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ABSTRACT To avoid the operational consequence of thermal rating exceedance and the financial con-
sequence of excessive reinforcement, the impact of domestic charging of electric vehicles (EVs) on
power distribution networks must be accurately assessed prior to accepting vehicle electrification at the
community-scale. Although driven by routine, charging behaviour patterns are also influenced by geography,
meteorological conditions and season, hence will have a localised element to them that could reduce the di-
versity of charging load profiles. To model this uncertainty, this article develops a probabilistic methodology
to quantify EV home charging demands based on vehicle mobility data and underlying trip characteristics.
Models articulate the departure time distribution using a mixture of von Mises distributions, and incorporate
non-negative conditional distributions of trip durations, distances and parking durations, which in turn
generalise localised charging behaviours. The resulting load profiles are used to drive a community electric
network model based on a distribution feeder in Qatar, a country with high per km energy consumption, to
quantify impact scenarios of high temperature and driving habit in terms of voltage and thermal stability.
Results indicate that overnight domestic charging is sufficient to support daily trips and local networks are
capable of hosting high EV penetration despite peaks.

INDEX TERMS Electric network stability, electric vehicle demand synthesis, probabilistic assessment,
vehicle mobility data.

NOMENCLATURE
Abbreviations

BIC Bayesian inference criterion.
CC-CV Constant current-constant voltage.
CDF Cumulative distribution function.
EV Electric vehicle.
GPS Global positioning system.
MCMC Markov chain Monte Carlo.
MLE Maximum likelihood estimation.
OBD On-board diagnostic.
PDF Probability density function.

PV Photovoltaic.
SoC State of charge.
SUV Sport utility vehicle.
TCP Transmission control protocol.
TPN Truncated positive normal.
VM Von Mises.

Symbols
d , dh Index of day or hourly segment in a day.
tDep, tArr Time departing from or arriving at home.
T D2A Duration from tDep to subsequent tArr .
T A2D Duration from tArr to subsequent tDep.
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DDis Travel distance.
fvm PDF of mixed VM distributions.
Nvm Number of VM components.
p, μ, k Parameters of mixed VM distributions.
I0 Modified Bessel function of the first kind of order

zero.
ftpn, Ftpn PDF or CDF of mixed TPN distributions.
Ntpn Number of TPN components.
q, λ, σ Parameters of mixed TPN distributions.
Mwd Number of weekday trip observations.
Mdh Number of trips departing within dh.
L̂ Maximised Log-likelihood.
C Clayton copula.
α Clayton copula parameter.
fC Copula-based PDF.

I. INTRODUCTION
There has been an intensified interest in electric vehicles
(EVs) to decarbonise the road transport sector, which gener-
ates nearly one fourth of the global greenhouse gas emission
[1]. In parallel, national EV markets are growing at a faster
pace driven by government subsidies and policies aiming to
ban the sale of new petrol and diesel cars within a decade
(e.g., U.K., France, and Germany [2]). Achieving net-zero
in road transport requires sustained effort to expand charging
networks and ease the access to charging stations to increase
the pace of decarbonisation. This requires vehicle mobility
analysis to quantify energy requirements for driving needs
and examine daily trips and activities to assess the appro-
priate locations and types (slow or fast) for EV charging.
Electrification of transportation is a global transformational
change, as even carbon-rich developing Gulf countries such
as Saudi Arabia and Qatar have pledged to introduce EVs
and cut road transport emissions [3]. Quantifying the impacts
of EV charging on electric networks (e.g., power quality and
stability) and planning for the charging infrastructure needs in
such countries is a key challenge due to the lack of publicly
available datasets (e.g., travel surveys, etc.). To that end, this
article presents vehicle mobility analysis using high resolution
GPS-traces collected from actual vehicles in Qatar as a case
study, develops probabilistic methods to generalise the vehicle
mobility data for community-scale EV demand synthesis and
evaluates the stability of a typical Qatar distribution network
in the context of community-scale vehicle electrification.

The critical input to EV charging planning and impact as-
sessment studies is vehicle mobility data, which is used to
analyse spatio-temporal EV demands and charging needs. For
instance, drivers who have access to a home charger would
not require public fast chargers or workplace charging if the
domestic charging is sufficient. On the other hand, for high
mileage vehicles or EVs located in densely populated areas,
public charging could be the only option. Energy and petrol
prices are highly subsidised by the governments in the Gulf
region, where residents typically prefer large-engine vehicles
and have a higher energy consumption per km than most de-
veloped countries [4]. Therefore, electric sport utility vehicle

(SUV) models are expected to become popular in transition
towards electrified transport.

