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In this paper, we assess whether using non-linear dimension reduction techniques pays
off for forecasting inflation in real-time. Several recent methods from the machine learn-
ing literature are adopted to map a large dimensional dataset into a lower-dimensional
set of latent factors. We model the relationship between inflation and the latent factors
using constant and time-varying parameter (TVP) regressions with shrinkage priors.
Our models are then used to forecast monthly US inflation in real-time. The results
suggest that sophisticated dimension reduction methods yield inflation forecasts that
are highly competitive with linear approaches based on principal components. Among
the techniques considered, the Autoencoder and squared principal components yield
factors that have high predictive power for one-month- and one-quarter-ahead inflation.
Zooming into model performance over time reveals that controlling for non-linear
relations in the data is of particular importance during recessionary episodes of the
business cycle or the current COVID-19 pandemic.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Inflation expectations are used as crucial inputs for
conomic decision-making in central banks such as the
uropean Central Bank (ECB) and the US Federal Reserve
Fed). Given current and expected inflation, economic
gents decide how much to consume, save and invest.
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In addition, measures of inflation expectations are often
employed to estimate the slope of the Phillips curve
and infer the output gap or the natural rate of interest.
Hence, accurately predicting inflation is key for designing
and implementing appropriate monetary policies in a
forward-looking manner.

Although the literature on modeling inflation is volu-
minous and the efforts invested considerable, predicting
inflation remains a difficult task and simple univariate
models are still difficult to beat (Stock & Watson, 2007).
The recent literature, however, has shown that using large
datasets (Stock & Watson, 2002b) and/or sophisticated
models (see Chan et al., 2018; Clark & Ravazzolo, 2015;
D’Agostino et al., 2013; Jarocinski & Lenza, 2018; Koop
& Korobilis, 2012, 2013; Koop & Potter, 2007) has the
potential to improve upon simpler benchmarks.

These studies often exploit information from huge
datasets. This is commonly achieved by extracting a rel-
atively small number of principal components (PCs) and
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including them in a second stage regression model (see,
e.g., Stock & Watson, 2002b). While this approach per-
forms well empirically and yields consistent estimators
for the latent factors, it fails to capture non-linear rela-
tions in the dataset. In the presence of non-linearities,
using simple PCs potentially reduces predictive accuracy
by ignoring important features of the data. Some stud-
ies deal with this issue by using flexible factor models,
which allow for non-linearities in the data. Bai and Ng
(2008) use targeted predictors coupled with quadratic
principal components and show that allowing for non-
linearities yields non-trivial improvements in predictive
accuracy for inflation. This suggests that non-linearities
(of a known form) are present in US macroeconomic
datasets, commonly employed for inflation forecasting.
More recently, Pelger and Xiong (2021) propose a flexible
state-dependent factor model and apply this method to
US bond yields and stock returns. This non-linear and
non-parametric technique yields results that differ from
linear, PC-based models by extracting significantly more
information from the data.

One additional assumption commonly made is that the
elationship between inflation and the latent factors is
onstant. This assumption is strong for longer time series
hat feature multiple structural breaks and may harm
redictive accuracy. Several recent papers deal with this
ssue by using time-varying parameter (TVP) regressions
hich, in addition, allow for heteroscedasticity through
tochastic volatility (SV) (Belmonte et al., 2014b; Clark
Ravazzolo, 2015; D’Agostino et al., 2013; Jarocinski &

enza, 2018; Koop & Korobilis, 2012; Koop & Potter, 2007;
orobilis, 2021).
Investigating whether allowing for non-linearities in

he compression stage pays off for inflation forecasting
s the key objective of the present paper. Building on
ecent advances in machine learning (see Chakraborty
Joseph, 2017; Coulombe et al., 2019; Exterkate et al.,

016; Feng et al., 2018; Gallant & White, 1992; Heaton
t al., 2017; Kelly et al., 2019; McAdam & McNelis, 2005;
edeiros et al., 2021; Mullainathan & Spiess, 2017), we
dopt several non-linear dimension reduction techniques.
he resulting latent factors are linked to inflation in a
econd stage regression. To investigate whether a rela-
ionship exists between non-linear factor estimation and
lexible modeling of the predictive inflation equation, we
ntroduce dynamic regression models that allow for TVPs
nd SV. Since including many latent factors can still imply
considerable number of parameters (and this problem is
ven more severe in the TVP regression case), we rely on
tate-of-the-art shrinkage techniques.
From an empirical standpoint, it is necessary to inves-

igate how these dimension reduction techniques perform
ver time and during different business cycle phases. We
how this by carrying out a thorough real-time forecasting
xperiment for the US. Our forecasting application uses
onthly real-time datasets (i.e., the FRED-MD database
roposed in McCracken & Ng, 2016) and includes a bat-
ery of well-established models commonly used in central
anks and other policy institutions to forecast inflation.
hese include simple benchmarks as well as more elab-
rate models such as the specification proposed in Stock
nd Watson (2002b).
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Our results show that non-linear dimension reduction
techniques yield highly competitive forecasts to (and, in
fact, often better than) the ones obtained from using
linear methods based on PCs. In terms of one-month-
ahead forecasts, we find that models based on the Au-
toencoder yield point and density forecasts that are more
precise than the ones obtained from other sophisticated
non-linear dimension reduction techniques as well as tra-
ditional methods based on PCs. When the focus is on
one-quarter-ahead forecasts, we find that non-linear vari-
ants of PCs perform best. This performance, however, is
not homogeneous over time and some of the models do
better than others during different stages of the business
cycle. In a brief discussion, we also analyze how our set
of models performs during the COVID-19 pandemic.

These findings give rise to the second contribution of
our paper. Since we observe that more sophisticated non-
linear dimension reduction methods outperform more
straightforward techniques during recessions, we com-
bine the different models using dynamic model averag-
ing (see Koop & Korobilis, 2013; Raftery et al., 2010).
We show that combining our proposed set of models
with various standard forecasting models yields predic-
tive densities that are very close to the single
best-performing model. This suggests that using model
and forecasting averaging successfully controls for model
uncertainty in light of the enormous set of models we
consider.

The remainder of this paper is structured as follows.
Section 2 discusses our proposed set of dimension re-
duction techniques. Section 3 introduces the econometric
modeling environment that we use to forecast inflation.
Section 4 first provides some in-sample features, then dis-
cusses the results of the forecasting horse race, and finally
presents our findings based on forecast averaging. The
last section summarizes and concludes the paper. The On-
line Appendix provides further details on the econometric
techniques as well as the data and additional empirical
results.

2. Linear and non-linear dimension reduction tech-
niques

Suppose that we are interested in predicting inflation
using a large number of K regressors that we store in a
T × K matrix X = (x1, . . . , xT )′, where xt denotes a K -
dimensional vector of observations at time t . If K is large
relative to T , estimation of an unrestricted model that
uses all columns in X quickly becomes cumbersome and
overfitting issues arise. As a solution, dimension reduction
techniques are commonly employed (see, e.g., Bernanke
et al., 2005; Stock &Watson, 2002b). These methods strike
a balance between model fit and parsimony. At a very
general level, the key idea is to introduce a function f
that takes the matrix X as input and yields a lower-
dimensional representation Z = f (X) = (z1, . . . , zT )′,
which is of dimension T × q, as output. The critical as-
sumption to achieve parsimony is that q ≪ K . The latent
factors in Z are then linked to inflation through a dynamic
regression model (see Section 3).

The function f : RT×K
→ RT×q is typically assumed

to be linear, with the most prominent example being PCs.
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In this paper, we will consider several choices of f that
ange from linear to highly non-linear (such as mani-
old learning as well as deep learning) specifications. We
ubsequently analyze how these different specifications
mpact inflation forecasting accuracy. We briefly discuss
he other techniques in the following subsections and
efer to the original papers for additional information.

.1. Principal component analysis

We start our discussion by considering principal com-
onent analysis (PCA). Minor alterations of the standard
CA approach introduce non-linearities in two ways. First,
e can introduce a non-linear function g that maps the
ovariates onto a matrix W = g(X). Second, we could
alter the sample covariance matrix (the kernel) with a
function h: κ = h(W ′W ). Both W and κ form the two
ain ingredients of a general PCA reducing the dimension

o q, as outlined below (for details, see Schölkopf et al.,
998).
Independent of the functional form of g and h, we

btain PCs by performing a truncated singular value de-
omposition (SVD) of the transformed sample covariance
atrix κ. Conditional on the first q eigenvalues, the result-

ng factor matrix Z is of dimension T × q. For appropriate
, these PCs explain most variation in X . In the following,

the relationship between the PCs and X is:

Z = f (X) = g(X)Λ(κ) = WΛ(κ), (1)

with Λ(κ) being the truncated K × q eigenvector matrix
of κ (Stock & Watson, 2002b). Notice that this is always
conditional on deciding on a suitable number q of PCs.
The number of factors is a crucial parameter that strongly
influences predictive accuracy and inference (Bai & Ng,
2002). In our empirical work, we consider a small (q = 5),
a moderate (q = 15), and a large (q = 30) number of PCs.

By varying the functional form of g and h, we are
now able to discuss the first set of linear and non-linear
dimension reduction techniques belonging to the class of
PCA:

1. Linear PCs
The simplest way is to define both g and h as the
unity function, resulting in W = X and κ = X ′X .
Due to the linear link between the PCs and the data,
PCA is straightforward to implement and yields
consistent estimators for the latent factors if K and
T go to infinity (Bai & Ng, 2008; Stock & Watson,
2002b). Even if there is some time-variation in the
factor loadings (and K is large), Stock and Watson
(2002a) show that principal components asymptot-
ically (i.e., T → ∞) remain a consistent estimator
for the factors. They also show that the resulting
forecast is efficient.1

2. Quadratic and squared PCs
The literature suggests several ways to overcome
the linearity restriction of PCs. Bai and Ng (2008),

1 Note that this result holds only asymptotically. However, with
relatively small T and large K , forecast efficiency may be improved
by capturing important non-linear features of the dataset.
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for example, apply a quadratic link function be-
tween the latent factors and the regressors, yielding
a more flexible factor structure. While squared PC
considers just squaring the elements of X resulting
in

W = X2 and κ = (X2)′(X2),

with X2
= (X ⊙ X) and ⊙ denoting element-wise

multiplication, quadratic PC is defined as

W = (X,X2) and κ = W ′W .

Both variants focus on the second moments of the
covariate matrix and allow for a non-linear rela-
tionship between the principal components and the
predictors. Bai and Ng (2008) show that quadratic
variables can have substantial predictive power as
they provide additional information on the under-
lying time series. Intuitively speaking, given that
we transform our data to stationarity in the empir-
ical work, this transformation strongly overweights
situations characterized by sharp movements in the
columns of X (such as during a recession). By con-
trast, periods characterized by a slight variation
in our macroeconomic panel are transformed to
mildly fluctuate around zero (and thus carry little
predictive content for inflation). In our empirical
model, our regressions always feature lagged infla-
tion and thus, this transformation effectively im-
plies that the model is close to an autoregressive
model in tranquil periods, whereas more informa-
tion is introduced in crisis periods.

