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A B S T R A C T

Feature-based machine learning models for capacity and internal resistance (IR) curve prediction have been
researched extensively in literature due to their high accuracy and generalization power. Most such models
work within the high frequency of data availability regime, e.g., voltage response recorded every 1–4 s. Outside
premium fee cloud monitoring solutions, data may be recorded once every 3, 5 or 10 min. In this low-data
regime, there are little to no models available. This literature gap is addressed here via a novel methodology,
underpinned by strong mathematical guarantees, called ‘path signature’.

This work presents a feature-based predictive model for capacity fade and IR rise curves from only constant-
current (CC) discharge voltage corresponding to the first 100 cycles. Included is a comprehensive feature
analysis for the model via a relevance, redundancy, and complementarity feature trade-off mechanism. The
ability to predict from subsampled ‘CC voltage at discharge’ data is investigated using different time steps
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ranging from 4 s to 4 min. It was discovered that voltage measurements taken at the end of every 4 min
are enough to generate features for curve prediction with End of Life (EOL) and its corresponding IR values
predicted with a mean absolute percentage error (MAPE) of approximately 13.2% and 2.1%, respectively. Our
model under higher frequency (4 s) produces an improved accuracy with EOL predicted with an MAPE of
10%. Full implementation code publicly available.
1. Introduction

High energy density and long life are some of the prominent prop-
erties of lithium-ion batteries, which make them preferable to other
cells from different materials [1,2]. In addition to these desirable char-
acteristics, they are extensively used in powering portable electronic
devices, cars, and more interestingly, heavy-duty vehicles which are a
newly growing application field. Like any other batteries, lithium-ion
batteries’ ability to retain charge decreases over time due to factors
including charging and discharging processes, storage conditions (such
as ambient temperature), and the nature of maintenance routines.
As a result, it becomes necessary to study the degradation process
and prognostics of lithium-ion batteries for performance and cycle life
optimization, safety, maintenance, and replacement cost forecast.

There are various methods that can be applied to the study of
lithium-ion battery life prognostics. Among the popular strategies is the
use of machine learning techniques for the prediction of capacity fade
and internal resistance (IR) curves. This approach draws from feature
generation, feature selection, and model building carried out on the
battery use data measuring quantities including capacity, IR, voltage,
current, and temperature. Models obtained from such an approach have
been reported as accurate, robust, and versatile. For instance, machine
learning models that address early life prediction of capacity and IR
curves have been reported in [3,4], and those which focus on the
prediction of certain points on the capacity curve such as End of life
(EOL) can be found in [5–13].

One of the important battery health parameters widely predicted in
the literature is the EOL (which is here defined as the cycle number
at which a cell’s capacity drops to 80% of its nominal capacity taking
the first cycle as a reference). On this, many methods are based on
the rich data sets published in Severson et al. [5] and Attia et al. [6].
Three methods (namely Variance, Discharge, and Full) were proposed
in [5] to predict the EOL of cells in the batches of data. The authors
extracted features from the first 100 cycles of data including discharge
capacity-voltage curve 𝑄(𝑉 ), voltage, current, temperature, and IR (in
which the in-cycle measurement was carried out at approximately 4-
s intervals) to build a regularized linear regression model. Their best
model achieved a mean absolute percentage error (MAPE) of 7.5% on
test data. Using the same measurement frequency and input number of
cycles (but only 𝑄(𝑉 )), a feature-based convolutional neural network
(CNN) model was built in [4] to predict the entire capacity curve
through an exponential curve parameterization with EOL predicted
within an MAPE of approximately 22%. A similar work that used the
gradient of 𝑄(𝑉 ) corresponding to the first 100 cycles is [14] where
a feature-based CNN was developed to predict EOL with an average
MAPE of 11.7%. Another approach called broad extreme learning
machine that used state of health (SOH), 𝑄(𝑉 ), IR, and charge time
corresponding to the first 100 cycles with a 4-s data recording was
introduced in [15] to predict the EOL of cells in the considered batches;
an average MAPE of 9% was recorded. Similar to this work (using
the same number of input cycles but utilized temperature in place of
charge time) is [16] where the Gradient Boosting Regression Trees
algorithm was used to predict the EOL with an MAPE of 7% on test
data. The use of deep learning techniques has also been very successful
with the ‘explainability’ discussion still ongoing — see [17] for a wider
discussion and achievements.

All the above-mentioned works rely heavily on high-frequency bat-
2

tery use data measured at frequent intervals such as 1–4 s. However,
in real-world scenarios and especially outside frameworks of premium
fee cloud monitoring systems for diagnostics and prognostics, data is
recorded in wider time gaps (3-10 min) [18]. This poses a loss of
accuracy for models sensitive to data sub-sampling (which only work
in the rich data regime) and sideline sub-industries that are not able
(yet) to tap into cloud BMS systems.

Sub-sampling at a less frequent time is an advantage to any cloud
BMS which transmits data more frequently such as 10-30s. Frequent
data transmission increases the cost and complexity of the BMS: cloud
transmission of high-frequency data requires additional power sources,
hardware, and software components. In addition, frequent data trans-
mission can also increase the risk of data loss or corruption, particularly
if the BMS is transmitting wirelessly. If there is interference or signal
loss, the BMS may not be able to transmit accurate data, which could
lead to errors in data processing for model input. Further, sparse data
measurements decrease the computational time for data processing for
model input and modeling process.

It is reported in [3] that sub-sampling the constant-current (CC)
discharge voltage at a time step exceeding one-minute results in a
significant loss of model quality. This research focuses on building
robust machine learning models that predict the entire capacity and IR
degradation curves using battery use data measured at higher and less
frequent intervals. In line with [3], a machine learning approach taking
as input only the CC voltage response discharge phase is explored —
the choice of discharge phase is purely due to constraints on existing
data and independent of the modeling.

The data used for this study consists of consistently controlled
charge and discharge protocols. However, the discharge profile of each
of the measured quantities was taken in CC situations. For many real-
world scenarios where batteries are deployed, both the charging and
discharging parts might be less helpful in predicting various battery
life prognostics. For instance, the charging component of electric ve-
hicles (EVs) use is totally controlled by the nature of the charger (its
maximum output energy) and battery management system (BMS) [19].
On the contrary, the discharge component relies on the chosen route,
level of traffic, and driver habits, which make it nonmonotonic. Thus,
in the case of EVs, it is practical to design prognostics based on the
charging component. With respect to the situation where the discharging
component is consistent (such as storage for renewable energy), the
charging component depends heavily on the availability of natural
sources such as the intensity of the sun in solar panels and wind speed
in wind turbines; however, the quantity of derived energy is controlled
and monitored [20].

Two technical innovations are considered here. One is a mathemat-
ical innovation to deal with the subsampled data, i.e., the novel path
signature method for feature generation. The other is a novel feature se-
lection approach called Relevance, Redundancy, and Complementarity
Trade-off (RRCT) to select the best features for model building.

Path signature is a rich mathematical structure originating from the
field of rough path theory. It is characterized by the ability to extract
high-level information from a stream of data using a few summary
parameters, which can then be used as features for a machine learning
model. From a mathematical point of view, the signature provides a
graded and faithful description of a curve (up to appropriate reparam-
eterizations) by locally removing the need to look at its fine structure
and summarizing it over short intervals. Linear functionals on the
signature form a type of algebra that separates points and therefore,
they form a basis for continuous functions on compact sets of curves. In
short, using this powerful structure, the problem of learning a complex,
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highly non-linear function on a dataset of irregular time series can be
replaced by a simple, two-step procedure: (1) extract features from the
stream by computing its signature and (2) perform regression on the
signature features.

The path signature structure has been used successfully in various
machine learning tasks such as the analysis of current–voltage response
for non-intrusive load monitoring in the identification of electric ap-
pliances from a signal [21]; searching for hidden patterns in trading
strategies in financial data [22]; sound compression [23], and hand-
writing character recognition [24] — the evidence of path signatures
outperforming classical time-series analysis is clear. Coupled with the
success of signatures across various data streams, the motivation to
use signatures in this study stems from the nature of the cycling data
used and the signature invariance under time reparametrizations [25]
(needed to compensate the loss of information from sub-sampling).
The time series of discharge voltages (under CC) is characterized by
decreasing monotonicity with respect to time and thus taking volt-
age measurements with monotone but different time values will be
insensitive to signatures. In fact, one of the most important features
of the signature of a stream is its insensitivity to the choice of sample
times provided those samples are taken at a high enough resolution.
This study investigates the maximum sample rate at which adequate
information can be derived from the signatures based on the data used.