Most research performs EV mobility analysis either based
on national travel surveys that are created with low resolution
survey inputs [5], [6], [7] or using high resolution GPS-traces
that are collected through cell phone traces or actual on-board
recording devices. The advantage of the latter approach is the
high resolution and precision of datasets, though the dataset
is usually constructed from a limited number of participants
[8], [9]. These datasets are then generalised to model the
behaviour of larger populations using probabilistic simula-
tion methods (e.g., Markov chain Monte Carlo (MCMC))
and then assess the resulting impacts on electric networks.
In [6], U.K. travel surveys are employed as an input to the
MCMC method to model the locations and energy demands of
EVs, based on which their charging impacts (voltage drops)
are quantified at workplaces and rural distribution networks.
A similar methodology is followed in [10] which quantifies
the peak EV charging load for selected regions based on the
National US travel surveys. In [7], vehicle mobility traces
are collected from phone traces and a probabilistic location
model is developed to estimate the charging needs and lo-
cations of vehicles in Bay Area, California, showing that
the peak EV charging demands in certain postcodes could
be significantly reduced by shifting the location and time of
EV charging. In [8], mobility traces of 40 different EVs are
collected and analysed with a primary focus to understand
their spatio-temporal recharging habits, presenting that most
EV drivers use their cars in a very risk-averse way due to
range anxiety. In addition, the mobility pattern analysis of
petrol vehicles can provide useful insights into how EVs
would be used. In [11], mobility analysis is carried out for
a single petrol-powered taxi and results are then generalised
for the entire fleet, followed by a feasibility analysis which
assesses the electrificability rate of the fleet and concludes
that more than 75% of the trips can be made with EVs even
using small batteries (e.g., 30 kWh). In [12], a similar analysis
with a smaller dataset is performed to show how correspond-
ing EVs can be used for daily activities and conclude that
EVs with 50 kWh batteries can complete all trips in win-
ter while the minimum battery size should be 64 kWh to
complete the same trips in summer due to the effects of hot
weather.

Switch to EVs in regions with harsh desert climates is
further challenging since the performance of the underlying
Lithium-ion battery technology further degrades with high
ambient temperature (> 30 oC). This is mainly because part
of the stored energy is used for battery cooling and an increas-
ing energy consumption per km significantly reduces electric
driving ranges of EVs, e.g., mostly by ∼20% at an ambient
temperature of 40 oC with respect to ideal conditions of 21 oC
[13]. In addition, the fast charge rates (> 50 kW) are limited
by the EV’s battery management system to maintain battery
health and avoid overheating. To that end, EV users may need
to stay plugged in for additional hours compared with the EVs
located in regions with mild weather.
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The contribution of the article is to present the first vehicle
mobility dataset in the Gulf region by analysing the GPS-
based vehicle mobility data collected from eight participants
using telematics devices for 15 months. Even though the num-
ber of participants is limited due to the conservativeness of the
Gulf community, this is the first study in a carbon-rich devel-
oping country which provides insights into distinctive driving
patterns in such countries. The gathered mobility data is pro-
cessed to analyse their daily trip characteristics on weekdays
and weekends, including the time they depart from or arrive at
home, trip distances, etc., which are then generalised for the
entire vehicles in a particular community in Qatar. The habit-
ual departure time which has the circular nature is depicted by
a mixture of von Mises (VM) models, while the distribution
of non-negative time durations that vehicles spend away from
(or park at home) conditioning on the hourly segmented de-
parture (or arrival) time is simulated by combining truncated
positive normal (TPN) models. Furthermore, given the same
segmented departure time, the conditional distribution of daily
trip distances is also fitted by mixed TPN models and then
linked with the outdoor duration via the Clayton Copula. Then
the MCMC method is applied to randomly generate vehicles’
daily trip sequences which start from the VM-based departure
time samples and move to subsequent arrival time and so on
according to the associated TPN distributions of outdoor or
home parking durations. The accompanying daily trip dis-
tances correlated with outdoor durations are also sampled to
estimate the equivalent energy usages in hot weather condi-
tions in Qatar. In this way, the proposed probabilistic method
for vehicle data generalisation fully reflects the dependencies
of daily trip attributes. Then the vehicles’ daily trip sequences
are translated into their domestic charging profiles, based on
which the suitability of home charging for EV adopters and
the predictability of community-scale EV charging demands
are evaluated and compared between the uses of different
charge rates. In addition, a probabilistic assessment method
is developed in conjunction with power flow studies to sta-
tistically quantify the impacts of the community-scale EV
integration on the local network voltage and thermal stabil-
ity in numerous daily scenarios. A flow chart describing the
processes of vehicle data generalisation and network stability
assessment is shown in Fig. 1.

