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Abstract
Westudy an energy-constrained randomwalker on a length-N interval of the one-dimensional
integer lattice, with boundary reflection. The walker consumes one unit of energy for every
step taken in the interior, and energy is replenished up to a capacity of M on each boundary
visit. We establish large N , M distributional asymptotics for the lifetime of the walker, i.e.,
the first time at which the walker runs out of energy while in the interior. Three phases
are exhibited. When M � N 2 (energy is scarce), we show that there is an M-scale limit
distribution related to a Darling–Mandelbrot law, while when M � N 2 (energy is plentiful)
we show that there is an exponential limit distribution on a stretched-exponential scale. In
the critical case where M/N 2 → ρ ∈ (0,∞), we show that there is an M-scale limit in
terms of an infinitely-divisible distribution expressed via certain theta functions.

Keywords Reflecting random walk · Darling–Mandelbrot distribution · Metastability ·
Energy and resource dynamics

Mathematics Subject Classification 60J10 (Primary); 60G50 · 60J20 · 92D40 (Secondary)

1 Introduction

This paper is motivated by a number of problems in mathematical ecology. The motion of
individual animals and the space-time statistics of animal populations are of central interest
in ecology, crucial to the understanding of population structure and dynamics, dispersion
patterns, foraging, herding, territoriality, and other aspects of the behaviour of animals and
their interactions with and responses to their environment and broader ecosystem [22, 26,
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33, 35, 40]. Movement ultimately bears on large-scale (in space and time) phenomena, such
as biological fitness, genetic variability, and inter-species dynamics.

Random walks, diffusions, and related processes have been used for over a century to
model animal movement: see e.g. [15, 27, 40] for an introduction to the extensive literature
on these topics. Assuming Fickian diffusion leads to reaction–diffusion models in which
dynamics is driven by smooth gradients of resource or habitat, such as chemotactic or hap-
totactic dynamics in microbiology [37], but fails in several important respects to reflect the
real-world behaviour of animals [21, 27]. Various modelling paradigms attempt to incor-
porate more realistic aspects of animal behaviour, such as memory and persistence [24],
intermittent rest periods [39], or anomalous diffusion [27].

A basic aspect of population dynamics is the flow of energy: individuals consume resource
and subsequently expend energy in somatic growth,maintenance, reproduction, foraging, and
so on; penguins must balance feeding and swimming, for example [11]. The distribution of
scarce food or water in the environment imposes constraints on animal movement, as is
seen, for instance, in flights of butterflies between flowers, elk movements between feeding
craters, and elephants moving between water sources in the dry season [24, 41]. An important
modelling challenge is to incorporate resource heterogeneity in space and time, to model
the distribution of food and shelter, consumption of resources, and seasonality; in bounded
domains, one must provide a well-motivated choice of boundary conditions.

Traditionally, mathematical ecology modelling of spatially distributed processes in
bounded domains employs Dirichlet or Neumann boundary conditions, which do not do
justice to the wealth of behaviour that can be exhibited at the boundary of a domain occupied
by an animal population. Clearly, availability of resources can be different in the interior of
the domain and at the boundary, as can the nature of interactions among members of the
population. It is not impossible that an animal may want to spend some time staying at, or
diffusing along the boundary. An example of the differences in behaviours, this time of a
population of molecules, is provided in the pregnancy-test model of [32], where the species
only diffuse in the bulk of the sample, but participate in reactions with the coating of the ves-
sel where the test takes place. Another area in which reaction–diffusion systems are applied
and in which boundary conditions enter in a crucial way is porous-medium transport [13,
38].

There have been proposed random walk models where arrival on the boundary results in
the termination of the walk; see [6] for a review. In the present paper we take a “dual” view,
in which staying in the interior of the domain leads ultimately to the demise of the walker,
while arrival at the boundary provides viaticum to replenish the walker’s energy and allows
the walk to continue. For example, an island in a lake may support animals that roam the
interior butmust return to shore to drink. Adjacentmodels include the “mortal randomwalks”
of [7] and the “starving random walks” of [42], but in neither of these does the walker carry
an internal energy state. Our model differs from models that incorporate resource depletion
by feeding [8–10, 14, 23] in that, for us, energy replenishment only occurs on the boundary
and the resource is inexhaustible. Comparison of our results to those for models including
resource depletion, in which the domain in which the walk is in danger of extinction grows
over time, is a topic we hope to address in future work.

Section 2 describes our mathematical set-up and our main results, starting, in Sect. 2.1
with an introduction of a class of Markov models of energy-constrained random walks with
boundary replenishment.
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2 Model andMain Results

2.1 Energy-Constrained RandomWalk

For N ∈ N := {1, 2, 3, . . .}, denote the finite discrete interval IN := {x ∈ Z : 0 ≤ x ≤
N }. Also define the semi-infinite interval by I∞ := Z+ := {x ∈ Z : x ≥ 0}. We write
N := N ∪ {∞} and then IN , N ∈ N includes both finite and infinite cases. The boundary
∂ IN of IN is defined as ∂ IN := {0, N } for N ∈ N, and ∂ I∞ := {0} for N = ∞; the interior
is I ◦

N := IN\∂ IN . We suppose N ≥ 2, so that I ◦
N is non-empty. Over N we define simple

arithmetic and function evaluations in the way consistent with taking limits over N, e.g.,
1/∞ := 0, exp{−∞} := 0, and so on.

We define a class of discrete-time Markov chains ζ := (ζ0, ζ1, . . .), where ζn :=
(Xn, ηn) ∈ IN × Z+, whose transition law is determined by an energy update (stochas-
tic) matrix P over Z+, i.e., a function P : Z2+ → [0, 1] with ∑

j∈Z+ P(i, j) = 1 for all
i ∈ Z+. The coordinate Xn represents the location of a random walker, and ηn its current
energy level. Informally, the dynamics of the process are as follows. As long as it has positive
energy and is in the interior, the walker performs simple random walk steps; each step uses
one unit of energy. If the walker runs out of energy while in the interior, the walk terminates.
If the process is at the boundary ∂ IN with current energy level i , P(i, j) is the probability
that the energy changes to level j ; the walk reflects into the interior.

Formally, the transition law is as follows.

• Energy-consuming random walk in the interior: If i ∈ N and x ∈ I ◦
N , then

P(Xn+1 = Xn + e, ηn+1 = ηn − 1 | Xn = x, ηn = i) = 1

2
, e ∈ {−1,+1}. (2.1)

• Extinction through exhaustion: If x ∈ I ◦
N , then

P(Xn+1 = x, ηn+1 = 0 | Xn = x, ηn = 0) = 1. (2.2)

• Boundary reflection and energy transition: If i ∈ Z+, x ∈ ∂ IN , and y ∈ I ◦
N is the

unique y such that |y − x | = 1, then

P(Xn+1 = y, ηn+1 = j | Xn = x, ηn = i) = P(i, j). (2.3)

In the present paper, we focus on a model with finite energy capacity and maximal energy
replenishment at the boundary. This corresponds to a specific choice of P , namely P(i, M) =
1, as described in the next section. Other choices of the update matrix P are left for future
work.

2.2 Finite Energy Capacity

Our finite-capacity model has a parameter M ∈ N, representing the maximum energy capac-
ity of the walker. The boundary energy update rule that we take is that energy is always
replenished up to the maximal level M . Here is the definition.

Definition 2.1 For N ∈ N, M ∈ N, and z ∈ IN × IM , the finite-capacity (N , M, z)-model is
the Markov chain ζ with initial state ζ0 = z and with transition law defined through (2.1)–
(2.3) with energy update matrix P given by P(i, M) = 1 for all i ∈ Z+.

For the (N , M, z) model from Definition 2.1, with z = (x, y) ∈ IN × IM , we write PN ,M
z

andEN ,M
z for probability and expectation under the law of the correspondingMarkov chain ζ
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Fig. 1 Schematic of the transitions for the reflecting randomwalk ζn = (Xn , ηn) in the rectangle IN × IM . The
arrows indicate some possible transitions: in the interior, energy decreases and the particle executes a nearest-
neighbour randomwalk, while the boundary states provide energy replenishment. The larger (red-filled) circles
indicate the absorbing states (zero energy, but not at the boundary)

with spatial domain IN , energy capacity M , initial location X0 = x ∈ IN , and initial energy
η0 = y ∈ IM . The main quantity of interest for us here is the total lifetime (i.e., time before
extinction) of the process, defined by

λ := min{n ∈ Z+ : Xn ∈ I ◦
N , ηn = 0}, (2.4)

where we adopt the usual convention that min ∅ := +∞. The process ζ ∈ IN × IM can be
viewed as a two-dimensional random walk with a reflecting/absorbing boundary, in which
the interior drift (negative in the energy component) competes against the (positive in energy)
boundary reflection: see Fig. 1 for a schematic.

If for initial state z = (x, y) ∈ IN × IM it holds that N > M + x (including N = ∞),
then the energy constraint and the fact that X0 = x ensures that Xn can never exceed M + x ,
so Xn is constrained to the finite interval IM+1+x . In other words, every (N , M, z) model
with N > M + x is equivalent to the (∞, M, z) model, for any y ∈ IM . Since we start
with η0 = y and energy decreases by at most one unit per unit time, PN ,M

z (λ ≥ y) = 1.
The following ‘irreducibility’ result, proved in Sect. 4.1, shows that extinction is certain, i.e.,
P
N ,M
z (λ < ∞) = 1, provided there are at least two sites in I ◦

N .

Lemma 2.2 Suppose that N ∈ N with N ≥ 3, that M ∈ N, and that ζ0 = z = (x, y).
Under PN ,M

z , the process ζ is a time-homogeneous Markov chain on the finite state space
�N ,M := IN∧(M+x) × IM . Moreover, there exists δ > 0 (depending only on M) such that
supz∈IN×IM E

N ,M
z [eδλ] < ∞.

Ourmain results concern distributional asymptotics for the random variable λ as N , M →
∞. We will demonstrate a phase transition depending on the relative growth of M and N .
Roughly speaking, since in time M a simple random walk typically travels distance of order√
M , it turns out that if M � N 2 the random walk will visit the boundary many times, and

λ grows exponentially in M/N 2, while if M � N 2 then there are relatively few (in fact, of
order

√
M) visits to the boundary before extinction, and λ is of order M . The case M � N 2,

where the capacity constraint dominates, we call themeagre-capacity limit, and we treat this
case first; in the limit law appears the relatively unusual Darling–Mandelbrot distribution
(see Sect. 2.3). The case M � N 2, where energy is plentiful, we call the confined-space
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limit, and (see Sect. 2.4) the limit law is exponential, as might be expected due to the small
rate of extinction in that case. The critical case, where M/N 2 → ρ ∈ (0,∞) is dealt with
in Sect. 2.5. Section2.6 gives an outline, at the level of heuristics, of the proofs.