In terms of feature selection, ‘‘Relevance, Redundancy, and Comple-
mentarity Trade-off’’ (RRCT) algorithm is a filter-type feature selection
tool characterized by robustness and high computation efficiency. The
RRCT has been proven to work well with different types of datasets
across both regression and classification problems [26] and is more
efficient than selection methods using only Pearson correlation. Thus,
the combination of path signature and RRCT is natural to efficiently
summarize a data stream with a few parameters, and only keeps param-
eters with the highest impact on the predictions. This choice reduces
model complexity and enhances ease of deployment and maintenance.

The rest of the sections of this paper are organized as follows: Sec-
tion 2 provides information on battery cycling data used in this study,
and Section 3 illustrates the various techniques for feature engineering
and model building. Experimental results alongside their discussion are
presented in Section 4 with concluding remarks in Section 5.

2. Data description

The data of this study is the same as that of the companion work [3]
and comes from [5,6,27]. They consist of extracted measurements of CC
discharge voltage, capacity, and IR which correspond to 158 lithium
iron phosphate (LFP)/graphite A123 APR18650M1A cells. These cells
are cycled under similar conditions (in terms of ambient temperature
and discharging protocol), each with an initial capacity and voltage of
1.1 Ah and 3.3 V respectively.

LFP battery, or equivalently lithium iron phosphate battery, belongs
to the family of lithium-ion batteries which uses lithium iron phosphate
and graphite carbon as the cathode and anode materials respectively.
As described in [5], all cells were cycled at a constant temperature
of 30◦C and the same discharging protocol, but with different fast-
charging policies. Over 80 different charging policies were employed
and cells were charged with one of these policies from 0% to 80% state-
of-charge (SOC). Each charging policy represents a 𝐶-rate1 applied
to the cells at various ranges of SOC levels. For instance, a two-
step charging protocol could be as follows: charge a cell at 6𝐶 from
% to 50% SOC then apply a 𝐶-rate of 4𝐶 from 50% to 80% SOC.
verall, the charging time for each of the cells is in the range of 9

o 13.3 min, and all considered cells were charged with the same 𝐶-
ate (1𝐶 constant current–constant voltage, CC–CV) from 80% to 100%

1 𝐶-rate depicts the rate of time in which it takes to charge or discharge a
ell. It is related to time 𝑡 in hours by 𝑡 = 1∕𝐶-rate.
3

SOC (with a maximum voltage of 3.6 V). As mentioned earlier, all
cells were discharged at the same 𝐶-rate of 4𝐶 CC–CV to a minimum
voltage of 2.0 V; further details about the cycling procedure and other
properties can be found in [5,6,27]. The generated data is presented in
eight batches, namely batches 1 to 8. Each batch has a slightly different
cycling procedure with respect to the rest time during charging up
to 80% and after discharging (see the method section of [5] for the
reported times). The data accompanied by each of the batches are
put in three categories namely: descriptors, summary, and cycle. Cell
descriptors provide information about the cycling policy, cycle life,
barcode, and channel, while the summary includes data on a per-cycle
basis comprising cycle number, discharge capacity, charge capacity,
internal resistance, maximum temperature, average temperature, min-
imum temperature, and charge time. Cycle data present information
during a given cycle (in-cycle data) and include directly measured
and interpolated/derived quantities. The directly measured data consist
of time, charge capacity, current, voltage, temperature, and discharge
capacity while the derived quantities include a change in discharge
capacity with voltage (𝑑𝑄∕𝑑𝑉 ), linearly interpolated capacity, and lin-
early interpolated temperature. In line with [3], the same cell naming
convention 𝑏𝑁𝑏𝑐𝑁𝑐 is adopted for a cell from batch number 𝑁𝑏 and
cell number 𝑁𝑐 . This work is restricted to cells from batches 1, 2,
3, and 8 because they were all cycled to EOL (taken as the cycle
number corresponding to 80% of initial capacity). Since batch 8 does
not contain per-cycle measurement of IR, the substitute generated data
from [27] is used. In addition, cells that live less than 300 cycles
and more than 1200 cycles were excluded from having consistent data
across batches; see Fig. 1(b) for the distribution of cycle lives of cells
in the training set.

This study’s in-cycle extracted measurement of CC discharge voltage
forms the basis of feature generation. The average discharging time for
CC-controlled situations is approximately 15 min. This time window is
similar to that of [28], where the first 30 points on the charging voltage
curve collected over 10 min were used to predict the entire voltage
curve via a deep neural network (DNN). As described in Fig. 1(a),
cells’ voltage curve decreases progressively with cycle number, and
thus worthwhile to exploit this trend to engineer features that can
capture the pattern and be used as predictors for several battery life
prognostics. As for the capacity measurements, they were used to
extract the knee-onset (k-o) and knee-point (k-p) [8] using the Bacon–
Watt models [8,27] in line with the techniques discussed in [29, Section
3]. In the same manner, the IR measurements were used to obtain
the elbow-onset (e-o) and elbow-point (e-p) [27]. These points along
with EOL (with their corresponding capacity and IR values) were used
to describe and predict the full curves in each case; full details are
provided in Section 3.

3. Methodology and modeling process

This section presents methods adopted for feature generation, fea-
ture selection, and the machine learning modeling. The impact of
varying cycle numbers on the predictive power of the generated fea-
tures is demonstrated, and the details of the technique chosen for entire
curve prediction are provided. The key notion of the analysis is the
extraction of appropriate features from the time series of discharge
voltages using signatures over the observed interval.

3.1. A primer on path signatures

Mathematically, a R𝑑 -valued path 𝑋 is understood as a continuous
mapping from a given real interval [𝑎, 𝑏] into a 𝑑-dimensional Euclidean
space (basically a curve):

[𝑎, 𝑏] ∋ 𝑡 ↦ 𝑋𝑡 = 𝑋(𝑡) =
{

𝑋1
𝑡 , 𝑋

2
𝑡 , 𝑋

3
𝑡 ,… , 𝑋𝑑

𝑡

}

. (1)

In simple terms, a path describes a trajectory of a process character-

ized by its starting and ending points. For instance, the degradation
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Fig. 1. (a) Evolution of the CC voltage curve (with respect to increasing cycle number) at discharge for selected cells in batches 1, 2, 3, and 8. It can be seen that the curves fall
as the cells age. (b) The EOL histogram, capacity, and IR curves of all the training cells. Most cells live for around 500 and 900 cycles, whereas a few cells have a cycle life of
up to 1200. Nominal capacity is seen to range between 1.05–1.10 Ah while IR values range from around 0.013–0.025 Ω.
trajectory of a battery capacity from its nominal value to value at EOL;
the in-cycle pair current–voltage; or the stock price within a specified
period of time.

From a bird’s eye perspective, the signature of 𝑋 is akin to a basis
one selects to express functions in a function space, say, a Fourier
basis for continuous functions — critically, the signature is a novel
object that is much more expressive than other bases and appropriately
encapsulates many of the path’s analytical and geometrical properties.

Given the R𝑑 -valued continuous path 𝑋 of Eq. (1), the 𝑘th fold
iterated integral of 𝑋 over [𝑎, 𝑏] with respect to its 𝑖1,… , 𝑖𝑘 ∈ {1,… , 𝑑}
components (possibly repeated) is given by

𝑆(𝑋)𝑖𝑖 ,…,𝑖𝑘
𝑎,𝑏 ∶= ∫𝑎<𝑡𝑘<𝑏

⋯∫𝑎<𝑡1<𝑡2
𝑑𝑋𝑖1

𝑡1
… 𝑑𝑋𝑖𝑘

𝑡𝑘
. (2)

The path signature of 𝑋 over [𝑎, 𝑏] is defined as the infinite-dimensional
vector collection of all the possible iterated integrals of 𝑋. In signature
notation, it is written as

𝑆(𝑋)𝑎,𝑏 ∶=
(

1, 𝑆(𝑋)1𝑎,𝑏, 𝑆(𝑋)2𝑎,𝑏, 𝑆(𝑋)1,1𝑎,𝑏 , 𝑆(𝑋)1,2𝑎,𝑏 ,… , 𝑆(𝑋)𝑖1 ,…,𝑖𝑘
𝑎,𝑏 ,…

)

.

