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Summary

US yield curve dynamics are subject to time-variation, but there is ambiguity
about its precise form. This paper develops a vector autoregressive (VAR) model
with time-varying parameters and stochastic volatility, which treats the nature
of parameter dynamics as unknown. Coefficients can evolve according to a ran-
dom walk, a Markov switching process, observed predictors, or depend on a
mixture of these. To decide which form is supported by the data and to carry out
model selection, we adopt Bayesian shrinkage priors. Our framework is applied
to model the US yield curve. We show that the model forecasts well, and focus
on selected in-sample features to analyze determinants of structural breaks in
US yield curve dynamics.
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1 INTRODUCTION

The US term structure of interest rates has been subject to structural breaks in the parameters governing its dynamic
evolution (see, e.g., Rudebusch et al., 2006).1 For instance, the global financial crisis and the subsequent monetary policy
actions triggered a substantial and rapid decline in short-term interest rates, with the policy rate hitting the zero lower
bound (ZLB). At the ZLB, macro-financial dynamics suddenly change (Liu et al., 2019). This is reflected in appreciable
jumps in the structural parameters, which determine yield curve dynamics. Parameter movements of this kind are found
in, for example, Rudebusch and Wu (2007), who document changing yield curve dynamics during the late 1980s.

A prominent approach for modeling parameter dynamics in macroeconomics and finance relies on time-varying param-
eter (TVP) regressions and VARs (Cogley & Sargent, 2005; Primiceri, 2005). Mumtaz and Surico (2009) use TVP-VARs to
investigate the relationship between monetary policy shocks and the term structure of interest rates and find evidence in
favor of time-variation in the parameters. Standard TVP models typically assume that the parameters evolve according to
a simple stochastic process such as a random walk. While being rather flexible and parsimonious, this assumption does
not allow for the examination of the extent to which covariates cause changes in the time-varying parameters. Moreover,

1Reaching the zero lower bound in response to economic slack is one example of a structural break. An overarching, secular change triggered by,
for example, movements in the age composition of the population or changing regulations in financial markets, might be another example. Another
potential source of time-variation are interaction effects of the structural parameters of the yield curve and observed, exogenous variables. These variables
do not necessarily exhibit a direct effect on the yields but impact the yield curve indirectly through their influence on the parameters governing yield
curve dynamics.
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wrongly assuming a random walk state equation could be deleterious for predictive accuracy because it implies smoothly
evolving coefficients. This might be at odds with the rapid shifts that have been observed in the US yield curve (especially
on the short end) during the global financial crisis or the Covid-19 pandemic.

A standard approach used to select the state dynamics of the TVPs is based on estimating different models separately
and then using model selection criteria to discriminate between competing specifications (see, e.g., Hauzenberger, 2021;
Koop et al., 2009; Sims & Zha, 2006). This approach has the limitation that only a single distinct model is selected in
the end. But, for financial variables such as bond yields, combinations of different assumptions on parameter dynamics
might be more appropriate. Our aim is to develop a model that relies on a large set of competing laws of motion for
the coefficients and automatically decides which one describes the data best. We do so by proposing a flexible Bayesian
approach to TVP-VARs that efficiently controls for uncertainty with respect to the state evolution equation.

Our model fundamentally builds on the fact that parameters might change either abruptly (such as in the transition
period when short-term interest rates hit the ZLB), or smoothly (such as during the Great Moderation; see Bauer &
Rudebusch, 2020), or might depend on observed variables and thus interact with exogenous regressors (such as a measure
of uncertainty associated with the conduct of monetary policy; see Tillmann, 2020). These three forms of parameter types
can be built into the model by assuming that the TVPs depend on a potentially large panel of covariates. These covari-
ates, which we label effect modifiers, can be partially latent and might feature their own state equations. For instance,
they could include latent random walk factors or binary Markov switching variables. Inclusion of the former allows for
capturing smoothly evolving trends in the parameters of the yield curve (and functions thereof) whereas including the
latter enables us to control for structural breaks (such as those observed in the midst of the 1980s or after hitting the ZLB).
In case they are observed, we obtain a model that is closely related to the varying coefficient model originally proposed
in Hastie and Tibshirani (1993).

To decide on which law of motion to use, we pursue a Bayesian approach. Our estimation strategy revolves around
specifying suitable shrinkage priors that allow us to shrink coefficients associated with irrelevant effect modifiers toward
zero. These priors are capable of endogenously selecting the appropriate law of motion for the parameters and, because
the TVPs depend linearly on the effect modifiers, also allows for combinations of different law of motions. Moreover, the
model enables the researcher to drill into the driving forces of parameter time-variation. This feature is important if the
researcher is interested in investigating why relations between variables in a VAR change over time, and to what extent
these changes are explained by the observed effect modifiers.

Model estimation is carried out through a computationally efficient Markov chain Monte Carlo (MCMC) algorithm.
The proposed algorithm is scalable to high dimensions and thus applicable to large datasets that commonly arise in
macroeconomics and finance.

We then apply this model to analyze the US term structure of interest rates and investigate the empirical properties
of our approach using two information sets in the underlying multivariate regression model. First, we include several
interest rates at different maturities directly as endogenous variables. Second, we consider a three-factor Nelson–Siegel
model for the term structure of interest rates as in Diebold and Li (2006), and Diebold et al. (2008). The dynamics of these
three factors are modeled as a TVP-VAR.

These models are then used to predict the term structure of interest rates. Adopting a long hold-out period that includes
several recessionary episodes, our approach improves upon a wide range of competing models. Depending on the model
class, we find improvements for both point and density forecasts. Model confidence sets provide evidence that our flexible
models are very often among the best performing model specifications.

The forecasting exercise provides evidence on out-of-sample model fit. However, our model can also be applied
to investigate the key determinants of parameter time-variation. Using all available observations and considering the
Nelson–Siegel class of models, we document substantial time-variation in the low frequency relations between key
features of the yield curve. These parameter dynamics are strongly influenced by observed quantities such as proxies for
uncertainty or recession indicators.

The rest of the paper is structured as follows. Section 2 introduces the econometric framework that includes the
general form of the TVP-VAR, a flexible law of motion for the latent states as well as the Bayesian approach used to select
appropriate effect modifiers. In Section 3, we illustrate key model features and highlight the predictive capabilities of our
approach. The last section concludes the paper. Supplementary materials are provided in Appendix S1.
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2 FLEXIBLE BAYESIAN MODELING OF THE YIELD CURVE

As discussed in Section 1, our goal is to develop a model that is capable of simultaneously modeling a panel of yields.
Because the yield curve is driven by common shocks, and yields often co-move, we adopt a general VAR model. In the
empirical work, we consider two strategies. The first includes all yields in an otherwise unrestricted VAR with drifting
parameters. The second exploits the fact that a low number of latent factors (which evolve according to a TVP-VAR)
describe the cross-section of yields well.