3. Kernel PCs
Another approach for non-linear PCs is kernel prin-
cipal component analysis (KPCA). KPCA dates back
to Schölkopf et al. (1998), who proposed using in-
tegral operator kernel functions to compute PCs
in a non-linear manner. This amounts to implic-
itly applying a non-linear transformation of the
data through a kernel function and then applying
PCA on this transformed dataset. Such an approach
has been used for forecasting in Giovannelli (2012)
and Exterkate et al. (2016).
We allow for non-linearities in the kernel function
between the data and the factors by defining h to
be a Gaussian or a polynomial kernel κ (which is of
dimension K ×K ) with the (i, j)th element given by

κij = exp
(

−
∥x•i − x•j∥

2

2c21

)
for a Gaussian kernel and

κij =

(
x′

•ix•j

c20
+ 1

)2

for a polynomial kernel.
Here, W = X (i.e., g is the unity function), x•i
and x•j (i, j = 1, . . . , K ) denote two columns of X ,
∥x•i − x•j∥ denotes the Euclidean distance between
x•i and x•j, while c0 and c1 are scaling parame-
ters. As suggested by Exterkate et al. (2016) we set
c0 =

√
(K + 2)/2 and c1 =

√
cK/π with cK being

the 95th percentile of the χ2 distribution with K
degrees of freedom.
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2.2. Diffusion maps

Diffusion maps, originally proposed in Coifman et al.
2005) and Coifman and Lafon (2006), are another set
f non-linear dimension reduction techniques that retain
ocal interactions between data points in the presence
f substantial non-linearities in the data.2 The local in-
eractions are preserved by introducing a random walk
rocess.
The random walk captures the notion that moving

etween similar data points is more likely than moving
o points that are less similar. We assume that the weight
unction that determines the strength of the relationship
etween x•i to x•j is given by

(x•i, x•j) = exp
(

∥x•i − x•j∥
2

c2

)
,

where ∥x•i −x•j∥ denotes the Euclidean distance between
x•i and x•j and c2 is a tuning parameter set such that
w(x•i, x•j) is close to zero except for x•i ≈ x•j. Here, c2
is determined by the median distance of the k-nearest
neighbors of x•i as suggested by Zelnik-Manor and Per-
ona (2004). The number of k is approximated using the
algorithm suggested by Angerer et al. (2016).

The probability of moving from x•i to x•j is then simply
obtained by normalizing:

pi→j = Prob(x•i → x•j) =
w(x•i, x•j)∑
jw(x•i, x•j)

.

his probability tends to be small except for the situation
here x•i and x•j are similar to each other. As a result, the
robability that the random walk moves from x•i to x•j
ill be large if they are equal but small if both covariates
iffer strongly.
Let P denote a transition matrix of dimension K × K

ith (i, j)th element given by pi→j. The probability of
oving from x•i to x•j in n = 1, 2, . . . steps is then simply

he matrix power of Pn, with typical element denoted by
n
i→j. Using a biorthogonal spectral decomposition of Pn

ields:
n
i→j =

∑
s≥0

λnsψs(x•i)φs(x•j),

ith ψs and φs denoting left and right eigenvectors of P ,
espectively. The corresponding eigenvalues are given by
s.
We then proceed by computing the so-called diffusion

istance as follows:

2
n (x•i, x•j) =

∑
j

(pni→j − pns→j)
2

p0(x•j)
,

ith p0 being a normalizing factor that measures the
roportion the random walk spends at x•j. This measure
urns out to be robust with respect to noise and outliers.
Coifman & Lafon, 2006) show that

2
n (x•i, x•j) =

∞∑
s=1

λ2ns (ψs(x•i) − ψs(x•j))2.

2 For an application to astronomical spectra, see Richards et al.
(2009).
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This allows us to introduce the family of diffusion maps
from RK

→ Rq given by:

Ξ n(x•i) = [λn1ψ1(x•i), . . . , λnqψq(x•i)].

The distance matrix can then be approximated as:

ξ 2n (x•i, x•j) ≈

q∑
s=1

λ2ns (ψs(x•i) − ψs(x•j))2

= ∥Ξ n(x•i) − Ξ n(x•j)∥2.

Intuitively, this equation states that we now approximate
diffusion distances in RK through the Euclidian distance
between Ξ n(x•i) and Ξ n(x•j). This discussion implies that
we have to choose n and q and we do this by setting

= {5, 15, 30} according to our approach with either a
mall, moderate or large number of factors and n = T ,
he number of time periods. The algorithm in our applica-
ion is implemented using the R packages diffusionMap
nd destiny (Angerer et al., 2016; Richards & Cannoodt,
019).

.3. Local linear embeddings

Locally linear embeddings (LLE) have been introduced
y Roweis and Saul (2000). Intuitively, the LLE algorithm
aps a high dimension input dataset X into a lower-
imensional space while preserving the neighborhood
tructure. This implies that points close to each other in
he original space are also close in the transformed space.

The LLE algorithm is based on the assumption that
ach x•i is sampled from some underlying manifold. If this
anifold is well defined, each x•i and its neighbors x•j are

ocated close to a locally linear patch of this manifold. One
onsequence is that each x•i can be reconstructed from its
eighbors x•j with j ̸= i, conditional on suitably chosen
inear coefficients. This reconstruction, however, will be
orrupted by measurement errors. Roweis and Saul (2000)
ntroduce a cost function to quantify these errors:

(Ω ) =

∑
i

(x•i −
∑

j

ωijx•j)2,

ith ωij denoting the (i, j)th element of a weight matrix
. This cost function is then minimized subject to the

onstraint that each x•i is reconstructed only from its
eighbors. This implies that ωij = 0 if x•j is not a neighbor
f x•i. The second constraint is that the matrix Ω is row-
tochastic, i.e., the rows sum to one. Conditional on these
wo restrictions, the cost function can be minimized by
olving a least squares problem.
To make this algorithm operational, we need to define

ur notion of neighbors. In the following, we will use the
-nearest neighbors in terms of the Euclidean distance.
e choose the number of neighbors by applying the

lgorithm proposed by Kayo (2006), which automatically
etermines the optimal number for k. The q latent factors
n Z , with typical ith column z•i, are then obtained by
inimizing:

(Z) =

∑
|z•i −

∑
Ωijz•j|

2,
i j
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which implies a quadratic form in z t . Subject to suit-
ble constraints, this problem can be easily solved by
omputing:

= (IT − Ω )′(IT − Ω ),

and finding the q + 1 eigenvectors of M associated with
the q+ 1 smallest eigenvalues. The bottom eigenvector is
then discarded to arrive at q factors. For our application,
we use the R package lle (Diedrich & Abel, 2012).

2.4. Isometric feature mapping

Isometric Feature Mapping (ISOMAP) is one of the
earliest methods developed in the category of manifold
learning algorithms. Introduced by Tenenbaum et al.
(2000), the ISOMAP algorithm determines the geodesic
distance on the manifold and uses multidimensional
scaling to come up with a low number of factors
describing the underlying dataset. Originally, ISOMAP
was constructed for applications in visual perception and
image recognition. In economics and finance, some recent
papers highlight its usefulness (see, e.g., Lin et al., 2011;
Orsenigo & Vercellis, 2013; Ribeiro et al., 2008; Zime,
2014).

The algorithm consists of three steps. In the first step,
a dissimilarity index that measures the distance between
data points is computed. These distances are then used to
identify neighboring points on the manifold. In the sec-
ond step, the algorithm estimates the geodesic distance
between the data points as the shortest path distances.
In the third step, metric scaling is performed by applying
classical multidimensional scaling (MDS) to the matrix of
distances. For the dissimilarity transformation, we deter-
mine the distance between point i and j by the Manhattan
index dij =

∑
k |xki − xkj| and collect those points where

i is one of the k-nearest neighbors of j in a dissimilarity
matrix. For our empirical application, we again choose the
number of neighbors by applying the algorithm proposed
by Kayo (2006) and use the implementation in the R
package vegan (Oksanen et al., 2019).

The described non-linear transformation of the dataset
enables the identification of a non-linear structure hidden
in a high-dimensional dataset and maps it to a lower di-
mension. Instead of pairwise Euclidean distances, ISOMAP
uses the geodesic distances on the manifold and com-
presses information under consideration of the global
structure.

2.5. Non-linear compression with deep learning

Deep learning algorithms are characterized by non-
linearly converting input to output and representing the
input itself in a transformed way. This is called repre-
sentation learning because representations of the data
are expressed in terms of other, simpler representations
before mapping the data input to output values.

One tool that performs representation of itself and
representation to output is the Autoencoder (AE). The first
step is accomplished by the encoder function, which maps
an input to an internal representation. The second part,
905
which maps the encoded (transformed) data to the out-
put, is called the decoder function. Their ability to extract
factors (which explain a large fraction of the variabil-
ity in the observed data) in a non-linear manner makes
deep learners a powerful tool complementing the range of
commonly used dimension reduction techniques (Good-
fellow et al., 2016). Andreini et al. (2020), for example,
embed a dynamic Autoencoder structure in a dynamic
factor model and show that it yields a good now- and
forecasting performance for US GDP. Their paper allows
for additional flexibility by simultaneously estimating the
non-linear latent factors and the parameters. In empirical
finance, Heaton et al. (2017), Feng et al. (2018) and Kelly
et al. (2019) find that the application of these methods is
beneficial to predict asset returns.

Based on deep learning techniques, we propose ob-
taining hierarchical predictors Z by applying a number
of l ∈ {1, . . . , L} non-linear transformations to X . These
transformations are called hidden layers with L giving
he depth of our architecture and f denoting an univari-
te activation function.3 More specifically, in each layer,
ctivation functions (non-linearly) transform the inputs
which are the outputs of the previous layer). A common
hoice, which we adopt, is the hyperbolic tangent (tanh)
iven by

(X) =
exp(X) − exp(−X)
exp(X) + exp(−X)

.

We apply this function element-wise to the entries of X .
Using tanh activation functions is justified by its strong
empirical properties identified in recent studies such as
Saxe et al. (2019) and Andreini et al. (2020).

The structure of our deep learning algorithm can be
represented in form of a composition of univariate semi-
affine functions given by

X̂
(l)

= f
(
X̂

(l−1)
W (l−1)

+ ιT ⊗ b′

l−1

)
W (l)

+ ιT ⊗ b′

l,

for 1 ≤ l ≤ L,

and X̂
(0)

= X for l = 0. Here, W (l) denotes a weighting
matrix of dimension Nl−1 ×Nl (with Nl being the number
of neurons in layer l), bl is a Nl × 1 bias vector and ιT is a
T × 1 vector of ones.

The output of the network is then obtained by setting:

Z = X̂
(L)

= f
(
X̂

(L−1)
W (L−1)

+ ιT ⊗ bL−1

)
W (L)

+ ιT ⊗ bL.