For more clarity, the signature of 𝑋 is a sequence of real numbers
where each of its terms is an iterated integral defined by Eq. (2) and the
superscripts are taken from the set 𝑊 = {(𝑖1,… , 𝑖𝑘)|𝑘 ≥ 1, 𝑖1,… , 𝑖𝑘 ∈
{1,… , 𝑑}} called the set of words on the alphabet {1,… , 𝑑} containing
exactly 𝑑 letters [25]. For instance, given a two-dimensional path 𝑋𝑡 =
{𝑋1

𝑡 , 𝑋
2
𝑡 } = {𝑡 + 2, 𝑡2 + 4} with 𝑑𝑋𝑡 = {𝑑𝑋1

𝑡 , 𝑑𝑋
2
𝑡 } = {𝑑𝑡, 2𝑡𝑑𝑡} and

𝑡 ∈ [0, 2], some of the terms of the signatures of 𝑋𝑡 are

𝑆(𝑋)10,2 = ∫0<𝑡<2
𝑑𝑋1

𝑡 = ∫

2

0
𝑑𝑡, 𝑆(𝑋)20,2 = ∫0<𝑡<2

𝑑𝑋2
𝑡 = ∫

2

0
2𝑡 𝑑𝑡,

𝑆(𝑋)1,10,2 = ∫0<𝑡1<𝑡2<2
𝑑𝑋1

𝑡1
𝑑𝑋1

𝑡2
= ∫

2

0

[

∫

𝑡2

0
𝑑𝑡1

]

𝑑𝑡2,

𝑆(𝑋)1,20,2 = ∫0<𝑡1<𝑡2<2
𝑑𝑋1

𝑡1
𝑑𝑋2

𝑡2
= ∫

2

0

[

∫

𝑡2

0
𝑑𝑡1

]

2𝑡2𝑑𝑡2,

𝑆(𝑋)2,10,2 = ∫0<𝑡1<𝑡2<2
𝑑𝑋2

𝑡1
𝑑𝑋1

𝑡2
= ∫

2

0

[

∫

𝑡2

0
2𝑡1𝑑𝑡1

]

𝑑𝑡2,

𝑆(𝑋)2,20,2 = ∫0<𝑡1<𝑡2<2
𝑑𝑋2

𝑡1
𝑑𝑋2

𝑡2
= ∫

2

0

[

∫

𝑡2

0
2𝑡1𝑑𝑡1

]

2𝑡2𝑑𝑡2,

𝑆(𝑋)1,1,10,2 = ∫0<𝑡1<𝑡2<𝑡3<2
𝑑𝑋1

𝑡1
𝑑𝑋1

𝑡2
𝑑𝑋1

𝑡3
= ∫

2

0

[

∫

𝑡3

0

[

∫

𝑡2

0
𝑑𝑡1

]

𝑑𝑡2

]

𝑑𝑡3,

⋮

4

Following this pattern, one can obtain all the terms 𝑆(𝑋)𝑖1 ,…,𝑖𝑘
0,2 of the

signature with given words or multi-index (𝑖1,… , 𝑖𝑘) (where in this case
𝑖1,… , 𝑖𝑘 ∈ {1, 2}).

The notion of path signature was originally brought forward in [30]
where it was applied to piecewise smooth paths. This idea was ex-
tended in [31] to paths characterized by finite length. Signatures
have many interesting and useful properties including time invariance
under reparameterization, relation with Shuffle product and Chen’s
identity, time-reversal, and its linear combination to form Lévy area of
a 2-dimensional path [25].

Path signature does not only work on continuous paths but also can
be applied to discrete cases. A discrete path can be a stream of data
of any dimension or time series data. Because calculating the signature
of a data stream can be computationally intensive, especially for high
dimensional data and high signature levels, iisignature [32] is a Python
package that efficiently handles the calculations.

3.2. Feature generation

In this study, a 2-level signature of the path 𝑋(𝑡) = {𝑡, 𝑉 (𝑡)} is
considered, where 𝑡 and 𝑉 (𝑡) are the in-cycle CC discharge time and
discharge voltage respectively, i.e.,

𝑆(𝑋)𝑡0 ,𝑡𝑓 =
(

1, 𝑆(𝑋)1𝑡0 ,𝑡𝑓 , 𝑆(𝑋)2𝑡0 ,𝑡𝑓 , 𝑆(𝑋)1,1𝑡0 ,𝑡𝑓
, 𝑆(𝑋)1,2𝑡0 ,𝑡𝑓

, 𝑆(𝑋)2,1𝑡0 ,𝑡𝑓 , 𝑆(𝑋)2,2𝑡0 ,𝑡𝑓
)

,

where 𝑡0, 𝑡𝑓 are the initial and final times for the in-cycle CC dis-
charging, respectively. As a remark, other choices for 𝑋 are possible,
e.g., current–voltage-temperature 𝑡 ↦ {𝐼(𝑡), 𝑉 (𝑡), 𝑇 (𝑡)} and combina-
tions thereof. These choices fall outside the scope of this work where
the choice 𝑋(𝑡) = {𝑡, 𝑉 (𝑡)} during CC is parsimoniously fit for purpose.

To generate the signature 𝑆(𝑋)𝑡0 ,𝑡𝑓 for feature extraction, the first
term of the sequence 𝑆(𝑋)𝑡0 ,𝑡𝑓 was dropped since it is constant for all
the in-cycle voltage curves regardless of their corresponding cycles.
The first two levels of the signature of 𝑋 were considered because of
their geometrical intuition [25, Section 1.2.4]. In line with [25] and for
brevity, the following conventions (ignoring the constant) for the first
two levels of the signature of 𝑋 were adopted
(

𝑆1, 𝑆2, 𝑆1,1, 𝑆1,2, 𝑆2,1, 𝑆2,2
)

. (3)
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Each 𝑆𝑖[,𝑗], 𝑖, 𝑗 ∈ {1, 2} in Eq. (3) is related (after simplification) to the
components of 𝑋 as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑆1 = 𝑡𝑓 − 𝑡0, 𝑆2 = 𝑉𝑓 − 𝑉0,

𝑆1,1 =
(

𝑡𝑓 − 𝑡0
)2 ∕2, 𝑆1,2 = −∫

𝑡𝑓

𝑡0

(

𝑉 (𝑡) − 𝑉𝑓
)

𝑑𝑡,

𝑆2,1 = −∫

𝑡𝑓

𝑡0

(

𝑉0 − 𝑉 (𝑡)
)

𝑑𝑡, 𝑆2,2 =
(

𝑉𝑓 − 𝑉0
)2 ∕2,

(4)

where 𝑉0 and 𝑉𝑓 are the initial and final CC discharge voltages respec-
tively.

