢�푖 _�푇 · · · _�푇 �푢 �푗 _�푇 �푢 �푗+1 _ · · · _ �푢�푛 = �푢1
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where �푢�푖−1 and �푢 �푗+1 are over �퐵 and �푢�푖, · · · , �푢 �푗 are all over �퐶 . Clearly �푢�푖−1 <�푇 �푢 �푗+1. As �휏1 is partial
rigid, we obtain �휏 (�푢�푖−1) <�퐵 �휏 (�푢 �푗+1). With the identification of events over �퐵 in �푥 and ~, we have
�휎 (�푢�푖−1) <�퐵 �휎 (�푢 �푗+1). As �휎 locally reflects causal dependency, we see that �푢�푖−1 <�푆 �푢 �푗+1. We now
have a causal loop

�푢1 _ · · · _ �푢�푖−1 <�푆 �푢 �푗+1 _ · · · _ �푢�푛 = �푢1

from which the events �푢�푖 , · · · , �푢 �푗 over�퐶 have been excised. Continuing in this way we can remove
all events over �퐶 from the causal loop, obtaining a causal loop in �푆 —a contradiction. �

Now to the isomorphism. First, a key observation, expressing that the strategy obtained from
an affine-stable map doesn’t disturb the causality of input:

Proposition C.3. Let �푔 : �퐵 → �퐶 be an affine-stable map which determines the stable family

G = {~‖�푧 | �푔(~) ⊒�퐶 �푧}. Let ~‖�푧 ∈ G . Then,

∀�푏,�푏 ′ ∈ ~. (1, �푏 ′) ≤~ ‖�푧 (1, �푏) ⇐⇒ �푏 ′ ≤�퐵 �푏 .

In the strategy �푔! = top : Pr(G ) → B⊥‖C , the component (�푔!)1 : Pr(G ) → �퐵⊥ is partial rigid.

Proof. Recall (1, �푏 ′) ≤~ ‖�푧 (1, �푏) iff every subconfiguration of ~‖�푧 in G which contains (1, �푏)
also contains (1, �푏 ′).
Any subconfiguration of ~‖�푧 necessarily takes the form ~′‖�푧′ where ~′ is a subconfiguration of

~ in �퐵 and �푧′ is a subconfiguration of �푧 in �퐶 with �푔(~′) ⊒�퐵 �푧′. From �푏 ′ ≤�퐵 �푏 it therefore follows
that (1, �푏 ′) ≤~ ‖�푧 (1, �푏).
Conversely, given a subconfiguration ~′ of ~ we have ~′‖�푔(~′) ∈ G whence ~′‖�푔(~′) ∩ �푧′ is a

subconfiguration of~‖�푧 in G . From this the converse implication follows: if (1, �푏 ′) ≤~ ‖�푧 (1, �푏) then
�푏 ′ ≤�퐵 �푏.

Thus (1, �푏 ′) ≤~ ‖�푧 (1, �푏) iff �푏 ′ ≤�퐵 �푏, for all �푏,�푏 ′ ∈ ~. That (�푔!)1 is partial rigid is a direct conse-
quence. �

Lemma C.4. Let �푓 : �퐴 → �퐵 and �푔 : �퐵 → �퐶 be affine stable maps which determine stable families

F = {�푥 ‖~ | �푓 (�푥) ⊒�퐵 ~} and G = {~‖�푧 | �푔(~) ⊒�퐶 �푧}, respectively. Then, Pr(G )⊙Pr(F ) � Pr(G ◦

F ).

Proof. Recall, Pr(G )⊙Pr(F ) is obtained as Pr(G ⊛ F ) followed by hiding the synchronisa-
tions over �퐵. First consider G ⊛F .
A finite configuration of G ⊛F , built as a pullback of stable families, has the form �푥 ‖~‖�푧 where

�푥 ‖~ ∈ F and ~‖�푧 ∈ G and the causal dependencies from F and G do not jointly introduce any
causal loops. However, from the observation of Proposition C.3 and Lemma C.2 above, it follows
that there are no causal loops for such particular stable families.
It follows that for all �푥 ‖~ ∈ F and ~‖�푧 ∈ G we have �푥 ‖~‖�푧 is a configuration of G ⊛F . Thus

we have a simple characterisation of the the stable family G ⊛F :

G ⊛F = {�푥 ‖~‖�푧 ∈ C (�퐴⊥‖�퐵‖�퐶) | �푥 ‖~ ∈ F & ~‖�푧 ∈ G } .