Notice that if we set NL = q(≪ K ), we achieve dimension
reduction, and the network’s output is a (non-linearly)
compressed version of the input dataset. In principle,
what we have just described constitutes the encoding part
of the Autoencoder. If we are interested in recovering the
original dataset X we simply have to add additional layers
characterized by increasing numbers of neurons until we
reach NL+j = K for j = 1, 2, . . . .

The optimal sets of Ŵ = (Ŵ
(0)
, . . . , Ŵ

(L)
) and b̂ =

(b̂0, . . . , b̂L) are obtained by computing a loss function,
most commonly the mean squared error of the in-sample

3 In principle, f can vary over the different layers.
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fit. The complexity of the neural network is determined by
choosing the number of hidden layers L and the number
of neurons in each layer Nl. We perform our forecasting
exercise with different sets of tuning parameters and
choose one, three, five, and eight hidden layers with the
number of neurons evenly being downsized to the desired
number of factors.

For the loss function and the optimization algorithm,
we stick to common choices in the literature and use
the mean squared error loss function and the Adaptive
Moment Estimation (ADAM). We repeat the optimization
procedure in 100 epochs on at least 84 batches, which
corresponds to the average duration of a business cycle
in the US.4 This implies that we train the algorithm in
each epoch with a partition of the original data set of at
least the length of one business cycle. The optimization
procedure needs to be repeated in a reasonably high
number of epochs to capture the dynamics of the different
cycles present in the data. We find that the algorithm
converges quickly, and setting the number of epochs to
100 is sufficient.

We employ the R interface to keras (Allaire & Chollet,
2019), a high-level neural networks API and widely used
package for implementing deep learning models.

3. A TVP regression for forecasting inflation

In the following, we introduce the predictive regres-
sion that links our target variable, inflation in consumer
prices, to Z and other observed factors. Following Stock
and Watson (1999), inflation is specified such that:

yt+h = log
(
CPIt+h

CPIt

)
− log

(
CPIt

CPIt−1

)
, (2)

with CPIt+h denoting the consumer price index in period
t + h.

In the empirical application we set h ∈ {1, 3}. yt+h is
then modeled using a dynamic regression model:

yt+h = d ′

tβt+h + ϵt+h, ϵt+h ∼ N (0, σ 2
t+h), (3)

where βt+h is a vector of TVPs associated with M(=
q + p) covariates denoted by dt and σ 2

t+h is a time-
varying error variance. dt might include the latent factors
extracted from the various methods discussed in the pre-
vious subsection, lags of inflation, an intercept term or
other covariates that are not compressed.

Following much of the literature (Belmonte et al.,
2014a; Chan, 2017; Huber et al., 2021; Kalli & Griffin,
2014; Kastner & Frühwirth-Schnatter, 2014; Stock & Wat-
son, 2016; Taylor, 1982) we assume that the TVPs and the
error variances evolve according to independent stochas-
tic processes:(

βt+h
log σ 2

t+h

)
∼ N

((
βt+h−1

µh + ρh log σ 2
t+h−1

)
,

(
V 0
0 ϑ2

h

))
,

(4)

4 The average duration of a business cycle was determined using
data provided by The National Bureau of Economic Research (NBER)
on business cycle expansions and recessions.
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with µh denoting the conditional mean of the
log-volatility, ρh its persistence parameter and ϑ2

h the
error variance of log σ 2

t+h. The matrix V is an M × M-
dimensional variance–covariance matrix with V = diag
(v21, . . . , v

2
M ) and v2j being the process innovation variance

that determines the amount of time-variation in βt+h.
This setup implies that the TVPs are assumed to follow
a random walk process while the log-volatilities evolve
according to an AR(1) process.

The model described by Eqs. (3) and (4) is a flexi-
ble state space model that encompasses a wide range
of models commonly used for forecasting inflation. For
instance, if we set V = 0M and ϑ2

= 0, we obtain a
constant parameter model with homoscedastic errors. If
V is instead a full M × M matrix, but of reduced rank,
we obtain the model proposed in Chan et al. (2020). If dt
includes the lags of inflation and (lagged) PCs, we obtain a
model closely related to the one used in Stock and Watson
(2002b). If we set dt = 1 and allow for TVPs, we ob-
tain a specification similar to the unobserved components
stochastic volatility model successfully adopted in Stock
and Watson (1999). Many other models can be identified
by appropriately choosing dt , V , and ϑ2. This flexibility,
however, calls for model selection. We select appropriate
submodels by using Bayesian methods for estimation and
forecasting. These techniques are further discussed in Sec-
tion B of the Online Appendix and allow for data-based
shrinkage towards simpler nested alternatives.

4. Forecasting US inflation

4.1. Data overview, design of the forecasting exercise and
competitors

In our empirical application, we consider the popu-
lar FRED-MD database. This dataset is publicly accessible
and available in real-time. The monthly data vintages
ensure that we only use information that would have
been available at the time a given forecast is being pro-
duced. A detailed description of the databases can be
found in McCracken and Ng (2016). To achieve approx-
imate stationarity, we transform the dataset as outlined
in Section C of the Online Appendix. Furthermore, each
time series is standardized to have a sample mean zero
and unit sample variance before using the non-linear
dimension reduction techniques.

Our US dataset includes 105 monthly variables that
span the period from 1963:01 to 2021:01. The forecasting
design relies on a rolling window, as justified in Clark
(2011), that initially ranges from 1980:01 to 1999:12.
For each month of the hold-out sample, which starts
in 2000:01 and ends in 2019:12, we compute the h-
month-ahead predictive distribution for each model (for
h ∈ {1, 3}), keeping the length of the estimation sample
fixed at 240 observations (i.e., a rolling window of 20
years).5 For these periods, we contrast each forecast with

5 In addition to our baseline sample ending in 2019:12, we present
the results of our forecasting exercise, including observations covering
the COVID-19 pandemic (2020:01 to 2020:08) in Section 4.5. Since
the pandemic caused severe outliers in our dataset, including those
periods helps to test the forecasting performance of our models during
turbulent times.
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the realization of inflation in the vintage one-quarter-
ahead, following the evaluation approach of Chan (2017).
In this way, we make sure that realized inflation is not
subject to revisions anymore as most data revisions take
place in the first quarter while afterward, the vintages
remain relatively unchanged (see, e.g., Croushore, 2011;
Pfarrhofer, 2020).

One key limitation is that all methods are specified
onditionally on dt and thus implicitly on the specific
unction f used to move from X to Z . Another key ob-
jective of this paper is to control uncertainty with respect
to f by using dynamic model averaging techniques. We
use the first 24 observations of our hold-out sample to
obtain an initial combined predictive density for the pe-
riod 2002:01. The remaining periods (i.e., ranging from
2002:01 to 2019:12) then constitute our evaluation sam-
ple, and the respective predictions are again contrasted to
the one-quarter-ahead vintage of inflation.

In terms of competing models we can classify the
specifications along two dimensions:

1. How dt is constructed. First, let st denote a K0-
dimensional vector of covariates except for yt . xt =

(s′
t , . . . , s

′

t−p+1)
′ is then composed of p lags of st

with K = pK0. In our empirical work we set p =

12 and include all variables in the dataset (except
for the transformed CPI series, i.e., K0 = 104).
We then use the different dimension reduction
techniques outlined in Section 2 to estimate z t .
Moreover, we include p lags of yt as additional
observed factors to dt . This serves to investigate
how different dimension reduction techniques per-
form when interest centers on predicting infla-
tion. We also consider simple AR(12) models as
well as a small- and a large-scale AR specification
augmented with (observed) exogenous covariates
(henceforth labeled ARX) as additional competitors.
For the small-scale variants we include five ex-
ogenous regressors, while for the large-scale ARX
model we use 20 additional covariates. Since the
macroeconomic forecasting literature is quite in-
conclusive about variable inclusion in such pre-
dictive ARX models for inflation (see, e.g., De Mol
et al., 2008; Hauzenberger et al., 2019; Koop &
Korobilis, 2012; Stock & Watson, 2008), we use a
semi-automatic approach that handles this issue
rather agnostically. We discuss this in more detail
in Section 4.2.

2. The relationship between dt and yt+h. The second
dimension along which our models differ is the
specific relationship described by Eq. (3). To investi-
gate whether non-linear dimension reduction tech-
niques are sufficient to control for unknown forms
of non-linearities, we benchmark all our models
that feature TVPs with their respective constant
parameter counterparts. To perform model selec-
tion, we consider two priors. The first one is the
horseshoe (HS, Carvalho et al., 2010) prior and the
second one is an adaptive Minnesota (MIN, see
Carriero et al., 2015; Chan, 2021; Giannone et al.,
2015) prior (for further details see Section B of the
Online Appendix).
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4.2. Properties of the factors

In this subsection, we analyze bivariate correlations
between the factors obtained from using different di-
mension reduction techniques and the variables in our
dataset, as well as inflation. These correlations provide
information on the specific factor dynamics and (with
caution) on how to interpret the factors in Z from a
structural perspective.6 The recent literature (Crawford
et al., 2019, 2018; Joseph, 2019) advocates using lin-
ear approximations or Shapley values to improve the
interpretability of these highly non-linear models. In this
paper, we opt for a simple correlation-based approach
given the large amount of competing dimension reduc-
tion techniques and the fact that for some of these, the
different techniques work better than for other methods.

Fig. 1 is a heatmap of the correlations with rows denot-
ing the different covariates in X and columns representing
the different dimension reduction techniques. These cor-
relations are averages across the factors (in case that q >
1) and, since we include several lags of the input dataset,
are also averaged across the lags.

The figure suggests for most dimension reduction
techniques that the factors are correlated with hous-
ing quantities (PERMIT and HOUST alongside their sub-
components) as well as interest rate spreads. Some
variables that measure real activity (such as industrial
production and several of its components) also display
comparatively large correlations with the factors. In some
cases, these correlations are positive, whereas in other
cases, correlations are negative. In both instances, how-
ever, the absolute magnitudes are similar. The three ex-
ceptions from this rather general pattern are diffusion
maps as well as PCA quadratic and squared. In this case,
the corresponding columns indicate lower correlations.

Averaging over the factors, as done in Fig. 1, potentially
masks important features of individual factors. Next, we
ask whether there are relevant differences by analyzing
the correlations between each z j (j = 1, . . . , q) and each
column of X . For brevity, we focus on a specific model that
performs extraordinarily well in terms of density fore-
casts: the Autoencoder with a single hidden layer and 30
factors. Fig. 2 shows, for each factor, the five variables that
display the largest absolute correlation. The variables in
the rows are a union over the sets of top-five variables for
each factor. This figure shows that several factors display
quite similar correlation patterns. For all of them, housing
quantities are positively or negatively correlated (with
similar magnitudes). Apart from that, and consistent with
the findings discussed above, we observe that financial
market variables (such as interest rate spreads) show up
frequently for several factors. Only very few factors depart
from this overall pattern. In the case of factors 9, 22,
23, and 24, we find low correlations with housing and
much stronger correlations with financial markets. Factor
9 closely tracks the credit (BAAFFM) and term spreads
(e.g., T10YFFM).

