
Implementation of Adaptive Kernel Kalman Filter
in Stone Soup

James S. Wright, James R. Hopgood, Mike E. Davies, Ian K. Proudler, Mengwei Sun

Abstract—The recently proposed adaptive kernel Kalman filter
(AKKF) is an efficient method for highly nonlinear and high-
dimensional tracking or estimation problems. Compared to other
nonlinear Kalman filters (KFs), the AKKF has significantly
improved performance, reducing computational complexity and
avoiding resampling. It has been applied in various tracking
scenarios, such as multi-sensor fusion and multi-target tracking.
By using existing Stone Soup components, along with newly
established kernel-based prediction and update modules, we
demonstrate that the AKKF can work in the Stone Soup platform
by being applied to a bearing–only tracking (BOT) problem. We
hope that the AKKF will enable more applications for tracking
and estimation problems, and the development of a whole class
of derived algorithms in sensor fusion systems.

Index Terms—Adaptive kernel Kalman filter, Tracking, Stone
Soup

I. Introduction

Target tracking in sensor networks is a fundamental problem
that arises in a variety of applications, including surveillance,
environmental monitoring, and military operations. The ob-
jective of target tracking is to estimate the location, velocity,
and other relevant parameters of a target based on noisy and
incomplete measurements obtained from one or more sensors.
Nonlinear and non-Gaussian system models and measurement
noise pose challenges that have been addressed using Bayesian
filters, such as the extended Kalman filter (EKF) [1], unscented
Kalman filter (UKF) [2], and particle filter (PF) [3]. The
adaptive kernel Kalman filter (AKKF) has been proposed [4],
[5] and demonstrated to achieve better performance, reduced
computational complexity, and avoidance of resampling, espe-
cially in high nonlinear and high-dimensional problems. It has
been applied to various tracking scenarios, such as multi-target
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tracking [6], multi-sensor fusion [7], and magnetic anomaly
detection-based metallic target tracking [8].

Stone Soup [9], [10] is a software project that provides
a framework for developing and testing algorithms for the
target tracking and state estimation community. The project
prioritises flexibility over optimisation to aid in selecting com-
ponents and algorithms for real-world problems. Stone Soup
has a number of components used to both build algorithms
and enable an environment for testing and assessment. For
example, the Kalman filter (KF), EKF, UKF, and PF have
been implemented in the Stone Soup framework [11].

In this work, our goal is to demonstrate the efficacy of the
AKKF, by using the flexibility and metrics provided by Stone
Soup while showing how augmentation of the framework
can be undertaken. Specifically, we aim to realise adaptive
updates of the empirical kernel mean embeddings (KMEs) for
posterior probability density functions (pdfs) using the AKKF,
which is executed in the state space, measurement space, and
reproducing kernel Hilbert space (RKHS). In the state space,
we generate the proposal state particles and propagate them
through the motion model to get the state particles. In the
measurement space, the measurement particles are achieved
by propagating the state particles through the measurement
model. We map all these particles into RKHSs as feature map-
pings and linearly predict and update the corresponding kernel
weight mean vector and covariance matrix to approximate the
empirical KMEs of the posterior pdfs in the RKHS.

Our contributions include the first attempt to implement the
AKKF in Stone Soup, particularly in their simplest reference
forms. We designed the key new components required in
Stone Soup for the AKKF to run, including defining different
component types, such as the KernelParticleState,
Kernel, AdaptiveKernelKalmanPredictor and
AdaptiveKernelKalmanUpdater. Stone Soup is designed
for easy inheritance, which provides the design choice of the
Kernel class to enable the use of different kernels and will
permit the AKKF to be used for a wide variety of dynamic
and measurement models, as well as future extensions for
joint tracking and parameter estimation problems.