2.1 A TVP-VAR for capturing yield curve dynamics

Let yt denote an M × 1 vector of endogenous variables at time t = 1, … ,T. If we wish to model the yield curve in an
unrestricted manner, yt consists of M yields of differing maturities. In case we adopt the Nelson–Siegel factor model, yt
contains M = 3 factors that describe the level, slope, and curvature of the yield curve.2

In both cases, we assume that yt depends on its P lags, which we store in a K(= MP) × 1 vector xt =
(

y′
t−1, … , y′

t−P
)′.

The TVP-VAR can be written as a multivariate regression model:

yt =
(

IM ⊗ x′
t
)
𝜷 t + 𝝐t, 𝝐t ∼  (𝟎M ,Σt),

where 𝜷 t represents a set of k(= MK) dynamic regression coefficients and 𝝐t is a vector Gaussian shock process with
time-varying M × M variance-covariance matrix Σt. We assume that Σt can be decomposed as follows:

Σt = QtHtQ′
t .

Here, Qt denotes an M × M lower triangular matrix with unit diagonal and v(= M(M − 1)∕2) free elements denoted
by qt, and Ht = diag (exp(h1t), … , exp(hMt)) is a diagonal matrix with h𝑗t ( 𝑗 = 1, … ,M) representing time-varying
log-volatilities. These are assumed to evolve according to an AR(1) process.

This model assumes that the yields (or the factors describing the yields) depend on their lagged values. This relationship
is encoded in 𝜷 t, which changes over time. In principle, without further restrictions on 𝜷 t we can capture different forms
of structural breaks. The shocks 𝝐t are heteroskedastic, and volatilities can evolve smoothly over time. This allows us to
capture features such as the decline in the volatility of macroeconomic and financial shocks during the Great Moderation.
In addition, time-variation in Qt allows us to capture changes in the correlation structure of shocks to the yield curve.

It is necessary to introduce regularization in the unrestricted general model to avoid overfitting. Our model specifica-
tion proceeds along the lines proposed in Frühwirth-Schnatter and Wagner (2010). Specifically, we use a non-centered
parameterization and rewrite the TVP-VAR as follows:

yt =
(

IM ⊗ x′
t
)
(𝜷 + �̃� t) + (Q + Q̃t)𝜺t, 𝜺t ∼  (𝟎M ,Ht).

This parameterization allows us to disentangle time-invariant coefficients 𝜷 from the time-varying vector �̃� t = 𝜷 t − 𝜷.
For the decomposed variance-covariance matrix, Q is a lower triangular matrix with ones on the diagonal capturing
the constant part of the covariances, and Q̃t = Qt − Q is the corresponding lower triangular matrix with zero-diagonal
elements containing the time-varying part. Their free elements are collected in the v × 1 vectors q and q̃t, respectively.

Our focus is on how the N(= k + v) × 1 vector �̃�t = (�̃�′
t , q̃′

t)′ evolves over time. The literature (see, e.g., Mumtaz &
Surico, 2009) typically assumes �̃�t to follow a multivariate random walk process:

�̃�t|�̃�t−1 ∼  (�̃�t−1,V ), with �̃�0 = 𝟎N .

This law of motion suggests that the expected value of �̃�t equals �̃�t−1, and the amount of time-variation is determined by
the N × N process innovation variance-covariance matrix V . Moreover, it implies that parameters evolve smoothly and
feature long memory. Another common assumption is that the shocks to the states feature positive error variances. Hence,
parameter time-variation is introduced mechanically and this might lead to overfitting issues.

2Consistent with the literature, these factors are first estimated by OLS. More details can be found in Section 3.
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Estimation and inference is typically carried out via Bayesian methods. The recent literature proposes shrinkage pri-
ors to allow for data-based selection of the coefficients, which should be time-varying or constant (see, e.g., Bitto &
Frühwirth-Schnatter, 2019; Huber et al., 2020). This already leads to substantial improvements in predictive accuracy
but does not tackle the fundamental question whether the coefficients are better characterized by a random walk, a
change-point process, or by mixtures of these. Alternative methods capable of doing so are mixture innovation models
(Huber et al., 2019; Koop et al., 2009; Maheu & Song, 2018) or models using flexible mixture priors (Hauzenberger
et al., 2021; Lopes et al., 2022). All these methods, however, are not capable of linking coefficient dynamics to observed
quantities.

2.2 A general law of motion for the TVPs

The random walk assumption on the state equation of the TVPs is relaxed by assuming that the time-varying part stored
in �̃�t depends on a set of R additional factors zt. These zt are the effect modifiers mentioned in the introduction, which
can be observed or latent. The relationship between the TVPs and zt is given by

�̃�t = 𝚲zt + 𝜼t, 𝜼t ∼  (𝟎N ,𝛀). (1)

The matrix 𝚲 is an N × R matrix of regression coefficients, and 𝜼t is a Gaussian error term with diagonal error
variance-covariance matrix 𝛀 = diag(𝜔2

1, … , 𝜔2
N). If R ≪ N, the coefficients feature a factor structure and co-move

according to the effect modifiers in zt. The presence of uncorrelated measurement errors in 𝜼t allows for idiosyncratic
deviations from the conditional mean 𝚲zt.

The relationship between �̃�t and zt is determined by the factor loadings in 𝚲. If the 𝑗th column of 𝚲,𝝀𝑗 , is equal to
zero, then the corresponding 𝑗th factor in zt does not enter the model and thus has no influence on �̃�t. Cases in between
are possible as well. For example, if the (i, 𝑗)th element in 𝚲, 𝝀i𝑗 , equals zero, the ith coefficient does not depend on z𝑗t
and is exclusively driven by the other factors and potential measurement errors. In the case of the yield curve, we expect
the dynamic coefficients associated with the short end of the curve to depend on other quantities than, for example, the
coefficients related to longer maturities. This is because short-run interest rates strongly depend on the monetary policy
stance and shifts thereof whereas longer term interest rates are driven by expectations about future short-term interest
rates, inflation and measures of economic uncertainty.

Selecting zt is crucial for determining the dynamics of �̃�t. Appropriate choices of zt yield a variety of important special
cases that depend on the specific values of 𝚲 and 𝛀 as well as on the composition of zt. Two special cases arise inde-
pendently of zt. If 𝚲 = 𝟎N×R, with 𝟎N×R being an N × R matrix of zeros, we obtain a random coefficients model that
assumes that the regression coefficients follow a white noise process (for some recent papers that follow this approach,
see Hauzenberger et al., 2021; Korobilis, 2021); if both𝚲 = 𝟎N×R and𝛀 = 𝟎N×N , we obtain a constant parameter regression
model.

Before we discuss the choice of zt, it is worth noting that if zt is (partially) latent, the model in Equation (1) is not
identified. Because our object of interest is �̃�t, this poses no substantial issues for model estimation and interpretation. If
we wish to structurally interpret the loadings 𝚲, standard identification strategies from the literature on dynamic factor
models can be used (see, e.g., Aguilar & West, 2000; Geweke & Zhou, 1996; Stock & Watson, 2011).

