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Abstract: Automated visual inspection has made significant advancements in the detection of
cracks on the surfaces of concrete structures. However, low-quality images significantly affect
the classification performance of convolutional neural networks (CNNs). Therefore, it is essential to
evaluate the suitability of image datasets used in deep learning models, like Visual Geometry Group
16 (VGG16), for accurate crack detection. This study explores the sensitivity of the BRISQUE method
to different types of image degradations, such as Gaussian noise and Gaussian blur. By evaluating the
performance of the VGG16 model on these degraded datasets with varying levels of noise and blur, a
correlation is established between image degradation and BRISQUE scores. The results demonstrate
that images with lower BRISQUE scores achieve higher accuracy, F1 score, and Matthew’s correlation
coefficient (MCC) in crack classification. The study proposes the implementation of a BRISQUE score
threshold (BT) to optimise training and testing times, leading to reduced computational costs. These
findings have significant implications for enhancing accuracy and reliability in automated visual
inspection systems for crack detection and structural health monitoring (SHM).

Keywords: image quality assessment; deep learning; VGG16; image processing; structural health
monitoring; neural networks; binary classification; data cleaning; BRISQUE; concrete crack detection

1. Introduction

Monitoring the health of civil engineering infrastructure is crucial to ensure safety and
longevity. One of the most important aspects of Structural Health Monitoring (SHM) is the
ability to detect, locate, and monitor damage [1–3]. The one major damage affecting civil
infrastructure safety is a crack. Regular inspection and maintenance of civil infrastructures,
such as bridges, pavements, and underground structures, are essential to ensure optimal
functioning [4–6]. Traditional inspection methods by skilled inspectors have limitations,
prompting the need for automated inspections using robotics. This approach offers several
benefits, including reduced costs, minimal disruptions, and lower risk [7–10].

Automatic defect detection can be separated into two main approaches: white-box
and black-box techniques [11]. The former uses algorithms such as edge detectors and
thresholding [12], whereas the latter employs machine learning and artificial neural net-
works [13]. Both methods have unique benefits that depend on the application. Generally,
the black box is more effective for initial detection, while the white box is better suited for
pixel-by-pixel segmentation [14].

The VGG deep convolutional neural network architecture, developed by the Visual
Geometry Group (VGG), has a well-known success rate in identifying and categorizing
cracks in concrete structures [15]. By incorporating transfer learning and fine-tuning to the
VGG architecture, we significantly enhanced detection accuracy, thereby making a valuable
contribution to the field of structural health monitoring and image quality assessment.
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An adaptive lighting platform integrated with robotics is utilised to capture images
of concrete samples in low-light environments to facilitate crack detection. This system
features a machine-vision camera fitted with four adjustable arms, each fitted with LED
strips [16]. The images are captured using diffuse lighting. However, using robotics
and cameras in low-light environments can introduce potential challenges, such as blur
and noise during image capture. These factors can significantly affect the quality of the
captured images and affect the model’s recognition capability during the training and
testing phases [17]. So, it is essential to evaluate the quality of these images before feeding
them to the image processing algorithms, which can be achieved using a no-reference
image quality assessment (NR-IQA) technique called the Blind/Referenceless Image Spatial
Quality Evaluator (BRSIQUE) [18].

The aim of this study is two-fold. Firstly, it examines the correlation between the
BRISQUE image quality metric and the performance of the CNN model in crack detection.
The model’s performance will be assessed on pristine images and those with artificially
introduced Gaussian noise and Gaussian blur images. The aim is to better understand how
image degradation affects crack classification accuracy, F1 score, and Matthew’s correlation
coefficient (MCC). Secondly, it proposes a methodology to determine a BRISQUE score
threshold (BT) to identify and discard low-quality images from the datasets. Also, the
impact of BT and data cleaning on the performance of the model is studied by evaluating
the trained threshold-based BRISQUE-assisted deep learning model on an independent
testing set. The workflow of the entire process is clearly shown step-by-step in Figure 1.

Figure 1. Workflow overview of threshold-based BRISQUE-assisted deep learning for enhancing
crack detection in concrete structures.
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2. Background

For major civil and construction assets, semi-autonomous or remote inspections are
sometimes carried out with Unmanned Aerial Vehicles (UAVs) or wholesale robotic plat-
forms fit with inspection equipment, as reviewed in [19]. State-of-the-art research showcases
the ability to capture cracked surfaces using moving vehicles [20] or with UAVs [21]. In
the majority of the reported literature, the process of capturing images is typically con-
ducted separately from the crack detection phase. In an industrial setting, this would mean
that any errors or inaccuracies occurring during image capture could not be corrected
or adjusted. This would cause either imperfect analysis (requiring error correction) or
overlooking significant defects altogether. An innovative system has been employed in our
study to capture images of concrete samples in low-light environments, making it easier to
identify cracks.