The negative sign in 𝑆1,2 and 𝑆2,1 (see Fig. 2) is a result of the
orientation of the path 𝑋, since it is traversed in a clockwise direc-
tion [25]: 𝑉 (𝑡) decreases with an increase in time 𝑡. Each component of
the signature has a practical interpretation: 𝑆1 and 𝑆2 are the in-cycle
incremental discharge time and voltage under CC respectively; 𝑆1,1 and
𝑆2,2 are also proportional to 𝑆1 and 𝑆2 with amplification of the change
in the measured quantities (𝑡 and 𝑉 (𝑡)); 𝑆1,2 and 𝑆2,1 are proportional
(current being kept constant) to the in-cycle electrical energy delivered
by cells but shifted by 𝑉𝑓 and 𝑉0 respectively. The scatter plots of Fig. 3
depict the linear correlations between these signatures and the cycle
number: it is revealed that there does exist some correlation between
signatures and how each cell ages with a very strong correlation (𝜌 <
−0.5 and 𝜌 > 0.5) in 𝑆1, 𝑆1,1, 𝑆1,2, and 𝑆2,1. To study the evolution of
the CC voltage at discharge using these signatures, cross-cycle features
that compare signature components of one cycle to another were built,
as also those which capture the distribution of the signatures over
the observed cycles. The CC voltage curves at discharge were first
cleaned: since the curves are not measured at consistent time intervals,
they were interpolated using the SciPy’s interp1d function [33] and
evaluated on a constant time interval with step-size ℎ. The step size ℎ
was varied from 4 s to 4 min to generate different sets of sub-samples
of the CC voltage at discharge. For each sub-sample, the signature of
the corresponding path 𝑋 defined in Eq. (3) was then calculated using
the iisignature Python library [32]. Explicitly, suppose 𝑆(cell)

𝑖 denotes
the value of a certain signature component at cycle 𝑖 for a given cell,
features that consider the comparison of a given signature component
over 𝑛 cycles were generated as follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Sig1 ∶= median
{

𝑆(cell)
𝑖 , 𝑖 = 1, 2,… , 𝑖10

}

,

Sig𝑛∕2 ∶= median
{

𝑆(cell)
𝑖 , 𝑖 = 𝑛∕2 − 𝑖10, 𝑛∕2 − 𝑖10 + 1,… , 𝑛∕2 + 𝑖10

}

,

Sig𝑛 ∶= median
{

𝑆(cell)
𝑖 , 𝑖 = 𝑛 − 𝑖10, 𝑛 − 𝑖10 + 1,… , 𝑛

}

,

Sig𝑛𝑚1 ∶= Sig𝑛 − Sig1,
Sig𝑑𝑖𝑓𝑓 ∶= Sig𝑛 − 2Sig𝑛∕2 − Sig1;

(5)

where 𝑛 and 𝑖10 are the number of input cycles and 10% of 𝑛 respec-
tively. This procedure resulted in the extraction of 30 features encoded
using the convention in Table 1. As for the features measuring the
distribution of a fixed signature component over the observed cycles,
features for each cell over 𝑛 cycles were generated using

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
{

𝑆(cell)
𝑖 , 𝑖 = 1, 2,… , 𝑛

}

, max
{

𝑆(cell)
𝑖 , 𝑖 = 1, 2,… , 𝑛

}

,

mean
{

𝑆(cell)
𝑖 , 𝑖 = 1, 2,… , 𝑛

}

, var
{

𝑆(cell)
𝑖 , 𝑖 = 1, 2,… , 𝑛

}

,

kurt
{

𝑆(cell)
𝑖 , 𝑖 = 1, 2,… , 𝑛

}

, skew
{

𝑆(cell)
𝑖 , 𝑖 = 1, 2,… , 𝑛

}

;

(6)

where var, skew, and kurt are the variance, skewness, and kurtosis
operations respectively. Under this process, 36 features were generated
and were encoded using the convention given in Table 2. Thus, overall,
a total of 66 features were extracted and we demonstrate in the next
sessions how each group (as well as their combination) was used for
5

model building.
Table 1
Description of the generated features which compare signatures across cycles: the
<feature> appendage denotes one of the formulas defined in Eq. (5).

Feature Description

S1-<feature> cross-cycle features of the first signature component, 𝑆1

S2-<feature> cross-cycle features of the second signature component, 𝑆2

S11-<feature> cross-cycle features of the third signature component, 𝑆1,1

S12-<feature> cross-cycle features of the fourth signature component, 𝑆1,2

S21-<feature> cross-cycle features of the fifth signature component, 𝑆2,1

S22-<feature> cross-cycle features of the sixth signature component, 𝑆2,2

Table 2
Description of the generated features which capture the distribution of the
signatures of the CC discharge voltage (as given in Eq. (6)): the <component>
appendage denotes one of the signature components defined in Eq. (3).
Feature Description

Min-<component> minimum of a signature component over 𝑛 cycles
Max-<component> maximum of a signature component over 𝑛 cycles
Mean-<component> mean of a signature component over 𝑛 cycles
Var-<component> variance of a signature component over 𝑛 cycles
Kurt-<component> kurtosis of a signature component over 𝑛 cycles
Skew-<component> skewness of a signature component over 𝑛 cycles

3.3. RRCT algorithm for feature selection

The RRCT algorithm [26] is a model-agnostic feature selection
algorithm that takes as input features and prediction targets and ranks
the input features according to a certain ‘Relevance’, ‘Redundancy’ and
‘Complementary’ Trade-off (RRCT). For the algorithm to be used as a
feature selection mechanism, the user must also input the number of
features to be kept from the ranked features list.

Ingredients-wise, ‘Relevance’ reflects the strength (and thus needs to
be maximized) of the univariate association between a feature and the
target variable. This can be captured using any statistical method which
shows the relationship between two variables (for instance, mutual
information and correlation coefficient). As for the ‘Redundancy’, it
captures the overlapping or common predicting power of two or more
features in the feature set. It thus needs to be minimized to narrow
down the dimension of the feature space. Lastly, ‘Complementarity’
(also known as feature interaction and is the heart of the RRCT),
measures the joint predicting power of two or more features since
it is possible that individual features might be moderately associated
with the target variable but strongly related to it when combined with
others.

The three properties are combined in the following equation to rank
features in a given feature set:

RRCT ∶= max
𝑗∈𝑄−𝑆

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑟𝐼𝑇 (𝒇 𝑗 , 𝒚)
⏟⏞⏞⏟⏞⏞⏟

relevance

− 1
|𝑆|

∑

𝑠∈𝑆
𝑟𝐼𝑇 (𝒇 𝑗 ,𝒇 𝑠)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
redundancy

+ sign
(

𝑟𝑝(𝒇 𝑗 , 𝒚|𝑆)
)

⋅ sign
(

𝑟𝑝(𝒇 𝑗 , 𝒚|𝑆) − 𝑟(𝒇 𝑗 , 𝒚)
)

⋅ 𝑟𝑝,𝐼𝑇
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

complementarity

⎤

⎥

⎥

⎥

⎥

⎦

; (7)

where 𝑄 is the set of indices of all the features; 𝑆 is the set of
selected feature indices; 𝒇 𝑗 and 𝒚 are the feature at index 𝑗 and
target variable respectively; 𝑟𝐼𝑇 is the non-linearly transformed rank
correlation coefficient 𝑟𝑋𝑌 between two random variables 𝑋, 𝑌 and is
defined by 𝑟𝐼𝑇 (𝑋, 𝑌 ) ∶= −0.5 ⋅ log

[

1 − 𝑟2𝑋,𝑌

]

; 𝑟𝑝(𝒇 𝑗 , 𝒚|𝑆) is the partial
correlation coefficient between 𝒇 𝑗 and 𝒚 given the existing features
in the subset 𝑆; 𝑟(𝒇 𝑗 , 𝒚) is the Spearman rank correlation between 𝒇 𝑗

and 𝒚; 𝑟𝑝,𝐼𝑇 = −0.5 ⋅ log
[

1 − 𝑟2𝑝
]

is the transformed computed partial
correlation coefficient; sign(⋅) is the signum function.
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Fig. 2. (a) Geometrical interpretation of the first two levels of signature of the path 𝑋 defined above. The negative signs in 𝑆1,2 and 𝑆2,1 are because of the orientation of the
ath. (b) The evolution of the signature terms 𝑆1,2 and 𝑆2,1 as the cycle number increases. It can be seen that the areas defined by −𝑆1,2 and −𝑆2,1 shrink and expand respectively
s the input cycle number increases. This is a key point in generating features to capture the evolution.
Fig. 3. Scatter plots (and the corresponding Pearson correlation coefficient 𝜌) of signature components and the first 100 cycles of a random cell b1c30. Each plot shows that there
re some linear correlations between signatures and cycle numbers.
Looking in more detail into the complementarity term of Eq. (7), the
erm sign

(

𝑟𝑝(𝒇 𝑗 , 𝒚|𝑆) − 𝑟(𝒇 𝑗 , 𝒚)
)

determines whether the conditional
elevance 𝑟𝑝(𝒇 𝑗 , 𝒚|𝑆) is greater than 𝑟(𝒇 𝑗 , 𝒚). This implies that includ-
ng 𝒇 𝑗 has additional explanatory relevance given the features in 𝑆.
6

Furthermore, the term sign
(

𝑟𝑝(𝒇 𝑗 , 𝒚|𝑆)
)

forces the overall complemen-
tarity contribution to be positive when 𝑟(𝒇 𝑗 , 𝒚) < 0, 𝑟𝑝(𝒇 𝑗 , 𝒚|𝑆) < 0, and
sign

(

𝑟𝑝(𝒇 𝑗 , 𝒚|𝑆) − 𝑟(𝒇 𝑗 , 𝒚)
)

< 0.
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Table 3
Description of the machine learning models considered in this study.