2.3 Effect modifiers

Because the literature on yield curve modeling provides evidence favoring different forms of parameter change, we specify
zt appropriately and let the data speak about the form of parameter change.

If we assume that zt consists exclusively of a sequence of R = R𝜏 latent factors 𝝉 t, we obtain a model closely related to
the one in Chan et al. (2020). The latent factors evolve according to a multivariate random walk:

𝝉 t = 𝝉 t−1 + 𝝂t, 𝝂t ∼  (𝟎,V 𝜏),

where V 𝜏 = diag(v2
1, … , v2

R𝜏
) denotes a diagonal variance-covariance matrix with v2

𝑗
being process innovation variances

that determine the smoothness of the elements in 𝝉 t. This model implies a latent factor structure in �̃�t if R𝜏 ≪ N and
that the TVPs evolve smoothly. For yield curve data, this assumption might be warranted because interest rates strongly
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co-move and are well captured by few common factors. If we wish to model the term structure without introducing
assumptions on the observation equation, this model implies that while coefficients are unrestricted, the TVPs are driven
by a few unsobervable factors. Carriero et al. (2021), in a recent paper, follow a similar strategy to model the US term struc-
ture of interest rates. As opposed to our specification, they estimate constant coefficients but assume the error variances
to be driven by a single latent factor.

It is also worth stressing that if we set R = R𝜏 = N, 𝚲 = IN , we end up with a standard time-varying parameter model.
Presuming that the covariances are constant we obtain the model put forth in Cogley and Sargent (2005). These models all
rely on parameters that evolve according to a random walk (depending on the innovation variances to the latent states).
This is consistent with Bianchi et al. (2009) and Del Negro et al. (2019), who assume the coefficients of the model to evolve
smoothly over time.

We obtain a model that allows for sudden shifts in the parameters by setting zt = St, with St ∈ {0, 1} denoting a binary
indicator with transition probabilities given by

p(St = i|St−1 = 𝑗) = pi𝑗 , for i, 𝑗 = 0, 1.

Here, pi𝑗 denotes the (i, 𝑗)th element of a 2 × 2 transition probability matrix P. If 𝛀 is close to a zero matrix, this model
is a Markov switching specification in the spirit of Sims and Zha (2006).3 The main restriction is that breaks occur for
all coefficients in �̃�t simultaneously. Adding St to zt provides more flexibility and permits sudden changes in yield curve
dynamics (see Liu et al., 2019).

Finally, if we include observed variables in zt we end up with a regression model with interaction effects. For instance,
Tillmann (2020) assumes that the yield curve response to monetary policy depends on uncertainty about the conduct of
monetary policy. Hence, in this case, zt could include a measure of monetary policy uncertainty.

These examples show that our model, conditional on choosing a suitable set of effect modifiers, is capable of mimicking
several prominent specifications in the literature. Because the question on the appropriate state evolution equation is
essentially a model selection issue, we specify zt to include most of the modifiers discussed above (with the exception of
the R = N setup). More precisely, we set zt as follows:

zt =
(

r′t ,S′
t , 𝝉

′
t
)′
.

Here, we let rt denote a set of Rr observed factors and the dimension of zt is thus R = Rr +RS +R𝜏 . To allow for additional
flexibility, we assume that 𝝉 t =

(
𝝉 ′1t, … , 𝝉 ′Mt

)′ with 𝝉𝑗t being equation-specific factors of dimension R𝜏𝑗 (and thus R𝜏 =∑
𝑗R𝜏𝑗). Assuming that R𝜏i = R𝜏𝑗 = 𝛿 for all i, 𝑗, we have R𝜏 = 𝛿M latent random walk factors. Likewise, we estimate

a separate Markov switching indicator S𝑗t per equation. Thus St = (S1t, … , SMt)′, with the corresponding transition
probabilities matrix denoted by P𝑗 such that RS = M.

The loadings matrix 𝚲 is structured such that the loadings in equation 𝑗 associated with the factors 𝝉 it and Sit for i ≠ 𝑗

equal zero. This assumption strikes a balance between assuming a large number of latent factors to achieve flexibility (and
risk overfitting), and using a rather parsimonious model (with the risk of being too simplistic). Recent contributions using
similar assumptions on the state evolutions are Koop et al. (2009) and Maheu and Song (2018). As opposed to these papers,
our approach offers more flexibility because the presence of the idiosyncratic shocks to the TVPs allows for deviations in
case the factor structure does not represent the data well.

2.4 Stochastic selection of effect modifiers

Our model approach nests a variety of competing models and the specific choice of zt leads to different assumptions on
how the TVPs evolve over time. To single out irrelevant elements in zt, one could simply set the corresponding columns
in 𝚲 equal to zero. To decide on the appropriate model variant and alleviate over-parameterization concerns, we opt for a
Bayesian approach to introduce shrinkage on 𝚲.4

3In principle, estimating models with more than two regimes would be straightforward and efficient techniques are readily available; see Kauf-
mann (2015).
4Because all other priors are relatively standard, we provide further details in Appendix S1.
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FISCHER ET AL.

For illustrating our method we focus on a simple regression case with M = 1 and P = 1. In that case, we have a
time-varying parameter AR(1) model:

𝑦t = 𝛽t 𝑦t−1 + 𝜖t.

We assume that zt = (rt, St, 𝜏t)′ includes some observed variable, a Markov indicator, and a latent random walk factor.
The corresponding state equation for 𝛽t is then given by

𝛽t = 𝛽0 + 𝜆1rt + 𝜆2St + 𝜆3𝜏t + 𝜂t, 𝜂t ∼  (0, 𝜔), (2)

with 𝜔 being a measurement error variance, 𝜆𝑗 ( 𝑗 = 1, 2, 3) are loadings and 𝛽0 is a time-invariant parameter. Considering
Equation (2) reveals that selecting the appropriate law of motion for 𝛽t boils down to testing whether 𝜆𝑗 ≠ 0 for all 𝑗. For
instance, if 𝜆2 ≠ 0 and 𝜆1 = 𝜆3 = 𝜔 = 0, we have an AR(1) model with Markov switching dynamics for the autoregressive
parameter. If we set 𝜆3 ≠ 0 while zeroing out the other coefficients, we obtain an AR(1) model with a time-varying
autoregressive parameter that follows a random walk process. Notice that if 𝜆1 = 𝜆2 = 𝜆3 = 0, the corresponding model
is a random coefficients model, which assumes that 𝛽t is centered on a time-invariant component 𝛽0.