Several factors affect the quality of an image when captured using a camera, including
lighting conditions, camera settings, motion blur, lens distortion, and noise. A degraded
image refers to a modified version of the original (pristine) image that has been affected
by various factors such as blur and noise, either by natural factors or deliberately in
post-processing. Since it is uncertain whether a captured image will be natural, noisy,
blurry, or distorted in any other way, assigning a score based on the image quality can
help in determining the suitability of the image for training or testing the CNN models.
Figure 2 provides an example of a raw image (natural image) and a degraded image (noisy
image), along with their BRISQUE scores. Therefore, accurate image quality measurement
is essential for developing and evaluating algorithms in various fields. The goal of IQA
is to provide methods for measuring image quality in a way that aligns with human
perception [22,23].

(a) (b)

Figure 2. Comparison of image quality using BRISQUE scores. (a) Natural image with a BRISQUE
score of 24.91, indicating better image quality. (b) Noisy image with a BRISQUE score of 71.05,
indicating poor image quality.

2.1. Image Quality Assessment (IQA)

Image quality assessment is the process of evaluating the quality of an image. It is
widely used in machine learning, computer vision, neural physiology, image processing,
and other domains where image quality plays an important role [24]. There are two types
of IQA methods.

2.1.1. Subjective Methods

Subjective image quality assessment methods involve gathering individual opinions
on the quality of images using a five-level rating scale without participants having full
access to the scores or information from others. By averaging the scores provided by the
participants, a reference point for image quality is established, and collecting opinions from
a larger number of individuals enhances the reliability of these results [25].

In practical applications, subjective evaluations are often considered the most accurate
for assessing image quality. However, they are expensive, time-consuming, and influenced
by various factors. To address these issues, objective IQA methods have been developed,
which use numerical methods and mathematical models to predict the perceptual quality
of the images [26].
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2.1.2. Objective Methods

The development of accurate mathematical models to predict the quality of images
similar to human observers has become crucial in objective IQA methods. These models
aim to replicate human quality predictions and provide efficient and cost-effective image
quality evaluation [27]. Objective IQA methods extract features from the image and analyse
them using a quality score [28]. IQA research is typically classified into three frameworks:
Full-Reference (FR), Reduced-Reference (RR), and No-Reference (NR) or Blind IQA [29].
FR methods require a reference image, while RR methods use extracted features from the
reference image to evaluate image quality. On the other hand, NR methods can assess
image quality without the need for a reference image. All three approaches have their
advantages, but obtaining the original reference image in real-world applications can be
challenging. In such scenarios, using a no-reference metric is more efficient and practical
because it does not rely on the availability of the reference image [30–32].

2.2. BRISQUE Method

One way to assess the quality of an image is by using no-reference metrics, such as the
Blind or No-Reference IQA technique called the Blind or Referenceless Image Spatial Qual-
ity Evaluator (BRISQUE). Numerous studies have assessed the effectiveness of BRISQUE
techniques in evaluating the quality of medical images [27] and concrete crack images [33].

In Ref. [34], the live road footage captured by a camera mounted on a vehicle was
evaluated using the BRISQUE algorithm to determine its quality for road damage detection
and driver notification. The quality of raw IRT images and their potential distortions
caused by preprocessing were evaluated in [35] using BRISQUE as a referenceless image
quality assessment metric. Ref. [36] utilised BRISQUE as a no-reference image quality
assessment (IQA) technique to evaluate the effectiveness of preprocessing in improving
the quality and visibility of low-light images. The focus was on enhancing the visibility for
identifying faulty porcelain insulators in a low-voltage power distribution system. Only a
limited number of studies have examined the effectiveness of the BRISQUE technique in
evaluating the quality of concrete crack images.

BRISQUE employs a support vector regression (SVR) model trained on images with
known distortions, such as blur, noise, and artefacts, to compute the image quality score. It
compares the distribution of the mean subtracted contrast normalisation (MSCN) of the
subject image to the database images. The MSCN of a pixel at location (i, j) is defined by
Equation (1), where I represents the intensity of the pixel, µ is the local mean, and σ is the
local variance in intensity of the surrounding pixels.

MSCN(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + 1
(1)

The process of identifying image distortions using the BRISQUE model involves
generating a histogram of MSCN values. This model can detect various distortions such as
blur, noise, and compression by analysing the shape and variance of the distribution. The
model then compares these variables to an image database and assigns a score ranging from
1 to 100, with lower scores indicating better image quality. A score close to 0–30 suggests
a good (high) image quality, while a score greater than 40 indicates a poor (low) image
quality. An example of this is shown in Figure 2.