2.3 TheMeagre-Capacity Limit

Our first result looks at the case where N , M are both large but M ∈ N is small (in a sense
we quantify) with respect to N ∈ N. This will include all the (∞, M, z) models, which, as
remarked above, coincide with the (N , M, z) models for N > M + x . However, it turns
out that the (∞, M, z) behaviour is also asymptotically replicated in (N , M, z) models for
N � √

M . The formal statement is Theorem 2.3 below.
To describe the limit distribution in the theorem, we define, for t ∈ R,

I(t) := t
∫ 1

0
u−1/2eutdu, and t0 := inf{t ∈ R : et − I(t) ≤ 0}. (2.5)

Then t0 ≈ 0.8540326566 (see Lemma A.1 below), and

ϕDM(t) := 1

et − I(t)
, for t < t0, (2.6)

defines the moment generating function of a distribution on R+ known as the Darling–
Mandelbrot distribution with parameter 1/2. We write ξ ∼ DM(1/2) to mean that ξ is
an R+-valued random variable with E[etξ ] = ϕDM(t), t < t0. We refer to Sect. 2.6 for
an heuristic explanation behind the appearance in our Theorem 2.3 below of the DM(1/2)
distribution, based on its role in the theory of heavy-tailed random sums. We also refer to
Lemma A.3 for the moments of DM(1/2), the first of which is E ξ = 1.

The result in this section is stated for a sequence of (NM , M, zM ) models, indexed by
M ∈ N, with zM = (xM , yM ) ∈ INM × IM and NM ∈ N satisfying the meagre-capacity
assumption that, for some a ∈ [0,∞] and u ∈ (0, 1],

lim
M→∞

x2M ∧ (NM − xM )2

M
= a, lim

M→∞
yM
M

= u, and lim
M→∞

M

N 2
M

= 0. (2.7)

Included in (2.7) is any sequence NM for which NM = ∞ eventually.
For b = (bt , t ∈ R+) a standardBrownianmotion onR started from b0 = 0, define τ BM

1 :=
inf{t ∈ R+ : bt = 1}. Then (seeRemarks 2.4(d) below) τ BM

1 has a positive (1/2)-stable (Lévy)
distribution:

τ BM
1 ∼ S+(1/2), i.e., τ BM

1 has density f (t) = (2π t3)−1/2e−1/(2t), t > 0. (2.8)

Write (s) := P(b1 ≤ s) and (s) := 1 − (s) = P(b1 > s), s ∈ R, for the standard
normal distribution and tail functions. Define

g(a, u) := u + (4 − 2u − 2a)(
√
a/u) +

√
2au

π
e−a/(2u). (2.9)

Here is the limit theorem in the meagre-capacity case. The case NM = ∞, a = 0 of (2.10)
can be read off from results of [6] (see Sect. 2.6); the other cases, we believe, are new. We

use ‘
d−→’ to denote convergence in distribution under the implicit probability measure (in

the following theorem, namely P
NM ,M
zM ).
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Theorem 2.3 Consider the (NM , M, zM ) model with M ∈ N, NM ∈ N and zM ∈ INM × IM
such that (2.7) holds. Then, if ξ ∼ DM(1/2) and τ BM

1 ∼ S+(1/2) are independent with
distributions given by (2.6) and (2.8) respectively, it holds that

λ

M
d−→ min(u, aτ BM

1 ) + (1 + ξ)1{aτ BM
1 < u}, as M → ∞; and (2.10)

lim
M→∞

E
NM ,M
zM λ

M
= g(a, u), (2.11)

where g is defined at (2.9). In particular, if a = 0, then the limits in (2.10) and (2.11) are
equal to 1 + ξ and 2 = 1 + E ξ , respectively, while for a = ∞ they are both u.

Remarks 2.4 (a) For every 0 < u ≤ 1, the function a �→ g(a, u) on the right-hand side
of (2.9) is strictly decreasing: see Lemma 4.4 below.

(b) If a > 0, then the distribution of the limit in (2.10) has an atom at value u of mass
P(aτ BM

1 ≥ u) = 2(
√
a/u)− 1, as given by (2.12) below; on the other hand, if a = 0, it

has a density (since ξ does, as explained in the next remark). The atom at u represents the
possibility that the random walk runs out of energy before ever reaching the boundary.

(c) The DM(1/2) distribution specified by (2.6) appears in a classical result of Darling [17]
on maxima and sums of positive α-stable random variables in the case α = 1/2, and
more recently in the analysis of anticipated rejection algorithms [6, 29, 31], where it has
become known as the Darling–Mandelbrot distribution with parameter 1/2. Darling [17,
p. 103]workswith the characteristic function (Fourier transform); Feller [20, p. 465] gives
the t < 0 Laplace transform (2.6). The DM(1/2) distribution has a probability density
which is continuous on (0,∞), is non-analytic at integer points, and has no elementary
closed form, but has an infinite series representation, can be efficiently approximated,
and its asymptotic properties are known: see [6, 29, 30].

(d) To justify (2.8), recall that, by the reflection principle, for t ∈ (0,∞),

P(τ BM
1 > t) = P

(

sup
0≤s≤t

bs < 1

)

= 2P(bt < 1) − 1 = 2(t−1/2) − 1; (2.12)

this gives (2.8), cf. [20, pp. 173–175].

2.4 The Confined-Space Limit

We now turn to the second limiting regime. The result in this section is stated for a sequence
of (NM , M, zM )models, indexed byM ∈ N, with zM = (xM , yM ) ∈ INM × IM and NM ∈ N

(note NM < ∞ now) satisfying the confined-space assumption

lim
M→∞ NM = ∞, lim

M→∞
M

N 2
M

= ∞, and lim inf
M→∞

yM
M

> 0. (2.13)

Let E1 denote a unit-mean exponential random variable. Here is the limit theorem in this
case; in contrast to Theorem 2.3, the initial location xM is unimportant for the limit in (2.14),
and the initial energy yM only enters through the lower bound in (2.13).

Theorem 2.5 Consider the (NM , M, zM ) model with M ∈ N, NM ∈ N and zM ∈ INM × IM
such that (2.13) holds. Then, as M → ∞,

4λ

N 2
M

cosM (π/NM )
d−→ E1. (2.14)
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Remarks 2.6 (a) The appearance of the exponential distribution in the limit (2.14) is a con-
sequence of the fact that it is a rare event for the random walk to spend time � N 2 in the
interior of the interval IN , and can be viewed as a manifestation of the Poisson clumping
heuristic for Markov chain hitting times [1, §B] ormetastability of the system that arises
from the fact extinction is certain but unlikely on any individual excursion.

(b) Since log cos θ = −(θ2/2)+O(θ4) as θ → 0, we can re-write (2.14), in the case where
M does not grow too fast compared to N 2

M , as

4λ

N 2
M

exp

{

−π2M

2N 2
M

}
d−→ E1, if lim

M→∞
M

N 4
M

= 0.

2.5 The Critical Case

Finally, we treat the critical case in which there exists ρ ∈ (0,∞) such that

lim
M→∞ NM = ∞, and lim

M→∞
M

N 2
M

= ρ. (2.15)

Define the decreasing function H : (0,∞) → R+ by

H(y) :=
∞∑

k=1

hk(y), where hk(y) := exp

{

−π2(2k − 1)2y

2

}

. (2.16)

Since H(y) ∼ 1/
√
8π y as y ↓ 0 (see Lemma 4.8 below), for every ρ > 0 and s ∈ R,

G(ρ, s) := s

H(ρ)

∫ 1

0
esv

(
H(vρ) − H(ρ)

)
dv, (2.17)

is finite. For fixed ρ > 0, s �→ G(ρ, s) is strictly increasing for s ∈ R, and G(ρ, 0) = 0.
For ρ > 0, define sρ := sup{s > 0 : G(ρ, s) < 1}, and then set

φρ(s) := 1

1 − G(ρ, s)
, for s < sρ. (2.18)

Finally, define μ : (0,∞) → R+ by

μ(ρ) := 1

ρH(ρ)

∫ ρ

0
H(y)dy − 1. (2.19)

Here is our result in the critical case. For simplicity of presentation, we restrict to the case
where ζ0 = (1, M); one could permit initial conditions similar to those in (2.7), but this
would complicate the statement and lengthen the proofs (see Remarks 2.8(d) below).

Theorem 2.7 Consider the (NM , M, zM ) model with M ∈ N, NM ∈ N and zM = (1, M)

such that (2.15) holds. Then, as M → ∞,

λ

M
d−→ 1 + ξρ, and

E
NM ,M
(1,M) λ

M
→ 1 + μ(ρ), (2.20)

where ξρ has moment generating function E[esξρ ] = φρ(s), s < sρ , and expectation E ξρ =
μ(ρ). Moreover,

lim
ρ↓0 μ(ρ) = 1, and μ(ρ) = eπ2ρ/2

4ρ
(1 + o(1)), as ρ → ∞. (2.21)
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Remarks 2.8 (a) The function H defined at (2.16) is in the family of theta functions,
which arise throughout the distributional theory of one-dimensional Brownian motion
on an interval, which is the origin of the appearance here: see e.g. [20, pp. 340–343]
or Appendix 1 of [12], and Sect. 3.3 below.

(b) The ρ → ∞ asymptotics in (2.21) are consistent with Remark 2.6(b), in the sense that
both are consistent with, loosely speaking, the claim that

E
NM ,M
(1,M) λ ∼ N 2

M

4
exp

{

−π2M

2N 2
M

}

, when N 2
M � M � N 4

M ,

although neither of those results formally establishes this.
(c) An integration by parts shows that G defined at (2.17) has the representation

G(ρ, s) =
∫ ∞

0
(esx − 1)

mρ(x)

x
dx, where

mρ(x)

mρ(x) := π2ρx

2H(ρ)
1[0,1](x)

∞∑

k=1

(2k − 1)2hk(ρx),

which shows that φρ corresponds to an infinitely divisible distribution (see e.g. [36,
p. 91]); since mρ is compactly supported, however, the distribution is not compound
exponential [36, p. 100].

(d) It is possible to extend Theorem 2.7 to initial states zM = (xM , yM ) satisfying yM/M →
u ∈ (0, 1] and x2M/M → a ∈ [0,∞], and the limit statement (2.20) would need to be
modified to include additional terms similar to in Theorem 2.3, but with τ BM

1 replaced by
a two-sided exit time. We do not pursue this extension here.

2.6 Organization and Heuristics Behind the Proofs

The rest of the paper presents proofs of Theorems 2.3, 2.5, and 2.7. The basic ingredients
are provided by some results on excursions of simple symmetric random walk on Z, given
in Sect. 3; some of this material is classical, but the core estimates that we need are, in parts,
quite intricate and we were unable to find them in the literature. The main body of the proofs
is presented in Sect. 4. First, we establish a renewal framework that provides the structure
for the proofs, which, together with a generating-function analysis involving the excursion
estimates from Sect. 3, yields the results. In Sect. 5 we comment on some possible future
directions. Appendix A briefly presents some necessary facts about the Darling–Mandelbrot
distribution appearing in Theorem 2.3. Here we outline the main ideas behind the proofs,
and make some links to the literature.