It remains to consider the effect of hiding the synchronisations over �퐵 and show

Pr(G )⊙Pr(F ) � Pr(G ◦ F ) ,

where

G ◦ F = {�푥 ‖�푧 ∈ C (�퐴⊥‖�퐶) | ∃~ ∈ C (�퐵). �푥 ‖~ ∈ F & ~‖�푧 ∈ G } .

(As we saw in the discussion preceding this lemma, this is the stable family obtained from the
composition �푔�푓 .) To this end we define

�휃 : Pr(G )⊙Pr(F ) → Pr(G ◦ F )
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and its putative mutual inverse

�휙 : Pr(G ◦ F ) → Pr(G )⊙Pr(F ) .

For simplicity of notation, to avoid indices, throughout this proof assume that the events �퐴, �퐵 and �퐶

are pairwise disjoint and identify �푥 ‖~‖�푧 with �푥 ∪ ~ ∪ �푧.

The events of Pr(G )⊙ Pr(F ) have the form [�푎]�푥 ‖~ ‖�푧 , where �푎 ∈ �푥 , or [�푐]�푥 ‖~ ‖�푧 , where �푐 ∈ �푧,
and �푥 ‖~‖�푧 ∈ G ⊛F . The events of Pr(G ◦F ) have the form [�푎]�푥 ‖�푧 , where �푎 ∈ �푥 , or [�푐]�푥 ‖�푧 , where
�푐 ∈ �푧, and �푥 ‖�푧 ∈ G ◦ F . Define

�휃 ( [�푑]�푥 ‖~ ‖�푧) = [�푑]�푥 ‖�푧 and �휙 ( [�푑]�푥 ‖�푧) = [�푑]�푥 ‖�푓 (�푥) ‖�푧 ,

on typical events [�푑]�푥 ‖~ ‖�푧 ∈ Pr(G ◦ F ) and [�푑]�푥 ‖�푧 ∈ Pr(G ◦ F ). We should check �휃 and �휙 are
well-defined functions. In showing that �휃 is well-defined we use that �푥 ‖~‖�푧 is a configuration of
G ⊛ F directly implies �푥 ‖�푧 is a configuration of G ◦ F . In showing �휙 is well-defined we need
that �푥 ‖�푧 ∈ G ◦ F implies �푥 ‖�푓 (�푥)‖�푧 ∈ G ⊛ F . Assuming �푥 ‖�푧 ∈ G ◦ F , we have �푥 ‖~ ∈ F and
~‖�푧 ∈ G for some ~ ∈ C (�퐵). Then �푓 (�푥) ⊒�퐵 ~ and �푔(~) ⊒�퐶 �푧. Thus �푔�푓 (�푥) ⊒�퐶 �푔(~) ⊒�퐶 �푧 whence
�푔(�푓 (�푥)) ⊒�퐶 �푧 ensuring �푓 (�푥)‖�푧 ∈ G . Clearly �푥 ‖�푓 (�푥) ∈ F , so �푥 ‖�푓 (�푥)‖�푧 ∈ G ⊛F , as needed.

We show �휃 and �휙 are mutual inverses. It is easy to see that �휃�휙 ( [�푑]�푥 ‖�푧) = [�푑]�푥 ‖�푧 . By definition,
�휙�휃 ( [�푑]�푥 ‖~ ‖�푧) = [�푑]�푥 ‖�푓 (�푥) ‖�푧 , where �푥 ‖~‖�푧 ∈ G ⊛F and �푑 is an event of �푥 or �푧. We require

[�푑]�푥 ‖~ ‖�푧 = [�푑]�푥 ‖�푓 (�푥) ‖�푧 .

To this end we show �푥 ‖(~ ∩ �푓 (�푥))‖�푧 ∈ G ⊛F ; once this is shown we have

[�푑]�푥 ‖~ ‖�푧 = [�푑]�푥 ‖ (~∩�푓 (�푥)) ‖�푧 = [�푑]�푥 ‖�푓 (�푥) ‖�푧

—using twice the general fact that [�푒]�푣 = [�푒]�푤 when �푒 is an event of compatible configurations �푣
and�푤 of a stable family. To show �푥 ‖(~ ∩ �푓 (�푥))‖�푧 ∈ G ⊛F we require

�푥 ‖(~ ∩ �푓 (�푥)) ∈ F and (~ ∩ �푓 (�푥))‖�푧G .