This study explores how different types of image degradations, such as Gaussian noise
and Gaussian blur, affect the BRISQUE scores. The main goal is to use BRISQUE scores to
assess the quality of original and artificially degraded images and determine the stability
of neural network models. Additionally, the research seeks to implement a BRISQUE score
thresholding technique to discard low-quality images and improve the performance of the
image-based crack detection model.
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2.3. Convolutional Neural Network (CNN)

CNNs are widely used in computer vision and image classification applications for
detecting features and patterns within an image. The VGG architecture, a deep CNN model,
has been proven effective in identifying and classifying cracks in concrete structures. The
VGG16 model, which has 13 convolutional layers and three fully connected layers, is used
in this study as a pre-trained model. This model was originally trained on the ImageNet
dataset and can process images that are 224 × 224 pixels with three channels. Its training
was based on the ImageNet dataset [37,38].

3. Methodology

The primary aim of this research is to assess the image quality by assigning a BRISQUE
score to each image captured. Then, a VGG16 neural network model is utilised to train
these images to detect cracks on concrete surfaces. This study investigates how well the
deep learning models can detect cracks and analyse their relationship with BRISQUE scores.
The study also highlights the benefits of using a BRISQUE score threshold (BT) to improve
the model’s ability to recognise cracks effectively.

3.1. Overview

Our inspection device is built to capture images under diffused lighting conditions,
utilizing a machine-vision camera surrounded by four adjustable arms, each fitted with RGB
LED strips. These lighting arms are positioned at a 50 degree angle of incidence relative
to the concrete surface. An illustration of this setup, using a single arm, is presented in
Figure 3, where D represents working distance, which is explained in subsequent sections.

Figure 3. Specialized inspection equipment with single adjustable arm for 50-degree lighting projec-
tion onto concrete surface.

3.1.1. Image Capture

Engineering standards typically state that crack widths of 0.1 mm to 0.3 mm in concrete
structures should be identified for further action [39]. We have therefore chosen to work
towards a minimum spatial resolution of ≤0.1 mm/pixel during image capture.

3.1.2. Hardware and Settings

An illustration of the image acquisition hardware is provided in Figure 4. In this work, a
FLIR Blackfly 1” sensor machine vision camera with imaging resolution of 5472 × 3648 pixels
were fit with an Fl = 8 mm focal length lens. Together, these provided a feature resolution
of ≤0.1 mm/pixel at a working distance of D = 350 mm, with a Field of View, FoV, of
574 mm × 383 mm.

The depth of field, DoF, defines the distances at which objects remain in focus:

DoF =
2 · F2

d · fn · C
F2

l
, (2)



J. Imaging 2023, 9, 218 6 of 19

where fn = fl
ad

is the f-number is the ratio of the focal length, Fl , to aperture diameter, ad. C
is the circle of confusion: a subjective limit that defines an acceptable level of loss of focus.
It is conventionally calculated by dividing the diagonal size of the camera sensor by 1500.

Equation (2) shows that high f-numbers result in a high DoF, but this comes with
trade-offs, such as a decrease in image capture speed (as image sensor exposure is reduced).
Particularly high f-numbers can cause diffraction effects in images, while low f-numbers
can cause blurring at image edges. In this work, we selected fn = 8 and Fd = 250 mm. This
resulted in no discernible diffraction effects with acceptable levels of edge blurring. This
allows objects to be imaged clearly between lens-object distances of 200 mm to 350 mm.

Figure 4. Illustration of variables during image capture. Light from an imaged object passes through
the lens and aperture onto the camera sensor.

3.2. Dataset Acquisition and Preprocessing

A dataset of high-resolution images of concrete surfaces with visible cracks was
obtained for this study. The dataset consisted of damaged, reinforced concrete slabs
measuring 500 mm× 500 mm × 10 mm, with crack widths ranging from 0.07 mm to 0.3 mm.
The cracks were generated by applying forces at the edges, and the images were captured
under diffuse lighting. A preprocessing step was performed to prepare the images for input
to the VGG16 model, where the large image shown in Figure 5 was cropped into blocks of
size 224 × 224 pixels.

Overall, a data set of 3600 sub-images, each corresponding to a size of 224 × 224 pixels,
was curated. Of this dataset, 2100 images displayed cracks, and 1500 images displayed clear
concrete surfaces. The images were manually labelled as cracked or not cracked. The “base-
line” images were degraded by introducing common degradations such as Gaussian noise
and Gaussian blur. These degradations were chosen as they are commonly produced in real
datasets during image acquisition and can severely impact crack classification accuracy.