The paper is organised as follows: Section II describes
the AKKF’s general operation mathematically. Section III
provides additional analysis and explanation of the AKKF
implementation in Stone Soup. Section IV presents simulation
results for a bearing–only tracking (BOT) problem, highlight-
ing the improved performance of AKKF compared to the PF
with few particles. Lastly, Section V outlines future extensions
to our Stone Soup contribution.
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II. Adaptive kernel Kalman filter (AKKF)
The AKKF was inspired by the KME and KF and origi-

nally formulated in 2021 to address shortcomings of existing
Bayesian filters for tracking problems in nonlinear systems
[4], [5]. In the AKKF, the posterior pdf is approximated with
particles and weights, but not in the state space as in the
PF. Specifically, the pdf is embedded into an RKHS as an
empirical KME,

p(xk | y1:k) → µ̂+xk
= Φkw+

k , (1)

where xk represents the hidden state at the k-th time slot,
and yk is the corresponding observation. The feature map-
pings of particles x{1:MA}

k are represented as Φk, i.e., Φk =[
ϕx(x{1}k ), . . . , ϕx(x{MA}

k )
]
, where MA is the number of particles,

and the weight vector w+
k includes MA non-uniform weights.

The KME µ̂+xk
in (1) is an element in the RKHS that captures

the feature value of the distribution.

A. How to choose different kernels in the AKKF

The feature mapping ϕx(x) of different kernels can be
chosen depending on the specific applications, such as linear
kernels, polynomial kernels, including quadratic and quartic
kernels, and Gaussian kernels. The following summarises
kernel functions with the assumption that x = [x1, . . . , xn]T

and x′ =
[
x′1, . . . , x

′
n

]T
.

• Linear kernel function

k(x, x′) = xTx′. (2)

The linear kernel can capture the first-order moments of a
distribution, such as the mean and variance. This kernel is
often used in linear regression. It can be effective when the
data is well-modelled by a linear relationship.

• Quadratic kernel function

k(x, x′) =
(
α⟨x, x′⟩ + c

)2 . (3)

Here, c ≥ 0 is a free parameter that trades off the influence
of higher-order versus lower-order terms in the polynomial.
The parameter α represents the slope that scales the input
vectors’ dot product. These parameters allow the kernel
to emphasise or de-emphasise the importance of different
input features. The quadratic kernel can capture the second-
order moments of a distribution, such as the covariance
and correlations between pairs of variables. The quadratic
kernel is appropriate when the data is nonlinear but relatively
simple.

• Quartic kernel function

k(x, x′) =
(
α⟨x, x′⟩ + c

)4 . (4)

The quartic kernel can capture higher-order moments beyond
the mean and covariance, such as skewness and kurtosis. The
quartic kernel can be used when the data is highly nonlinear
and complex.

• Gaussian kernel function

k(x, x′) = exp
(
−
∥x − x′∥2

2σ2

)
. (5)

Here, σ is a parameter that determines the width of the
Gaussian kernel. The Gaussian kernel can capture the mean
and covariance of the data, as well as the smoothness and
correlation structure. The Gaussian kernel is appropriate
when the data is highly nonlinear and complex, and the
relationship between the variables is not well-defined.

B. How to implement the AKKF

The AKKF includes three modules, as shown in Fig. 1:
a predictor that utilises both prior and proposal information,
at time k − 1, to update the prior state particles and predict
the kernel weight mean and covariance at time k, an updater
employs the predicted values to update the kernel weight
and covariance, and an updater generates the proposal state
particles.

1) Predictor takes prior and proposal: The predictor is
executed in the state space and kernel space, i.e., RKHS.
Suppose that the prior and proposal state particles at time
k − 1 are represented as x{i=1:MA}

k−1 and x̃{i=1:MA}

k−1 , respectively.
Their feature mappings in RKHSs are given by:

Φk−1 =
[
ϕx(x{1}k−1), . . . , ϕx(x{MA}

k−1 )
]

Ψk−1 =
[
ϕx(x̃{1}k−1), . . . , ϕx(x̃{MA}

k−1 )
]
.