Model name What are predicted

cycle model k-o, k-p, e-o, e-p, EOL
capacity-IR model Qatk-o, Qatk-p, IRate-o, IRate-p, IRatEOL

Concretely, the RRCT algorithm uses Eq. (7) in an incremental way
o rank features (in decreasing order) based on relevance, redundancy,
nd complementarity through the following main three steps: (i) select
he first feature 𝒇 𝑗 using max𝑗∈𝑄

[

𝑟𝐼𝑇 (𝒇 𝑗 , 𝒚)
]

and place it in the initially
empty subset 𝑆 of 𝑄, i.e., 𝑗 → 𝑆; (ii) apply Eq. (7) repeatedly to select
he next feature from 𝑄 − 𝑆 and put it in 𝑆, i.e., 𝑆 ∪ 𝑗 → 𝑆; (iii)

the features are now ranked based on the three criteria and the top
𝑘 features {𝒇 𝑗}𝑘𝑗=1, 𝑗 ∈ 𝑆 can be kept from the original feature matrix.

These steps have been originally implemented in MATLAB by the
uthor of [26], and its Python implementation (as used in this study)
s available on the PyPI platform under the name rrct (see Code
vailability section below).

.4. Machine learning

eatures, targets, and a model to capture nonlinearity
The feature set was described in Section 3.2. In terms of prediction

argets, the aim is to predict the degradation trajectory of the capacity
nd internal resistance curve from early life. This is done by predicting
small amount of specific, cogent points of each curve and then re-

onstructing the full curve [29, Fig. 1]. For each Capacity and IR curve
Fig. 1(b)), and using the Bacon–Watt model [8,27] (an overview of
dentification methods appears in [34]), knees and elbows coordinates
f the curves are obtained. Concretely, the prediction targets are: the
ycle-points for knee-onset (k-o), knee-point (k-p), elbow-onset (e-o),
lbow-point (e-p), and (capacity) EOL, plus the capacities at k-o and
-p (Qatk-o and Qatk-p, respectively) as well as IR values at e-p, e-o
nd EOL (IRate-o, IRate-p and IRatEOL, respectively).

The bar chart of Fig. 4 shows the linear Pearson correlation coeffi-
ient 𝜌 between all the generated features and two of the key targets
or prediction: EOL and its corresponding IR value (IRatEOL). It can
e seen that only 10 and 24 out of the total extracted features have a
tronger linear correlation with each of the chosen targets, respectively,
hich implies that the majority have a more complex relationship with

he targets (than linear).

onlinear modeling, its design and details of model implementation.
In line with [3], the modeling choice taken here is to consider a

on-linear, tree-based, and ensemble model called Extreme Gradient
oosting (XGBoost) [35]. In this study, the modeling strategy involved
uilding two different models named cycle model and capacity-IR model.
he former was designed to jointly predict cycle number-related targets
namely knee-onset (k-o), knee-point (k-p), elbow-onset (e-o), elbow-
oint (e-p), and EOL) while the latter was built to jointly predict the
apacities at k-o and k-p (Qatk-o and Qatk-p) as well as IR values at
-p, e-o and EOL (IRate-o, IRate-p, and IRatEOL); Table 3 summarizes.

The XGBoost implementation used is that of scikit-learn [36] and
etails about its theory can be found in the Methods section (also [35]).
ach of the models of Table 3 was trained using a 70 − 30% train-test
plitting strategy (i.e., 70% of the 158 cells were used for training and
0% were used for testing) using the features generated and the above-
entioned targets. Since the XGBoost is designed to predict a single

arget, the scikit-learn MultiOutputRegressor class [36] was used to wrap
he model to predict multiple targets.

As for the hyperparameter tuning, both trial and error and grid
earch approaches were employed. Trial and error was considered
o identify suitable values of the hyperparameters for the model.
rid search approach, accomplished by the scikit-learn GridSearchCV
7

Table 4
Parameter specification for the two trained XGBoost models: cycle
and capacity-IR models. In places where ‘‘default’’ is specified, it
means that the scikit-learn’s default parameters were used.

Parameters Values

Cycle model Capacity-ir model

n_estimators 100 500
learning_rate default 0.1
reg_alpha 0.1 default
max_depth 2 6
min_samples_split 3 default

class [36], was considered to generate other possible values around
those obtained in the first technique (a parameter space), which were
then optimized using squared error scoring function to obtain the best
set. In particular, it was observed that the learning rate, number of
estimators, 𝑙1-regularization, minimum sample split, and the maximum
depth of grown trees were the most important to tune (see Table 4 for
the optimized values of these parameters); details about the meanings
of these parameters can be found in [35]. Model evaluation was carried
out on the test data via model metrics including mean absolute error
(MAE), mean absolute percentage (MAPE), and root mean squared
error (RMSE); see Eq. (9) in the Methods section for their definitions.

3.5. Longitudinal data exploration

To determine a base value for the number of cycles of battery
cycling data needed for our study, the modeling strategies discussed
in Section 3.4 were deployed on all the 66 features extracted from the
in-cycle CC discharge voltage measured at approximately 4 s intervals.
A 3-fold cross-validation was carried out on the training set correspond-
ing to the data obtained under the first 𝑛 cycles, 𝑛 = 1, 2,… , 100. Errors

ere further categorized into two groups (one related to points on the
apacity curve (k-o, k-p, and EOL) and the other related to IR curve
e-o and e-p)) to see the impact of varying cycle number inputs on the
odel; see Fig. 5 for the summary of results. In general, errors decrease

s the input cycle progresses. This is different from the previous paper
3] where increasing the cycle number threshold (in the given range)
oes not significantly improve the model. In addition, it is a selling
oint with respect to [3] because as more data is observed in the
efined range of 𝑛, the corresponding model becomes more accurate.
ollowing this result and the fact that the gap between input cycles
as to be bigger for the signature to uniquely define the CC discharge
oltage of different cycles (see Fig. 2), 100 cycles were chosen for all
he modeling activities. This is in line with other papers predicting EOL
nd capacity fade curves of batteries [4,5,7]. For comparison purposes
nly, errors on test data were presented for models using data generated
nder 50 cycles.

.6. Data sub-sampling and feature selection

Upon establishing the number of input cycles for the models, the
ocus turns to the effect of CC discharge voltage sub-sampling and
eature selection on model accuracy. The former was accomplished by
onsidering different values of time steps, ℎ (in minutes, as described

in Section 3.2) between 0.05 and 4 min with a constant increase
of 0.05. Under each ℎ, features were generated accordingly and fed
o the machine learning algorithm. Feature selection was performed
or a given ℎ by considering a different threshold of the percentage

of features to retain after the process. In particular, keeping 𝑝% was
considered for modeling (where 𝑝 ∈ {10, 20, 30,… , 90}), and the model
performance metrics were recorded accordingly.
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Fig. 4. Pearson correlation coefficients between the features generated from Tables 1 and 2 and EOL as well as IRatEOL.
3.7. Entire curve prediction

The predictions from the machine learning model described in
Section 3.4 are the key points on the capacity and IR curves. Following
the method developed in [3,17,27,29], these points (knees, elbows,
EOL, and their corresponding capacity and IR values — see [34] for
an in-depth review of ‘‘Knees’’) together with the initial values of the
cycle number, capacity, and IR were fed to a modified quadratic spline
to predict the entire curves. In other words, the spline fits a straight line
between the initial point and knee/elbow onset, a quadratic polynomial
between the knee/elbow onset and knee/elbow point, and a quadratic
8

polynomial from the knee/elbow point to the EOL. Further details
about the spline can be found in [3].