(a) (b)

Figure 5. (a) Baseline (pristine) image. (b) Colour map of pristine image (the lighter the pixels, the
better the image quality).

In this study, we applied Gaussian noise to the original images by increasing the noise
level from 10 to 50; an example of this is shown in Figure 6. In Equation (3), the coordinates
(x,y) represent the pixel coordinates, s(x,y) is the original image, n(x,y) is the added Gaus-
sian noise, and w(x,y) is the resulting noisy image [40]. The ‘np.random.normal()’ function
is used to generate the Gaussian noise.
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w(x, y) = s(x, y) + n(x, y) (3)

(a) (b)

Figure 6. (a) Noisy image of noise factor 50. (b) Colour map of noisy image (the lighter the pixels, the
better the image quality).

In this study, we applied Gaussian blur by varying the blur factor from 1 to 10, with
the levels being 1, 2, 5, 8, and 10, as represented by Equation (4), where I is the original
image without the blur, Iblurred is the blurred image that contains Gaussian blur, G is a
Gaussian kernel with standard deviation σ, and ⊗ denotes the convolution operation [41].
Gaussian blur is achieved by convolving the image with a Gaussian kernel using a function
called ‘ImageFilter.GaussianBlur()’. A higher blur factor indicates a higher level of blur
applied to the image; an example of this is shown in Figure 7.

Iblurred = I ⊗ G(σ2) (4)

(a) (b)

Figure 7. (a) Blurred image of blur factor 8. (b) Colour map of blurred image (the lighter the pixels,
the better the image quality).

3.3. VGG16 CNN Model

In this study, we utilised the VGG16 CNN model trained on ImageNet as a base model
shown in Figure 8. By employing transfer learning, we added layers to the pre-trained
model to customise it for our specific task (fine-tuning), enabling the model to learn more
efficiently and with fewer training examples [42–45].

To perform binary classification of concrete images, we utilized transfer learning and
loaded a pre-trained VGG16 model that has been previously trained on a large ImageNet
dataset. By leveraging the learned features from the VGG16 model, we can save time and
resources by avoiding the need for extensive training on our specific dataset. To fine-tune
the model, we strategically decided to freeze all the layers except the last six layers of the
base model. Our approach, which combined transfer learning, selective fine-tuning, and
specialized classification layers, played a pivotal role in achieving state-of-the-art results in
our research.

We used the Adam optimiser [46] with binary cross-entropy loss and accuracy metrics
to compile the new model. The model was trained for 10 epochs, with a batch size of 32,
and then evaluated on the testing data. Dropout was applied in the network architecture to
prevent overfitting, and a dense layer with sigmoid activation was employed for binary
classification. The performance of the model was assessed by computing the confusion
matrix and performance metrics. The VGG16 model implemented in this study is trained
and tested on pristine, noisy, and blurred images.
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Figure 8. VGG16 crack classification model.

3.4. Performance Metrics

We used separate training and testing datasets to evaluate the performance of the
VGG16 model on the baseline, noisy, and blurred datasets. The model was trained on
the training dataset and was used to generate predictions on the testing dataset. We then
converted the predicted probabilities to binary class labels using a threshold of 0.5. The
performance of the model was assessed using a confusion matrix generated by comparing
the predicted labels to the actual labels of the testing dataset. The confusion matrix provided
information about correctly and incorrectly classified instances, represented by true positive
(TP), true negative (TN), false positive (FP), and false negative (FN) values. Finally, these
values range from 0 to 1, with 1 indicating good and 0 indicating bad, and are utilised to
calculate various evaluation metrics as shown in Table 1 [47].

Table 1. Performance metrics of a binary classifier

Name Description Equation

True Positive Rate (TPR) The ratio of correctly predicted positive instances
to the total number of actual positive instances.

TP
TP + FN

Positive Predictive
Value (PPV)

The ratio of correctly predicted positive instances
to the total number of positive predictions.

TP
TP + FP

F1 Score The weighted average of recall and precision.
2 × Precision × Recall

Precision + Recall

Accuracy The measure of the model’s ability to correctly
predict the outcomes.

TP + TN
TP + FN + FP + TN

Matthew’s Correlation
Coefficient (MCC)

The measure of the correlation between pre-
dicted and actual labels, accounting for true or
false, both positive and negative predictions.