It is helpful to first imagine a walker that is “immortal”, i.e., has an unlimited supply of
energy. The energy-constrained walker is indistinguishable from the immortal walker until
the first moment that the time since its most recent visit to the boundary exceeds M + 1,
at which point the energy-constrained walker becomes extinct. Let s1 < s2 < · · · denote
the successive times of visits to ∂ IN by the immortal walker, and let uk = sk − sk−1 denote
the duration of the kth excursion (k ∈ N, with s0 := 0). The energy-constrained walker
starts κ ∈ N excursions before becoming extinct, where κ = inf{k ∈ N : uk > M + 1}. At
every boundary visit at which the energy-constrained walk is still active, there is a probability
θ(N , M) = P1(τ0,N > M + 1) that the walk will run out of energy on the next excursion,
where τ0,N is the hitting time of ∂ IN by the random walk, and P1 indicates we start from site
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1 (equivalently, site N − 1). Each time the walker visits ∂ IN there is a “renewal”, because
energy is topped up to level M and the next excursion begins, started from one step away
from the boundary. If the walk starts at time 0 in a state other than at full energy, next to the
boundary, then the very first excursion has a different distribution from the rest, and this plays
a role in some of our results, but is a second-order consideration for the present heuristics.
The key consequence of the renewal structure is that the excursions have a (conditional)
independence property, and the number κ of excursions has a geometric distribution with
parameter given by the extinction probability θ(N , M) (see Lemma 4.1 below for a formal
statement).

Suppose first that N = ∞, the simplest case of the meagre-capacity limit. We indicate
the relevance of Darling’s result on the maxima of stable variables [17, Theorem 5.1] to
this model, which gives some intuition for the appearance of the DM(1/2) distribution in
Theorem 2.3. First we describe Darling’s result. Suppose that Z1, Z2, . . . are i.i.d.R+-valued
random variables in the domain of attraction of a (positive) stable law with index α ∈ (0, 1),
and let Sn := ∑n

i=1 Zi and Tn := max1≤i≤n Zi . Darling’s theorem says that Sn/Tn converges
in distribution to 1 + ξα , as n → ∞, where ξα ∼ DM(α). A generalization to other order
statistics is [3, Corollary 4].

In the case where N = ∞, the durations u1, u2, . . . of excursions of simple symmetric
random walk on Z+ away from 0 satisfy the α = 1/2 case of Darling’s result, so that

Tn := ∑n
i=1 ui and Mn := max1≤i≤n ui satisfy Tn/Mn

d−→ 1 + ξ where ξ ∼ DM(1/2).
Replacing n by κ , the number of excursions up to extinction, for which κ → ∞ in probability

as M, N → ∞, it is plausible that Tκ/Mκ
d−→ 1 + ξ also. But Tκ is essentially λ, while

Mκ will be very close to M , the upper bound on ui , i < κ . This heuristic argument is not
far from a proof of the case N = ∞ of Theorem 2.3. More precisely, one can express λ in
terms of the threshold sum process [6], and then the N = ∞, a = 0 case of Theorem 2.3
is a consequence of Theorem 1 of [6]. Another way to access intuition behind the M-scale
result for λ is that in this case θ(N , M) is of order M−1/2 (see Proposition 4.2 below), so
there are of order M1/2 completed excursions before extinction, while the expected duration
of an excursion of length less than M is of order M1/2 (due to the 1/2-stable tail). Our proof
below (Sect. 4.2) covers the full regime M � N 2. That this is the relevant scale is due to the
fact that simple random walk travels distance about

√
M in time M , so if N 2 � M it is rare

for the random walk to encounter the opposite end of the boundary from which it started.
Consider now the confined-space regime, where M � N 2. Now it is very likely that the

random walk will traverse the whole of IN many times before it runs out of energy, and so
there will be many excursions before extinction. Indeed, the key quantitative result in this
case, Proposition 4.5 below, shows that θ(N , M) ∼ (4/N ) cosM (π/N ), which is small. Each
excursion has mean duration about N (E1 τ0,N = N −1; see Lemma 3.3). Roughly speaking,
the law of large numbers ensures that λ ≈ κN , and then

P(λ ≥ n) ≈ P(κ ≥ n/N ) ≈ (1 − θ(N , M))n/N ≈ exp

{

− 4n

N 2 cosM
( π

N

)}

,

which is essentially the exponential convergence result in Theorem 2.5.
The case that is most delicate is the critical case where M ∼ ρN 2. The extinction prob-

ability estimate, given in Proposition 4.7 below, is now θ(N , M) ∼ (4/N )H(ρ), where H
is given by (2.16); the delicate nature is because, on the critical scale, the two-boundary
nature of the problem has an impact (unlike the meagre-capacity regime), while extinction is
sufficiently likely that the largest individual excursion fluctuations are on the same scale as
the total lifetime (unlike the confined-space regime). Since θ(N , M) is of order 1/N , both
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the number of excursions before extinction, and the duration of a typical excursion, are of
order N (i.e., M1/2), similarly to the meagre-capacity case, and so again there is an M-scale
limit for λ, but the (universal) Darling–Mandelbrot distribution is replaced by the curious
distribution exhibited in Theorem 2.7, which we have not seen elsewhere.

3 Excursions of Simple RandomWalks

3.1 Notation and Preliminaries

For x ∈ Z, let Px denote the law of a simple symmetric randomwalk onZwith initial state x .
We denote by S0, S1, S2, . . . the trajectory of the random walk with law Px , realised on a
suitable probability space, so that Px (S0 = x) = 1 and Px (Sn+1 − Sn = +1 | S0, . . . , Sn) =
Px (Sn+1 − Sn = −1 | S0, . . . , Sn) = 1/2 for all n ∈ Z+. Let Ex denote the expectation
corresponding to Px . We sometimes write simply P and E in the case where the initial state
plays no role.

For y ∈ Z, let τy := inf{n ∈ Z+ : Sn = y}, the hitting time of y. As usual, we set
inf ∅ := +∞; the recurrence of the randomwalk says that Px (τy < ∞) = 1 for all x, y ∈ Z.
Also define τ0,∞ := τ0 and, for N ∈ N, τ0,N := τ0 ∧ τN = inf{n ∈ Z+ : Sn ∈ {0, N }}.

The number of (2n + 1)-step simple random walk paths that start at 1 and visit 0 for
the first time at time 2n + 1 is the same as the number of (2n + 1)-step paths that start at
0, finish at 1, and never return to 0, which, by the classical ballot theorem [19, p. 73], is

1
2n+1

(2n+1
n+1

) = 1
n+1

(2n
n

)
. Hence, by Stirling’s formula (cf. [19, p. 90]),

P1(τ0 = 2n + 1) = 2−1−2n

n + 1

(
2n

n

)

∼ 1

2
√

π
n−3/2, as n → ∞. (3.1)

Similarly, since P1(τ0 ≥ 2n+ 1) = P1(S1 > 0, . . . , S2n−1 > 0) = 2P0(S1 > 0, . . . , S2n >

0) (cf. [19, pp. 75–77]) we have that

P1(τ0 ≥ 2n + 1) = 2−2n
(
2n

n

)

∼ 1√
πn

, as n → ∞. (3.2)

The distribution of τ0,N is more complicated; there’s an exact formula (see e.g. [19, p. 369])
that will be needed when we look at larger time-scales (see Theorem 3.4 below), but for
shorter time-scales, it will suffice to approximate the two-sided exit time τ0,N in terms of the
(simpler) one-sided exit time τ0. This is the subject of the next subsection.

3.2 Short-Time Approximation by One-Sided Exit Times

The next lemma studies the duration of excursions that are constrained to be short.

Lemma 3.1 (i) For all N ∈ N, all x ∈ IN , and all n ∈ Z+,
∣
∣Px (τ0,N > n) − Px (τ0 > n)

∣
∣ ≤ x

N
. (3.3)

(ii) Let ε > 0. Then there exists nε ∈ N, depending only on ε, such that, for all N ∈ N,
∣
∣
∣P1(τ0,N > n) − n−1/2

√
2/π

∣
∣
∣ ≤ εn−1/2 + 1

N
, for all n ≥ nε. (3.4)
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(iii) Fix ε > 0. Then there exist nε ∈ N and δε ∈ (0,∞) such that

sup
nε≤n<δεN2

∣
∣
∣n1/2 P1(τ0,N > n) − √

2/π
∣
∣
∣ ≤ ε, for all N ∈ N. (3.5)

Proof Suppose that N ∈ N and x ∈ IN . Since τ0 �= τ0,N if and only if τN < τ0,

sup
n∈Z+

∣
∣Px (τ0,N > n) − Px (τ0 > n)

∣
∣ ≤ Px (τN < τ0) = x

N
, for all x ∈ IN ,

by the classical gambler’s ruin result for symmetric random walk; if N = ∞ then Px (τ0,N >

n) = Px (τ0 > n) by definition. This verifies (3.3). Then (3.4) follows from the x = 1 case
of (3.3) together with (3.2). Finally, for a given ε > 0, the bound (3.4) implies that there
exists nε ∈ N such that, for all nε ≤ n ≤ δN 2,

∣
∣
∣P1(τ0,N > n) − n−1/2

√
2/π

∣
∣
∣ ≤ (ε + δ1/2)n−1/2 ≤ 2εn1/2,

if δ = ε2, say. This yields (3.5) (suitably adjusting ε). ��

Lemma 3.2 gives a limit result for the duration of a simple random walk excursion started
with initial condition xM of order

√
M ; we will apply this to study the initial excursion of the

energy-constrained walker. Recall that b = (bt , t ∈ R+) denotes standard Brownian motion
started at b0 = 0, and τ BM

1 its first time of hitting level 1.

Lemma 3.2 Let a ∈ [0,∞]. Suppose that M, NM ∈ N and xM ∈ INM are such that
x2M/M → a and xM/NM → 0 as M → ∞. Then for every y ∈ R+,

τ0,NM

M
1{τ0,NM ≤ yM} d−→ aτ BM

1 1{aτ BM
1 ≤ y}, (3.6)

where the right-hand side of (3.6) is to be interpreted as 0whenever a ∈ {0,∞}. In particular,
for every β ∈ R+ and all y ∈ R+,

lim
M→∞ M−β ExM [τβ

0,NM
1{τ0,NM ≤ yM}] = aβ

E[(τ BM
1 )β1{aτ BM

1 ≤ y}]. (3.7)

Proof Suppose that 0 ≤ a < ∞. LetC denote the space of continuous functions f : R+ → R,
endowed with the uniform metric ‖ f − g‖∞ := supt∈R+ | f (t) − g(t)|. Define the re-scaled
and interpolated random walk trajectory zM ∈ C by

zM (t) = M−1/2 (S�Mt� − S0 + (Mt − �Mt�)(S�Mt�+1 − S�Mt�)
)
, for t ∈ R+.