From a Bayesian perspective, this problem can be tackled through shrinkage priors. In principle, one could use a spike
and slab prior similar to the one proposed in George and McCulloch (1993); see also George and McCulloch (1997). These
priors select appropriate covariates by introducing Bernoulli-distributed indicator variables, which equal one if a given
covariate is included (i.e., 𝜆𝑗 ≠ 0) or zero if the variable is excluded (i.e., 𝜆𝑗 = 0). However, if the dimensionality of zt
becomes large, these priors suffer from mixing issues. As a solution, the statistical literature proposes so-called global-local
shrinkage priors (see Polson & Scott, 2010). Recent shrinkage priors such as the Dirichlet–Laplace prior (Bhattacharya
et al., 2015), the Normal-Gamma prior (Griffin & Brown, 2010), the horseshoe (Carvalho et al., 2010), or the Triple-Gamma
prior (Cadonna et al., 2020) can be used. All of them possess convenient theoretical properties and should be well suited
for achieving shrinkage in our model setup. In this paper, we opt for the horseshoe prior because it does not rely on
additional tuning parameters and has been shown to work well in a wide range of different applications (see, e.g., Huber
et al., 2021; Kowal, 2021).

The horseshoe is a conditionally Gaussian prior on the loadings 𝜆𝑗 :

𝜆𝑗|c𝑗 , d ∼ 
(
0, c2

𝑗 d2) , c𝑗 ∼ +(0, 1), d ∼ +(0, 1). (3)

This prior depends on two hyperparameters. The first one, c𝑗 , is a local parameter that controls the amount of shrinkage
on 𝜆𝑗 . If it is close to zero, heavy shrinkage is introduced and the corresponding posterior distribution of 𝜆𝑗 will be centered
tightly around zero (i.e., the corresponding 𝑗th element in zt does not shape the dynamics of the TVPs). By contrast, if it
is large it introduces little prior information and allows the data to speak (i.e., the 𝑗th covariate is included in the model).
The second hyperparameter, d, is a global shrinkage parameter that forces all coefficients to zero. The local shrinkage
parameters allow for nonzero coefficients even if d is close to zero.

In our general model, the prior slightly differs from the simplified version introduced above (exact details can be found
in Appendix S1). Here it suffices to note that the horseshoe is applied on the different columns of 𝚲. For each of these R
columns, a separate global shrinkage parameter di (i = 1, … ,R) is introduced. This allows for testing whether zit explains
the joint dynamics of 𝜸t. Because each of the elements in 𝚲 features its own local shrinkage parameter, our model is
sufficiently flexible to also allow for deviations from this pattern and to detect appropriate specifications for each equation
and parameter separately.

2.5 A brief sketch of the posterior simulator

Our MCMC algorithm is implemented on an equation-by-equation basis. Conditional on Qt and the block structure of 𝚲,
one can state the VAR as a system of (conditionally) independent equations. The first equation of this system is given by

𝑦1t = x′
t
(
𝜷1 + �̃�1t

)
+ 𝜀1t,

and the 𝑗th equation ( 𝑗 > 1):

𝑦𝑗t = x′
t
(
𝜷𝑗 + �̃�𝑗t

)
+ u′

𝑗t
(

q𝑗 + q̃𝑗t
)
+ 𝜀𝑗t, (4)
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where 𝜷𝑗 and �̃�𝑗t denote the 𝑗th subvectors of the constant and time-varying parts in 𝜷 t with 𝜷 t =
(
𝜷′

1t, … , 𝜷′
Mt
)′ and

u𝑗t = (𝑦1t, … , 𝑦𝑗−1,t)′. The ( 𝑗 − 1)-dimensional vectors q𝑗 and q̃𝑗t store the constant and time-invariant part of the free
elements in the 𝑗th row of Qt.

Using this representation allows us to treat each equation as a separate estimation problem and thus to exploit favorable
computational properties. For sampling the parameters and latent states per equation, we rely on several Gibbs updating
steps. The single most important feature is that we sample the latent effect modifiers (i.e., the random walk factors and
the Markov switching indicators) marginally of the TVPs. This is achieved by integrating out the TVPs analytically, and
improves mixing considerably. In Appendix S1, we provide precise details on all full conditional posterior distributions,
show that our algorithm displays favorable convergence properties and that the model is capable of reproducing parameter
dynamics accurately.

3 MODELING THE TERM STRUCTURE OF US GOVERNMENT BOND YIELDS

This section applies the model to the term structure of US interest rates. These time series are characterized by substan-
tial structural breaks (e.g., during the period of the ZLB), feature substantial co-movement both in the level of the time
series but also in the parameters describing their evolution. Our proposed model framework might thus be well suited to
capture such features. We investigate this claim in a thorough forecasting exercise using several established benchmarks.
After showing that our approach yields favorable forecasts, we discuss the driving forces behind parameter changes and
illustrate how key quantities that shape yield curve dynamics co-move over time at low frequencies.

3.1 Data

Our aim is to model monthly zero-coupon yields of US treasuries at different yearly maturities.5 Let it(𝜃) denote the yield at
maturity 𝜃 ∈ {1, 3, 5, 7, 10,15} at time t = 1, … ,T. As stated in Section 2, we consider two versions of our model. The first
one models the yields in an unrestricted manner, and includes all of them as endogenous variables in first differences for
stability reasons. That is, for the model labeled VAR, the vector of endogenous variables is yt = (Δit(1),Δit(3), … ,Δit(15))′

of size M = 6, with Δ referring to the first-difference operator.
The second model class includes specifications based on the three-factor Nelson–Siegel (NS) model as in Diebold and

Li (2006) that imposes a factor structure on the yields:

it(𝜃) = Lt +
(

1 − exp(−𝜃𝛼)
𝜃𝛼

)
Št +

(
1 − exp(−𝜃𝛼)

𝜃𝛼
− exp(−𝜃𝛼)

)
Çt. (5)

Here, Lt is a factor that controls the level, Št determines the slope, and Çt represents the curvature factor of the yields.
The parameter 𝛼 governs the exponential decay rate, which we set to 𝛼 = 0.7308 (12×0.0609).6 These factors are extracted
from the level of the zero-coupon yields by running OLS on a t-by-t basis.7 For the model subsequently labeled NS-VAR,
we use the latent factors Lt, Št andÇt in differences as endogenous variables in the VAR specifications stated in Section 2 by
defining yt = (ΔLt,ΔŠt,ΔÇt)′, resulting in M = 3. Figure 1 displays raw yield data, alongside the extracted Nelson–Siegel
factors. Charts of the transformed data are provided in Appendix S1.

For analyzing the role of observed factors governing joint dynamics of the TVPs, we rely on three exogenous variables:

a. a binary recession indicator (labeled REC) for the US, dated on a monthly basis by the Business Cycle Dating
Committee of the National Bureau of Economic Research,

b. the National Financial Conditions Index (NFCI), maintained by the Federal Reserve Bank of Chicago, downloaded
from the FRED database of the Federal Reserve Bank of St. Louis (available online at fred.stlouisfed.org), and

c. the Risk-Free (RF) interest rate from the Fama-French Portfolios and Factors database, provided on the web page of
Kenneth R. French as another important early warning indicator.8

5The data we use are described in detail in Gürkaynak et al. (2007) and available online at federalreserve.gov/data/nominal-yield-curve.htm.
6See Diebold and Li (2006) for a discussion of this specific choice.
7It is noteworthy that the basic Nelson–Siegel model is not arbitrage free. However, using a similar dataset, Coroneo et al. (2011) show that the parameters
of an arbitrage free model do not differ from the ones obtained from the standard Nelson–Siegel model in a statistically significant manner.
8Available online at mba.tuck.dartmouth.edu/pages/faculty/ken.french.
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FIGURE 1 Zero-coupon yields
and Nelson–Siegel factors. Note:
it(𝜃) denotes the zero-coupon
yields at maturity
𝜃 = {1, 3, 5, 7, 10,15} years, Lt is a
factor that controls the level, Št

determines the slope, and Çt
represents the curvature factor of
the yields. The black dashed line
denotes the zero line, whereas the
gray shaded vertical bars
represent recessions dated by the
NBER Business Cycle Dating
Committee. Sample period:
1973:01 to 2019:12. Vertical axis:
zero-coupon yields and
Nelson–Siegel factors. Horizontal
axis: months.