TP × TN − FP × FN√
(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

3.5. Testing Matrix Analysis

A testing matrix was created to evaluate the performance of the VGG16 model under
different conditions. This matrix outlines the different combinations of training and testing
scenarios used during the evaluation, as listed in Table 2. The rows indicate the testing
conditions, which include noisy, blurred, and pristine images, while the columns represent
the training conditions, including noisy, blurred, and pristine images. The “x” marks in the
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matrix indicate specific training and testing combinations. For example, “Train on Noisy,
Test on Noisy” means that the model was trained on noisy images and then tested on
noisy images. Similarly, “Train on Blur, Test on Pristine” means that the model was trained
on blur images and then tested on pristine images. Thus, the testing matrix provides
valuable insights into the crack detection model’s performance under different training
and testing combinations.

Table 2. Testing matrix.

Train on
Noisy

Train on
Blur

Train on
Pristine

Test on
Noisy x x

Test on
Blur x x

Test on
Pristine x

4. Results

The impact of image degradation on image quality can significantly affect a model’s
recognition capabilities. Therefore, it is vital to assess image quality using metrics that are
sensitive to various types of image degradations. In this section, we evaluate the sensitivity
of the BRISQUE image quality metric to different types of degraded images.

4.1. The Sensitivity of BRISQUE to Noise and Blur

In this study, we examined the effect of noise and blur on image quality by analysing
the BRISQUE scores and utilising colour maps. Colour maps help to visually evaluate the
image quality based on colour intensity. Figure 5a represents the baseline (pristine/original)
image and its corresponding colour map of BRISQUE scores, which is plotted after data
preprocessing, explained in Section 3.2. As shown in Figure 5b, lighter pixels in the
colour map indicate lower BRISQUE scores, indicating better image quality. On the other
hand, darker pixels represent higher BRISQUE scores, indicating degraded image quality.
Different types of degraded images were analysed to determine their effects on BRISQUE.

We investigated the relationship more deeply by introducing various levels of noise
and blur to the original images. Figures 6 and 7 display the images with noise level 50 and
blur level 8, respectively, along with their corresponding colour maps of BRSIQUE scores.
The colour maps clearly show that regions with greater noise or blur have darker pixels,
indicating lower image quality and higher BRISQUE scores.

Figure 9 displays the BRISQUE scores for different levels of noise and blur. The left
subplot illustrates the BRISQUE scores for noise levels ranging from 0 to 50, while the right
subplot illustrates the BRISQUE scores for blur levels ranging from 0 to 10. Both subplots
feature a normal line representing the training data and a dashed line representing the
testing data. As we can see from this plot, the BRISQUE score increases as the noise and
blur levels increase, indicating a decline in image quality.

Studying the colour maps and their corresponding BRSIQUE scores provides valuable
insights into analysing the impact of noise and blur on image quality. Through these
images, it becomes evident that the baseline image has the lowest score. As noise and blur
levels increase, the BRSIQUE score rapidly increases, indicating a decline in image quality.
Therefore, assessing the quality of the images is imperative, as it significantly impacts the
model recognition capabilities discussed in subsequent sections.
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Figure 9. Comparison of BRISQUE scores for various levels of noise and blur in image processing.

4.2. Summary of Classification Metrics on Noisy Images

The VGG16 neural network model was analysed on various datasets using three
widely used evaluation metrics, namely accuracy, F1 score, and Matthew’s correlation
coefficient. The model underwent training and testing on both original (pristine) datasets
and datasets with varying noise levels, as shown in Figure 10 and Table 3. The testing
matrix utilised ‘x’ marks to denote different training and testing dataset combinations used
to evaluate the model’s performance.

• “Train on Pristine, Test on Pristine” signifies that the model was trained and tested on
pristine images, i.e., clear images;

• “Train on Pristine, Test on Noisy” signifies that the model was trained using pristine
images and then tested on images with varying noise levels;

• “Train on Noisy, Test on Noisy” signifies that the model was trained and tested on
images with varying noise levels.

Table 3. Testing matrix when the model is trained and tested on noisy images.

Train on
Noisy

Train on
Pristine

Test on
Noisy x x

Test on
Pristine x

The graph in Figure 10 shows that the X-axis represents various datasets, as listed in
Table 3. These datasets were used to train and test the VGG16 model. The bar graph above,
labelled “Train on Pristine and Test on Noisy”, indicates that the model was trained on a
clean dataset and then tested on six datasets with increasing noise levels, ranging from 0%
to 50%. On the other hand, the bar graph below, labelled “Train and Test on Noisy”, shows
that the model was trained and tested on datasets with increasing noise levels, ranging
from 0% to 50%. In this case, 0% noisy dataset constitutes pristine (original) and clear
images. The Y-axis of the graph represents the performance of each model, as measured by
three metrics—accuracy, F1 score, and MCC. The black bars represent accuracy, the dark
grey bars represent the F1 score, and the light grey bars represent MCC.
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Figure 10. Performance comparison of VGG16 neural network model on Noisy images using accuracy,
F1 score, and Matthew’s correlation coefficient metrics.