6 The estimates of the factor are considerably more difficult to
interpret. Nevertheless, to provide some intuition on how the factors
for the best performing specifications evolve, see Figure A.1 in the
Online Appendix.
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Fig. 1. Correlations between the variables in the input dataset and the factors obtained from the different dimension reduction techniques.
These two heatmaps provide a rough overview of what
ariables drive the factors. Next, we ask whether we
an construct models based on including variables that
isplay the strongest correlations with the factors. This
908
approach can be interpreted as a simple selection device
that takes non-linearities in the input dataset implicitly
into account. Since the heatmap is based on full-sample
results and we are interested in using these small-scale
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Fig. 2. Correlations between the top-five variables in the input dataset and the factors obtained from the Autoencoder with one layer.
odels for out-of-sample forecasting, we compute the
orrelation for each point in our hold-out period. In sum-
ary, the variables that frequently show up across hold-
ut periods and dimension reduction techniques are:

• Real activity and housing: Variables on industrial
production (INDPRO, IPMANSICS), capacity utiliza-
tion (CUMFNS) and private housing starts (HOUST)
and permits (PERMIT),

• Labor market: Variables on (un-)employment
(MANEMP, USGOOD) and average hours worked
(CES0600000007, AWHMAN),

• Prices: Sub-indicators of consumer prices
(CUSR0000SA0L5),

• Interest rates and other stock market variables:
Spreads (to the Fed funds rate) of treasuries
(TB3SMFFM, TB6SMFFM, T1YFFM, T10YFFM) and of
corporate bonds (AAAFFM, BAAFFM, COMPAPFFx),

• Money stocks and reserves: Non-borrowed reserves
(NONBORRES) and adjusted monetary base (AMBSL).

hese variables are also the ones that display high cor-
elations to the factors in Fig. 1 and are included in the
arge-scale ARX model. Here, it is worth stressing that
here seems to be appreciable heterogeneity with respect
o dimension reduction methods. Most of them generate
actors that are highly correlated with real activity and
ousing measures as well as interest rates and other stock
arket variables. Interestingly, when we focus on the
econd group, we observe that the factors arising from
sing PCA squared (and to a somewhat lesser extent PCA
uadratic) are heavily related to labor market measures.
verage correlations with prices (i.e., CUSR0000SA0L5)
re small for most techniques (PCA quadratic yields the
argest correlations of around 0.3 − 0.4). Some methods
lso yield factors strongly correlated to money stocks and
eserves (e.g., diffusion maps). Table C.3 of the Online
ppendix provides a much more detailed picture of the
recise variables used to build the small-scale models.
Next, we ask whether the factors are correlated to

nflation. Table 1 shows the correlation with inflation
veraged across the number of factors for each dimension
eduction technique, as well as the minimum and maxi-
um value (across these factors) in parentheses. To assess
hether these correlations differ over time, we divide
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our sample into expansionary and recessionary periods.7
Since the COVID-19 pandemic marks an extraordinary
period in our sample, we also compute the correlations
for 2020 only and include it at the bottom of Table 1.

For the full sample as well as during expansions, we
find that the factors obtained from using the linear vari-
ants of PCA display comparatively higher correlations rel-
ative to the other dimension reduction techniques (with
some of the factors featuring a correlation of close to
0.2). In recessions and the pandemic, these correlations
increase substantially to reach average correlations close
to 0.3 (with the factor displaying the maximum corre-
lation being strongly related to inflation, with values of
around 0.6). The non-linear dimension reduction tech-
niques yield strong correlations during turbulent times
(i.e., recessions and the pandemic). This is not surpris-
ing since these methods tend to work well if there are
strong deviations from linearity (which mainly occurs in
recessions). Such a feature can be easily demonstrated
by considering PCA squared. The factors will be centered
around zero in normal times and typically display little
variation. But in recessions, the link function implies that
larger changes will dominate the shape of the factors
and imply pronounced movements that could help predict
turning points in inflation.

4.3. Density and point forecast performance

We now consider point and density forecasting per-
formance of the different models and dimension reduc-
tion techniques. The forecast performance is evaluated
through log predictive likelihoods (LPLs) for density fore-
casts, and root mean squared errors (RMSEs) for point
forecasts. Superior models are those with high scores
in terms of LPL and low values in terms of RMSE. We
benchmark all models relative to the autoregressive (AR)
model with constant parameters and the Minnesota prior.
The first entry in the tables gives the actual value of
the LPL (cumulated over the hold-out sample) with ac-
tual RMSEs in parentheses (averaged over the hold-out
sample) for our benchmark model. The remaining entries

7 Recessions are defined by using the business cycle classification
of the National Bureau of Economic Research (NBER).
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Table 1
Average correlation with inflation.
Business
Cycle

No. of
factors

PCA
linear

PCA
quadratic

PCA
squared

PCA
gauss. kernel

PCA
poly. kernel

ISOMAP Diffusion
Maps

LLE Autoen-
coder 1l

Full Sample q = 05 0.017 0.114 0.113 0.013 0.016 0.007 0.061 0.009 0.008
q = 05 (0.003,0.043) (0.006,0.251) (0.006,0.250) (0.004,0.024) (0.003,0.035) (0.002,0.010) (0.002,0.163) (0.003,0.017) (0.002,0.018)
q = 15 0.086 0.069 0.068 0.030 0.069 0.034 0.052 0.013 0.035
q = 15 (0.003,0.198) (0.003,0.251) (0.005,0.250) (0.004,0.133) (0.003,0.206) (0.003,0.095) (0.001,0.163) (0.001,0.035) (0.004,0.090)
q = 30 0.108 0.049 0.050 0.052 0.106 0.043 0.063 0.036 0.036
q = 30 (0.002,0.259) (0.003,0.251) (0.005,0.250) (0.004,0.274) (0.003,0.292) (0.001,0.143) (0.001,0.185) (0.001,0.168) (0.001,0.163)

Expansion q = 05 0.027 0.069 0.055 0.033 0.030 0.021 0.045 0.010 0.023
q = 05 (0.016,0.049) (0.003,0.151) (0.003,0.110) (0.013,0.059) (0.019,0.050) (0.009,0.050) (0.022,0.098) (0.003,0.02) (0.006,0.043)
q = 15 0.073 0.057 0.055 0.030 0.061 0.035 0.049 0.020 0.039
q = 15 (0.001,0.192) (0.003,0.151) (0.003,0.110) (0.003,0.087) (0.009,0.194) (0.003,0.118) (0.005,0.098) (0.003,0.068) (0.003,0.115)
q = 30 0.103 0.047 0.045 0.049 0.098 0.040 0.053 0.043 0.041
q = 30 (0.001,0.290) (0.001,0.151) (0.001,0.110) (0.001,0.276) (0.009,0.285) (0.001,0.134) (0.005,0.116) (0.003,0.209) (0.001,0.196)

Recession q = 05 0.098 0.250 0.248 0.121 0.116 0.042 0.180 0.065 0.071
q = 05 (0.040,0.156) (0.123,0.442) (0.123,0.442) (0.049,0.149) (0.051,0.163) (0.014,0.091) (0.122,0.269) (0.007,0.114) (0.012,0.190)
q = 15 0.152 0.137 0.136 0.097 0.143 0.090 0.133 0.067 0.068
q = 15 (0.004,0.286) (0.012,0.442) (0.016,0.442) (0.003,0.321) (0.022,0.326) (0.015,0.205) (0.019,0.269) (0.003,0.172) (0.010,0.188)
q = 30 0.152 0.110 0.114 0.118 0.158 0.104 0.132 0.081 0.077
q = 30 (0.004,0.297) (0.009,0.442) (0.011,0.442) (0.003,0.321) (0.022,0.424) (0.005,0.366) (0.003,0.306) (0.003,0.180) (0.003,0.297)

Pandemic q = 05 0.320 0.285 0.287 0.124 0.231 0.199 0.367 0.303 0.087
q = 05 (0.059,0.631) (0.188,0.424) (0.216,0.423) (0.020,0.210) (0.017,0.642) (0.101,0.303) (0.127,0.610) (0.087,0.506) (0.046,0.131)
q = 15 0.292 0.322 0.314 0.292 0.260 0.173 0.308 0.228 0.126
q = 15 (0.059,0.631) (0.015,0.641) (0.012,0.642) (0.020,0.734) (0.008,0.642) (0.022,0.559) (0.053,0.610) (0.088,0.402) (0.017,0.365)
q = 30 0.269 0.348 0.320 0.260 0.262 0.261 0.313 0.358 0.160
q = 30 (0.029,0.631) (0.015,0.641) (0.010,0.642) (0.020,0.796) (0.008,0.646) (0.001,0.764) (0.001,0.886) (0.057,0.821) (0.007,0.475)

Note: The values are averaged across the number of factors stated in the second column with minimum and maximum values in parentheses. All correlation values are absolute values.
The periods are divided into business cycle phases according to the National Bureau of Economic Research (NBER, https://www.nber.org/research/business-cycle-dating).
are differences in LPLs with relative RMSEs in parenthe-
ses. We mark statistically significant results according to
the Diebold and Mariano (1995) test at the one, five, and
ten percent significance levels with one, two, and three
asterisks, respectively.

Starting with the one-month-ahead horizon, Table 2
epicts the inflation forecasting results. This table sug-
ests that using dimension reduction techniques (both
inear and non-linear) improves predictions substantially
n terms of density forecasts. These improvements arise
ot only relative to the AR benchmark but also related
o the large AR models with additional exogenous regres-
ors. For some models, these improvements are sizable,
rrespective of the regression specification (i.e., whether
e use a constant parameter or a TVP model). Espe-
ially the Autoencoder with one and five layers sharply
mproves upon the benchmark (and all the remaining
ompetitors) by large margins. Moreover, it yields statis-
ically significant improvements at the one percent level.
similar story emerges when we focus on point forecasts.
on-linear dimension reductions help slightly. Relative
MSEs are smaller but close to one for most models.
gain, the Autoencoder works well and yields RMSEs that
re, across regression specifications, almost 20 percent
ower than the ones from the benchmark. It is worth em-
hasizing that PCA squared also yields highly competitive
oint forecasts that are statistically significant according
o the Diebold and Mariano (1995) test.

When comparing model performance across regres-
ion specifications and focusing on the Minnesota-type
riors, we find that constant parameter models work
uite well if non-linear dimension reduction techniques
uch as the Autoencoder are adopted. With a single ex-
eption (diffusion maps), introducing TVPs does not pay
ff and yields density forecasts that are slightly more
mprecise than those obtained from their time-invariant
ounterparts. If we use a horseshoe prior, this result
omewhat reverses (with the caveat that the models cou-
led with the horseshoe sometimes yield weaker inflation
orecasts than the benchmark). Here, we observe that in-

roducing TVPs often improves log predictive likelihoods
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relative to the constant parameter model with the same
prior.