■ At time k, the prior state particles in the state space are
generated by passing the proposal particles at time k − 1, i.e.,
x̃{i=1:MA}

k−1 , through the motion model as

x{i}
k = f

(
x̃{i}k−1,u

{i}
k

)
, (6)

where i = 1 . . .MA, u{i}
k represents process noise samples

which are drawn from the process noise distributions.
■ In RKHS, x{i=1:MA}

k are mapped to the RKHS as

Φk =
[
ϕx(x{1}k ), . . . , ϕx(x{MA}

k )
]
.

Based on [4], the transition matrix Γk, which represents the
change of sample representation, is calculated as

Γk =
(
Kx̃x̃ + λK̃ I

)−1 Kx̃x, (7)

where the Gram matrices are Kx̃x̃ = ΨT
k−1Ψk−1 and Kx̃x =

ΨT
k−1Φk−1. The regularisation parameter λK̃ is used to stabilise

the inverse of Kx̃x̃, and I is the identity operator matrix. In
practice, Kx̃x̃ can become ill-conditioned and challenging to
invert, leading to numerical instability and poor performance.
To address this, the regularisation parameter λK̃ is added to
the diagonal of Kx̃x̃, which makes it better conditioned and
easier to invert. The value of this regularisation parameter
is usually chosen by cross-validation or other optimisation
methods. Then, the predictive kernel weight vector, denoted
as w−

k , and covariance matrix, denoted as S −
k , are calculated

as

w−
k = Γkw+

k−1, (8)

S −
k = ΓkS +

k−1Γ
T
k + Vk. (9)

Here, w+
k−1 and S −

k are the posterior kernel weight mean vector
and covariance matrix at time k − 1, respectively, and Vk
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Fig. 1: Flow diagram of the AKKF.

represents the finite matrix representation of the transition
residual matrix [4].

2) Updater uses prediction: The updater is executed in the
measurement space and RKHS.
■ In the measurement space, the measurement particles are

generated according to the measurement model as

y{i}k = h
(
x{i}k , v

{i}
k

)
(10)

where v{i}k represent measurement noise samples which are
drawn from the measurement noise distribution.

■ In RKHS, y{i=1:MA}

k are mapped in the RKHS as

Υk =
[
ϕy(y{1}k ), . . . , ϕy(y{MA}

k )
]
.

The posterior kernel weight vector and covariance matrix are
updated as

w+
k = w−

k + Qk

(
gyyk − Gyyw−

k

)
(11)

S +
k = S −

k − QkGyyS −
k (12)

Qk = S −
k

(
GyyS −

k + κI
)−1
. (13)

Here, Gyy = ΥT
kΥk, gyyk = ΥT

k ϕy(yk) is the kernel vector of
the measurement at time k, and κ is a regularisation parameter
to ensure the inverse is well-defined. The kernel Kalman gain
operator denoted as Qk is derived by minimising the trace
of the posterior covariance operator [4]. Then, the empirical
KME of p(xk |y1:k) is calculated as (1).

3) Proposal generated in updater: The proposal is executed
in the state space.

■ The AKKF replaces x{i=1:MA}

k by new weighted proposal
particles x̃{i=1:MA}

k to approximate the KME that can be exactly
propagated through the non-linearity. The proposal particles
are generated according to the importance distribution as

x̃{i=1:MA}

k ∼ N (E (Xk) ,Cov (Xk)) . (14)

In Stone Soup implementation, the state vector’s mean and
covariance for proposal are approximated using

E (Xk) = Xkw+
k (15)

Cov (Xk) = XkS +
k XT

k , (16)

where Xk = x{i=1:MA}

k . We draw proposal particles from a
Gaussian distribution for convenience, but other distributions
with similar statistics could also be used. These particles are
used to capture the key probability mass of the posterior pdf.
It is not equivalent to approximating the posterior pdf with a
Gaussian, but rather an adaptive change of basis within the
feature space through a simple linear mapping.