Thus, rt = (rREC,t−1, rNFCI,t−1, rRF,t−1)′ and Rr = 3. The lagged effect modifiers enter the model in levels. Plots of these
series are provided in Section 3.4 in the context of our discussion of the resulting effect modifier estimates.

We use these three effect modifiers for simple reasons. First, there is strong evidence that yield curve dynamics differ
across business cycle phases (see, e.g., Hevia et al., 2015). Second, the RF interest rate serves as an early warning indicator
that possesses predictive power for changes in the shape of the yield curve. Finally, the inclusion of the NFCI is motivated
by the recent literature on forecasting tail risks in macroeconomic and financial time series (see, e.g., Adams et al., 2021;
Adrian et al., 2019; Carriero et al., 2020).

3.2 Design of the forecasting exercise

Estimation and forecasting is carried out recursively. Using data from 1973:01 to 1999:12, we produce one-month-ahead
and three-months-ahead forecasts.9 After obtaining the predictive distributions for 2000:01, we expand the sample and
repeat this procedure until we reach 2019:12.10 This yields 240 out-of-sample observations. Point forecast performance
is measured using root mean squared errors (RMSEs), whereas density forecasts are assessed in terms of log predictive
Bayes factors (LPBFs), averaged over the out-of-sample observations (see also Geweke & Amisano, 2010). We moreover
consider model confidence sets (MCS) proposed in Hansen et al. (2011) as a measure of absolute model performance. The
MCS procedure constructs a superior set of models, which includes the best performing model with a certain significance
level (set to 0.25 in our case).

The forecast exercise distinguishes between two model classes. In our forecasting horse race, we estimate two versions
of all models: one based on using the unrestricted yields, and one relying on the NS factors.11 We have 15 distinct model
specifications in each class. These range from nested alternatives (such as constant parameter VARs, TVP-VARs in the
spirit of Primiceri, 2005, or models akin to a Markov switching specification) to the most general model that includes all
effect modifiers discussed above. In particular, specifications within a model class differ in terms of three aspects (see
Table 1): First, whether the three exogenous variables (collected in rt) are included in zt or not (“x” marks inclusion, “–”
indicates no observed factors); second, in terms of the number 𝛿 of latent random walk factors R𝜏𝑗 included in zt (which
we assume to be equal across equations); and third, in terms of the presence of Markov switching indicators in St, again
with “x” marking their inclusion and “–” their absence.

This setup implies that we have 15 TVP-NS-VAR and 15 TVP-VAR specifications. For comparative purposes we also
consider the two class-specific constant parameter model variants, labeled “Constant” (which serves as the benchmark),

9Higher order forecasts involving the effect modifiers are based on random walk predictions of these quantities. For the Markov indicators and the
random walk factors, this is achieved by exploiting the dynamic structure of the model, producing forecasts within a unified econometric framework.
10Note that for our set of financial indicators, data revisions and ragged edges arising from delays in the publication of the series do not matter. This is
due to financial market data being available almost instantaneously, and the published quotes are not subject to revisions at later dates.
11In the latter case we forecast the factors and then, using the implied matrix of factor loadings, map the factor forecasts into the space of observed yields.
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and a conventional independent random walk specification of the TVPs (implying that we set the number of random walk
factors equal to K and exclude rt and St).12 Notice that we also have a specification that includes only St and another one
that uses only observed factors.

Finally, we also consider variants of two simpler models. The first is a standard AR(P) model with random walk TVPs
or constant parameters, labeled TVP-AR in Table 1. The constant parameter AR(P) is an often used benchmark when
assessing the accuracy of more intricate models for predicting government bond yields, which typically performs similar
to no-change random walk models at shorter horizons and yields improvements for long-run forecasts (see, e.g., Carriero
et al., 2012; Diebold & Li, 2006). The second one, labeled TVP-NS-AR, is used to model the state dynamics of the NS
factors (similar to what our VAR does), but disregards contemporaneous correlations between the factors.

All model specifications considered include stochastic volatility (see Section 2.1) and P = 3 lags of the endogenous
variables.

3.3 Forecasting results

Table 1 shows the one-month-ahead and one-quarter-ahead forecasting results for US treasury yields at different matu-
rities. RMSEs are shown as ratios, and LPBFs in differences are given below the RMSEs in parentheses. RMSEs below
one indicate superior performance, relative to the benchmark “Constant,” as LPBF figures greater than zero do. The best
performing model specification by column is given in bold, highlighting the specification with the smallest RMSE ratio
and the largest positive LPBF difference, respectively. Gray shaded cells indicate models that are excluded from the MCS
based on a significance level of 0.25, whereas nonshaded cells refer to models that are among the superior model set.

We first provide a general overview on model performance and then zoom into differences in predictive accuracy for
point and density forecasts. At a very general level, Table 1 suggests a pronounced degree of heterogeneity in forecast accu-
racy across models and for both the NS-AR/-VAR and AR/VAR specifications. Although differences at some maturities are
substantial (especially at the long end of the yield curve), they are muted or nonexistent for others. The univariate AR(3)
models, with and without TVPs, are competitive benchmarks for point forecasts, particularly for the one-quarter-ahead
horizon. For joint densities, the univariate AR(3) models perform poorly, indicating that modeling the covariance struc-
ture across the yield curve is beneficial to forecast accuracy. It is also worth mentioning that the TVP variants of the
multivariate NS-VAR and VAR models outperform the respective constant parameter specifications in most cases. This
general observation holds true irrespective of whether only point forecasts or the full predictive distribution are consid-
ered. These accuracy premia point toward the necessity of addressing structural breaks in the dynamic evolution of the
yield curve.

Comparing the NS-VAR and VAR specifications indicates that the latter usually perform better for density forecasts,
whereas the former are often superior in terms of point forecasts. The MCS procedure confirms the significance of these
results, with NS-VAR models being included in the set of superior models for point forecasts in almost all cases, often
showing the smallest numerical values. The better point forecasting performance of the NS-VARs suggests that the three
factors contain relevant information for the first moment of the predictive distribution. When we also consider higher
order moments, this story changes. The significantly better density performance of the VAR models, signaled by a large
number of inclusions in the MCS, is most likely driven by two sources. First, as opposed to the conditional mean, the
strong implicit assumptions of the NS-VARs on the prediction error variance-covariance matrix seems overly restrictive.
Allowing for richer dynamics in the covariances by explicitly modeling the shocks to a panel of yields improves density
forecasts. Second, the small-scale NS-VARs might feature a too tight predictive variance because relevant information is
ignored. And this harms density forecasting accuracy during turbulent times.