4. Results and discussion

In this section, the results of the various experiments performed in
this study are presented. In particular, metrics on the models developed
under the high and low-frequency data measurement and feature selec-
tion are reported. A visualization of the full prediction of the capacity
fade and IR rise curves corresponding to randomly selected cells in the
test data is also given.
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Fig. 5. (a) Average cross-validated errors on the training set corresponding to the cycle model trained on the combination of features from Tables 1 and 2. Errors were further
grouped into two categories (one related to points on the capacity curve (k-o, k-p, and EOL) and the other related to IR curve (e-o and e-p)) to see the impact of varying cycle
number inputs on the model. It can be observed that, on average, the model captures the evolution of signatures of the CC voltage at discharge more at higher values of input cycle
number. (b) The same investigation but on capacity-IR model is shown by averaging the cross-validated errors on capacity at k-o and k-p, and IR at e-o, e-p, and EOL predictions.
In general, the error decreases significantly in the first 40 cycles after which it approximately remains the same for the rest of the cycle number inputs.
4.1. Model results under high-frequency data

Model metrics. Table 5 presents the performance metrics (and their
95% confidence intervals) of the cycle model. The model was trained
on features in Table 1 as well as its combination with those in Table 2
which were generated under high-frequency data (4 s). Generally,
errors (train and test) are lower under the combination of both tables
with EOL predicted on test data to the accuracy of 65 and 91 cycles of
MAE and RMSE respectively. A similar trend is also observed in Table 6
for the predictions made under the capacity-IR model where IRatEOL
was predicted with MAE and RMSE of approximately 4.06 × 10−4 and
.32 × 10−4 Ω respectively. This highlights the non-negligible role of
he distributional features of Table 2. In fact, the signature’s distri-
ution captures summary information about cells’ loss in capacity: for
nstance, the distribution of 𝑆2 and 𝑆1,2 components give information
bout the incremental change in voltage and energy respectively; see
q. (4).

The comparative analysis (using the MAPE) of the models obtained
nder cycles 50 and 100 for the groups of generated features are
resented in Table 7. Longitudinal data under 100 cycles yielded fewer
est errors than that of 50 cycles. In fact, Fig. 6 illustrates that test errors
ecrease as the input cycles increase. This also agrees with what was
eported in Section 3.5 where cross-validation on the training data was
onsidered. It is remarked, for this result, that the models still have
competitive accuracy (see [4,5]) under 50 cycles with an MAPE of

5.8%.
Parity plots. In Fig. 7, parity plots of model predictions are pro-

ided (with an embedded histogram of residuals) to investigate how
he predicted data points are close to the true parity line. Overall,
redicted points in both train and test data are close to the true parity
9

Table 5
Performance metrics together with 95% confidence interval of the cycle model for the
prediction of k-o, k-p, e-o, e-p, and EOL. Values for the metrics using features from
Table 1 only and their combination with those in Table 2 generated under 4-s data
are provided.

Table MAE (cycles) RMSE (cycles)

Train Test Train Test

1

k-o 21 ± 3.4 64 ± 16.5 28 ± 4.4 86 ± 18.5
k-p 23 ± 3.4 66 ± 17.1 29 ± 4.7 89 ± 18.8
e-o 28 ± 4.4 87 ± 19.6 35 ± 5.0 110 ± 21.1
e-p 27 ± 4.3 78 ± 18.0 35 ± 5.0 101 ± 18.5
EOL 30 ± 4.7 74 ± 19.7 39 ± 5.9 101 ± 23.1

1 & 2

k-o 13 ± 2.4 68 ± 15.7 19 ± 3.3 87 ± 16.8
k-p 16 ± 2.9 66 ± 17.2 23 ± 3.9 89 ± 20.0
e-o 16 ± 2.8 86 ± 19.2 22 ± 3.8 110 ± 22.7
e-p 18 ± 3.1 76 ± 22.1 25 ± 3.9 108 ± 26.4
EOL 19 ± 3.2 65 ± 17.8 26 ± 4.2 91 ± 24.3

line. The embedded histograms highlight that most off-predictions are
concentrated in the bin symmetrically (i.e., no skew) centered around
zero, showing that prediction errors are minimized on both training and
test cells.

Feature importance. To account for the role of each of the generated
features in building the XGBoost models, feature importance corre-
sponding to the first 10 most important predictors for each target are
presented in Fig. 8. Feature importance values were calculated using
the XGBoost impurity-based feature importance analysis embedded in
the algorithm [35] and were scaled to a range between 0 and 1 for ease
of interpretation. In general, the most important features were spread
across those presented in Tables 1 and 2 which show the predicting
power of both methods employed for feature extraction. In particular,
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Fig. 6. (a) Average test errors corresponding to the cycle model built on the combination of features from Tables 1 and 2 generated under 4-s data. The errors are split into two
parts (one related to points on the capacity curve (k-o, k-p, and EOL) and the other related to IR curve (e-o and e-p)) to further see the impact of varying cycle number inputs on
the model. It is shown that, roughly, the error decreases with an increase in the input number of cycles. (b) The effect on input cycles on capacity-IR model is shown by averaging
he test errors on capacity at k-o and k-p, and IR at e-o, e-p, and EOL predictions. In general, errors do not change significantly over the cycle numbers considered.
Table 6
Performance metrics together with 95% confidence interval of the capacity-IR model for the prediction of
Qatk-o, Qatk-p, IRate-o, IRate-p, and IRatEOL. Values for the metrics using features in Table 1 only and its
combination with those in Table 2 generated under 4-s data are presented.

Table MAE RMSE

Train (×10−4) Test (×10−3) Train (×10−4) Test (×10−3)

1

Qatk-o 9.29 ± 1.40 5.353 ± 1.54 12.02 ± 2.04 7.566 ± 2.36
Qatk-p 9.28 ± 1.31 5.652 ± 1.68 11.60 ± 1.80 8.103 ± 2.88
IRate-o 0.18 ± 0.02 0.498 ± 0.12 0.24 ± 0.04 0.640 ± 0.15
IRate-p 0.17 ± 0.03 0.493 ± 0.12 0.22 ± 0.03 0.637 ± 0.16
IRatEOL 0.19 ± 0.03 0.490 ± 0.13 0.24 ± 0.03 0.660 ± 0.12

1 & 2

Qatk-o 7.65 ± 1.23 5.637 ± 1.52 10.19 ± 2.02 7.689 ± 2.50
Qatk-p 7.81 ± 1.16 5.634 ± 1.93 9.91 ± 1.73 8.722 ± 3.77
IRate-o 0.15 ± 0.02 0.416 ± 0.11 0.18 ± 0.02 0.554 ± 0.16
IRate-p 0.14 ± 0.02 0.395 ± 0.11 0.18 ± 0.03 0.546 ± 0.17
IRatEOL 0.17 ± 0.03 0.406 ± 0.14 0.21 ± 0.02 0.632 ± 0.22
t
f
s
r
n
s

Table 7
A comparative analysis of mean absolute percentage error (MAPE): performance metrics
of the cycle and capacity-IR models for the prediction of EOL and IRatEOL respectively.
Metric values for using two different cycle number inputs (𝑛) under features from
Table 1 only as well as its combination with those from Table 2 generated under 4-s
data are shown.

MAPE (%)

Table 1 Tables 1 and 2

Train Test Train Test

𝑛 = 50
EOL 5.6 15.5 4.2 15.8
IRatEOL 0.1 3.0 0.09 2.9

𝑛 = 100
EOL 4.1 11.7 2.7 10.0
IRatEOL 0.1 2.6 0.09 2.1
10
for EOL prediction, the features that measure the variance of 𝑆1,2 (Var-
S12) and compare its values at cycles 1 and 100 (S12-Sig-100m1) were
discovered to be on top of the list. This can be linked to the rich
geometrical interpretation of this signature component (see Fig. 2): it
is the negative time integral of the CC discharge voltage whose values
are shifted by the final voltage. This is directly linked and proportional
to the energy discharged from the cells as the output current is kept
constant.