Summing up this discussion, the Autoencoder yields
favorable point and density forecasts, irrespective of the
prior and regression specification chosen. However, this
strong performance of the Autoencoder depends on the
number of layers and the number of factors. The litera-
ture (see, e.g., Heaton, 2008; Huang, 2003) suggests that
the number of hidden layers should increase with the
complexity of the dataset. Our results, however, indicate
the opposite. For a typical US macroeconomic dataset,
the forecast performance of the Autoencoder seems to be
strongest when a single hidden layer coupled with a large
number of factors is used.

Next, we inspect the longer forecast horizon in greater
detail. Table 3 depicts the forecast performance of all
competitors for the one-quarter-ahead horizon. The ta-
ble indicates that several non-linear dimension reduction
techniques (most notably the Autoencoder, PCA quadratic,
and PCA squared) outperform the autoregressive bench-
mark as well as models based on linear PCs. The improve-
ments relative to linear PCs are sizable and statistically
significant (especially for squared and quadratic PCs). For
this horizon, the large ARX models also exhibit excellent
forecasting properties.

Zooming into the different approaches to dimension
reduction reveals that PCA quadratic with TVPs yields
the highest LPLs. PCA quadratic and squared stand out
among the different dimension reduction techniques and
improve appreciably against all other dimension reduc-
tion techniques. The Autoencoder also provides highly
competitive density forecasts.

When we consider point forecasts, a similar picture
arises. Here we find that the models that do well in terms
of LPLs also yield precise point forecasts. However, the
best performing specification is PCA squared with five
factors, constant parameters, and a horseshoe prior. This
model improves upon the AR benchmark by around 24
percent. Notice, however, that the same model but with

TVPs also yields 24 percent more precise forecasts than

https://www.nber.org/research/business-cycle-dating
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Table 2
One-month-ahead forecast performance.
Specification const. (MIN) const. (HS) TVP (MIN) TVP (HS)

AR −329.28 0.23 −0.99 −1.04
(1.24) (0.98) (0.98) (0.98)

Large ARX 2.46 −9.80*** −8.95***
(0.97) (1.06***) (1.04***)

Autoencoder 1l (q = 05) 2.19 −2.06 1.12 −1.43
(0.98) (0.99) (0.97) (0.99)

Autoencoder 1l (q = 15) 16.26*** 12.71*** 21.41*** 13.69***
(0.90***) (0.91***) (0.87***) (0.90***)

Autoencoder 1l (q = 30) 38.19*** 29.92*** 35.48*** 31.39***
(0.81***) (0.84***) (0.80***) (0.83***)

Autoencoder 3l (q = 05) 3.55 −1.59 1.90 −2.35
(0.97) (0.99) (0.97) (0.99)

Autoencoder 3l (q = 15) 11.52*** 8.90** 13.19** 8.35**
(0.94**) (0.95*) (0.92**) (0.95**)

Autoencoder 3l (q = 30) 23.63*** 16.44*** 18.62* 12.81*
(0.86***) (0.88***) (0.83***) (0.87***)

Autoencoder 5l (q = 05) 2.50 −2.07 1.55 −2.74
(0.97) (0.99) (0.97) (0.99)

Autoencoder 5l (q = 15) 10.05* 4.45 11.65* 5.62
(0.94**) (0.95) (0.93**) (0.94*)

Autoencoder 5l (q = 30) 26.91*** 22.80*** 26.72*** 23.12***
(0.85***) (0.86***) (0.84***) (0.86***)

Autoencoder 8l (q = 05) 1.79 −2.58 3.27 −3.05
(0.97) (0.99) (0.97) (0.99)

Autoencoder 8l (q = 15) 2.86 −4.34 1.49 −2.52
(0.98) (1.00) (0.97) (1.00)

Autoencoder 8l (q = 30) 5.64 −0.97 7.21* 0.13
(0.97) (0.99) (0.95) (0.98)

Diffusion Maps (q = 05) 2.12 −3.64 2.97 −2.40
(0.98) (1.00) (0.98) (1.00)

Diffusion Maps (q = 15) 2.10 −8.17** 2.13 −7.54**
(0.98) (1.03**) (0.99) (1.03**)

Diffusion Maps (q = 30) 2.55 −9.13** 3.81 −6.79*
(0.98) (1.03**) (0.97) (1.02**)

ISOMAP (q = 05) 2.55 −3.36 2.28 −1.24
(0.98) (0.99) (0.97) (0.99)

ISOMAP (q = 15) 3.01 −5.33* 1.31 −5.46*
(0.97) (1.01) (0.98) (1.01*)

ISOMAP (q = 30) 1.50 −6.04** 2.36 −4.53
(0.97) (1.01**) (0.97) (1.01)

LLE (q = 05) 1.39 −2.23 1.93 −1.84
(0.98) (0.99) (0.98) (1.00)

LLE (q = 15) 2.68 −5.87** 0.83 −5.18*
(0.97) (1.02*) (0.97) (1.01)

LLE (q = 30) 1.86 −11.38** 0.45 −11.49**
(0.98) (1.02*) (0.98) (1.01*)

PCA gauss. kernel (q = 05) 2.44 −1.37 1.50 0.07
(0.98) (0.99) (0.97) (0.98)

PCA gauss. kernel (q = 15) 2.97 −1.30 1.85 −3.88
(0.98) (0.99) (0.98) (0.99)

PCA gauss. kernel (q = 30) 2.68 −2.94 3.10 −1.36
(0.97) (1.00) (0.97) (0.99)

PCA linear (q = 05) 1.96 −3.74 1.27 −2.46
(0.98) (1.00) (0.98) (0.99)

PCA linear (q = 15) 3.78 −4.89 3.35 −3.76
(0.97) (1.01) (0.97) (1.00)

PCA linear (q = 30) 3.25 −7.51** 2.10 −5.38
(0.97) (1.02**) (0.98) (1.02**)

PCA poly. kernel (q = 05) 3.74 −1.06 2.50 −0.76
(0.98) (0.99) (0.98) (0.99)

PCA poly. kernel (q = 15) 1.01 −1.90 2.37 −2.17
(0.98) (0.99) (0.98) (0.99)

PCA poly. kernel (q = 30) 4.28 −1.78 2.51 −2.43
(0.97) (0.99) (0.97) (0.99)

(continued on next page)
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Table 2 (continued).
PCA quadratic (q = 05) 10.56** 7.15 9.72* 8.32

(0.91*) (0.93) (0.90*) (0.93)
PCA quadratic (q = 15) 4.63 0.01 6.79 1.34

(1.00) (0.99) (0.97) (0.98)
PCA quadratic (q = 30) 3.15 −7.23 5.11 −4.72

(0.97) (1.04**) (0.96) (1.03*)

PCA squared (q = 05) 9.78* 8.44 11.30* 7.10
(0.90*) (0.92) (0.89*) (0.92)

PCA squared (q = 15) 5.77 0.70 7.36 2.47
(0.97) (0.98) (0.93) (0.98)

PCA squared (q = 30) 4.33 −1.49 6.79* −3.58
(0.97) (1.01) (0.95) (1.02)

Note: The table shows log predictive likelihoods (LPLs) with root mean squared errors (RMSEs) in
parentheses below. The first (red shaded) entry gives the actual LPL and RMSE scores of our benchmark
(an autoregressive (AR) model with constant parameters and a Minnesota prior). Asterisks indicate
statistical significance for each model relative to the benchmark at the 1% (***), 5% (**) and 10% (*)
significance levels. Since the large ARX model with time-varying parameters would feature 273 period-
specific coefficients and is computationally intractable, we assume that the TVPs feature a factor structure
(with three factors) to reduce the dimension of the state space (see Section B of the Online Appendix
and Chan et al., 2020).
the ones of the benchmark. This suggests that the horse-
shoe shrinks the TVPs close to zero, and the corresponding
point estimators are almost identical. Since the LPLs differ,
the remaining time variation in the coefficients mainly
impacts the LPLs through the predictive variance.

Table 4 provides a summary of the best performing
models for the one-month and the one-quarter-ahead
forecasts, respectively. Moreover, we also assess how a
model that includes the five variables displaying the high-
est average correlations to the factors performs (see dis-
cussion in Section 4.2). These models are labeled small
ARX in the table. The results suggest that for one-month-
ahead forecasts, replacing the latent factors arising from
the Autoencoder with observed variables that display a
high correlation to the factors does not pay off in terms
of point and density forecasts. Across all regression speci-
fications, the RMSEs are higher and the LPLs lower. How-
ever, when we consider one-quarter-ahead forecasts, this
strategy seems to work much better. In this case, smaller
models with covariates selected based on their correla-
tions to the factors obtained using PCA squared and PCA
quadratic yield density predictions close to those obtained
from exploiting all available data. Notice, however, that
for point forecasts, the performance of the small models
is inferior.

Before proceeding to the next subsection, we briefly
discuss two important issues. First, it is worth stressing
that the factors used in this forecasting exercise are ex-
tracted from the full set of variables in X . In Table A.1 and
Table A.2 of the Online Appendix we divide the dataset
into slow- and fast-moving variables (Bernanke et al.,
2005) and extract the latent factors from these partitioned
datasets exclusively. The main results based on extracting
the factors from the full dataset remain in place. The
Autoencoder performs particularly well for one-month-
ahead forecasts, whereas PCA squared and quadratic yield
accurate forecast densities for one-quarter-ahead predic-
tions.

Second, for one of our best-performing models (the
Autoencoder with one hidden layer), forecasting perfor-
mance changes sharply when the number of factors is
912
changed. This raises questions about the relationship be-
tween the number of factors and the forecast perfor-
mance. In Figure A.2 in the Online Appendix, we show
two graphs that discuss how point and density forecasting
performance change with the number of factors. In this
exercise, we find that the largest jumps in predictive
accuracy are found when increasing the number of factors
from 17 to 24 and 29 to 30 in terms of LPLs, and from 18
to 26 and 29 to 30 in terms of RMSE.

4.4. Assessing model calibration using probability integral
transforms

The results based on RMSEs and LPLs provide infor-
mation on relative forecasting performance. In the next
step, we ask whether the different methods and models
that we propose yield predictive distributions that are
better calibrated. To this end, we consider the normalized
forecast errors obtained through the probability integral
transform (PIT). If a model is correctly specified, the PITs
are iid uniformly distributed, and the respective standard-
ized forecast errors should be iid normally distributed.
Departures from the standard Gaussian distribution al-
low us to inspect the dimensions for which the model
is poorly calibrated. For instance, if the variance of the
normalized forecast error is too small (i.e., below one),
this is evidence that the predictive distribution is too wide
(i.e., too many predictions are in the tails). At the same
time, values greater than one indicate that the variance is
too tight (i.e., the tails are not adequately represented).