Next, we focus on specific model classes. Within these, differences in performance along sub-divisions (provided by
the inclusion/exclusion of the exogenous variables or the Markov switching processes and the number of latent ran-
dom walk factors) are often negligible. This finding indicates that our flexible approach to probabilistically selecting the
most adequate state evolution via Bayesian shrinkage successfully avoids overfitting. The MCS procedure suggests that
improvements of using our proposed approach with respect to predictive accuracy, although being small in absolute
value, are significant in many cases. We observe a lack of gray cells that signal exclusion from the MCS particularly for
TVP-VAR in the respective upper part of the table. Two models worth being mentioned explicitly are the TVP-VAR fea-

12It is worth stressing that the constant parameter VAR is equipped with a horseshoe prior and thus allows for flexible shrinkage toward simpler model
specifications such as a random walk with stochastic volatility.
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FISCHER ET AL.

turing the observed and three latent effect modifiers and Markov switching, and the one without observed but six latent
effect modifiers alongside Markov switching indicators. These two models are among the superior model set for both fore-
cast horizons, point and density forecasts, and across all maturities (apart from one exclusion from the set for the first,
and two for the latter). This points toward very consistent and versatile performance of the proposed model.

We now turn to considering model-specific forecasting accuracy with the aim to find the best performing models for
point and density forecasts and for the two different forecast horizons. The overall winner for point forecasts at the
one-month horizon, on average, is the flexible NS-VAR model specification featuring the exogenous variables, one latent
factor per equation and the Markov switching processes. While this specification yields RMSEs that are 23% lower than
those of the benchmark specification, it must be acknowledged that most competing specifications exhibit values that are
similar in magnitude. At the one-quarter-ahead horizon, the one-factor NS-VAR without exogenous variables and Markov
switching processes also improves upon the benchmark, albeit at a much smaller margin. It is worth stressing that these
predictive gains are mostly found for longer maturities, whereas for shorter maturities, accuracy gains are muted.

We proceed with our findings for density forecasts. As mentioned above, the VAR specifications overall exhibit more
favorable relative LPBFs compared to the NS-VARs. This is easily observable by noting that most bold values (in parenthe-
ses) are located in the lower panel of Table 1 and the corresponding gray shaded cells mostly in the upper panel. In terms
of average performance at the one-month horizon, we find that the TVP-VAR specification with one factor but no exoge-
nous variables or Markov switching performs best, closely followed by the most flexible specification with one unobserved
factor including Markov switching. The MCS procedure confirms these findings, with many of our proposed specifications
being included in the superior model set. For one-quarter-ahead forecasts, the TVP-VAR with exogenous variables, one
latent factor and Markov switching shows the largest gains in terms of density forecasts. Similarly to the point forecast-
ing results, these gains are mostly obtained in terms of the long end of the yield curve, whereas improvements in forecast
accuracy at shorter horizons are negligible. It is also worth mentioning that although the joint forecast performance of
the constant parameter AR(3) is poor, it is a strong competitor with respect to density forecasts of individual maturities.

The main take away from this discussion is that our approach is highly competitive to established models. Especially
for longer maturities and both forecast horizons, it pays off to control for structural breaks using our general framework
for modeling TVPs in multivariate regression models. Given the substantial flexibility our approach offers, the results
clearly show that we do not face overfitting issues, suggesting that our horseshoe prior successfully shrinks irrelevant
effect modifiers toward zero.

3.4 Determinants of time-variation in the coefficients

Including observed and latent effect modifiers allows for investigating the sources of time-variation in coefficients and
thus the driving factors of improvements in predictive accuracy. We carry out a detailed analysis of these determinants
below.

Because of its favorable forecasting properties, we choose the NS-VAR with one latent factor per equation to investigate
the driving forces of parameter variation over the full estimation sample. Recall that the choice of zt for this specification
translates into a single equation-specific latent factor (𝜏𝑗t), an equation-specific Markov switching indicator S𝑗t and the
three observed early warning indicators.

To illustrate the observed and latent factors, we transform each column vector in zt ex post such that it is bounded
between zero and one. This allows for comparisons even though some blocks of the respective matrices are not economet-
rically identified.13 We therefore exploit the fact that introducing any invertible R×R matrix does not alter the likelihood
of the model, because 𝚲U−1Uzt = 𝚲zt. Define U as diagonal matrix such that the maximum of each z𝑗 (for 𝑗 = 1, … ,R)
corresponds to one, the minimum is zero, �̃� = 𝚲U−1 and z̃t = Uzt. This simple linear transformation allows for assessing
the relative movement of the indicators in z̃t without affecting overall dynamics.

Figure 2 displays the evolution of the normalized indicators in z̃t over time. First, we focus on the features of the observed
effect modifiers depicted in the upper panel (a). The normalized NFCI index peaks during the oil crisis in the mid 1970s,
while exhibiting a stable evolution at a quite low level during the Great Moderation (the period from 1990 until to the
onset of the global financial crisis in 2007). Spikes in rNFCI,t tend to coincide with recessionary episodes, indicated by the
binary recession indicator rREC,t. The risk-free interest rate rRF,t can be related to the monetary policy stance. Early in

13In particular, this is the case for the product 𝚲𝜏𝝉 t . Note that we do not face this issue for 𝚲rrt and 𝚲SSt because both are either observed or already
bounded between zero and one, and their scale and sign are identified.
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FISCHER ET AL.

FIGURE 2 Evolution of the normalized effect
modifiers z̃t = Uzt over time. Note: Results are based
on a TVP-NS-VAR model specification
zt = (r′t ,S′

t , 𝝉
′
t)
′, 𝛿 = R𝜏∕M = 1, P = 3, and using

15,000 MCMC draws. Panel (a) shows the
normalized observed factors rNFCI,t, rREC,t and rRF,t

(collected in rt), panel (b) the posterior mean of the
latent Markov switching factors, SL,t, SŠ,t and SÇ,t

(collected in St), and panel (c) the posterior median
of the latent random walk factors, 𝜏L, 𝜏Š and 𝜏ç

(collected in 𝝉 t). Note that S𝑗t and 𝜏𝑗t are
equation-specific latent quantities with M(= 3)
endogenous variables, 𝑗 ∈ {L, Š,Ç}. SL,t and 𝜏L,t

correspond to the first equation, SŠ,t and 𝜏Š,t to the
second, whereas SÇ,t and 𝜏Ç,t to the third. The gray
shaded vertical bars represent recessions dated by the
NBER Business Cycle Dating Committee. Sample
period: 1973:01 to 2019:12. Vertical axis: normalized
values. Horizontal axis: months.

the sample, we observe substantial increases, peaking during the Volcker disinflation in the early 1980s. Subsequently,
large and abrupt decreases are notable during recessions, while an overall decreasing trend is observable. Before turning
to the latent indicators in St and 𝝉 t, note that the respective elements S𝑗t and 𝜏𝑗t are equation-specific with 𝑗 ∈ {L, Š,Ç}
referring to the level, slope, and curvature of the yield curve. The middle panel (b) indicates the posterior median of the
three Markov switching factors collected in St. The lower panel (c) shows the posterior medians of the three (transformed)
gradually changing latent random walk factors in 𝝉 t.