Then S0/M1/2 → √
a, and, by Donsker’s theorem (see e.g. Theorem 8.1.4 of [18]), zM

converges weakly in C to (bt )t∈R+ , where b is standard Brownian motion started from 0.
For f ∈ C, let Ta( f ) := inf{t ∈ R+ : f (t) ≤ −√

a}. By Brownian scaling, Ta(b) has
the same distribution as aτ BM

1 . With probability 1, Ta(b) < ∞ and b has no intervals of
constancy. Hence (cf. [18, p. 395]) the set C′ := { f ∈ C : Ta is finite and continuous at f }
has P(b ∈ C′) = 1 and hence, by the continuous mapping theorem, Ta(zM ) → Ta(b)
in distribution. If a = ∞ this says T∞(zM ) → ∞ in probability, and if a = 0 it says
T0(zM ) → 0 in probability; otherwise, P(aτ BM

1 > y) is continuous for all y ∈ R+ and
τ0/M = Ta(zM + M−1/2S0 − √

a) has the same limit as Ta(zM ). Hence we conclude that

lim
M→∞PxM (τ0 > yM) = P(aτ BM

1 > y), for all y ∈ R+, (3.8)
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where the right-hand side is equal to 0 if a = 0 and 1 if a = ∞. It follows from (3.3) that (3.8)
also holds for τ0,NM in place of τ0, provided that xM/NM → 0. Hence, under the conditions
of the lemma, we have

τ0,NM

M
d−→ aτ BM

1 , as M → ∞. (3.9)

If random variables X , Xn satisfy Xn
d−→ X , then, for every y ∈ R+, Xn1{Xn ≤ y} d−→

X1{X ≤ y}; this follows from the fact that

P(Xn1{Xn ≤ y} ≤ x) =
{
1 if x ≥ y,

P(Xn ≤ x) if x < y,

and x < y is a continuity point of P(X1{X ≤ y} ≤ x) if and only if it is a continuity point of
P(X ≤ x). Hence (3.9) implies (3.6). The bounded convergence theorem then yields (3.7).

��

3.3 Long Time-Scale Asymptotics for Two-Sided Exit Times

The following result gives the expectation and variance of the duration of the classical gam-
bler’s ruin game; the expectation can be found, for example, in [19, pp. 348–349], while the
variance is computed in [2, 5].

Lemma 3.3 For every N ∈ N and every x ∈ IN , we have

Ex τ0,N = x(N − x), and Varx τ0,N = x(N − x)

3

[
x2 + (N − x)2 − 2

]
.

Note that although E1 τ0,N = N − 1, Var1 τ0,N ∼ N 3/3 is much greater than the square
of the mean, which reflects the fact that while (under P1) τ0,N is frequently very small, with
probability about 1/N it exceeds N 2 (consider reaching around N/2 before 0). Theorem 3.4
below gives asymptotic estimates for the tails P1(τ0,N > n). These estimates are informative
when n is at least of order N 2, i.e., at least the scale for τ0,N that contributes to most of the
variance.

Define the trigonometric sum

S0(N ,m, n) :=
m∑

k=1

cosn
(

π(2k − 1)

N

)

. (3.10)

Theorem 3.4 Suppose that k0 ∈ N. Then, there exists N0 ∈ N (depending only on k0) such
that, for all N ≥ N0 and all n ∈ Z+,

P1(τ0,N > n) = 4

N

[
1 + �(N , k0, n)

]
S0(N , k0, n), (3.11)

where the function � satisfies

|�(N , k0, n)| ≤ 4π2k20
N 2 + 2

(

1 + N 2

4π2nk0

)

exp

{

−2π2nk20
N 2

}

. (3.12)

Before giving the proof of Theorem 3.4, we state two important consequences. Part (i) of
Corollary 3.5 will be our key estimate in studying the confined space regime (M � N 2),
while part (ii) is required for the critical regime (M ∼ ρN 2).
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Corollary 3.5 (i) If n/N 2 → ∞ as n → ∞, then

P1(τ0,N > n) = 4

N
(1 + o(1)) cosn(π/N ). (3.13)

Moreover, for every β ∈ R+,

lim
n→∞

E1[τβ
0,N | τ0,N ≤ n]
E1[τβ

0,N ]
= 1. (3.14)

(ii) Let y0 ∈ (0,∞). Then, with H defined in (2.16),

lim
N→∞ sup

y≥y0

∣
∣
∣
∣
N

4
P1(τ0,N > yN 2) − H(y)

∣
∣
∣
∣ = 0.

Remark 3.6 We are not able to obtain the conclusions of Corollary 3.5 directly from Brow-
nian scaling arguments. Indeed, an appealing approximation is to say P1(τ0,N > n) ≈
P1/N (τ BM

0,1 > n/N 2), where τ BM
0,1 is the first hitting time of {0, 1} for Brownian motion started

at 1/N . This approximation does not, however, achieve the correct asymptotics for the full
range of n, N , even if the error is quantified. In particular (see e.g. [20, p. 342] or [12, p. 126])
we have

P1/N (τ BM
0,1 > n/N 2) = 4

π

∞∑

m=0

sin
(

(2m+1)π
N

)

2m + 1
exp

{

− (2m + 1)2π2n

2N 2

}

,

which for n � N 2 leads to the conclusion that

P1/N (τ BM
0,1 > n/N 2) = 4

N
(1 + o(1)) exp

{

− π2n

2N 2

}

.

This agrees with asymptotically with (3.13) only when N 2 � n � N 4; cf. Remark 2.6(b).
Hence we develop the quantitative estimates in Theorem 3.4.

To end this section, we complete the proofs of Theorem 3.4 and Corollary 3.5.

Proof of Theorem 3.4 A classical result, whose origins Feller traces to Laplace [19, p. 353],
yields

P1(τ0,N = n) = 1

N

N−1∑

k=1

cosn−1
(

πk

N

)

sin

(
πk

N

)[

sin

(
πk

N

)

+ sin

(
π(N − 1)k

N

)]

= 2

N

N−1∑

k=1

sin2
(

πk

2

)

cosn−1
(

πk

N

)

sin2
(

πk

N

)

= 2

N

⌈
N−1
2

⌉

∑

k=1

cosn−1
(

π(2k − 1)

N

)

sin2
(

π(2k − 1)

N

)

. (3.15)

(The expression in (3.15) is 0 if N and n are both even.) Define mN := ⌈ N−1
2

⌉
and note that

N − 2mN = δN ∈ {0, 1}, where

δN :=
{
0 if N is even,

1 if N is odd.
(3.16)
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Also define

S1(N ,m, n) :=
m∑

k=1

cosn
(

π(δN + 2k − 1)

N

)

. (3.17)

Then, from (3.15), and the notation introduced in (3.10), we have

P1(τ0,N > n) = 2

N

mN∑

k=1

cosn
(

π(2k−1)
N

)
sin2

(
π(2k−1)

N

)

1 − cos
(

π(2k−1)
N

)

= 2

N

mN∑

k=1

{

1 + cos

(
π(2k − 1)

N

)}

cosn
(

π(2k − 1)

N

)

= 2

N
S0(N ,mN , n) + 2

N
S0(N ,mN , n + 1). (3.18)

The proof of the theorem requires several key estimates. The first claim is that

S0(N ,mN , n) = S0(N , k0, n) + (−1)nS1(N , k0, n) + �1(N , k0, n), (3.19)

for all mN > k0 ∈ N, where S1 is defined at (3.17), and

|�1(N , k0, n)| ≤ 2

(

1 + N 2

4π2nk0

)

exp

{

−π2n(2k0 + 1)2

2N 2

}

.

The second claim is that, for every k0 ∈ N,

|S0(N , k0, n + 1) − S0(N , k0, n)| ≤ 4π2k20
N 2 S0(N , k0, n);

|S1(N , k0, n + 1) − S1(N , k0, n)| ≤ 4π2k20
N 2 S0(N , k0, n).

(3.20)

Take the bounds in (3.19) and (3.20) as given, for now; then from (3.18) and (3.19),

P1(τ0,N > n) = 2

N

[
S0(N , k0, n) + S0(N , k0, n + 1)

]

+ 2

N
(−1)n

[
S1(N , k0, n) − S1(N , k0, n + 1)

]

+ 2

N

[
�1(N , k0, n) + �1(N , k0, n + 1)

]
,

and then applying (3.20) we obtain

P1(τ0,N > n) = 4

N

[
(1 + �2(N , k0, n))S0(N , k0, n) + �3(N , k0, n)

]
, (3.21)

where the terms �2,�3 satisfy

|�2(N , k0, n)| ≤ 4π2k20
N 2 ; (3.22)

|�3(N , k0, n)| ≤ 2

(

1 + N 2

4π2nk0

)

exp

{

−π2n(2k0 + 1)2

2N 2

}

. (3.23)

Now, there exists θ0 > 0 (θ0 = 1 will do) for which log cos θ ≥ −θ2 for all |θ | ≤ θ0. Hence

S0(N , k0, n) ≥ cosn(π/N ) ≥ exp

{

−π2n

N 2

}

,
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for all N sufficiently large (as a function of k0 ∈ N), and all n ∈ N. Hence, by (3.23),

|�3(N , k0, n)|
S0(N , k0, n)

≤ 2

(

1 + N 2

4π2nk0

)

exp

{

−π2n((2k0 + 1)2 − 2)

2N 2

}

,

and, together with (3.21) and (3.22), this implies (3.11).
It remains to verify (3.19) and (3.20). For the former, write

S0(N ,m, n) =
�m/2�∑

k=1

cosn
(

π(2k − 1)

N

)

+
m∑

k=�m/2�+1

cosn
(

π(2k − 1)

N

)

=
�m/2�∑

k=1

cosn
(

π(2k − 1)

N

)

+ (−1)n
�m/2�∑

�=1

cosn
(

π(N − 2m + 2� − 1)

N

)

,

using the change of variable � = m − k + 1 and the fact that cos(π − θ) = − cos θ . Since
log cos θ ≤ −θ2/2 for |θ | < π/2, we have

0 ≤ cosn
(

π(2k − 1)

N

)

≤ exp

{

−π2n(2k − 1)2

2N 2

}

, for 1 ≤ k ≤ N/4, (3.24)

and, similarly, since N − 2mN = δN ∈ {0, 1},

0 ≤ cosn
(

π(δN + 2� − 1)

N

)

≤ exp

{

−π2n(2� − 1)2

2N 2

}

, for 1 ≤ � ≤ N/4. (3.25)

From (3.24), we obtain that, for any k0 ∈ N, since �mN /2� ≤ N/4,

�mN /2�∑

k=k0+1

cosn
(

π(2k − 1)

N

)

≤
�mN /2�∑

k=k0+1

exp

{

−π2n(2k − 1)2

2N 2

}

≤
∞∑

�=0

exp

{

−π2n(2� + 2k0 + 1)2

2N 2

}

≤ exp

{

−π2n(2k0 + 1)2

2N 2

} ∞∑

�=0

exp

{

−4(1 + k0)π2n�

N 2

}

,

using the inequality (2� + 2k0 + 1)2 ≥ 8(1 + k0)� + (2k0 + 1)2. Since

∞∑

�=0

e−α� ≤ 1 +
∫ ∞

0
e−αxdx = 1 + 1

α
, for α > 0,

we get

0 ≤
�mN /2�∑

k=k0+1

cosn
(

π(2k − 1)

N

)

≤
(

1 + N 2

4π2nk0

)

exp

{

−π2n(2k0 + 1)2

2N 2

}

.