Table 5 shows the results for the one-month-ahead
normalized forecast errors.8 In principle, we observe that
the mean across methods is close to zero (with a few
exceptions such as PCA quadratic for q = 15). Nev-
ertheless, these differences are never statistically sig-
nificantly different from zero. Considering the variances
shows that most models yield forecast distributions that
seem slightly too narrow (with variances exceeding one).

8 The results for one-quarter-ahead forecasts are provided in Section
A of the Online Appendix.
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Table 3
One-quarter-ahead forecast performance.
Specification const. (MIN) const. (HS) TVP (MIN) TVP (HS)

AR −322.66 9.79 20.02 18.53
(1.27) (0.94*) (0.89*) (0.89**)

Large ARX 19.68 14.44 11.03
(0.89*) (0.94) (0.94)

Autoencoder 1l (q = 05) 18.26 15.86 14.72 17.25
(0.89*) (0.89*) (0.89*) (0.89*)

Autoencoder 1l (q = 15) 24.56 27.39 22.94 26.17
(0.86**) (0.85**) (0.86**) (0.85**)

Autoencoder 1l (q = 30) 22.17 27.55 24.62 26.65
(0.85**) (0.84**) (0.85**) (0.83**)

Autoencoder 3l (q = 05) 19.24 22.33 21.18 19.49
(0.87**) (0.85**) (0.87**) (0.86**)

Autoencoder 3l (q = 15) 20.24 21.49 20.54 20.60
(0.86**) (0.86**) (0.86**) (0.85**)

Autoencoder 3l (q = 30) 23.97 20.29 21.60 20.45
(0.86**) (0.85**) (0.86**) (0.85**)

Autoencoder 5l (q = 05) 20.87 16.60 18.60 19.66
(0.86**) (0.86**) (0.87**) (0.86**)

Autoencoder 5l (q = 15) 15.15 14.34 15.71 14.00
(0.86**) (0.86**) (0.87**) (0.86**)

Autoencoder 5l (q = 30) 21.13 22.40 19.67 21.44
(0.86**) (0.85**) (0.86**) (0.85**)

Autoencoder 8l (q = 05) 20.82 18.27 16.17 17.18
(0.88*) (0.88*) (0.89*) (0.88*)

Autoencoder 8l (q = 15) 12.21 6.51 8.01 7.27
(0.88*) (0.92) (0.90) (0.91)

Autoencoder 8l (q = 30) −3.75 −16.20 −11.91 −14.54
(0.89) (0.90) (0.89) (0.90)

Diffusion Maps (q = 05) 16.27 20.18 12.09 18.18
(0.86**) (0.86**) (0.86**) (0.86**)

Diffusion Maps (q = 15) 19.69 16.58 17.53 14.27
(0.86**) (0.86**) (0.86**) (0.86**)

Diffusion Maps (q = 30) 17.02 13.20 20.08 12.27
(0.87**) (0.89*) (0.86**) (0.88**)

ISOMAP (q = 05) 18.01 16.89 15.62 18.45
(0.86**) (0.86**) (0.87**) (0.86**)

ISOMAP (q = 15) 19.75 11.58 13.79 11.19
(0.86**) (0.86**) (0.87**) (0.86**)

ISOMAP (q = 30) 12.01 3.63 5.41 2.66
(0.86**) (0.85**) (0.87**) (0.86**)

LLE (q = 05) 14.10 5.25 9.71 5.27
(0.87**) (0.87**) (0.87**) (0.87**)

LLE (q = 15) −11.38 −13.20 −18.14 −10.97
(0.88*) (0.88) (0.89) (0.88)

LLE (q = 30) −1.39 −38.94 −11.37 −40.18
(0.87**) (0.87*) (0.88*) (0.87*)

PCA gauss. kernel (q = 05) 17.21 17.81 20.04 15.67
(0.88*) (0.88**) (0.88*) (0.88*)

PCA gauss. kernel (q = 15) 15.63 14.29 16.88 17.30
(0.88*) (0.88*) (0.88*) (0.88*)

PCA gauss. kernel (q = 30) 19.03 19.01 18.04 18.17
(0.88**) (0.88**) (0.88**) (0.88**)

PCA linear (q = 05) 17.05 15.66 15.05 14.73
(0.90*) (0.90*) (0.90) (0.90*)

PCA linear (q = 15) 18.79 19.39 16.35 14.59
(0.88*) (0.88*) (0.89*) (0.88*)

PCA linear (q = 30) 21.39 18.10 19.18 18.21
(0.87**) (0.87*) (0.88*) (0.87*)

PCA poly. kernel (q = 05) 18.98 16.48 15.09 14.71
(0.89*) (0.90*) (0.89*) (0.89*)

PCA poly. kernel (q = 15) 18.73 19.44 18.52 20.78
(0.88*) (0.88**) (0.88*) (0.88**)

PCA poly. kernel (q = 30) 22.11 20.63 19.63 21.22
(0.87**) (0.87**) (0.88**) (0.87**)

(continued on next page)
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Table 3 (continued).
PCA quadratic (q = 05) 40.33*** 46.67** 41.31*** 48.50***

(0.84**) (0.79***) (0.84**) (0.79***)
PCA quadratic (q = 15) 20.37 33.39 17.63 34.40

(0.91) (0.86*) (0.91) (0.86*)
PCA quadratic (q = 30) 24.90 26.61 28.50* 26.91

(0.87**) (0.89**) (0.87**) (0.90**)

PCA squared (q = 05) 46.84*** 46.30** 45.90*** 47.62**
(0.80**) (0.76***) (0.81**) (0.76***)

PCA squared (q = 15) 24.28 33.35* 23.02 32.54*
(0.87*) (0.87*) (0.87*) (0.88*)

PCA squared (q = 30) 28.25* 27.59 26.46* 27.35
(0.86**) (0.88**) (0.86**) (0.88**)

Note: The table shows log predictive likelihoods (LPLs) with root mean squared errors (RMSEs) in
parentheses below. The first (red shaded) entry gives the actual LPL and RMSE scores of our benchmark
(an autoregressive (AR) model with constant parameters and a Minnesota prior). Asterisks indicate
statistical significance for each model relative to the benchmark at the 1% (***), 5% (**) and 10% (*)
significance levels. Since the large ARX model with time-varying parameters would feature 273 period-
specific coefficients and is computationally intractable, we assume that the TVPs feature a factor structure
(with three factors) to reduce the dimension of the state space (see Section B of the Online Appendix
and Chan et al., 2020).
Table 4
Summary of best performing models and comparision to small-scale unsupervised ARX models.
Specification const. (MIN) const. (HS) TVP (MIN) TVP (HS)

One-month-ahead

AR −329.28
(1.24)

Autoencoder 1l (q = 30) 38.19*** 29.92*** 35.48*** 31.39***
(0.81***) (0.84***) (0.80***) (0.83***)

Small ARX based on 1.39 −2.02 1.97 −2.27
Autoencoder 1l (q = 30) (0.98) (0.99) (0.98) (0.99)

One-quarter-ahead

AR −322.66
(1.27)

PCA quadratic (q = 05) 40.33*** 46.67** 41.31*** 48.50***
(0.84**) (0.79***) (0.84**) (0.79***)

PCA squared (q = 05) 46.84*** 46.30** 45.90*** 47.62**
(0.80**) (0.76***) (0.81**) (0.76***)

Small ARX based on 38.20** 43.73** 39.41** 43.28**
PCA quadratic (q = 5) (1.05) (0.93) (1.04) (0.93)
Small ARX based on 36.25** 42.90** 38.87** 44.25**
PCA squared (q = 5) (1.09) (0.95) (1.09) (0.95)

Note: The table shows log predictive likelihoods (LPLs) with root mean squared errors (RMSEs) in
parentheses below. While the first entry denotes the benchmark (shaded in red), other entries contrast
the best performing model(s) as presented in the Tables 2 and 3 with ARX models. For these ARX
specifications the best performing model solely serves as an unsupervised variable selection device.
Conditional on the latent factors of this best performing dimension reduction technique, we always
include the top-five correlated variables as covariates alongside the lags of inflation (see Figure C.1 of
the Online Appendix). Asterisks indicate statistical significance for each model relative to the benchmark
at the 1% (***), 5% (**) and 10% (*) significance levels.
The asterisks indicate whether the variances are signifi-
cantly different from one. For a few models, this is the
case (especially if we assume constancy of the parame-
ters), but if we allow for TVPs, there are only a handful
of cases left. This, however, strongly depends on the
shrinkage prior adopted. Turning to the autocorrelation of
the normalized shocks reveals that these are mostly close
to zero and never statistically significantly different from
zero.

Comparing sophisticated to simple dimension reduc-
tion methods suggests no discernible differences in model
calibration. In principle, approaches based on linear PCs
yield normalized forecast errors with similar statistical
914
properties to those obtained using more sophisticated
dimension reduction techniques.

The discussion above might mask important differ-
ences in the calibration of different parts of the predictive
distribution. We now turn to a deeper analysis of the
one-month-ahead predictive distribution of the two best
performing models vis-á-vis the benchmark: the Autoen-
coder 1l (q = 30) and PCA squared (q = 5). This
analysis is based on visual inspection of the normalized
forecast errors (left panel of Fig. 3), a histogram of the
PITs (middle panel of Fig. 3) and the visual diagnostic
of the empirical cumulative density function proposed
in Rossi and Sekhposyan (2019) (right panel of Fig. 3).
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Table 5
Test statistics of one-month-ahead probability integral transformations.
Specification const. (MIN) const. (HS) TVP (MIN) TVP (HS)

Mean Variance AR(1) coef. Mean Variance AR(1) coef. Mean Variance AR(1) coef. Mean Variance AR(1) coef.