Several features of the latent indicators are worth highlighting. Each of the latent quantities exhibits distinct dynamics
and thus carries information in addition to the observed indicators. Examining the posterior means, which are essentially
the unconditional posterior probabilities that a given Markov indicator equals one, we observe that both SL,t and SŠ,t
evolve comparatively gradually over time. Before the Volcker disinflation, both tend to increase with posterior medians
above 0.5, indicating that regime 1 is more likely. After 1985, we observe a major shift toward regime 0. Interestingly, for
SŠ,t this transition appears immediately after 1985, whereas we detect a notable delay in SL,t.

During the Great Moderation both indicators tend to remain associated with regime 0. The indicator associated with the
middle segment of the yield curve, SÇ,t, by contrast, transitions between regimes at a higher frequency. Particularly during
the Volcker disinflation we observe mixed patterns and no clear or steady tendency toward a single regime. This changes
between 1990 and 1997, where the posterior mean of SÇ,t is consistently above 0.5, albeit with several high-frequency
movements. In the aftermath of the global financial crisis, with short-term rates approaching the zero lower bond, SÇ,t
switches abruptly into regime 0. Conditional on the respective loadings in 𝚲S being nonzero, this feature would directly
relate to the observed narrowing spread of the yield curve and accompanying structural breaks in coefficients of the
equation related to the curvature of the yield curve.
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FISCHER ET AL.

FIGURE 3 Heat maps for rescaled loadings in �̃� = 𝚲U−1. Note: �̃� translates the law of motion captured in z̃t to (a) the VAR coefficients in
𝜷 t, and (b) the covariances stored in qt, based on a TVP-NS-VAR model specification with zt = (r′t ,S′

t , 𝝉
′
t)
′, 𝛿 = R𝜏∕M = 1 and P = 3. 𝜄t denotes

the time-varying intercept, and Lt−p, Št−p,Çt−p for p = 1, 2, 3 the lagged variables Lt, Št and Çt, respectively. 𝝀r relates to elements of �̃�
associated with rNFCI,t, rREC,t and rRF,t and the respective equations, 𝝀S denotes loadings related to a single Markov switching factor collected
in St, and 𝝀𝜏 loadings corresponding to latent random walk factors in 𝝉 t. Note that S𝑗t and 𝜏𝑗t for 𝑗 ∈ {L, Š,Ç} are equation-specific
quantities, whereas rt stays fixed across equations. w(Št,Çt) denotes the contemporaneous relation between the Št- and Çt-equations,
w(Lt ,Çt) and w(Lt , Št) are defined analogously. Sample period: 1973:01 to 2019:12.

We observe several interesting features of the unobserved factors in 𝝉 t. Whereas 𝜏L,t is noisy and indicates substantial
high-frequency movements, 𝜏Š,t and 𝜏Ç,t are much smoother. The factor governing coefficients in the level-equation of the
yield curve peaks early in the sample, followed by a decline between 1980 and 1990. After a brief increase and stabilization
between 1990 and 2000, we see gradual declines until the global financial crisis starting in 2007. Since then, the factor
shows upward trending movement, with several high-frequency troughs. By contrast, the unobserved factor related to Št

exhibits approximately linear trending behavior from the beginning of the sample until the early 2000s, where it plateaued.
After 2010, a gradual but moderate decrease is visible. The factor 𝜏Ç,t is comparable with 𝜏L,t, albeit with several differences.
While several peaks coincide, we also find adverse movements, for instance in the brief early 1980s recession and after
2000. Interestingly, high-frequency movements are muted when compared to 𝜏L,t.

The preceding discussion of z̃t must be considered in light of the rescaled loadings in �̃� = 𝚲U−1. The matrix �̃� translates
the law of motion captured in z̃t to the coefficients in 𝜷 t by acting either as amplifier or attenuator. Figure 3 shows the
posterior mean of the rescaled loadings 𝚲U−1 and allows to assess which elements in z̃t determine time-variation in
the TVPs. We differentiate the loadings along two dimensions. Panel (a) shows the effect modifiers related to the VAR
coefficients, whereas panel (b) depicts the block of �̃� related to the covariances (stored in qt).

Assessing the loadings in 𝚲r for the Lt-equation reveals that a major part of the coefficients loads strongly positive on
rNFCI,t. In the case of rRF,t and rREC,t the patterns are more mixed. For rNFCI,t we find a maximum loading of around 0.25
for Št−1, Lt−2, Çt−2 and Lt−3, whereas for rRF,t and rREC,t some coefficients load moderately positive (e.g., the first own lag
Lt−1) and others moderately negative (for example, loadings related to lags of the curvature factor). The loadings 𝚲S and
𝚲𝜏 related to estimated latent factors exhibit only modest relevance for defining the law of motion in coefficients related
to Lt. In particular, the amplifiers for 𝝉 t are shrunk heavily toward zero, implying that low frequency movements in the
respective coefficients are either already captured by other measures, or irrelevant for coefficients in the Lt-equation. The
same is true for the indicators in St and 𝝉 t for the case of the Št-equation.
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FISCHER ET AL.

Turning to observed factors, the corresponding factor loadings are positive for lower order lags whereas strongly nega-
tive for higher order lags. By contrast, we find mostly negative loadings for observed factors for first-lags in the Çt-equation.
Loadings related to higher order lags are mixed, and no clear patterns are observable. Interestingly, the curvature factor is
the only equation where we detect substantial loadings on the latent factors, with most loadings showing a positive sign.

Although unobserved factors appear to be less important for coefficients in the conditional mean of the model, they
play an important role for the covariances, as indicated in panel (b). The covariance between Št and Çt, w(Št,Çt), shows
pronounced loadings on all other effect modifiers than NFCI, where we observe a modest negative loading. A mixed
pattern emerges for the Lt and Çt covariance, w(Lt,Çt), with some positive and negative measures. The contemporaneous
relationship w(Lt, Št) between Lt and Št, marks a particularly interesting case, with modestly negative loadings on NFCI
and RF, whereas REC and the unobserved factor loadings are close to zero.

Summarizing, we find that observed factors often load strongly on the coefficients of all equations. Although the
Markov switching indicator appears to be important particularly for the Lt- and Çt-equations, its loadings are muted for
the coefficients of Št. Another interesting aspect is that conditional on observed effect modifiers, the gradually evolving
coefficients captured by 𝝉 t are mostly irrelevant for the Lt- and Št-equations, different to strong positive loadings in the
case of the Çt-equation and the covariances. Additional results showing the actual regression coefficients are provided in
Appendix S1.