The article is structured as follows: Section II describes the
collection and analysis of vehicle mobility data; Section III
introduces the probabilistic methods for daily trip sampling
and network integration assessment; Section IV validates the
vehicle data generalisation and assesses the network stability
with EV integration; and Section V presents conclusions and
recommendations for further work.

II. GPS-BASED VEHICLE MOBILITY DATASET
A. VEHICLE MOBILITY DATA COLLECTION
High resolution vehicle mobility data is collected from 8 par-
ticipants in Doha, Qatar form 10/05/2021 to 09/08/2022 using
Teltonika Fm3001 on-board diagnostic (OBD) devices [14],

FIGURE 1. Processes of vehicle data generalisation and electric network
stability assessment.

FIGURE 2. Schematic of vehicle mobility data acquisition system.

as shown in Fig. 2. The Teltonika OBD devices work on a
specific Transmission Control Protocol (TCP) and deliver a
variety of mobility data collection including vehicle speed,
acceleration, GPS location, trip length, etc. to an on-premise
server. Then the telematics data is ingested into a time-series
database using InfluxDB [15] which can handle 100000 writes
per second on a regular 2-core machine, permitting the data
acquisition from all the Teltonika OBD devices. To alleviate
the burden of data collection and ingestion, the data transfer is
optimised by configuring a set of data processing rules within
the Teltonika OBD devices: (i) if the duration between two
consecutive timestamps is shorter than or exceeds 10 seconds,
the vehicle is deduced to be moving or parking respectively;
and (ii) a new trip is assumed to start only when the duration
difference is greater than 10 seconds [12]. Furthermore, the
spatial location data collected from the vehicles are clustered
to analyse the location-based activities performed by the res-
idents and detailed analysis is reported in our previous work
[12].

B. VEHICLE MOBILITY DATA ANALYSIS
One of the primary focuses of this article is to examine
whether home charging would be sufficient to charge EVs
in Qatar. There are two key reasons to prioritise the assess-
ment of home charging over public charging. First, the State
of Qatar is located in a relative small region and almost all
the residents are located in the capital city, Doha. Therefore,
long-distance driving (e.g., interstate travel, etc.) is almost
non-existing. Second, the car ownership level is very high as
even multi-dwelling flats offer dedicated parking spaces for
their residents. This is mainly because the country witnessed
population growth over the last two decades and the building
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FIGURE 3. Relative frequencies of departure and arrival time observed on
each day of a week.

stock is very young compared to other cities with high EV
penetration [4]. To that end, our mobility analysis focuses on
domestic charging and takes the Education City Community
housing where university staffs are located [16].

The energy demand and load profiles of community-scale
vehicle electrification is primarily characterised by their home
parking durations and driving patterns. The former influenc-
ing factor can be estimated based on departure time from
home and arrival time at home, which are, for brevity, re-
ferred to as departure time and arrival time, respectively.
Fig. 3 shows the distributions of departure and arrival time
of the daily trips recorded on each day of a week. The overall
driving behaviour is similar between weekdays (i.e., Sunday
to Thursday in Qatar), mostly departing from home around
6 am–11 am and arriving at home around 7 pm–11 pm, which
reveals that the home parking duration generally lasts about 7
hrs–15 hrs. The main behavioural differences between week-
days and weekends are reflected in the departure time, which
is mostly distributed over 9 am–2 pm on weekends and also
slightly varies between Friday and Saturday. The significant
shift in driving behaviour from weekdays to weekends im-
plies the necessity of modelling behavioural characteristics for
weekdays and weekends separately.

Since the data is collected from 8 vehicles, due to limited
volunteer size, statistical models require to be developed on
top of the collected dataset to simulate and sample the driving
behaviour of a larger population size [6]. The mutual relation-
ship between departure and arrival time must be considered
in the driving behaviour sampling process to avoid the cre-
ation of unrealistic daily trips such as excessive daily outdoor
duration or short home parking duration. The heat maps in
Figs. 4 or 5 show relative frequencies of the daily outdoor
or home parking duration that starts from each hour of a day
on or prior to weekday and weekend trips, respectively. The
daily outdoor duration or the home parking duration generally
reduces with the departure time increasing clockwise from
3 am or with the arrival time increasing clockwise from 7 am,
respectively, providing a basis for the sequential sampling of
departure and arrival time. In addition, the distributions of
daily outdoor durations on weekday trips and home parking

FIGURE 4. Relative frequencies of daily outdoor duration (hour) given
different hourly segmented departure time on weekday and weekend trips.