AR 0.018 1.171 0.063 0.035 1.182 0.067 0.024 1.165 0.032 0.038 1.189 0.063
Large ARX 0.036 1.166 0.086 0.029 1.198 0.061 0.026 1.195 0.069

Autoencoder 1l (q = 05) 0.028 1.182 0.082 0.031 1.194 0.068 0.024 1.188 0.081 0.034 1.191 0.063
Autoencoder 1l (q = 15) 0.020 1.176 0.067 0.029 1.203 0.054 0.007 1.155 0.066 0.030 1.199 0.054
Autoencoder 1l (q = 30) 0.010 1.293** 0.010 0.028 1.336** 0.002 0.005 1.307** −0.013 0.023 1.317** −0.004
Autoencoder 3l (q = 05) 0.030 1.175 0.083 0.038 1.191 0.063 0.030 1.183 0.067 0.035 1.196 0.067
Autoencoder 3l (q = 15) 0.045 1.187 0.084 0.044 1.200 0.059 0.029 1.193 0.062 0.045 1.203 0.057
Autoencoder 3l (q = 30) −0.005 1.277* 0.050 0.009 1.315** 0.018 −0.041 1.343* 0.061 0.005 1.357** 0.027
Autoencoder 5l (q = 05) 0.034 1.181 0.084 0.036 1.189 0.065 0.031 1.183 0.077 0.039 1.192 0.062
Autoencoder 5l (q = 15) 0.040 1.191 0.068 0.057 1.220 0.041 0.032 1.196 0.056 0.058 1.218 0.035
Autoencoder 5l (q = 30) 0.062 1.225 0.074 0.067 1.230 0.058 0.039 1.244 0.059 0.066 1.233 0.046
Autoencoder 8l (q = 05) 0.034 1.190 0.088 0.039 1.193 0.068 0.034 1.167 0.081 0.036 1.201 0.064
Autoencoder 8l (q = 15) 0.038 1.174 0.079 0.033 1.201 0.075 0.030 1.193 0.090 0.039 1.189 0.071
Autoencoder 8l (q = 30) 0.032 1.164 0.070 0.027 1.187 0.048 0.025 1.152 0.072 0.026 1.180 0.045

Diffusion Maps (q = 05) 0.025 1.193 0.079 0.023 1.212 0.070 0.012 1.166 0.070 0.026 1.198 0.067
Diffusion Maps (q = 15) 0.037 1.192 0.079 0.031 1.211 0.068 0.027 1.188 0.075 0.031 1.210 0.064
Diffusion Maps (q = 30) 0.032 1.194 0.083 0.034 1.212 0.059 0.029 1.187 0.070 0.033 1.190 0.054

ISOMAP (q = 05) 0.024 1.170 0.085 0.026 1.197 0.057 0.020 1.175 0.082 0.031 1.178 0.060
ISOMAP (q = 15) 0.027 1.180 0.086 0.027 1.189 0.058 0.024 1.181 0.080 0.021 1.194 0.059
ISOMAP (q = 30) 0.031 1.195 0.079 0.026 1.194 0.068 0.026 1.193 0.085 0.031 1.188 0.065

LLE (q = 05) 0.029 1.196 0.083 0.025 1.191 0.071 0.019 1.177 0.085 0.026 1.181 0.071
LLE (q = 15) 0.027 1.189 0.083 0.025 1.206 0.067 0.020 1.185 0.084 0.022 1.196 0.066
LLE (q = 30) 0.031 1.194 0.080 0.034 1.261* 0.045 0.013 1.194 0.086 0.033 1.247* 0.040

PCA gauss. kernel (q = 05) 0.027 1.174 0.081 0.035 1.190 0.066 0.025 1.194 0.084 0.035 1.175 0.072
PCA gauss. kernel (q = 15) 0.032 1.178 0.087 0.041 1.189 0.067 0.030 1.192 0.080 0.036 1.205 0.066
PCA gauss. kernel (q = 30) 0.032 1.178 0.078 0.034 1.203 0.069 0.023 1.170 0.083 0.038 1.182 0.065

PCA linear (q = 05) 0.033 1.190 0.083 0.042 1.208 0.075 0.023 1.192 0.091 0.041 1.183 0.063
PCA linear (q = 15) 0.034 1.177 0.083 0.037 1.192 0.070 0.026 1.172 0.083 0.038 1.187 0.064
PCA linear (q = 30) 0.031 1.185 0.081 0.035 1.210 0.067 0.025 1.176 0.087 0.030 1.187 0.063

PCA poly. kernel (q = 05) 0.029 1.170 0.081 0.036 1.193 0.067 0.029 1.178 0.081 0.037 1.189 0.061
PCA poly. kernel (q = 15) 0.028 1.201 0.078 0.034 1.193 0.061 0.034 1.187 0.077 0.031 1.192 0.068
PCA poly. kernel (q = 30) 0.031 1.166 0.090 0.043 1.185 0.066 0.029 1.182 0.080 0.042 1.199 0.059

PCA quadratic (q = 05) 0.029 1.071 0.044 0.031 1.070 0.023 0.034 1.055 0.026 0.032 1.052 0.016
PCA quadratic (q = 15) 0.032 1.178 0.069 0.008 1.190 0.063 0.021 1.158 0.056 0.003 1.181 0.052
PCA quadratic (q = 30) 0.028 1.177 0.086 −0.003 1.251* 0.085 0.032 1.163 0.061 −0.004 1.232 0.090

PCA squared (q = 05) 0.042 1.071 0.035 0.035 1.056 0.021 0.040 1.030 0.027 0.031 1.061 0.013
PCA squared (q = 15) 0.031 1.174 0.070 0.006 1.173 0.049 0.033 1.145 0.041 0.007 1.157 0.043
PCA squared (q = 30) 0.037 1.172 0.079 −0.002 1.203 0.069 0.043 1.148 0.062 −0.008 1.224 0.080

Note: This table summarizes the normalized forecast errors, which are obtained with probability integral transforms (PITs). Similar to Clark (2011) we show the mean, the variance
and the AR(1) coefficient of the normalized forecast errors. Given a well-calibrated model (i.e. the null-hypothesis), normalized forecast errors should have zero mean, a variance of
one and experience no autocorrelation. These conditions are tested separately: 1) To test for a zero mean we compute the p-values with a Newey-West variance (with five lags). 2)
To test for a unit variance we regress the squared normalized forecast errors on an intercept and allow for a Newey-West variance (with three lags). 3) To test for no autocorrelation
we obtain the p-values with an AR(1) model that features an unconditional mean and heteroskedasticity-robust standard errors. Asterisks indicate statistical significance for each model
at the 1% (***), 5% (**) and 10% (*) significance levels.
Recall that, under correct specification, the PITs should be
iid uniformly, and the normalized forecast errors should
be iid standard normally distributed, respectively.

The left panel of the figure indicates that for both
odels under consideration, normalized forecast errors
re centered on zero, display little serial correlation, and
variance close to one (with the Autoencoder generating
lightly more spread-out normalized forecast errors). In
ome periods, normalized forecast errors depart signifi-
antly from the standard normal distribution (i.e., the cor-
esponding observations lie outside the 95% confidence
ntervals). But in general, and for both models (and the
enchmark), model calibration seems adequate. Next, we
ocus on the histogram in the middle panel of Fig. 3
which includes 95% confidence intervals). From this fig-
re, we learn that both models are well calibrated with
ome tendency to overestimate the upper tail risk. Finally,
onsidering the right panel shows that all models appear
o be well-calibrated, with most observations clustered
round the 45-degree lines and not a single observation
eing outside the 95% confidence intervals.

.5. A note on the pandemic

To the detriment of linear modeling techniques, the
OVID-19 pandemic caused severe outliers for several
f the time series we include in our dataset. Following
915
the recent literature (e.g., Clark et al., 2021; Coulombe
et al., 2021; Huber et al., 2020) that advocates using
non-linear and non-parametric modeling techniques in
turbulent times, we briefly investigate whether the non-
linear dimension reduction techniques proposed in this
paper yield more precise inflation forecasts during the
pandemic.

Fig. 4 depicts the differences in LPLs for the period
2020:01 to 2020:08. For illustrative purposes, we only
consider the models with 30 factors.9

The figure provides a few interesting insights. First,
we observe that in March 2020, models based on the
Autoencoder improve upon the benchmark, irrespective
of the prior and regression specification adopted. This
finding is less pronounced for the other techniques in the
constant parameter case. Comparing the performance of
the constant parameter and the TVP regression models
reveals that, irrespective of the prior, allowing for time
variation in the parameters improves density forecasts
during the pandemic. This finding is consistent with find-
ings in, e.g., Huber et al. (2020), which show that flexible
models improve upon linear models during the pandemic
due to increases in the predictive variance.

9 The findings for the other factors are very similar and available
from the corresponding author upon request.
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Fig. 3. Detailed analysis of one-month-ahead predictive distributions for selected models.
Note: This figure shows the evolution of normalized forecast errors for the one-month-ahead horizon in the left panel, the histogram of the probability
integral transforms (PITs) in the middle panel and the empirical cumulative density function of the PITs in the right panel. If a model is correctly
specified the PITs are standard uniformly distributed and the normalized forecast errors standard normally distributed. This theoretically correct
specification is indicated by the black lines, with the dashed lines referring to the respective 95% confidence interval. In red we present the results
of the benchmark, whereas in blue we indicate the respective model. In the left panels the light gray shaded areas refer to the global financial crisis.

Fig. 4. Evolution of one-month-ahead cumulative log predictive likelihoods (LPLs) against the benchmark for the COVID-19 pandemic.
Note: The initial value in 2020:01 also takes into account the density forecast performance in the previous hold-out periods (ranging from 2002:01
to 2019:12). The red dashed lines refer to the maximum/minimum Bayes factor over the full hold-out sample. The light gray shaded areas indicate
the periods of the COVID-19 pandemic.
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4.6. Dynamic model learning based on density forecast per-
formance

In the previous subsection and Section A of the On-
ine Appendix, we provide some evidence that model
erformance varies considerably over time (see Figure
.3). The key implication is that non-linear compression
echniques (and time-varying parameters) might be use-
ul during turbulent times, whereas forecast evidence is
ess pronounced in normal times. This subsection asks
hether dynamically combining models further improves
redictive accuracy.
After having obtained the predictive densities of yt+h

or the different dimension reduction techniques and
odel specifications, the goal is to exploit the advantages
f both linear and non-linear approaches. This is achieved
y combining models in a model pool such that better-
erforming models over certain periods receive larger
eights while inferior models are subsequently down-
eighted. The literature on forecast combinations sug-
ests several different weighting schemes, ranging from
imply averaging over all models (see, e.g., Berg & Henzel,
015; Clark & McCracken, 2010; Hall & Mitchell, 2007;
endry & Clements, 2004) to estimating weights based on
he models’ performances according to the minimization
f an objective or loss function (see, e.g., Conflitti et al.,
015; Geweke & Amisano, 2011; Hall & Mitchell, 2007;
ettenuzzo & Ravazzolo, 2016; Timmermann, 2006) or
ccording to the posterior probabilities of the predictive
ensities (see, e.g., Beckmann et al., 2020; Koop & Koro-
ilis, 2012; Raftery et al., 2010). More recent approaches
et up separate state space models that assume sophis-
icated law of motions for the weights associated with
ach predictive distribution (Billio et al., 2013; McAlinn &
est, 2019; Pettenuzzo & Ravazzolo, 2016). While being

legant and having the advantage of incorporating all
vailable sources of uncertainty (i.e., control for estima-
ion uncertainty in the weights), these approaches are
omputationally cumbersome if the number of models to
e combined is large.
Since our model space is huge, we use computationally

fficient approximations to dynamically combine models.
ur approach builds on combining predictive densities ac-
ording to their posterior probabilities. This is referred to
s Bayesian model averaging (BMA). The resulting weights
re able to reflect the predictive power of each model for
he respective periods. Dynamic model averaging (DMA),
s specified by Raftery et al. (2010), extends the approach
y adding a discount (or forgetting) factor to control for
model’s forecasting performance in the recent past.

he ‘recent past’ is determined by the discount factor,
ith higher values attaching greater importance to past

orecasting performances of the model and lower val-
es gradually ignoring results of past predictive densi-
ies. Similar to Raftery et al. (2010), Koop and Korobilis
2012) and Beckmann et al. (2020), we apply DMA to
ombine the predictive densities of our various models.
hese methods do not require computationally intensive
CMC or sequential Monte Carlo techniques and are thus

ast and easy to implement.
DMA works as follows. Let ϱt+h|t = (ϱt+h|t,1, . . . ,

ϱ )′ denote a set of weights for J competing models
t+h|t,J

917
at time t + h given all available information up to time t .
These (horizon-specific) weights vary over time and de-
pend on the recent predictive performance of the model
according to:

ϱt+h|t,j =
ϱδt|t,j∑J
l=1 ϱ

δ
t|t,l

,

ϱt+h|t+h,j =
ϱt+h|t,j pj(yt+h|y1:t )∑J
l=1 ϱt+h|t,l pl(yt+h|y1:t )

where pj(yt+h|y1:t ) denotes the h-month-ahead predictive
istribution of model j evaluated at yt+h and δ ∈ (0, 1]
enotes a forgetting factor close to one. Intuitively speak-
ng, the first equation is a prediction of the weights based
n all available information up to time t while the second
quation shows how the weights get updated if new data
lows in.