Based on the data presented in the graph, it can be observed that the performance
of the VGG16 model declines with an increase in the level of noise in the dataset for all
three metrics. Statistical analysis of the data were conducted using a one-way analysis of
variance (ANOVA) [48], which yielded a p-value of 2.92 × 10−9. This low p-value indicates
that the results are statistically significant and that the null hypothesis can be rejected. Thus,
there is strong evidence to support the alternate hypothesis, which suggests a significant
difference between the compared groups. The model was initially trained and tested on the
clean, original dataset, and it achieved the highest scores across all three metrics. However,
as the level of noise in the dataset increased, the performance of the VGG16 model dropped
significantly, with the models trained on the 40% and 50% noisy datasets performing the
worst. Regarding the metrics, both the accuracy and F1 score exhibited similar trends, with
performance gradually declining as the noise level increased. On the other hand, the MCC
demonstrated a more noticeable performance drop as the noise level increased.

Based on the findings, it appears that the VGG16 model is quite sensitive to noise in
the dataset. The model’s performance may significantly decrease when the noise level in-
creases. In addition, looking at Figure 9 and examining the BRISQUE scores of pristine and
degraded images with varying noise levels, it becomes clear that even a moderate increase
in noise levels can lead to significantly higher BRSIQUE scores, indicating lower image
quality. Therefore, training and testing deep learning models on high-quality images (lower
BRISQUE scores) is always better to ensure accurate crack detection and classification. By
comparing the performance of the model on different datasets, we can gain insights into the
suitability of the model for real-world scenarios where image quality cannot be guaranteed.

4.3. Summary of Classification Metrics on Blurred Images

The VGG16 neural network model was analysed on various datasets using three
widely used evaluation metrics, namely accuracy, F1 score, and Matthew’s correlation
coefficient. The model underwent training and testing on both original (pristine) datasets
and datasets with varying blur levels, as shown in Figure 11 and Table 4. The testing matrix
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utilised ‘x’ marks to denote different training and testing dataset combinations used to
evaluate the model’s performance.

• “Train on Pristine, Test on Pristine” signifies that the model was trained and tested on
pristine images, i.e., clear images;

• “Train on Pristine, Test on Blur” signifies that the model was trained using pristine
images and then tested on images with varying levels of blur;

• “Train on Blur, Test on Blur” signifies that the model was trained and tested on images
with varying levels of blur.

In Figure 11, the X-axis represents the datasets listed in Table 4, which are used for
training and testing the VGG16 model. The bar graph above, labelled “Train on Pristine
and Test on Blur”, indicates that the model was trained on a pristine dataset but then tested
on five distinct datasets with varying levels of blur, ranging from 0% to 10%., and the bar
graph below, “Train and Test on Blur” shows that the model was trained and tested on
datasets with increasing levels of blur, from 0% to 10%, where 0% blurred dataset represents
pristine (original) and clear images. The Y-axis shows the performance of each model, as
measured by the three metrics: accuracy, F1 score, and MCC. The black bars represent
accuracy, the dark grey bars represent the F1 score, and the light grey bars represent MCC.

Figure 11. Performance comparison of VGG16 neural network model on Blurred images using
accuracy, F1 score, and Matthew’s correlation coefficient metrics.

Table 4. Testing matrix when the model is trained and tested on blurred images.

Train on
Blur

Train on
Pristine

Test on
Blur x x

Test on
Pristine x
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Based on the graph, it can be observed that the model’s performance declines in
correlation with the increase in the percentage of blur present within the dataset. After
conducting a one-way ANOVA on the data, a p-value of 0.0028 was obtained from the sta-
tistical analysis. This p-value is considerably low, indicating that the outcome is statistically
significant, leading to the rejection of the null hypothesis. This strong evidence supports
the alternative hypothesis, which means that the results are statistically significant.

When the model was trained and tested on a pristine dataset without blurring, it
achieved the highest scores for all three metrics. However, as the level of blur increased,
the model’s accuracy, F1 score, and MCC decreased. For some, F1 and MCC scores
were represented as zero in Figure 11, suggesting no true positives were identified in
the predictions. This could be due to the model’s inability to correctly classify any images
in the testing set, indicating overfitting and poor performance on that dataset.