RRCT feature selection. The bar charts of Fig. 9 show the results of
he RRCT algorithm (see code availability section) applied to all the
eatures generated to predict the EOL and IRatEOL. On the training
et, errors decreased progressively as we increased the proportion of
etained features in both cases. On the other hand, test errors did
ot change significantly as the feature percentages increased. This
hows the robustness of the signature method and the quality of the
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Fig. 7. Parity plots showing the comparison of the predicted values to the measured values (obtained under cycle model and capacity-IR model built from the combination of
eatures from Tables 1 and 2 generated under high-frequency data (4 s)). Embedded in each of the plots is a histogram showing the distribution of both training and test residuals.
t
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eatures selected by the RRCT. In addition, the results prove useful for
imensionality reduction, model simplicity, ease of model deployment,
nd reduced computation time.
Entire curve prediction. Upon obtaining knees, elbows, EOL, and their

espective capacity and IR values, the method discussed in Section 3.7
as employed to predict the entire curves for randomly selected cells in
11
he test data. The results are presented with the 90% confidence inter-
als in Fig. 10. The confidence intervals were obtained via the method
iscussed in [3, Section 4.2]. It can be seen that the models were able
o predict both the capacity and IR curves as the predicted curves were
ery close to the measured ones. In addition, the visualization shows
he robustness of the models to the noise in the IR data: the features
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(

Fig. 8. Feature importance of the generated features calculated by the XGBoost algorithm. The first 10 features with the highest importance in predicting each of the targets in
a) cycle model, (a) capacity-IR model built on the combination of features in Tables 1 and 2 generated under high-frequency data (4 s) are displayed.
Table 8
Performance metrics for the prediction of EOL and IRatEOL using all the features in both Tables 1 and 2 generated
under CC discharge voltage recorded at every 4 min. MAE and RMSE are in cycles for the case of EOL; in Ohms
(Ω) for IRatEOL. All MAPE are in percentages.

MAE MAPE RMSE

Train Test Train Test Train Test

EOL 22 85 3.0 13.2 30 111
IRatEOL 1.7 × 10−5 3.94 × 10−4 0.09 2.1 2.30 × 10−5 5.91 × 10−4
generated through the signature method mitigated the sensitivity of the
XGBoost model to the noise and thus was able to predict the IR curves
more accurately.

4.2. Model results under low-frequency data: CC discharge voltage sub-
sampling

This section reports the models’ findings under a low-frequency data
regime. On cross-validation, the 3-fold cross-validation results obtained
under training data with different sub-sampling time steps for the case
of EOL prediction are displayed in Fig. 11. Roughly, the errors increase
as time steps rise. It is observed that the model still maintains its quality
up to a time step of 2 min with an MAE and RMSE of about 90 and
120 cycles respectively. In addition, the 90% confidence intervals at
time steps from 3.5 min upward were contained in those just before it.
This is an indication that the voltage measurement frequency can be
extended to up to 4 min without compromising model accuracy.

Model performance metrics. As highlighted in the above paragraph,
model building was restricted to CC discharge voltage sub-sampled
every 4 min. For brevity, the performance metrics for the EOL and
IRatEOL predictions were only reported in Table 8. It was observed
that voltage measurement at the end of every 4 min generated a model
which predicts EOL with MAE, MAPE, and RMSE of 85 cycles, 13.2%,
and 111 cycles respectively. Noise in the IR data has a minimal effect on
the model and MAPE on IRatEOL prediction was observed to be 2.1%.

Full curve prediction. In Fig. 12, the models obtained under 4-min
sub-sampling were used for full curve prediction. Each curve predicted
for a random cell in the test data shows a good approximation of the
actual measurement.
12
RRCT feature selection and sub-sampling. The use of RRCT feature
selection tool was extended to the features extracted under 4-min CC
discharge voltage sub-sampling. Only the top 10% of features (see the
bar chart of Fig. 13(a)) ranked by the algorithm were retained. Interest-
ingly, EOL and IRatEOL were predicted to have an accuracy very close
to that of models using all the features; see Table 9 for the summary
of the metrics. This two-level model simplification (4-min sub-sampling
and feature selection) does not only applicable in real-life where data
are recorded at a low frequency but also proposes an effective and
economical choice for model deployment and maintenance.

The heat map of Fig. 13(b) shows the similarity of the first ten
features selected by the RRCT algorithm under different voltage sub-
sampling rates. Each score was calculated between two sub-sampling
time steps by finding the ratio of the number of common features to
the total number of features selected; thus higher ratio means greater
similarity. This experiment was motivated by checking the robustness
of the algorithm under changing voltage measurement frequency. It
was observed that, in general, there are some similarities between
features generated under any given two time frequencies. In addition,
the strength of similarity grows as measurements are taken with close
time steps. This is an indication that similar information is derived
from the data even when the voltage reading is taken at different time
frequencies.

To further investigate the robustness of the proposed models, both
cycle and capacity-IR models were trained on the high-frequency data
(CC discharge voltage measured at 4 s) and then used for prediction
using data from low-frequency data sub-sampled at 0.5-4 min. The
MAE of this experiment is presented in Fig. 14. It was observed that,
generally, errors grow slowly (about 10 cycles, 10−3 Ah, 10−4 Ω per
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Fig. 9. Feature selection using the RRCT algorithm– this is independent of the feature importance of the XGBoost algorithm. Feature selection with different percentages of the
combination of features from Tables 1 and 2 generated under 4-s data are provided. The selected features were used for EOL and IRatEOL predictions. Performance metrics are
provided for EOL and IRatEOL in (a) and (b) respectively.
Table 9
Performance metrics for the prediction of EOL and IRatEOL using only the best 10% (selected by the RRCT algorithm)
of features in both Tables 1 and 2 generated under CC discharge voltage recorded at every 4 min. MAE and RMSE
are in cycles for the case of EOL; in Ohms (Ω) for IRatEOL. All MAPE are in percentages.

MAE MAPE RMSE

Train Test Train Test Train Test

EOL 40 85 5.3 13.4 53 111
IRatEOL 2.90 × 10−5 3.63 × 10−4 0.15 1.9 3.90 × 10−5 5.19 × 10−4
0.5 min for cycle-like, capacity-like, and IR-like targets respectively),
but remain relatively the same from 1.5 min onward. This implies that
the signature-based models trained when there is high availability of data
can be saved and reused to make predictions for data taken at wider time
gaps. Again, this proves beneficial in terms of reduction in the cost of
data collection. It also facilitates online prediction as data need not be
recorded at the initial fixed frequency before sending for prediction.
13
4.3. Comparison with past literature

Here, the models built using the 66 features generated with CC
voltage at discharge measured at 4-s and 4-min frequencies are com-
pared with similar methods in the literature. In order to ensure a just
and accurate comparison, only papers that adopted a feature-based
approach and trained models utilizing the first 100 cycles of the battery
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T

Fig. 10. Full prediction of (a) capacity fade and (b) IR curves for randomly selected cells from batches 1, 2, 3, and 8 under models built using the combination of features from

ables 1 and 2 generated under high-frequency data (4 s).
Fig. 11. Cross-validation results (together with 90% confidence interval) using different time steps for CC discharge voltage sub-sampling — a case of EOL prediction using a
combination of features in Tables 1 and 2.
cycling data (with the exception of [3], which used 50 cycles) employed
in this study were considered for citations. For brevity, the MAPE on
EOL prediction is compared. The summary of the comparative analysis
is presented in Table 10. The key focus and contribution are the data
regime used for feature generation, the frequency of data measurement,
and the amount of data needed for making predictions.
14
An extreme gradient boosting regression model was built in this
study utilizing only in-cycle CC discharge voltage curves which makes
it stand out from all reviewed models except those of [3]. This work
produces a 4-min model that is robust to sub-sampling rate with only
a 13% error increase (with respect to the 4-s model) in the case of a
model trained on batches 1, 2, and 3 (where it is a 63% increase in [3]).
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Fig. 12. Full prediction of (a) capacity fade and (b) IR curves for randomly selected cells from batches 1, 2, 3, and 8 under models built using the combination of features from
Tables 1 and 2 and CC discharge voltage measured at the end of every 4 min.
Fig. 13. (a) Bar chats of the ranks of top 10% features obtained by applying RRCT algorithm to the combination of features in Tables 1 and 2 which were generated using CC
discharge voltage sub-sampled at every 4 min. (b) Heat map of similarity scores showing how the first ten selected features (by the RRCT) are similar across different sub-sampling
time steps.
5. Conclusion