FIGURE 5. Relative frequencies of home parking duration (hour) given
different hourly segmented arrival time before weekday and weekend
trips.

FIGURE 6. Temperature-dependent fuel consumptions (kWh/km) for
64 kWh Hyundai Kona under different driving performances.

durations prior to weekday trips are more concentrated than
those recorded for weekend trips.

To evaluate the charging energy requirements after daily
trips, the daily trip distance (in km) of the participants are
translated into their equivalent energy usage (in kWh) using
a set of temperature-dependent fuel consumption curves (see
Fig. 6) that are formed for 64 kWh Hyundai Kona based on
real-world EV data differentiated by driver performance [17].
The EVs with 64 kWh batteries are particularly chosen here
since the hot and arid desert climate in Doha [18] induces an
extensive need of indoor and outdoor air-conditioning, which
makes most residents prefer to use vehicles with high engine
volumes (e.g., SUVs with 3.0+ engines) and require higher
battery capacities to provide the same level of comfort [19].
(High-end EV models such as Mercedes EQS or Audi e-tron
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FIGURE 7. Data pairs of daily outdoor durations (hour) and trip distances
(km) recorded on weekdays or weekends.

could also be possible alternatives to replace high-engine
vehicles in the Gulf region, though the publication of their
battery ranges under hot weather is required for related suit-
ability studies). In addition to the driver performance and EV
designs (e.g., weight, shape, etc.), ambient temperature can
influence the fuel consumption (kWh/km) of an EV. As shown
in Fig. 6, the average fuel consumption could be about 87% of
the rated level only at an optimal temperature of 21 oC–22 oC
and increase with the temperature approaching the extremely
hot or cold conditions where the battery energy would be
additionally consumed for auxiliary cooling or heating to keep
the EV cabin and itself at a comfortable temperature [17].
Considering that the summer temperature can reach up to
50 °C in Doha, the average fuel consumption at 43 oC in Fig. 6
is adopted here to evaluate the equivalent energy usages of
vehicles from daily trip distances. While this would provide
an average estimate on fuel consumptions during hot sea-
sons, future enhancement is required to reflect time-varying
temperature conditions and diverse driving performances and
simulate their effects on fuel usages (with the possible use
of interpolation for the temperature outside the range of
Fig. 6).

Although the daily outdoor duration comprising travel and
activity time cannot directly reflect the accompanying daily
trip distance, the scatter plot of their data pairs in Fig. 7
indicates a certain positive relationship for both weekday and
weekend rips. Furthermore, daily trip distances are shown
to mainly distribute around 50 km with most extreme val-
ues exceeding 250 km or even 300 km in this work, though
all these trip distances would be met by a fully charged
64 kWh EV. In addition, their daily equivalent energy usages
are plotted against the subsequent home parking durations
in Fig. 8. In general, the home parking duration of 7 hrs
–15 hrs would require replenishing up to 30 kWh of energy
for daily trip distances up to 150 km. Given a 22 kW or
7 kW nominal charge rate combined with a 90% charging
efficiency, Fig. 8 also shows the energy that could be imported
by an empty EV battery over the home parking duration un-
der a constant current (CC)-constant voltage (CV) regulation
[20], which mostly exceeds the daily equivalent energy us-
age (i.e., actual import required), especially when the home

FIGURE 8. Data pairs of daily equivalent energy usages (kWh) and
subsequent home parking durations (hour) prior to next weekday or
weekend trips against the energy import (kWh) at a 22 kW or 7 kW
nominal charge rate.

parking duration goes further. This highlights the possibil-
ity of exploiting the role of EV batteries in demand side
management.

III. PROBABILISTIC MODELLING OF EV TRIPS AND
NETWORK INTEGRATION
This section develops a MCMC-based method to sample
the sequence of daily trips for multiple residents based on
the overall driving behaviour generalised from the mobility
data. The MCMC inputs comprising the marginal distribu-
tions of initial departure time and home parking durations
as well as the joint distributions of daily outdoor durations
and trip distances are detailed first, followed by simulating
the community-scale EV demands and their integration with a
particular 11 kV distribution network in Doha, Qatar.