From �푓 (�푥) ⊒�퐵 ~ with �푓 (�푥) ⊒�퐵 �푓 (�푥) we obtain �푓 (�푥) ⊒�퐵 (~ ∩ �푓 (�푥)); so �푥 ‖(~ ∩ �푓 (�푥)) ∈ F . From
�푓 (�푥) ⊒�퐵 ~ we get �푔(�푓 (�푥) ∩ ~) = �푔(�푓 (�푥)) ∩ �푔(~). But �푔(�푓 (�푥)) ⊒�퐶 �푧 and �푔(~) ⊒�퐶 �푧 ensuring
�푔(�푓 (�푥)) ∩ �푔(~) ⊒�퐶 �푧. Hence �푔(�푓 (�푥) ∩~) ⊒�퐶 �푧 and (~ ∩ �푓 (�푥))‖�푧 ∈ G , as required. This establishes
a bijection between the events of Pr(G )⊙Pr(F ) and those of Pr(G ◦ F ).
For an isomorphism, we require the bijection respects causal dependency and consistency. The

matching of a configuration �푥 ‖�푧 in G ◦F with a configuration �푥 ‖�푓 (�푥)‖�푧 in G ⊛F clearly respects
inclusion. This implies

�푑 ′ ≤�푥 ‖�푧 �푑 ⇐⇒ �푑 ′ ≤�푥 ‖�푓 (�푥) ‖�푧 �푑 ,

for �푑 , �푑 ′ in �푥 ∈ C (�퐴) or �푧 ∈ C (�퐶). This entails that the bijection on events given by �휃 and �휙

respects causal dependency.
Via the matching of configurations, both �휃 and its inverse �휙 may be shown to preserve consis-

tency. This establishes the isomorphism of the lemma. �

Corollary C.5. The operation (_)! is a (pseudo) functor from the category of affine-stable maps

to concurrent strategies.

C.2 For Section 5.3, the adjunction

Proposition C.6. Let �푓 be an additive-stable function from �퐴 to �퐵 between event structures with

polarity. Define

�퐹! ≔{�푥 ‖~ ∈ C (�퐴⊥‖�퐵) | �푓 �푥 ⊒�퐵 ~} ,

�퐹 ∗ ≔{~‖�푥 ∈ C (�퐵⊥‖�퐴) | ~ ⊒�퐵 �푓 �푥} .
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Define �푓! : Pr(�퐹!)
top // �퐴⊥‖�퐵 and �푓 ∗ : Pr(�퐹 ∗)

top // �퐵⊥‖�퐴 . Then the composition of strategies

�푓 ∗⊙�푓! is isomorphic to

Pr(�퐹 ∗ ◦ �퐹!)
top // �퐴⊥‖�퐴

and �푓!⊙�푓
∗ to

Pr(�퐹! ◦ �퐹
∗)

top // �퐵⊥‖�퐵 ,

based on the relational composition of the stable families.

Theorem C.7. Let �푓 be an additive-stable function from �퐴 to �퐵 between event structures with

polarity. In the bicategory of strategies the strategies �푓! and �푓 ∗ form an adjunction �푓! ⊣ �푓 ∗.

Proof. It is easiest to carry out the arguments by considering the associated constructions on
stable families. We obtain the compositions �푓 ∗⊙�푓! and �푓!⊙�푓

∗ from “relational” compositions of the
stable families

�퐹! ≔ {�푥 ‖~ ∈ C (�퐴⊥‖�퐵) | �푓 �푥 ⊒�퐵 ~}

for �푓! and

�퐹 ∗ ≔ {~‖�푥 ∈ C (�퐵⊥‖�퐴) | ~ ⊒�퐵 �푓 �푥}

for �푓 ∗.
By Proposition C.6, the composition �푓 ∗⊙�푓! is the event structure Pr(�퐹

∗ ◦ �퐹!) derived from the
stable family

�퐹 ∗ ◦ �퐹! = {�푥 ‖�푥 ′ ∈ C (�퐴⊥‖�퐴) | �푓 �푥 ⊒�퐵 �푓 �푥 ′}

—obtained as the relational composition of the stable families �퐹! and �퐹 ∗. Recall, from Lemma 4.2,
that the stable family of �푐�푐 �퐴 is

�퐶�퐴 ≔ {�푥 ‖�푥 ′ ∈ C (�퐴⊥‖�퐴) | �푥 ⊒�퐴 �푥 ′} .