Similarly, from (3.25), we get

0 ≤
�mN /2�∑

�=k0+1

cosn
(

π(N − 2mN + 2� − 1)

N

)

≤
(

1 + N 2

4π2nk0

)

exp

{

−π2n(2k0 + 1)2

2N 2

}

.
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This verifies (3.19). Finally, we have from (3.10) that

|S0(N , k0, n + 1) − S0(N , k0, n)| ≤ S0(N , k0, n) sup
1≤k≤k0

∣
∣
∣
∣1 − cos

(
π(2k − 1)

N

)∣
∣
∣
∣

≤ 4π2k20
N 2 S0(N , k0, n),

for all N sufficiently large (depending only on k0), since |1 − cos θ | ≤ θ2 for all θ ∈ R.
Similarly,

|S1(N , k0, n + 1) − S1(N , k0, n)| ≤ S1(N , k0, n) sup
1≤k≤k0

∣
∣
∣
∣1 − cos

(
π(δN + 2k − 1)

N

)∣
∣
∣
∣

≤ 4π2k20
N 2 S1(N , k0, n) ≤ 4π2k20

N 2 S0(N , k0, n),

where, again, N must be large enough. This verifies (3.20). ��
Proof of Corollary 3.5 First, suppose that n/N 2 → ∞. Then we can take k0 = 1 in Theo-
rem 3.4 to see that P1(τ0,N > n) = (4/N )(1 + �(N , 1, n)) cosn(π/N ), where, by (3.12),
|�(N , 1, n)| = o(1). This proves (3.13). Since log cos θ ≤ −θ2/2 for |θ | < π/2, it follows
from (3.13) that

P1(τ0,N > n) ≤ 5

N
exp

{

− π2n

2N 2

}

, for all n large enough. (3.26)

For any random variable X ≥ 0, and β ∈ R+, and any r ∈ R+, one has

E[Xβ1{X ≥ r}] =
∫ ∞

0
P(Xβ1{X ≥ r} > y)dy

≤ rβ
P(X ≥ r) +

∫ ∞

rβ

P(Xβ > y)dy

= rβ
P(X ≥ r) + β

∫ ∞

r
sβ−1

P(X > s)ds.

Hence (3.26) shows that there is a constant Cβ ∈ R+ such that, for all n sufficiently large,

E1[τβ
0,N1{τ0,N ≥ n + 1}] ≤ Cβnβ

N
exp

{

− π2n

2N 2

}

+ Cβ

N

∫ ∞

n
sβ−1 exp

{

− π2s

4N 2

}

ds

= CβN
2β−1

[( n

N 2

)β

exp

{

− π2n

2N 2

}

+
∫ ∞

n/N2
tβ−1 exp

{

−π2t

4

}

dt

]

,

using the change of variable t = s/N 2. Since n/N 2 → ∞, this means that

E1[τβ
0,N1{τ0,N ≥ n + 1}] = o(N 2β−1). (3.27)

In particular, the β = 0 case of (3.27) shows that limn→∞ P1(τ0,N ≤ n) = 1. A consequence
of (3.5) is that P1(τ0,N > δN 2) ≥ δ/N for some δ > 0, and hence E1[τβ

0,N ] ≥ cβN 2β−1 for
some cβ > 0; the conclusion in (3.14) then follows from (3.27). The proves part (i)

Finally, fix y ≥ y0 > 0 and suppose that n/N 2 → y. Then, uniformly in k ≤ N 1/2,

cosn
(

π(2k − 1)

N

)

= exp

{

−π2n(2k − 1)2

2N 2 (1 + O(k2/N 2))

}

= (1 + o(1))hk(y),

(3.28)
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as n → ∞, where hk is defined at (2.16) and
∑∞

k=1 hk(y) = H(y) satisfies supy≥y0 H(y) <

∞. In particular, for any ε > 0 we can choose k0 ∈ N large enough so that
supy≥y0 |∑k0

k=1 hk(y) − H(y)| < ε. From (3.28) it follows that, for any ε > 0,

∣
∣
∣
∣
∣

k0∑

k=1

cosn
(

π(2k − 1)

N

)

−
k0∑

k=1

hk(y)

∣
∣
∣
∣
∣
≤ ε,

for all n sufficiently large. Hence, for every ε > 0,

sup
y≥y0

|S0(N , k0, n) − H(y)| ≤ ε, (3.29)

for all n sufficiently large. By (3.12), there exist k0, n0 ∈ N such that, for every y ≥ y0,

|�(N , k0, n)| ≤ 4π2k20
N 2 + 2

(

1 + 1

3π2yk0

)

exp
{−π2k20 y

} ≤ ε, (3.30)

for all n ≥ n0 (given ε and y0, first take k0 large, and then N large). From (3.11) with (3.29),
(3.30), and the fact that supy≥y0 H(y) < ∞, we verify part (ii). ��

4 Proofs of Main Results

4.1 Excursions, Renewals, and Extinction

We start by giving the proof of the irreducibility result, Lemma 2.2, stated in Sect. 2.2.

Proof of Lemma 2.2 Let Fn := σ(ζ0, . . . , ζn), the σ -algebra generated by the first n ∈ Z+
steps of the Markov chain ζ . Then, given Fn , at least one of the two neighbouring sites of Z
to Xn is in I ◦

N ; take y ∈ I ◦
N to be any site such that |y − Xn | = 1. If Xn ∈ ∂ IN , then the

walker will move to y with probability 1, and the energy level will be refreshed to M :

P(Xn+1 ∈ I ◦
N , ηn+1 = M | Fn) = 1, on {Xn ∈ ∂ IN }. (4.1)

Otherwise, Xn ∈ I ◦
N . If ηn ≥ 1, then the walker can, with probability 1/2, take a step to y on

the next move, which uses 1 unit of energy. On the other hand, if ηn = 0, then Xn+1 = Xn

must remain in I ◦
N . Thus, writing x+ := x1{x > 0},

P(Xn+1 ∈ I ◦
N , ηn+1 = (ηn − 1)+ | Fn) ≥ 1

2
, on {Xn ∈ I ◦

N }. (4.2)

In particular, since ηn ≤ M , we can combine (4.1) and (4.2) (applied M times) to get

P(η(k+1)(M+1) = 0, X(k+1)(M+1) ∈ I ◦
N | Fk(M+1)) ≥ 2−M , a.s., for all k ∈ Z+.

Thus

P(λ > (k + 1)(M + 1) | Fk(M+1)) ≤ (1 − 2−M )1{λ > k(M + 1)}, a.s.,

repeated application of which implies that

sup
z∈IN×IM

P
N ,M
z (λ > k(M + 1)) ≤ (1 − 2−M )k ≤ exp

{
−k2−M

}
,
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uniformly over N ∈ N. Every n ∈ Z+ has k(M + 1) ≤ n < (k + 1)(M + 1) for some
k = k(n) ∈ Z+, and so

P
N ,M
z (λ > n) ≤ P

N ,M
z (λ > k(M + 1)) ≤ exp

{

−
(

2−M

M + 1

)

n

}

, for all n ∈ Z+.

The verifies that supz∈IN×IM E
N ,M
z [eδλ] < ∞ for any δ ∈ (0, 2−M

M+1 ). ��

We denote by σ1 < σ2 < · · · < σκ the successive times of visiting the boundary before
time λ; formally, set σ0 := 0 and

σk := inf{n > σk−1 : Xn ∈ ∂ IN }, for k ∈ N,

with the usual convention that inf ∅ := ∞. Then σk < ∞ if and only if σk < λ. The number
of complete excursions is then

κ := max{k ∈ Z+ : σk < λ}, (4.3)

i.e., the number of visits to ∂ IN before extinction. Since λ < ∞, a.s. (by Lemma 2.2), κ ∈ Z+
is a.s. finite.

For k ∈ N, define the excursion duration νk := σk − σk−1 as long as σk < ∞; otherwise,
set νk = ∞. We claim that

for every k ∈ N, νk ∈ IM+1 ∪ {∞}, and νk < ∞ if and only if σk < λ. (4.4)

To see (4.4), observe that, if σk−1 < λ then ησk−1+1 = M and Xn ∈ I ◦
N for all σk−1 < n < σk .

Hence ησk−1+i = M + 1 − i for all 1 ≤ i ≤ νk if νk < ∞. In particular, if νk < ∞, then
0 ≤ ησk = M + 1 − νk , which implies that νk ≤ M + 1. This verifies (4.4).

For simplicity, we write ν := ν1. By the strong Markov property, for all k, n ∈ Z+,

P
N ,M
z (νk+1 = n | Fσk ) = P

N ,M
(1,M)(ν = n), on {σk < λ}, (4.5)

meaning that excursions subsequent to the first are identically distributed. On the other hand,
P
N ,M
z (ν1 = n) = P

N ,M
z (ν = n) for n ∈ Z+, so that if z �= (1, M) the first excursion may

have a different distribution.
After the final visit to the boundary at time σκ , the energy ησκ+1 = M decreases one unit

at a time until ησκ+M+1 = 0 achieves extinction. Thus, by (4.4),

λ = M + 1 + σκ = M + 1 +
κ∑

k=1

νk . (4.6)

In the terminology of renewal theory, ν1, ν2, . . . is a renewal sequence that is delayed (since
ν1 may have a different distribution from the subsequent terms) and terminating, sinceP(νk =
∞) > 0. A key quantity is the per-excursion extinction probability

θz(N , M) := P
N ,M
z (λ < σ1) = P

N ,M
z (ν1 = ∞), (4.7)

the probability that the process started in state z terminates before reaching the boundary. Set
θ(N , M) := θ(1,M)(N , M) for the case where z = (1, M), which plays a special role, due
to (4.5). The following basic result exhibits the probabilistic structure associated with the
renewal set-up. Recall the definitions of the number of completed excursions κ and extinction
probability θz(N , M) from (4.3) and (4.7), respectively.
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Lemma 4.1 Let N ∈ N and M ∈ N. Then, for all k ∈ N,

P
N ,M
z (κ ≥ k) = (1 − θz(N , M))(1 − θ(N , M))k−1, (4.8)

and

E
N ,M
z [κ] = 1 − θz(N , M)

θ(N , M)
.

Moreover, given that κ = k ∈ N, the random variables ν1, . . . νk are (conditionally) inde-
pendent, and satisfy, for every n1, . . . , nk ∈ IM+1,

P
N ,M
z (ν1 = n1, . . . , νk = nk | κ = k)

= P
N ,M
z (ν = n1 | ν < ∞)

k∏

i=2

P
N ,M
(1,M)(ν = ni | ν < ∞). (4.9)

Proof By definition, σ0 = 0. Let k ∈ N. From (4.3), we have that κ ≥ k if and only if σk < λ.
If σk < λ, then |Xσk+1 − y| = 1 for some y ∈ ∂ IN , and ησk+1 = M . Hence, by (4.7) and
the strong Markov property applied at the stopping time σk + 1, for k ∈ N,

P
N ,M
z (κ ≥ k + 1 | Fσk ) = P

N ,M
z (σk+1 < λ | Fσk ) = 1 − θ(N , M), on {λ > σk}.