The deployment of the signature method for predicting capacity
and internal resistance degradation curves of lithium-ion batteries from
early data and under a low data regime has been addressed.
15
Empirically, a sample rate of one sample every 4 min returns
adequate information for prediction (using 6 features – RRCT selected).
This is a strong reduction over previous approaches encoding this
information and a significant gain over existing literature that could
sample only up to one minute. The power of the signature methodology



Applied Energy 352 (2023) 121974R. Ibraheem et al.
Fig. 14. Mean absolute errors in the prediction of (a) knees, elbows and EOL, (b) capacity at knees, and (c) IR at elbows and EOL using the model trained under 4-s data which
was applied to features obtained from 0.5 to 4-min data sub-sampling.
Table 10
Comparison of the performance of our 4-s and 4-min data models in predicting EOL. For comparison purposes, feature-based
models built on the cycling data belonging to batches 1, 2, and 3 from [5] were considered. In places where numbers are
marked with an asterisk (∗), it means the metric is obtained from a model built including batch 8 [6]. Meaning of symbols:
measured voltage at time 𝑡 (𝑉 ), discharge capacity (𝑄), current (𝐼), temperature (𝑇 ), IR (𝐼𝑅), discharge capacity-voltage curve
(𝑄(𝑉 )), state of health (SOH) and charge time (ct). In places of FaD (Full at discharge), it means the method makes use of
the entire information at discharge; whereas CCaD (CC at discharge) depicts the data is derived only from constant-current
conditions at discharge. The MAPE in parenthesis in some methods refers to the errors obtained on secondary test data.

Papers Data used from [5] Data regime Sampling frequency MAPE (%)

This work 𝑉 CCaD 4 min 14.3, 13.2∗
𝑉 CCaD 4 s 12.6, 10.0∗

[3] V CCaD 4 min 19.5, 19.7∗
V CCaD 4 s 12.0, 12.6∗

[4] 𝑄(𝑉 ) FaD 4 s ∼22.0
Variance [5] 𝑄(𝑉 ) FaD 4 s 15.0 (11.0)
Discharge [5] 𝑄(𝑉 ), 𝑉 , 𝐼 FaD 4 s 10.1 (8.6)
Full [5] 𝑄(𝑉 ), 𝑉 , 𝐼, 𝑇 , 𝐼𝑅 FaD 4 s 7.5 (10.7)
[15] SOH, 𝑄(𝑉 ), 𝐼𝑅, ct FaD 4 s 9.0
[14] 𝑄(𝑉 ) FaD 4 s 11.7
[16] SOH, 𝑄(𝑉 ), 𝑉 , 𝑇 FaD 4 s 7.0
for this type of application was confirmed by two industry-relevant
stress tests: by (i) building an accurate predictive model from data
sampled directly at every 4 min, and (ii) training an accurate model
in the high-data regime and then predict using the data sampled at
every 4 min. The latter showcases model robustness towards loss of
input data.

A comparative analysis showed a substantial dissimilarity of the
model’s top relevant features set between the high- and low-data
regimes. This hints at a separation of predictive factors between data
regimes, and thus the low-data regime still requires further study. The
manuscript’s model outperforms existing low-data regime models and is
moderately competitive within the existing high-date regime literature
(where comparison is possible).

The proposed models were built for robustness and interpretability.
On robustness, we were able to establish that the developed models
estimate both capacity and IR curves with high accuracy even when
there is noisiness in the input data.

With respect to model interpretability, only the second level of the
signature for feature extraction was used. The reviewed literature has
established this level to have an interesting geometrical and physical
interpretation. Moreover, the importance of each generated feature
through the XGBoost feature importance functionality is accounted for.

To support future research, the modeling code (in CC BY 4.0) is
available to anyone wanting to replicate or develop the findings. In
terms of open avenues for further exploration, the signature method can
be applied as a feature generation mechanism to the more infrequent
Reference Performance Test (RPT) data to predict battery degrada-
tion. Also open is the application of the method to varying currents
under charging/discharging conditions — the simplest version is the
question would be lifetime predictions for fast charging of electric
vehicles whose batteries are charged in (mostly) multi-stage constant
16
current charging conditions. Lastly, the models of this manuscript were
developed using the Severson–Attia–Strange data and took as input the
discharge voltage data at CC. It is left for future research to carry out
the analysis using charge voltage at CC as the input data instead of the
discharge one.

Methods

An introduction to extreme gradient boosting (XGBoost)

XGBoost is a supervised learning algorithm where a set of features
are used for predicting a set of targets. In contrast to many tree-based
ensemble models, which average predictions made on individual trees,
XGBoost builds regression trees additively where a candidate tree is
added only if it improves the value of a chosen objective function.

Following [35], given a training set {𝑿, 𝒚} where 𝑿 = (𝒙1,𝒙2,…𝒙𝑚),
𝒙𝑖 ∈ R𝑑 is the matrix of features, 𝒚 = (𝑦1, 𝑦2,… , 𝑦𝑚) ∈ R𝑚 is the target
vector, 𝑑 is the dimension of each of the features, and 𝑚 is the number
of samples, XGBoost makes use of the following to predict output:

𝑦𝑖 =
𝐾
∑

𝑘=1
𝑓𝑘(𝒙𝑖), 𝑓𝑘 ∈ F, 𝑖 = 1, 2,… , 𝑚,

where F denotes the space of all classification and regression trees
(CARTs) and 𝐾 is the number of trees. Here, every 𝑓𝑘 corresponds to an
independent tree structure as well as leaf weights or scores 𝒘. Contrary
to decision trees, each regression tree has a continuous score on each
of the associated leaves. For a given sample in the data, the decision
rules in the trees are used to classify it into the leaves and evaluate the
final prediction by simply adding up the scores 𝒘 in the corresponding

leaves. To learn the set of functions 𝑓𝑘 used in the model, the following
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regularized objective function is minimized:

𝐿 =
𝑚
∑

𝑖=1
𝑙(𝑦𝑖, 𝑦𝑖) +

𝐾
∑

𝑘=1
𝛺(𝑓𝑘), (8)

where 𝛺(𝑓 ) is a function defined by 𝛺(𝑓 ) = 𝛾𝑇 + 1
2𝜆‖𝒘‖

2 which put
a penalty on the complexity of the model, 𝑙 depicts the differentiable
convex loss function that measures the difference between the predic-
tion 𝑦𝑖 and the target 𝑦𝑖, and 𝑇 is the number of leaves in each tree.
It is worth noticing that the regularization terms, 𝜆 and 𝛾, are added
for the sole purpose of smoothening the final learned weights to curb
over-fitting. In fact, when the regularization parameters are set to zero,
the regularized objective function in Eq. (8) boils down to the ordinary
gradient tree boosting [36]. Due to the fact that the tree ensemble
model described above in Eq. (8) uses functions as parameters, it cannot
be optimized through the regular optimization techniques in Euclidean
space. To circumvent this barrier, the model is trained in an additive
way: if 𝑦𝑖(𝑡) is the prediction on the 𝑖th instance at the 𝑡th iteration, it
will be needed to include 𝑓𝑡 in order to minimize the objective function
given by

𝐿(𝑡) =
𝑚
∑

𝑖=1
𝑙(𝑦𝑖, 𝑦𝑖

(𝑡−1) + 𝑓𝑡(𝒙𝑖)) +𝛺(𝑓𝑡).

In other words, 𝑓𝑡, which most improves the model objective function is
greedily added at each iteration. XGBoost is available in the scikit-learn
library and further mathematical details can be found in [35].

Machine learning performance metrics

In this study, we employed mean absolute error (MAE), mean absolute
percentage error (MAPE), and root mean squared error (RMSE) for model
performance measure, and they are defined below:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

MAE(𝑦, 𝑦̂) = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦̂𝑖|

MAPE(𝑦, 𝑦̂) = 100%
𝑛

𝑛
∑

𝑖=1

|𝑦𝑖 − 𝑦̂𝑖|
𝑦𝑖

RMSE(𝑦, 𝑦̂) =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2

(9)

where 𝑦𝑖, 𝑦̂𝑖 are the actual and predicted values for sample 𝑖 respec-
tively, and 𝑛 is the number of samples.
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