As shown in Figure 11, the VGG16 model is highly sensitive to blur in the dataset,
and its performance may decrease significantly when the blur level is high. This highlights
the importance of careful data pre-processing in deep learning applications. Moreover,
Figure 9 shows that higher blur levels result in higher BRISQUE scores, indicating lower
image quality. This highlights the need to reduce blur in images or remove blurred images
before using them in deep learning models. This analysis aimed to assess the suitability of
the VGG16 model for real-world scenarios where images may be blurred due to motion or
defocus. It underscores the importance of thorough data preparation and cleaning in deep
learning applications to ensure high-quality data and optimal model performance.

4.4. Optimizing BRISQUE Score Threshold for Crack Detection

This study aimed to determine a BRISQUE score threshold (BT) that could be used to
identify and discard images with excessive degradation during preprocessing to improve
the performance of the crack detection model. The study utilised a dataset comprising
5665 images. The images were classified into five datasets based on their BRISQUE scores
as shown in Table 5. Additionally, each set was divided into train and test sets, and they
were manually labelled as either positive (cracks) or negative (no cracks). The VGG16
model was then trained and tested on each dataset, and various metrics were calculated to
evaluate its performance.

The performance of the VGG16 neural network model for crack detection and clas-
sification was evaluated using different BRISQUE score thresholds ranging from <45 to
<85, as shown in Table 5. The analysis revealed that the model’s optimal performance
was achieved when the BRISQUE score threshold was set to <45, despite the limited avail-
ability of training images. However, the model’s performance gradually decreased as the
BRISQUE score threshold increased from <55 to <85. This decrease was not consistently
linear due to variations in the number of training images used.

In general, we know that the performance of a model is positively correlated with
the number of training images. In particular, increasing the training set size from 720 to
2160 images has improved model performance for BRISQUE score thresholds <55 and
<65. However, it should be noted that this positive correlation does not always hold. The
performance of the model decreased when the dataset included images with BRISQUE
scores <75 and <85. Interestingly, despite having fewer training images, the model achieved
its best performance when the BRISQUE score threshold was set to <45. This highlights the
importance of image quality in determining neural network performance.

The distribution of BRISQUE scores is visually represented in Figure 12, which shows
distinct score intervals created using histogram binning. The model was trained and tested
on images with BRISQUE scores threshold <45 and achieved an accuracy of 0.8, an F1 score
of 0.77, and an MCC of 0.606. However, as the BRISQUE score threshold increased, the
effectiveness of the model decreased. This implies that the quality of the image greatly
influences the accuracy of the crack detection model. It was observed when the threshold
of the BRISQUE score was set to <85; the model achieved an accuracy of 0.61, an F1 score of
0.69, and an MCC of 0.30. Hence, images with high levels of degradation can significantly
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degrade the model’s performance and should be discarded. To summarise, every model has
a certain threshold for low-quality images, at which they fail to detect cracks on concrete
surfaces. Therefore, allowing only images with BRISQUE scores less than the threshold
value helps to improve the crack detection performance. In conclusion, image quality
significantly influences the performance of the neural network model for crack detection
and classification. The model achieves optimal results when trained on high-quality images,
leading to faster training and testing times and lower computational costs by avoiding
unnecessary processing of low-quality images.

Table 5. Comparison of model performance at different BRISQUE score threshold values.

BRISQUE
Scores

Number of
Training
Images

Accuracy F1 Score MCC

<45 360 0.8 0.77 0.61

<55 720 0.66 0.73 0.40

<65 2160 0.73 0.76 0.49

<75 3240 0.73 0.66 0.48

<85 3960 0.61 0.69 0.30

Figure 12. Performance comparison of VGG16 neural network model on images with different
BRISQUE score thresholds using accuracy, F1 score, and Matthew’s correlation coefficient metrics.

4.5. BRISQUE-Based Data Cleaning

To enhance the quality of images utilised for training and testing, it is crucial to carry
out data cleaning by removing low-quality images, ultimately saving time. The block
diagram presented in Figure 13 illustrates the process of BRISQUE-based data cleaning
of images. The algorithm initially loads images, computes the BRISQUE scores (B) for
each image, and compares them to a pre-defined threshold value. The BRISQUE score
threshold (BT) is determined based on the specific task requirements. If the BRISQUE
score of the image surpasses the set threshold, the image is discarded; otherwise, it is
retained for further image processing. By eliminating low-quality images, i.e., images with
higher BRISQUE scores, the performance and accuracy of the deep learning model can be
improved, ensuring that the dataset contains only high-quality images.
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Figure 13. BRISQUE-based data cleaning, where B and BT represent the BRISQUE score and BRISQUE
score threshold, respectively.