Hence PN ,M
z (κ ≥ k + 1 | κ ≥ k) = 1 − θ(N , M) for k ∈ N, and, since PN ,M

z (κ ≥ 1) =
P
N ,M
z (σ1 < λ) = 1 − θz(N , M), we obtain (4.8). Moreover, for n1, . . . , nk ≤ M + 1,

P
N ,M
z

(
{κ = k} ∩ (∩k

i=1{νi = ni })
)

= P
N ,M
z

(
{νk+1 = ∞} ∩ (∩k

i=1{νi = ni })
)

= P
N ,M
z (ν = n1)P

N ,M
(1,M)(ν = ∞)

k∏

i=2

P
N ,M
(1,M)(ν = ni ), (4.10)

by repeated application of (4.5). Similarly,

P
N ,M
z (κ = k) = P

N ,M
z

(
{νk+1 = ∞} ∩ (∩k

i=1{νi < ∞})
)

= P
N ,M
z (ν < ∞)P

N ,M
(1,M)(ν = ∞)

k∏

i=2

P
N ,M
(1,M)(ν < ∞). (4.11)

Dividing the expression in (4.10) by that in (4.11) gives (4.9), since, by (4.7), PN ,M
z (ν <

∞) = 1 − θz(N , M). ��

4.2 TheMeagre-Capacity Limit

In this section we present the proof of Theorem 2.3; at several points we appeal to the results
from Sect. 3 on simple random walk. Consider the generating function

ψM (s) :=
M+1∑

n=1

esnPNM ,M
(1,M) (ν = n | ν < ∞), for s ∈ R. (4.12)
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Define for t ∈ R,

K (t) := 1 −
∞∑

�=1

t�

(2� − 1) · �! , and T := {t ∈ R : K (t) > 0}. (4.13)

For each t ∈ R, the series in (4.13) converges absolutely, and, indeed, |1−K (t)| ≤ e|t | for all
t ∈ R. The series for K defined by (4.13) compared to equation (13.1.2) in [4] identifies K
as the Kummer (confluent hypergeometric) function K (t) = M

(− 1
2 ,

1
2 , t

)
; see Appendix A

for some of its properties.
The following result gives asymptotics for θ(NM , M) = θ(1,M)(NM , M) as defined

at (4.7), and for the generating function ψM as defined at (4.12).

Proposition 4.2 Consider the (NM , M, zM ) model with M ∈ N and NM ∈ N such that
limM→∞(M/N 2

M ) = 0. Then

θ(NM , M) =
√

2

π
(1 + o(1))M−1/2, as M → ∞. (4.14)

Moreover,

lim
M→∞

[
(ψM (t/M) − 1) M1/2] =

√
2

π
(1 − K (t)), (4.15)

uniformly over t ∈ R, for any compact R ⊂ R.

In the proof of this result, and later, we will use the following integration by parts formula
for restricted expectations, which is a slight generalization of Theorem 2.12.3 of [25, p. 76].

Lemma 4.3 For any real-valued random variable X and every a, b ∈ R with a ≤ b, and any
monotone and differentiable g : R → R,

E[g(X)1{a < X ≤ b}] = g(a)P(X > a) − g(b)P(X > b) +
∫ b

a
g′(y)P(X > y)dy.

(4.16)

Proof Suppose that g : R → R is differentiable. Write FX (y) := P(X ≤ y) for the
distribution function of X . If g is monotone non-decreasing, then

E[g(X)1{a < X ≤ b}] =
∫ b

a
g(y)dFX (y)

= g(b)FX (b) − g(a)FX (a) −
∫ b

a
FX (y)g′(y)dy,

where the first equality is e.g. Theorem 2.7.1 of [25, p. 60] and the second follows from
Theorem 2.9.3 of [25, p. 66]; this yields (4.16). If g is monotone non-increasing, then the
same result follows by considering g̃(y) := g(b) − g(y). ��
Proof of Proposition 4.2 For ease of notation, write τ := τ0,NM throughout this proof. Apply
Lemma 3.1 with n = M + 1 to get

θ(NM , M) = P1(τ > M + 1) =
√

2

π
M−1/2 + O(1/NM ), as M → ∞.

Since M = o(N 2
M ), the O(1/NM ) term here can be neglected asymptotically; this veri-

fies (4.14).
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We apply (4.16) with X = τ/M , a = 0, b = 1, and g(y) = et y − 1, (t �= 0) to get

E1[(etτ/M − 1)1{τ ≤ M}]

= (1 − et )P1(τ > M) + t
∫ 1

0
etu P1(τ > uM)du. (4.17)

Fix ε > 0, and let nε ∈ N and δε > 0 be as in Lemma 3.1(iii). Since M/N 2
M → 0, we have

M < δεN 2
M for all M sufficiently large. Hence from (3.5) we have that

sup
nε/M≤u≤1

∣
∣
∣M1/2u1/2 P1(τ > uM) − √

2/π
∣
∣
∣ ≤ ε, (4.18)

for all M sufficiently large. It follows from (4.18) that, as M → ∞,

t
∫ 1

0
etu P1(τ > uM)du ≥ (√

2/π − ε
)
M−1/2t

∫ 1

nε/M
etuu−1/2du

= (√
2/π − ε

)
M−1/2(I(t) + o(1)), (4.19)

using the definition of I from (2.5); here the o(1) is uniform for t ∈ R for a given compact
R ⊂ R. Similarly, from (4.18) again, uniformly for t ∈ R (compact),

t
∫ 1

0
etu P1(τ > uM)du ≤ (√

2/π + ε
)
M−1/2(I(t) + o(1)). (4.20)

Combining (4.19) and (4.20), since ε > 0 was arbitrary, we obtain

t
∫ 1

0
etu P1(τ > uM)du = (√

2/π + o(1)
)
M−1/2I(t),

as M → ∞, uniformly for t ∈ R, R compact. Together with the asymptotics for P1(τ >

M + 1) = θ(NM , M) from (4.14), we thus conclude from (4.17) that

E1[(etτ/M − 1)1{τ ≤ M + 1}] = (√
2/π + o(1)

)
M−1/2 (1 − et + I(t)

)
,

uniformly for t ∈ R, R compact, from which (4.15) follows, since 1− et + I(t) = 1− K (t)
by (A.1), and, from (4.12),

ψM (t/M) = 1 + E
NM ,M
(1,M) [etν/M − 1 | ν < ∞] = E1[(etτ/M − 1)1{τ ≤ M + 1}]

P1(τ ≤ M + 1)
,

where P1(τ ≤ M + 1) = 1 − θ(NM , M) → 1, by (4.14). ��
To avoid burdening notation with conditioning, let YM denote a random variable taking

values in IM+1 (enriching the underlying probability space if necessary) such that

P
NM ,M
(1,M) (YM = n) = P

NM ,M
(1,M) (ν = n | ν < ∞), for n ∈ IM+1. (4.21)

Given Yn as constructed through (4.21), it is the case that ψM as defined at (4.12) can be
represented via ψM (s) = E

NM ,M
(1,M) [esYM ], s ∈ R.

The next lemma proves that the limit distribution in Theorem 2.3 has expectation given
by the function g defined at (2.9), and establishes some of the key properties of g.

Lemma 4.4 Suppose that ξ ∼ DM(1/2) and τ BM
1 ∼ S+(1/2) are independent with distribu-

tions given by (2.6) and (2.8) respectively. Let a ∈ R+ and u ∈ (0,∞). The random variable
ζa,u := min(u, aτ BM

1 )+ (1+ ξ)1{aτ BM
1 < u} has mean given by E ζa,u = g(a, u), where g is

defined at (2.9). Moreover, for every u ∈ (0, 1], the function a �→ g(a, u) is strictly decreas-
ing and infinitely differentiable on (0,∞), with g(0, u) = 2 and lima→∞ g(a, u) = u.
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Proof If a = 0 < u, then ζ0 = 1+ξ , a.s., and the result is true because g(0, u) = 2 = 1+E ξ .
Suppose that a, u ∈ (0,∞). From (2.8), we have that

E[u ∧ aτ BM
1 ] =

∫ u/a

0

a√
2π t

e−1/(2t)dt + u
∫ ∞

u/a

1√
2π t3

e−1/(2t)dt

=
√

au

2π

∫ ∞

1
y−3/2e−ay/(2u)dy + 2u√

2π

∫ √
a/u

0
e−s2/2ds,

using the substitutions y = u/(at) in the first integral and s2 = 1/t in the second. Here

2√
2π

∫ √
a/u

0
e−s2/2ds = 2

[
(

√
a/u) − (0)

] = 2(
√
a/u) − 1.

Moreover, an integration by parts followed by the substitution s2 = ry gives
∫ ∞

1
y−3/2e−r y/2dy = 2e−r/2 − r

∫ ∞

1
y−1/2e−r y/2dy

= 2e−r/2 − 2
√
r
∫ ∞

√
r
e−s2/2ds, for r > 0.

Hence

E[u ∧ aτ BM
1 ] = u +

√
2au

π
e−a/(2u) − 2(a + u)(

√
a/u).

Finally, by (2.12), P(aτ BM
1 < u) = P(τ BM

1 < u/a) = 2(
√
a/u), and then using the

independence of ξ and τ BM
1 , and the fact that E ξ = 1, gives

E ζa,u = u +
√
2au

π
e−a/(2u) − 2(a + u)(

√
a/u) + 4(

√
a/u),

which is equal to g(a, u) as defined at (2.9).
Write φ(z) := (2π)−1/2e−z2/2 for the standard normal density, so that 

′
(z) = −φ(z)

and φ′(z) = −zφ(z). The formula (2.9) can then be expressed as

g(a) = u + (4 − 2u − 2a)(
√
a/u) + 2

√
auφ(

√
a/u),

which, on differentiation, yields, for u > 0,

g′(a, u) := ∂

∂a
g(a, u) = −2(1 − u)√

au
φ(

√
au) − 2(

√
a/u). (4.22)

Thus g′(a, u) < 0 for all a ∈ (0,∞) and all u ∈ (0, 1], with lima→0 g′(a, u) = −∞ for
u ∈ (0, 1) and lima→0 g′(a, 1) = −1. In particular, a �→ g(a, u) is strictly decreasing. ��
Proof of Theorem 2.3 To simplify notation, set θM := θ(NM , M). First suppose that X0 = 1
and η0 = M . Then in the representation σκ = ∑κ

i=1 νi , Lemma 4.1 shows that, given
κ = k ∈ N, ν1, . . . , νk are i.i.d. with the law of YM as given by (4.21), and the law of κ is
P
NM ,M
(1,M) (κ = k) = (1 − θM )kθM , for k ∈ Z+. In particular, for |r(1 − θM )| < 1,

E
NM ,M
(1,M) [rκ ] =

∞∑

k=0

rk(1 − θM )kθM = θM

1 − (1 − θM )r
.
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Hence, by (conditional) independence,

E
NM ,M
(1,M)

[
esσκ

] = E
NM ,M
(1,M)