III. Implementation in Stone Soup

The main goal behind the development of the Stone Soup
framework is the ease of collaboration, consistent metrics
and open standards. This enables fast prototyping and user-
friendliness for researchers. To achieve this widespread adop-
tion, it is crucial that the components are modular and the
interfaces are consistent. Through this standardisation, users
can utilise algorithms and components without requiring a full
understanding the algorithms. Stone Soup follows an object-
oriented modular approach with AbstractClass forming the
base class with a DerivedClass inheriting its properties and
methods from the abstract class. This inheritance is important
to preserve the fundamental methods required of a class. For
example, all Predictor classes must have a predict() method
and all Updater classes must have an update() method.

The following subsections highlight the key new compo-
nents required in the Stone Soup framework for AKKF to
run. More details of the implementation and a tutorial can be
found in [12].

A. The KernelParticleState Types

The KernelParticleState inherits the functionality of
the ParticleState and adds the kernel covar property as
defined in (9) and (12).

B. The Kernel Types

The Kernel class provides a transformation from state space
into the RKHS represented in (8) by Kx̃x̃ and Kx̃x or a
transformation from measurement space into the KME space
represented in (11) by Gyy and gyyk . The kernel can be
represented as either a polynomial or a Gaussian kernel. The
polynomial kernels, QuadraticKernel and QuarticKernel
have the following properties:
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• c: is the parameter that trades off the influence of higher-
order versus lower-order terms in the polynomial. c in (3)
and (4),

• ialpha: is the inverse of α and is the slope parameter
that controls the influence of the dot product on the kernel
value. 1/α in (3) and (4).

The Gaussian kernel (GaussianKernel) has the following
property

• variance: The variance parameter of the Gaussian ker-
nel. σ2 in (5).

C. Predictor Types

As discussed previously, every Predictor class inherits
from the base class Predictor. All Predictors accept a prior
State, require a predict() method and return a StatePredic-
tion. Since the AKKF is a derivative of the Kalman filter the
base class to inherit from is the KalmanPredictor. This allows
the framework to distinguish the different class components.

The AdaptiveKernelKalmanPredictor is a
subclass of KalmanPredictor and inherits the
methods and properties of the KalmanPredictor. The
AdaptiveKernelKalmanPredictor includes the following
new properties;

• lambda predictor: λK̃ in (7), is a regularisation pa-
rameter to stabilise the inverse of the Gram matrix Kx̃x̃.
According to the simulation results presented in [4], the
tracking performance of the AKKF is relatively insensi-
tive to the values of λK̃ when it falls within the range of[
10−4, 10−2

]
[4].

• kernel: The Kernel class which is chosen to be used
to map the state space into the kernel space as described
in section III-B.

D. Updater Types

In a similar way to the KalmanPredictor class rep-
resented the inheritance for all Kalman predictor sub-
classes, the KalmanUpdater provides the same for up-
daters. All Updaters accept a prediction-measurement pair,
require an update() method and return a StateUpdate.
The AdaptiveKernelKalmanUpdater is a subclass of
KalmanUpdater and inherits the methods and properties of
the KalmanUpdater. The AdaptiveKernelKalmanUpdater
includes the following new properties;

• lambda updater: κ in (13) is a regularisation parameter
to ensure the inverse of GyyS −

k is well-defined. The track-
ing performance of the AKKF is relatively insensitive to
κ when κ ∼

[
10−4, 10−2

]
[4].

• kernel: The Kernel class which is chosen to be used
to map the measurement space into the kernel space.

E. Implementation

Based on the above descriptions, Algorithm 1 summarises
the implementation of the AKKF in Stone Soup.

Algorithm 1 Adaptive kernel Kalman filter

1: Initialisation: Initial particles x{i=1:MA}

0 , Φ0, w0 =

1/MA [1, . . . , 1]T
MA×1, Ψ0 = Φ0. Kernel type and related

parameters.
2: for k = 1 : K do
3: The predictor

• Input: i.e., {x{i=1:MA}

k−1 , x̃{i=1:MA}

k−1 ,w+
k−1, S

+
k−1}.