A. INDEPENDENT DISTRIBUTION OF INITIAL
DEPARTURE TIME
To start the sampling process from the first daily trips d = 1
(i.e., Sunday in this case) with a reasonable set of departure
time tDep

d=1, the independent probability density function (PDF)

fvm(tDep
d=1|·) of the departure time observed on weekdays is

modelled by a mixture of von Mises (VM) distributions [21],
[22] which are the circular analogue of normal distributions
and thus capture the circular nature of departure time:

fvm

(
tDep
d=1|pi, μi, ki

)
=

Nvm∑
i=1

pi

·
exp

(
ki · cos

(
τ
(

tDep
d=1

)
− μi

))
2π · I0 (ki )

(1)

where the operator τ (·) converts tDep
d=1 from [00:00, 24:00) to

[−π , π ); the term pi (i = 1, .., Nvm) denotes the proportion
of the ith VM component which has an angular centre μi

in [−π , π ) and a non-negative concentration ki; and I0(·) is
the modified Bessel function of the first kind of order zero.
The parameters (pi, μi, ki) of the mixture of VM distributions
are estimated by the maximum likelihood estimation (MLE)
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[23] based on the weekday departure time observations. To
avoid an over- or under-fitting problem, the optimal number
of VM components is determined by examining the Bayesian
inference criterion (BIC) which indicates a trade-off between
the number of free model parameters and the maximised
likelihood L̂vm [24], as formulated by (2) where Mwd is the
number of weekday trip observations. The VM model with
the number of mixtures leading to the minimum BIC will be
adopted to depict the independent distribution of tDep

d=1.

BICvm = (3 · Nvm − 1) · ln (Mwd ) − 2 · ln
(
L̂vm

)
(2)

B. CONDITIONAL DISTRIB. OF TEMPORAL AND
TRIP DISTANCES
The temporal dependencies of daily trips performed by a
residence are described here based on the conditional distri-
bution of the arrival time tArr

d of the dth daily trip given the

upstream departure time tDep
d and the conditional distribution

of the departure time tDep
d+1 of the (d + 1)th daily trip given

the upstream tArr
d . The historic departure time observed on

weekdays (or weekends) is first divided into hourly segments
across 24 hours of a day, with the accompanying temporal
distance (i.e., outdoor duration) to its subsequent arrival time
being calculated and modelled by a mixture of TPN distribu-
tions f D2A

tpn (·) which truncate the normal distributions to the
non-negative side [25]:

f D2A
tpn

(
T D2A

dh
|q j, λ j, σ j

)
=

Ntpn∑
j=1

q j

σ j · �
(
λ j
) · φ

(
T D2A

dh

σ j
− λ j

)

(3)
where T D2A

dh
is the temporal distance from the departure time

tDep
dh

within the hth (h = 1, . . . , 24) hourly segment on week-
days (or weekends) to its subsequent arrival time; q j is the
proportion of the jth ( j = 1, . . . , Ntpn) TPN component with
a shape parameter λ j and a scale parameter σ j ; and φ(·)
and �(·) are the PDF and cumulative distribution function
(CDF) of the standard normal distribution respectively. The
parameters (q j, λ j, σ j) of the mixture of TPN distributions are
estimated by the MLE based on the temporal distances that
accompany the tDep

dh
observations. Then the optimal number

of mixed TPN components is determined by minimising the
BIC as formulated by (4):

BICtpn = (
3 · Ntpn − 1

) · ln
(
Mdh

)− 2 · ln
(
L̂tpn

)
(4)

where Mdh and L̂tpn denote the number of tDep
dh

observations
and the maximised likelihood of their accompanying tempo-
ral distances, respectively. Similarly, (3) and (4) can be used
to estimate the distribution f A2D

tpn (·) of the temporal distance
T A2D

dh
(i.e., home parking duration) from the arrival time tArr

dh

within the hth hourly segment to its subsequent weekday (or
weekend) departure time. Then the temporal distance distri-
bution conditioning on the hourly segmented departure (or
arrival) time can be translated into the conditional distribu-
tion of the subsequent arrival (or departure) time by adding

the temporal distance onto the known departure (or arrival)
time. In addition, considering the non-negativity of daily trip
distances DDis

dh
, their distributions f Dis

tpn (·) conditioning on the

accompanying tDep
dh

are also differentiated between weekdays
and weekends and fitted by the mixed TPN models separately,
with the model parameters being estimated in a similar way to
those formulated by (3) and (4).