Define the unit �휂 : �푐�푐 �퐴 ⇒ �푓 ∗⊙�푓! to be the map Pr(�퐼 ) of event structures with polarity got from
the inclusion of stable families

�퐼 : �퐶�퐴 ↩→ �퐹 ∗ ◦ �퐹! ;

clearly, �푥 ‖�푥 ′ ∈ �퐶�퐴, i.e. �푥 ⊒�퐴 �푥 ′, implies �푓 �푥 ⊒�퐵 �푓 �푥 ′, so �푥 ‖�푥 ′ ∈ �퐹 ∗ ◦ �퐹!.
By Proposition C.6, the composition �푓!⊙�푓

∗ is the event structure Pr(�퐹! ◦ �퐹
∗) got from the stable

family

�퐹! ◦ �퐹
∗
= {~‖~′ ∈ C (�퐵⊥‖�퐵) | ∃�푥 ∈ C (�퐴). ~ ⊒�퐵 �푓 �푥 & �푓 �푥 ⊒�퐵 ~′}

—obtained as the relational composition of the stable families �퐹 ∗ and �퐹!. The counit �휖 : �푓!⊙�푓
∗ ⇒

�푐�푐 �퐵 is the the map Pr(�퐽 ) got from the inclusion of stable families

�퐽 : �퐹! ◦ �퐹
∗
↩→ �퐶�퐵 ;

clearly, ~‖~′ ∈ �퐹! ◦ �퐹
∗, i.e. ~ ⊒�퐵 �푓 �푥 and �푓 �푥 ⊒�퐵 ~′, implies ~ ⊒�퐵 ~′, so ~‖~′ ∈ �퐶�퐵 .

To obtain an adjunction �푓! ⊣ �푓 ∗ we require (i) (�푓 ∗ �휖) (�휂�푓 ∗) = id�푓 ∗ , i.e. the composition of the
2-cells

�퐵

⇑�휖
+
�푐�푐 �

""
+
�푓 ∗

// �퐴
⇑�휂
+
�푐�푐 �

<<+
�푓!

// �퐵 +
�푓 ∗

// �퐴
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is the identity 2-cell id�푓 ∗ : �푓
∗ ⇒ �푓 ∗; and (ii) ( �휖 �푓!) (�푓!�휂) = id�푓! , i.e. the composition of the 2-cells

�퐴
⇑�휂
+
�푐�푐 �

<<+
�푓!

// �퐵
⇑�휖
+
�푐�푐 �

""
+
�푓 ∗

// �퐴 +
�푓!

// �퐵

is the identity 2-cell id�푓! : �푓! ⇒ �푓!.
We establish (i) and (ii) by considering the companion diagrams for stable families—the diagrams

(i) and (ii) are got by applying Pr to the diagrams for stable families. Consider the diagram for (i).
It takes the form

C (�퐵)

⊆
+
�퐶�

''
+
�퐹 ∗

// C (�퐴)

⊆

+
�퐶�

77
+
�퐹!

// C (�퐵) +
�퐹 ∗

// C (�퐴) ,

yielding the inclusion �퐶�퐴 ◦ �퐹 ∗ ⊆ �퐹 ∗ ◦ �퐶�퐵 . We check this is the identity inclusion, from which (i)
follows, by showing the converse inclusion �퐹 ∗ ◦�퐶�퐵 ⊆ �퐶�퐴 ◦ �퐹 ∗. Suppose ~‖�푥 ∈ �퐹 ∗ ◦�퐶�퐵 , i.e.

~ ⊒�퐵 ~′ & ~′ ⊒�퐵 �푓 �푥 ,

for some ~′ ∈ C (�퐵). Then,
~ ⊒�퐵 �푓 �푥 & �푥 ⊒�퐴 �푥 ,

so ~‖�푥 ∈ �퐶�퐴 ◦ �퐹 ∗.
The diagram for (ii) takes the form

C (�퐴)

⊆

+
�퐶�

77
+
�퐹!

// C (�퐵)

⊆

+
�퐶�

''
+
�퐹 ∗

// C (�퐴) +
�퐹!

// C (�퐵) ,

yielding the inclusion �퐹!◦�퐶�퐴 ⊆ �퐶�퐵 ◦�퐹!. To show (ii), we check that the converse inclusion�퐶�퐵 ◦�퐹! ⊆
�퐹! ◦�퐶�퐴 also holds. Suppose �푥 ‖~ ∈ �퐶�퐵⊙�퐹!, i.e.

�푓 �푥 ⊒�퐵 ~′ & ~′ ⊒ ~ ,

for some ~′ ∈ C (�퐵). Then,
�푥 ⊒�퐴 �푥 & �푓 �푥 ⊒�퐵 ~ ,

so �푥 ‖~ ∈ �퐹! ◦�퐶�퐴. �
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