3.5 Low frequency relations between the Nelson–Siegel factors

To assess what our framework implies on the relations between the factors that determine the yield curve, we compute
the low-frequency relationship between the Lt, Št and Çt. We choose this long-run correlation measure for two reasons.
First, it allows to illustrate movements in time-varying coefficients (i.e., in the transmission channels) and changes in
the error variances in a single indicator over time. Second, this measure compresses information of all coefficients in a
structurally meaningful way because it isolates long-run trends and correlations from short-run fluctuations (Kliem et al.,
2016; Sargent & Surico, 2011). Appendix S1 collects additional results for the reduced form coefficients.

To construct the measure, in terms of the generic notation in Equation (1), we rewrite the VAR(P) in its state-space
VAR(1) form. In what follows, the observation equation is given by yt = JY t, whereas the state equation is defined as
Y t = BtY t−1 +𝝊t with 𝝊t ∼  (𝟎,𝚵t). Here, J maps a K ×1 vector Y t =

(
y′

t , … , y′
t−P+1

)′ to yt, Bt collects the elements in 𝜷 t
in the upper M ×K block and defines identities otherwise. Similarly, the K ×K variance-covariance matrix 𝚵t collects the
elements of Σt in the upper-left M×M block and is zero otherwise. We follow Sargent and Surico (2011) and first calculate
the spectral density 𝚽t(0) of yt at a zero frequency that coincides with the unconditional variance-covariance matrix of yt:

𝚽t(0) = J (IK − Bt)𝚵t(IK − B′
t)
−1J′, for t = 1, … ,T.

Next, we transform the covariances of 𝚽t into a correlation measure for each period t and each variable combination
i, 𝑗 (i ≠ 𝑗 and i, 𝑗 = 1, … ,M):

𝜙i𝑗,t =
𝚽i𝑗,t(0)
𝚽𝑗𝑗,t(0)

.

The measure 𝜙i𝑗,t describes the long-run relations between variables i and 𝑗 at each point in time, and is displayed in
Figure 4 for the model specification TVP-NS-VAR with zt =

(
r′t ,S′

t , 𝝉
′
t
)′
, R𝜏𝑗 = 1 and P = 3. Note that the variables enter

our model in differences. Hence, Figure 4 depicts the low frequency relations of changes in the level, slope and curvature
of the yield curve.

We observe several interesting periods characterized by structural breaks. First, the relationship between the level and
slope of the yield curve was close to zero until the Volcker disinflation of the 1980s. After this period, we can identify an
abrupt decrease to significantly negative values. The long-run correlation stays negative until the end of the sample, with
minor low-frequency movements.

Second, for most of the sample, the long-run coefficient between level and curvature of the yield curve is insignificant.
Substantial structural breaks are detectable in the early 1980s. Again, this coincides with a shift in the US monetary policy
regime. Between the two recessions in the early 1980s and in the recovery period afterwards, we note a strong positive
relationship between the level and curvature of the yield curve. Afterwards, during the Great Moderation, there are mostly
insignificant values. This ends during the Great Recession, where the relationship is estimated to be significantly negative.
This finding may be linked to short-term interest rates approaching the zero lower bound rapidly. The trend reverses later
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FISCHER ET AL.

FIGURE 4 Posterior median and the 68% credible set for
pairwise long-run correlations. Note: Panel (a) 𝜙LŠ,t, (b) 𝜙LÇ,t

and (c) 𝜙ŠÇ,t, based on a TVP-NS-VAR with
zt = (r′t ,S′

t , 𝝉
′
t)
′, 𝛿 = R𝜏∕M = 1 and P = 3. The solid lines

denote the posterior medians, the black dashed line the zero
line, and the color shaded bands the 68% posterior coverage
interval, whereas the gray vertical bars represent recessions
dated by the NBER Business Cycle Dating Committee. 𝜙i𝑗,t is
the long-run correlation for the variables i and 𝑗 at time t, for
i, 𝑗 ∈ {L, Š,Ç}. Results are based on 15,000 MCMC draws.
Sample period: 1973:01 to 2019:12. Vertical axis: correlation
measurements. Horizontal axis: months.

in the sample, with the Federal Reserve conducting several subsequent rate hikes starting at the end of 2015. Turning to
the relationship between the slope and curvature of the yield curve, we again find an insignificant relationship for most of
the sample. Large breaks are observable in the period between the two 1980s recessions, but different to the relationship
between the level and curvature of the yield curve, this is not visible in the subsequent recovery period. Interestingly, we
estimate a significantly positive relationship in the period of the aforementioned rate hikes by the Federal Reserve starting
in 2015.

4 CONCLUSIONS

In this paper, we develop a flexible multivariate econometric framework and use it to model the term structure of US
interest rates. The recent literature on yield curve dynamics has highlighted different forms of parameter change to be of
relevance. To cope with this inherent uncertainty with respect to how coefficients behave over time, we propose methods
for automatically selecting adequate state equations in TVP-VAR models in a data-driven manner. The TVPs are assumed
to depend on a set of observed and unobserved covariates, also known as effect modifiers. As unobserved covariates, we
consider a set of low dimensional latent factors that follow a random walk, alongside Markov switching indicators that
allow for abrupt structural breaks. Our model nests several alternatives commonly used in the literature on modeling
macroeconomic and financial time series. To choose between state equations, we use a hierarchical Bayesian global-local
shrinkage prior on the most flexible specification.

To assess whether our methods pay off relative to simpler alternatives (which are nested in our general framework),
we carry out a thorough predictive exercise. We show that our techniques produce favorable point and density forecasts.
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FISCHER ET AL.

The performance is specific to the information set used in the underlying TVP-VAR and appears to be more pronounced
for density forecasts. Using the MCS procedure, we also show that our set of general models is very often included in the
superior model set. This finding is particularly pronounced for the long end of the yield curve.

The forecasting exercise illustrates that our approach produces very competitive forecasts without increasing the risk of
overfitting, while providing a framework to trace the sources of time-variation. To illustrate this, we consider a full-sample
analysis of structural breaks in the relationship between the level, slope and curvature of the US yield curve. We detect sev-
eral interesting patterns in abrupt and gradual time-variation patterns in long-run cross-variable relations. These changes
appear to be specific to the monetary regime and the state of the business cycle.

It is worth stressing that the methods have been applied specifically to US interest rate data. These time series feature
appreciable structural breaks (such as during the Volcker disinflation or the recent period at the ZLB) and thus call for
models that flexibly capture parameter time-variation. Nevertheless, our approach is very general and widely applicable
to other datasets such as a standard macroeconomic dataset in the spirit of McCracken and Ng (2016).

Finally, it is worth stressing that we have focused on a particular prior, the horseshoe, in this paper. Depending on the
dataset under consideration, the empirical performance of the approach might be improved further by considering other
priors. Because prior robustness is an important issue, we leave a systematic analysis of alternative priors to be used in
our general model for future research.
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