[

E

[ κ∏

i=1

esνi
∣
∣
∣
∣ κ

]]

= E
NM ,M
(1,M)

[
(ψM (s))κ

]

= θM

1 − (1 − θM )ψM (s)
, if (1 − θM )ψM (s) < 1. (4.23)

For s = t/M , we have from Proposition 4.2 that, for t ∈ R,

(1 − θM )ψM (t/M) = 1 − M−1/2

√
2

π
K (t) + o(M−1/2), (4.24)

as M → ∞. In particular, for t ∈ T , with T defined at (4.13), the asymptotics in (4.24)
show that (1 − θM )ψM (t/M) < 1 for all M sufficiently large. Hence from (4.23) applied at
s = t/M , t ∈ T , with (4.24) and another application of (4.14), we get

lim
M→∞E

NM ,M
(1,M)

[
etσκ/M

]
= lim

M→∞

[

M1/2
√

π

2

θM

K (t) + o(1)

]

= 1

K (t)
, for t ∈ T . (4.25)

Since λ = M + 1 + σκ , by (4.6), it follows from (4.25), and the fact that convergence of
moment generating functions in a neighbourhood of 0 implies convergence in distribution,

and convergence of all moments (see e.g. [25, p. 242]), that λ/M
d−→ 1+ ξ where E[etξ ] =

1/K (t) for t ∈ T , and M−1
E
NM ,M
(1,M) [σκ ] → E ξ = 1. The form for E[etξ ] given in (2.6)

is obtained using the relation (A.1). This establishes both (2.10) and (2.11) in the case
X0 = xM ≡ 1 and η0 = yM ≡ M , where (2.7) is satisfied for a = 0 and u = 1.

More generally, suppose that (X0, η0) = (xM , yM ) satisfying (2.7). Then

λ
d= M + 1 + (ν1 + Z)1{ν1 < ∞}, (4.26)

by the strong Markov property, where the Z , ν1 on the right are independent, and Z has the

distribution of σκ under PNM ,M
(1,M) . Here σκ/M

d−→ ξ and, by Lemma 3.2,

lim
M→∞P

NM ,M
zM (ν1 < ∞) = lim

M→∞ M−1 PxM (τ0,NM ≤ yM + 1) = P(aτ BM
1 ≤ u),

and M−1ν11{ν1 < ∞} converges in distribution to aτ BM
1 1{aτ BM

1 ≤ u}. This completes the
proof of (2.10). Taking expectations in (4.26), and using the stated independence, we get

E
NM ,M
zM λ = M + 1 + E

NM ,M
zM [ν1{ν < ∞}] + P

NM ,M
zM (ν < ∞)E

NM ,M
(1,M) [σκ ],

where PNM ,M
zM (ν < ∞) = θzM (NM , M) = P(aτ BM

1 ≤ u) + o(1), by the β = 0 case of (3.7)
and hypothesis (2.7). It follows that

M−1
E
NM ,M
zM λ = 1 + M−1

E
NM ,M
zM [ν1{ν < ∞}] + P(aτ BM

1 ≤ u) + o(1),

using the fact that limM→∞ M−1
E
NM ,M
(1,M) [σκ ] = 1, as established via (4.25) above.Moreover,

using (2.7), we have from Lemma 3.2 that

lim
M→∞ M−1

E
NM ,M
zM [ν1{ν < ∞}] = lim

M→∞ M−1 ExM [τ0,NM1{τ0,NM ≤ yM + 1}]
= E[aτ BM

1 1{aτ BM
1 ≤ u}].
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Thus we conclude that, as M → ∞,

lim
M→∞ M−1

E
NM ,M
zM λ = 1 + a E[τ BM

1 1{aτ BM
1 ≤ u}] + P(aτ BM

1 ≤ u) = E ζa,u,

where ζa,u is as defined in Lemma 4.4. This establishes (2.11), and completes the proof of
the theorem. ��

4.3 The Confined-Space Limit

In this section we present the proof of Theorem 2.5. As in the previous section, we start with
an asymptotic estimate on θ(NM , M) := θ(1,M)(NM , M) as defined at (4.7).

Proposition 4.5 Suppose that (2.13) holds. Then, as M → ∞,

θ(NM , M) = 4

NM
(1 + o(1)) cosM

(
π

NM

)

. (4.27)

Moreover, as M → ∞,

E
NM ,M
(1,M) [ν | ν < ∞] ∼ NM , and VarNM ,M

(1,M) [ν | ν < ∞] ∼ N 3
M

3
. (4.28)

Proof This follows from Corollary 3.5(i) Indeed (4.27) is (3.13) applied to θ(NM , M) =
P1(τ0,NM > M + 1). Similarly (4.28) is a consequence of (3.14) together with the facts that
E1 τ0,N = N − 1 and Var τ0,N = N (N − 1)(N − 2)/3, given in Lemma 3.3. ��

We will use the following exponential convergence result for triangular arrays.

Lemma 4.6 Let KM ∈ Z+ satisfy P(KM = k) = (1 − pM )k pM for k ∈ Z+, where pM ∈
(0, 1), and limM→∞ pM = 0. Suppose also that YM , YM,1, YM,2, . . . are i.i.d., R+-valued,
and independent of KM, with E[Y 2

M ] = σ 2
M < ∞ and E YM = μM > 0. Let ZM :=

∑KM
i=1 YM,i . Assuming that

lim
M→∞

σ 2
M pM
μ2
M

= 0, (4.29)

it is the case that, as M → ∞,

pM ZM

μM

d−→ E1.

Lemma 4.6 can be deduced from e.g. Theorem 3.2.4 of [28, p. 85], by verifying that the
condition (4.29) implies the ‘uniformly weighted family’ condition from [28, p. 44]. For
convenience, we include a direct proof here.

Proof of Lemma 4.6 Let rM := 1/pM ∈ (0,∞). For s ∈ (0,∞), we have

E[sKM ] = pM
1 − (1 − pM )s

.

Write ψM (t) := E[ei tYM ], the characteristic function of YM . Then, for t ∈ R,

E[ei t ZM ] = E

⎡

⎣E

[

exp

{KM∑

j=1

i tYM, j

} ∣
∣
∣
∣ KM

]
⎤

⎦ = E

[
(ψM (t))KM

]
= pM

1 − (1 − pM )ψM (t)
.
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Set aM := rMμM . Thus, for t ∈ R,

E[ei t ZM/aM ] = 1

1 − (rM − 1)(ψM (t/aM ) − 1)
. (4.30)

Fix t0 ∈ (0,∞). The n = 1 case of (3.3.3) in [18, p. 135], together with the facts that
E[Y 2

M ] = σ 2
M < ∞ and E YM = μM , yields

rM sup
t∈[−t0,t0]

∣
∣
∣
∣ψM (t/aM ) − 1 − i t

rM

∣
∣
∣
∣ ≤ |t0| σ 2

M

μ2
MrM

,

which tends to zero as M → ∞, by (4.29). Since rM → ∞, it follows that 1 − (rM −
1)(ψM (t/aM ) − 1) = 1 − i t + o(1), uniformly in |t | ≤ t0, and so, by (4.30)

lim
M→∞E[ei t ZM/aM ] = 1

1 − i t
,

for all t in an open interval containing 0, and since E[ei tE1 ] = (1− i t)−1 is the characteristic
function of the unit-mean exponential distribution, this completes the proof. ��
Proof of Theorem 2.5 To simplify notation, we write θM := θ(NM , M). First suppose that
X0 = 1. Then in the representation σκ = ∑κ

i=1 νi , Lemma 4.1 shows that, given κ =
k ∈ N, ν1, . . . , νk are i.i.d. with the law of YM as given by (4.21), and the law of κ is
P
NM ,M
(1,M) (κ = k) = (1− θM )kθM , for k ∈ Z+. Thus Lemma 4.6 applies to show that σκ → E1

in distribution, provided that (4.29) holds, where pM = θM satisfies (4.27), and, by (4.28),
μM = E

NM ,M
(1,M) [ν | ν < ∞] ∼ NM and σ 2

M = VarNM ,M
(1,M) [ν | ν < ∞] ∼ N 3

M/3. Hence the
quantity in (4.29) satisfies

σ 2
M pM
μ2
M

= 4

3
(1 + o(1)) cosM

(
π

NM

)

≤ 4

3
(1 + o(1)) exp

{

−π2M

2N 2
M

}

,

which tends to 0 provided that (2.13) holds. Lemma 4.6 then establishes (2.14) in the case
where ζ0 = (1, M). For general zM we have (by Lemma 3.3) that ENM ,M

zM [ν | ν < ∞] =
O(N 2

M ), and, since, by (2.13), M/N 2
M → ∞ and yM ≥ εM for some ε > 0 and all M large

enough, it follows from the a = 0, y = ε case of (3.8) that θzM (NM , M) → 0 as M → ∞.
Hence the first excursion does not change the limit behaviour. ��

4.4 The Critical Case

Recall the definition of H from (2.16).

Proposition 4.7 Suppose that (2.15) holds. Then,

θ(NM , M) = (4/NM )(1 + o(1))H(ρ), as M → ∞. (4.31)

Moreover, for any s0 ∈ (0,∞), as M → ∞, uniformly for s ∈ (0, s0],

E
NM ,M
(1,M) [esν/N2

M | ν < ∞] = 1 + 4s

NM
(1 + o(1))

∫ ρ

0
esy

(
H(y) − H(ρ)

)
dy. (4.32)

Proof We have from Corollary 3.5(ii) that P1(τ0,N/N 2 > y) = (4/N )(1 + o(1))H(y), as
N → ∞, uniformly in y ≥ y0 > 0, where H is defined at (2.16). In particular, under
condition (2.15), it follows from continuity of H that θ(NM , M) = P1(τ0,NM /N 2

M > (M +
1)/N 2

M ) = (1 + o(1))P1(τ0,NM /N 2
M > ρ) satisfies (4.31).
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Let ε ∈ (0, ρ). Note that, for every s ∈ R+,

E
NM ,M
(1,M)

[(
esν/N2

M − 1
)
1{ν < ∞}

]
= E1

[(
esτ0,NM /N2

M − 1
)
1{εN 2

M ≤ τ0,NM ≤ M + 1}
]

+ E1

[(
esτ0,NM /N2

M − 1
)
1{τ0,NM < εN 2

M }
]
.

(4.33)

To estimate the second term on the right-hand side of (4.33), we apply (4.16) with X =
τ0,NM /N 2

M , g(y) = esy − 1, a = 0, and b = ε to obtain, for every s ∈ (0,∞),

E1

[∣
∣
∣esτ0,NM /N2

M − 1
∣
∣
∣1{τ0,NM < εN 2

M }
]

≤ s
∫ ε

0
esy P1(τ0,NM > yN 2

M )dy.