• Process: x{i}k = f
(
x̃{i}k−1,u

{i}
k

)
,

w−
k = Γkw+

k−1, S −
k = ΓkS +

k−1Γ
T
k + Vk.

• Output: {x{i=1:MA}

k ,w−
k , S

−
k }.

4: The updater
• Input: {x{i=1:MA}

k ,w−
k , S

−
k }.

• Process: y{i}k = h
(
x{i}

k , v
{i}
k

)
,

w+
k = w−

k + Qk

(
gyyk − Gyyw−

k

)
, S +

k = S −
k − QkGyyS −

k .
• Output: {x{i=1:MA}

k ,w+
k , S

+
k }.

5: The proposal generator
• Input: {x{i=1:MA}

k ,w+
k , S

+
k }.

• Process: x̃{i=1:MA}

k ∼ N (E (Xk) ,Cov (Xk)).
• Output: {x{i=1:MA}

k , x̃{i=1:MA}

k ,w+
k , S

+
k }.

6: end for

IV. Demonstration

In this section, we report the tracking performance of
different filters in the Stone Soup platform. The corresponding
dynamic state-space model (DSSM) is described as

xk =


1 ∆T 0 0
0 1 0 0
0 0 1 ∆T

0 0 0 1

 xk−1 +


0.5 0
1 0
0 0.5
0 1

 uk, (17)

yk = tan−1
(
ηk − ηs

ξk − ξs

)
+ vk. (18)

Here, ∆T represents the sampling period, k represents the
time index and k = 1, . . . ,K. The hidden states are xk =

[ξk, ξ̇k, ηn, η̇k]T , where (ξn, ηk) and (ξ̇k, η̇k) represent the target
position and the corresponding velocity in X-axis and Y-axis,
yk is the corresponding observation. The sensor is located at[
ηs = 0, ξs = 0

]
. The process noise uk follows Gaussian distri-

bution uk ∼ N(0, σ2
uI) and σu = 0.01. Following [14], the prior

distribution for the initial state is specified as x0 ∼ N(u0, P0)
with u0 = [−0.5, 0.001, 0.7,−0.05]T and,

P0 =


0.1 0 0 0
0 0.005 0 0
0 0 0.1 1
0 0 0 0.01

 .
Fig. 2 and Fig. 3 displays two representative trajectories and
the tracking performance obtained by three filters: the AKKF
uses a quartic kernel with 100 particles, the PF with 100
particles, and benchmark performance achieved by the PF with
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Fig. 2: BOT tracking of a moving target in two dimensions of Trajectory-1 (a) and
Trajectory-2 (b) using the quartic kernel-based AKKF with 100 particles; the PF with
100 particles; and the benchmark performance of the PF with 2000 particles. The physical
unit on the X-axis and Y-axis is the ‘metre’.
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Fig. 3: Performance of BOT tracking of a moving target in two dimensions of Trajectory-
1 (a) and Trajectory-2 (b) using the OSPA [13] distance.

2000 particles. Trajectory-1 (Fig 3a) shows that the AKKF
performs better than both the PF and the benchmark, while
Trajectory-2 (Fig 3b) shows that the AKKF performs alongside
the benchmark and outperforms the PF. From the results, we

arrive at the following conclusions. The implementation of the
AKKFs in Stone Soup works properly for the BOT problems,
it shows improvement and robustness compared to the PF with
the same number of particles.

V. Conclusions

This paper provides the complete implementation of the
AKKF in the Stone Soup framework. We utilised and extended
existing components to incorporate the AKKF. The new algo-
rithm combines the PF’s non-linearity with the KF’s analytical
properties via KMEs. This shows the compatibility of newer
algorithms within the Stone Soup framework and establishes
a workflow to support other algorithms being implemented
in Stone Soup. The authors are interested in extending the
AKKF further [6]–[8] by offering additional tutorials and
demonstrations in the Stone Soup documentation [11].
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