In our empirical work we set δ = 0.97.10 Notice that
f δ = 1, we obtain standard BMA weights while δ = 0
ould imply that the weights depend exclusively on the

orecasting performance in the last period.

.7. Forecasting performance of predictive combinations
rom dynamic model learning

Weights obtained by combining models according to
heir predictive power convey useful information about
he adequacy of each model over time. To get a compre-
ensive picture of the effects of different model modifi-
ations, we combine our models and model specifications
n various ways.

Table 6 presents the forecasting results when we use
MA to combine models. Again, all models are bench-
arked to the AR model with constant parameters and

he Minnesota prior. The first row depicts the relative
erformance of the single best-performing model for the
hosen time horizon.
The table can be understood as follows. Each entry

ncludes all dimension reduction techniques. The rows
efine whether the model space includes all factors q ∈

5, 15, 30} or whether we combine models with a fixed
umber of factors exclusively. The columns refer to model
paces that include only the constant parameter, time-
arying parameter, or both specifications in the respective
odel pool. Since we also discriminate between two com-
eting priors, we consider model weights conditioning on
ither the horseshoe or the Minnesota prior or average
cross both prior specifications (the first upper part of the
able with {HS, MIN}).

Across the two forecast horizons considered, we find
ronounced accuracy improvements for point and density
orecasts relative to the AR model. We find no accuracy
ains for both horizons when we benchmark the differ-
nt combination strategies to the single best-performing
odel. Differences in terms of LPLs are, however, rela-

ively small. This suggests that while the best performing
odel (i.e., a constant parameter regression with factors

10 Koop and Korobilis (2013) find robust results over the interval
[0.95,1]. After optimizing over this set of parameter values we choose
δ = 0.97.
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Table 6
Forecast performance of predictive combinations.
Specification One-month-ahead One-quarter-ahead
Prior Combination const. TVP {const., TVP} const. TVP {const., TVP}

Single best performing model 38.19 48.50
(0.81) (0.79)

{HS, MIN} q = {05, 15, 30} 33.40 31.53 32.73 45.88 46.65 46.32
(0.83) (0.82) (0.82) (0.79) (0.79) (0.79)

q = 05 7.97 8.68 8.40 46.49 47.51 47.09
(0.93) (0.92) (0.92) (0.78) (0.78) (0.78)

q = 15 9.84 14.81 13.28 40.45 40.96 40.83
(0.94) (0.90) (0.91) (0.84) (0.83) (0.83)

q = 30 34.80 33.45 34.37 33.25 32.82 33.05
(0.83) (0.82) (0.82) (0.86) (0.87) (0.86)

HS q = {05, 15, 30} 26.26 29.17 28.07 47.29 48.02 47.75
(0.85) (0.84) (0.84) (0.77) (0.77) (0.77)

q = 05 6.68 6.74 6.74 47.59 48.68 48.30
(0.94) (0.94) (0.94) (0.76) (0.76) (0.76)

q = 15 8.03 9.02 8.68 42.57 42.65 42.73
(0.94) (0.94) (0.94) (0.83) (0.82) (0.82)

q = 30 28.05 31.05 29.89 34.82 33.95 34.40
(0.85) (0.84) (0.84) (0.85) (0.86) (0.85)

MIN q = {05, 15, 30} 35.96 32.23 34.65 43.37 43.57 43.50
(0.82) (0.81) (0.81) (0.82) (0.82) (0.82)

q = 05 8.62 10.10 9.57 44.80 44.64 44.74
(0.92) (0.91) (0.91) (0.82) (0.82) (0.82)

q = 15 10.98 17.02 15.40 26.16 25.92 26.01
(0.94) (0.89) (0.90) (0.86) (0.86) (0.86)

q = 30 37.27 34.60 36.46 23.63 26.12 25.27
(0.82) (0.80) (0.81) (0.86) (0.87) (0.87)

Note: The first (grey shaded) row states the results of the single best performing model as presented in
the previous chapter for each forecast horizon benchmarked to the AR model with constant parameters
and the Minnesota (MIN) prior. All other rows show the relative results for the combinations of the
different dimension reduction techniques according to the specification stated in the rows and columns
headers. For example, the entry in row {HS, MIN}, q = {5, 15, 30} and column const. combines all models
estimated with constant parameters, the HS prior, the MIN prior, 5, 15 and 30 factors. Entries denote
the differences in log predictive likelihoods (LPLs) with relative root mean squared errors (RMSEs) in
parantheses benchmarked against the AR model with constant parameters and the MIN prior.
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btained through the Autoencoder) is hard to beat, one
an effectively reduce model and specification uncertainty
nd thus obtain competitive forecasts without relying on
single model.
Comparing whether restricting the model a priori im-

roves predictions yields mixed insights. For the one-
onth-ahead horizon, we observe that pooling over
odels that use our variant of the Minnesota prior yields
ore favorable forecasts than a pooling strategy that uses
oth priors or the horseshoe only. When we pool over
onstant and TVP regressions, we find small decreases
n predictive accuracy relative to a model pool that only
ncludes constant parameter regressions.

Turning to one-quarter-ahead forecasts yields a simi-
ar picture. Using a large pool of models generally leads
o slightly less precise forecasts. For higher-order fore-
asts, our results suggest that pooling models that use the
orseshoe yield higher LPLs. When we compare the dif-
erent regression specifications, we find that integrating
ut the uncertainty with respect to whether parameters
hould be time-varying yields forecasts that are very simi-
ar to the strategy that only pools over constant parameter
odels.
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In general, the differences in predictive performance
cross the DMA-based averaging schemes are small.
ence, as a general suggestion, we recommend applying
MA and using the most exhaustive model space avail-
ble (i.e., including both priors, the different number of
actors, and TVP and constant parameter regressions).

To investigate which model receives substantial pos-
erior weight over time, Fig. 5 depicts the weights associ-
ted with the one-month-ahead LPLs over the hold-out
eriod. Panel (a) displays the weight placed on models
hat allow for TVP, panel (b) shows the weight attached
o the different number of factors, and panel (c) shows
he weight attached to each model. These weights are
btained using the full model space (i.e., priors, TVP, con-
tant parameter regressions, and any number of factors).
he weight placed on TVP specifications, for instance, is
hen simply obtained by summing up the weights associ-
ted with the different models that feature TVPs.
Starting with the top panel of the figure, we observe

hat appreciable model weight is placed on constant pa-
ameter models during the beginning of the sample. In the
iddle of 2006, this changes, and DMA places increasing
osterior mass on models that allow for time-variation
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Fig. 5. Evolution of the weights determined by DMA for one-month-ahead cumulative log predictive likelihoods (LPLs).
n the parameters. From the beginning of 2007 to the
nset of the financial crisis, we see that the weight on TVP
odels somewhat decreases. We again experienced a pro-
ounced increase in posterior weight towards TVP regres-
ion during the financial crisis. In that period, constant
arameter models only played a limited role in forming
nflation forecasts. With few exceptions, the remainder of
he hold-out period is characterized by evenly distributed
osterior mass across constant and TVP regressions.
The middle panel of Fig. 5 shows that DMA places in-

reasing posterior mass on models with a large number of
actors during the period before the global financial crisis.
e observe that models with a smaller number of factors
btain substantial model weight during the recession and
he immediate period afterward. This suggests that if the
umber of factors is small, our dimension reduction tech-
iques soak up information that might be useful during
recession (such as sharp changes in X). If the number

of factors becomes large, this information is extracted
as well but (potentially) reflected by more factors that
display less pronounced changes. In the period after the
global financial crisis, we again find a large number of

factors retrieving substantial posterior weight.

919
The bottom panel (panel (c)) of Fig. 5 provides infor-
mation on how much weight is allocated to models that
exploit non-linear dimension reduction techniques. This
figure corroborates our full sample findings: the Autoen-
coder performs extremely well and dominates our pool
of models. However, this statement is not valid during
the global financial crisis. We observe that models based
on PCA squared and PCA quadratic feature large weights
during that period. We also find that linear techniques
(PCA linear) and other non-linear techniques (PCA with
a Gaussian kernel, LLE, ISOMAP, diffusion maps) retrieve
almost no posterior weight over time.

Summing up this discussion, the single best perform-
ing model (the Autoencoder) is hard to beat when dy-
namically combining models. However, this comparison
is unfair since the researcher does not have this infor-
mation at her disposal. Hence, combining models helps
to integrate this uncertainty by producing forecasts that
are close to the single best performing model but, at the
cost of higher computational costs, without the necessity
of knowing the strongest single model specification.
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5. Closing remarks

In macroeconomics, most researchers compress in-
ormation using linear methods such as principal com-
onents to summarize information embodied in huge
atasets in forecasting applications efficiently. Machine
earning techniques describing large datasets with rel-
tively few latent factors have gained relevance in the
ast years in various areas. This paper shows that us-
ng such approaches potentially improves real-time in-
lation forecasts for a wide range of competing model
pecifications. Our findings indicate that point forecasts
f simpler models are hard to beat (especially at the
ne-month-ahead horizon). However, we find that more
ophisticated modeling techniques that rely on non-linear
imension reduction do particularly well for density fore-
asts. Among all the techniques considered, our results
uggest that the Autoencoder, a particular form of a deep
eural network, produces the most precise inflation fore-
asts (both in terms of point and density predictions). The
arge battery of competing models gives rise to substantial
odel uncertainty. We address this issue by using dy-
amic model averaging to dynamically weight different
odels, dimension reduction methods, and priors; doing
o yields almost as accurate forecasts as those obtained
rom the single best performing models.
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ppendix A. Supplementary data

The online appendix provides additional empirical re-
ults such as the factors obtained from the different non-
inear dimension reduction techniques, forecasting results
or subgroups of the data and predictive accuracy over
ime. Moreover, it provides details on the posterior simu-
ation algorithms and the dataset.

Supplementary material related to this article can be
ound online at https://doi.org/10.1016/j.ijforecast.2022.
3.002.
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