Here, it follows from (3.4) that there exists C < ∞ such that, for all N ∈ N,

P1(τ0,N ≥ yN 2) ≤ C

N
(1 + y−1/2), for all y > 0. (4.34)

Thus, for 0 ≤ s ≤ s0 < ∞ and all ε ∈ (0, 1),

E1

[∣
∣
∣esτ0,NM /N2

M − 1
∣
∣
∣1{τ0,NM < εN 2

M }
]

≤ Cs0es0

NM

∫ ε

0
(1 + y−1/2)dy

≤ C(s0)ε1/2

NM
, (4.35)

where C(s0) < ∞ depends on s0 only. To estimate the first term on the right-hand side
of (4.33), we apply (4.16) with X = τ0,NM /N 2

M , g(y) = esy − 1, a = ε, and b = ρM :=
(M + 1)/N 2

M = ρ + o(1) to obtain

E1

[(
esτ0,NM /N2

M − 1
)
1{εN 2

M ≤ τ0,NM ≤ M + 1}
]

= (esε − 1)P1(τ0,NM ≥ εN 2
M )

− (esρM − 1)P1(τ0,NM > ρMN 2
M ) + s

∫ ρM

ε

esy P1(τ0,NM > yN 2
M )dy; (4.36)

note that ρM > ε for all M sufficiently large, since ε < ρ. Since there is some C < ∞ for
which esε − 1 ≤ Cs0ε for all s ≤ s0 and all ε ∈ (0, 1), we have from (4.34) that the first
term on the right-hand side of (4.36) satisfies

0 ≤ (esε − 1)P1(τ0,NM ≥ εN 2
M ) ≤ C(s0)ε1/2

NM
,

where, again, C(s0) < ∞ depends on s0 only. Corollary 3.5(ii) implies that, for any fixed
ε ∈ (0, 1),

∫ ρM

ε

esy P1(τ0,NM > yN 2
M )dy = 4

NM
(1 + o(1))

∫ ρ

ε

esy H(y)dy,

and

(esρM − 1)P1(τ0,NM > ρMN 2
M ) = 4

NM
(1 + o(1))(esρ − 1)H(ρ).

Hence, combining (4.33) with (4.35) and (4.36), and taking ε ↓ 0, we obtain

lim
M→∞ sup

0<s≤s0

∣
∣
∣
∣
NM

4
E
NM ,M
(1,M)

[(
esν/N2

M − 1
)
1{ν < ∞}

]
− s

∫ ρ

0
esy

(
H(y) − H(ρ)

)
dy

∣
∣
∣
∣ = 0.
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Finally, we observe that

E
NM ,M
(1,M) [esν/N2

M − 1 | ν < ∞] =
E
NM ,M
(1,M)

[(
esν/N2

M − 1
)
1{ν < ∞}

]

P
NM ,M
(1,M) (ν < ∞)

,

and P
NM ,M
(1,M) (ν < ∞) = 1 − θ(NM , M) → 1, by (4.7) and (4.31). Now (4.32) follows. ��

Lemma 4.8 The function H from (2.16) satisfies the following.

(i) As y ↓ 0, 2 H(y)
√
2π y → 1.

(ii) As y → ∞, H(y) = (1 + o(1))e−π2 y/2.

Proof Write c := π2/2, so that (2.16) reads H(y) = ∑∞
k=1 e

−c(2k−1)2 y . Then,

0 ≤ H(y) − e−cy ≤ e−9cy
∞∑

k=0

e−c[(2k+3)2−9]y ≤ e−9cy
∞∑

k=0

e−16cky,

and hence 0 ≤ H(y) − e−π2 y/2 ≤ e−4π2 y for all y sufficiently large. This yields part (ii).
On the other hand, since k �→ hk(y) is strictly decreasing for fixed y > 0,

∫ ∞

1
e−c(2t−1)2 ydt ≤ H(y) ≤ 1 +

∫ ∞

1
e−c(2t−1)2 ydt,

where, by the change of variable z = (2t − 1)
√
2cy,

∫ ∞

1
e−c(2t−1)2 ydt = 1

2π
√
y

∫ ∞
√
2cy

e−z2/2dz = 1 + o(1)

2
√
2π y

,

as y ↓ 0, which gives part (i). ��
Proof of Theorem 2.7 Let s > 0, and recall the definition of ψM (s) = E

NM ,M
(1,M) [esν | ν < ∞]

from (4.12). Then, as at (4.23),

E
NM ,M
(1,M)

[
esσκ/M] = θM

1 − (1 − θM )ψM (s/M)
, provided (1 − θM )ψM (s/M) < 1,

where θM := θ(NM , M). Combining (4.31) and (4.32), with the fact that M ∼ ρN 2
M ,

by (2.15), we conclude that

lim
M→∞E

NM ,M
(1,M)

[
esσκ/M] = 1

1 − G(ρ, s)
, provided G(ρ, s) < 1, (4.37)

whereG is defined at (2.17). Since λ = M+1+σκ , by (4.6), it follows from (4.37) that λ/M
converges in distribution to 1 + ξρ , where E[esξρ ] = φρ(s) as defined at (2.18).

From (2.17), we have that, for fixed ρ > 0, s �→ G(ρ, s) is differentiable on s ∈ (0,∞),
with derivative G ′(ρ, s) := d

ds G(ρ, s) satisfying

G ′(ρ, 0+) := lim
s↓0 G

′(ρ, s) = 1

H(ρ)

∫ 1

0

(
H(vρ) − H(ρ)

)
dv = μ(ρ),

as given by (2.19), as we see from the change of variable y = ρv. Hence φρ is differentiable

for s ∈ (0, sρ), with derivative φ′
ρ(s) = G ′(ρ,s)

(1−G(ρ,s))2
, and

φ′
ρ(0+) := lim

s↓0 φ′
ρ(s) = G ′(ρ, 0+) = μ(ρ).
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The convergence of the moment generating function in (4.37) in the region s ∈ (0, s0)
implies convergence also of the mean, limM→∞ M−1

E
NM ,M
(1,M) σκ = φρ(0+) = μ(ρ), and

hence limM→∞ M−1
E
NM ,M
(1,M) λ = 1 + μ(ρ). The asymptotics for μ stated in (2.21) follow

from (2.19) with the asymptotics for H in Lemma 4.8, together with the observation that

∫ ∞

0
H(y)dy =

∞∑

k=1

∫ ∞

0
hk(y)dy = 2

π2

∞∑

k=1

1

(2k − 1)2
= 1

4
,

using Fubini’s theorem. This completes the proof. ��

5 Concluding Remarks

To conclude, we identify a number of potentially interesting open problems.

• Staying in the context of the M-capacity models, we expect that at least the non-critical
results of the present paper are rather universal, and should extend to more general
domains, and to more general diffusion dynamics within a suitable class. For example,
we expect that for a large class of energy-constrained random walk models in a domain
of diameter N with energy capacity M , the regimes M � N 2 (meagre capacity) and
M � N 2 (confined space) should lead to Darling–Mandelbrot and exponential limits,
respectively, for the total lifetime.

• The total lifetime is just one statistic associated with the model: other quantities that it
would be of interest to study include the location of the walker on extinction.

• The model presented in Sect. 2.1 includes several other natural models, in addition to the
particular finite-capacitymodel with total replenishment that we study here. For example,
one could consider a model of infinite capacity and a random replenishment distribution.
In models with unbounded energy, there may be positive probability that the walker
survives for ever (i.e., transience).
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Appendix A: Darling–Mandelbrot Distribution

Recall the definition of the function K : R → R and the set T from (4.13). Write M(a, b, t)
for the Kummer function defined for a, b /∈ −N by the convergent series

M(a, b, t) := �(b)

�(a)

∞∑

�=0

�(a + �)

�(b + �)

t�

�! , for t ∈ R;

see [4, Chapter 13] or [12, pp. 647–8]. Then, by (4.13), K (t) = M(− 1
2 ,

1
2 , t). This identifi-

cation is the basis for the following facts.

Lemma A.1 (a) As t → ∞, we have K (−t) ∼ √
π t and K (t) ∼ −et/(2t).

(b) The function K is infinitely differentiable, with K (�)(t) := (d�/dt�)K (t) < 0 for every
� ∈ N and all t ∈ R, and K (�)(0) = −1/(2� − 1).

(c) We have that T = (−∞, t0) where t0 is uniquely determined by
∑∞

�=1
t�0

(2�−1)·�! = 1;
numerically, t0 ≈ 0.8540326566.

(d) With I as defined at (2.5), it is the case that

K (t) = et − I(t), for all t ∈ R. (A.1)

Remark A.2 The constant t0 in Lemma A.1(c) also appears in relation to asymptotics of Tn ,
the maximum excursion duration over the first n steps of a simple symmetric random walk
on Z. It was shown by Csáki, Erdős and Révész [16, Thm. 1] that

lim inf
n→∞

[
log log n

n
Tn

]

= t0, a.s.

See also [30, 34] for some neighbouring results.

Proof of Lemma A.1 The t → ±∞ asymptotics can be read off from (13.1.4) and (13.1.5) in
[4]. The derivatives of K are obtained from equation (13.4.9) in [4] as

d�

dt�
K (t) = �

( 1
2

)
�
(
� − 1

2

)

�
(− 1

2

)
�
(
� + 1

2

)M

(

� − 1

2
, � + 1

2
, t

)

= − 1

2� − 1
M

(

� − 1

2
, � + 1

2
, t

)

.

Thus K (�)(0) = −1/(2� − 1). For b > a > 0, the integral representation (13.2.1) in [4]
shows that M(a, b, t) > 0 for all t ∈ R, and hence (d�/dt�)K (t) < 0 for all � ∈ N, as
claimed. In particular, K is monotone decreasing, with K (0) = 1, so there is a unique t0 ∈ R

with K (t0) = 0, one has t0 > 0, and K (t) > 0 if and only if t < t0. Finally, equations (13.4.4)
and (13.6.12) in [4] show that

K (t) = M

(

−1

2
,
1

2
, t

)

= M

(
1

2
,
1

2
, t

)

− 2tM

(
1

2
,
3

2
, t

)

= et − 2tM

(
1

2
,
3

2
, t

)

.

Moreover, since 3
2 > 1

2 > 0, equation (13.2.1) in [4] shows that I(t) = 2tM( 12 ,
3
2 , t). This

verifies (A.1). ��
Lemma A.3 The moments υk := E[ξ k] (k ∈ N) of the random variable ξ defined by (2.6)
are determined uniquely by the recursion

υk =
k∑

j=1

(
k

j

)
υk− j

2 j − 1
, for k ∈ N, (A.2)

with the initial condition υ0 = 1. In particular, the first few moments are as follows:
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k 1 2 3 4 5 6

υk 1 7
3

41
5

4033
105

14167
63

1824719
1155

Proof From (2.6) and (A.1), we have that ϕDM(t) = E[etξ ] = 1/K (t), where, for � ∈ N,
K (�)(0) = −1/(2�−1), as shown in LemmaA.1(b). Differentiating k ∈ N times the equality
K (t)ϕDM(t) = 1, we obtain

k∑

j=0

(
k

j

)

K ( j)(t)ϕ(k− j)
DM (t) = 0, for k ∈ N.

Taking t = 0 and noting that νk = ϕ
(k)
DM(0) and K (0)(0) = K (0) = 1 gives the result. ��
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