Impact of BRISQUE Score Threshold (BT) and Data-Cleaning on Model Performance

To maintain fairness and comparability in our model evaluation, we conducted addi-
tional testing under uniform conditions, similar to our previous analyses. In this new phase,
we acquired 11 images of concrete slabs that were distinct from our prior dataset. These
images were captured under uniform conditions and had a resolution of 5472 × 3648 pixels.
To facilitate testing, we subdivided each image into blocks of size 224 × 224 pixels.

To ensure consistency, we applied the same BRISQUE score threshold of less than
45, which was successfully used in our earlier experiments. We used a model that had
been previously trained on images with BRISQUE scores less than 45, as it demonstrated
superior performance in our earlier analyses. We tested this model under two distinct
scenarios, one involving data cleaning within a specified BRISQUE score threshold <45
and the other omitting threshold-based data cleaning, thereby including all images, both
within and surpassing the BRISQUE score threshold values, i.e., 0<B<100 (includes all
BRISQUE scores). This comprehensive analysis provides valuable insights into the model’s
adaptability and performance across varying scenarios, ensuring robustness and reliability
in our findings.

In the first scenario, we tested the model on the refined dataset containing images
with B < BT . In contrast, the second scenario tested the model using a dataset that included
all images, regardless of their BRISQUE scores. This inclusive dataset covered a wider
spectrum of image quality levels, leading to a noticeable impact on the model’s perfor-
mance metrics. It is worth noting that the metrics showed significant improvements when
data cleaning was conducted within the BRISQUE score threshold, as compared to the
scenario without such cleaning as shown in Figure 14. The improvements in classification
metrics include:

• A 6.9% increase in accuracy, which indicates that the model classified concrete cracks
and non-cracks more effectively, reducing misclassifications;

• A 15.9% enhancement in TPR, which indicates a more effective crack detection rate;
• A 0.6% improvement in PPV, which is relatively modest. However, it signifies a

slight reduction in false positives predictions, which further reduces unnecessary
inspections;

• A 9.1% improvement in the F1 score, which signifies an overall better performance of
the model;
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• A 21.5% increase in MCC, which reflects the model’s ability to handle imbalanced
datasets.

Figure 14. Impact of BRISQUE score threshold (BT) on model performance, where Data Cleaning
indicates that the trained model is tested on images within the BRISQUE score threshold, i.e.,
B < BT , and Inclusive Analysis indicates that the testing dataset includes all images, both within and
surpassing the BRISQUE score threshold, i.e., 0 < B < 100.

The significant improvements in metrics observed when data cleaning is performed
within the BRISQUE score threshold emphasize the crucial importance of preprocessing
in enhancing dataset quality and ultimately leading to superior performance of deep
learning models.

5. Conclusions and Future Work

It is crucial to assess image quality when detecting and categorising concrete cracks.
This study explored the correlation between the BRISQUE-IQA method and the VGG16
crack classification model. The results indicate that the VGG16 model performs best when
trained and tested on clean datasets than degraded datasets containing Gaussian noise
and blur. The evaluation using BRISQUE scores showed that as the noise or blur in the
image increased, the BRISQUE score also increased, indicating a decrease in image quality.
Therefore, it is essential to carefully preprocess data and select appropriate metrics and
models when developing image processing algorithms.

The study also emphasized the crucial importance of data cleaning within the BRISQUE
score threshold and its significant role in enhancing model adaptability and performance
in diverse image quality scenarios. These findings open new avenues for developing
image-based inspection systems, providing valuable contributions to fields that rely on
precise image analysis. The BRISQUE score threshold (BT) effectively evaluated image
quality and enhanced the model’s classification accuracy.

Incorporating the implemented methodology into the data preprocessing stage reduces
the computation burden of processing low-quality images. It also helps in improving the
efficiency of the crack detection and classification process, resulting in faster training and
testing times and reduced computational costs. The results of this study have important
implications for improving the precision and dependability of automated visual inspection
systems used to detect concrete cracks and monitor structural health. Moreover, this
knowledge can be applied to diverse fields, including medical imaging and face recognition,
where high-quality images are critical for accurate diagnoses. Furthermore, the proposed
BRISQUE-assisted deep learning approach can quickly screen vast surface areas of concrete
structures such as airport runways and highway pavements.

As part of our future research, we plan to expand our dataset by including a broader
range of concrete images that contain various real-world confounding variables (e.g., bio-
fouling, efflorescence, corrosion, spalling) and conduct an extensive comparative analysis
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of various image classification networks, including VGG-16, ResNet, Inception, Xception,
and others, for concrete image quality assessment.
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