C. JOINT DISTRIB. OF OUTDOOR DURATION AND
TRIP DISTANCE
Even though the conditional distributions of daily outdoor
durations f̂ D2A

tpn (T D2A
dh

|·) and trip distances f̂ Dis
tpn (DDis

dh
|·) are

produced for the same hourly segmented departure time tDep
dh

in Section III-B, the random samples produced from their re-
spective marginal distributions cannot reflect the relationship
between their historic observations as given in Fig. 7. The
Copula function provides a way to describe the dependence
structure between multiple random variables by modelling
a joint distribution from their respective marginal distribu-
tions [26]. In order to introduce correlations into the random
samples of T D2A

dh
and DDis

dh
, the Clayton Copula C(·) is used

here to form their joint CDF by linking their marginal CDFs
F̂ D2A

tpn (T D2A
dh

|·) and F̂ Dis
tpn (DDis

dh
|·), with a focus on the modelling

of their tail dependencies [26]:

C
(

T D2A
dh

, DDis
dh

)

= max

(
F̂ D2A

tpn

(
T D2A

dh
|·
)−α + F̂ Dis

tpn

(
DDis

dh
|·
)−α − 1; 0

)−1/α

(5)

where the parameter α is estimated by fitting C(·) to the
empirical joint CDF of T D2A

dh
and DDis

dh
. Then the fitted Ĉ(·)

can be translated into a joint PDF by using:

f̂C
(

T D2A
dh

, DDis
dh

)
=

∂2Ĉ
(

T D2A
dh

, DDis
dh

)
∂F̂ D2A

tpn

(
T D2A

dh
|·
)

· ∂F̂ Dis
tpn

(
DDis

dh
|·
)

· f̂ D2A
tpn

(
T D2A

dh
|·
)

· f̂ Dis
tpn

(
DDis

dh
|·
)

(6)

from which the conditional PDF f̂ Dis
C (DDis

dh
|T̂ D2A

dh
) of DDis

dh

given an already sampled T̂ D2A
dh

can be derived, as formulated

by (7), and used to generate the D̂Dis
dh

samples that will be

correlated with T̂ D2A
dh

.

f̂ Dis
C

(
DDis

dh
|T̂ D2A

dh

)
=

∂2Ĉ
(

T̂ D2A
dh

, DDis
dh

)
∂F̂ D2A

tpn

(
T̂ D2A

dh
|·
)

· ∂F̂ Dis
tpn

(
DDis

dh
|·
)

· f̂ Dis
tpn

(
DDis

dh
|·
)

(7)

D. MCMC FOR DRIVING BEHAVIOUR SAMPLING
In order to incorporate the temporal dependency of daily trips
into the driving behaviour sampling, the MCMC simulation
[27], [28] which can sample multiple sequences of random
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FIGURE 9. Process of MCMC simulation for daily trip sequence sampling.

TABLE 1. PV Capacities (MW), Peak Residential Demands (MW), and
Numbers of EVs Connected at 11kV/0.415kV Substations

variables with the dependency of future states on current states
is used here to randomly produce the arrival (or departure)
time from its conditional distribution given the already sam-
pled upstream departure (or arrival) time. Fig. 9 illustrates
the process of the MCMC simulation for each driver which
initiates with tDep

d=1 randomly sampled from f̂vm(tDep
d=1|·) and

then moves to tArr
d and tDep

d+1 progressively according to the

associated temporal distance distributions f̂ D2A
tpn (T D2A

dh
|t̂Dep

dh
)

and f̂ A2D
tpn (T A2D

dh
|t̂ Arr

dh
) that are conditioning on the hourly

segmented t̂Dep
dh

and t̂ Arr
dh

respectively. Meanwhile, the travel

distance DDis
d associated with a daily trip departing at t̂Dep

dh
is

randomly sampled from its Copula-based conditional distribu-
tion f̂ Dis

C (DDis
dh

|T̂ D2A
dh

) given the already sampled T̂ D2A
dh

. In this
way, the temporal relationship between departure and arrival
time and the correlation between daily outdoor duration and
trip distance are introduced into the driving behaviour sam-
ples.

E. DISTRIBUTION NETWORK WITH EV INTEGRATION
The community-scale vehicle electrification is simulated here
in the context of the Education City Community, Doha,
which is powered by the local 11 kV distribution network, as
shown in Fig. 10. The network imports electricity from the
upstream 66 kV grid and distributes across 11kV/0.415kV
substations where 0.05 MW photovoltaic (PV) generators
and residential housings are connected [29]. Table 1 tabu-
lates PV generator capacities, peak residential demands and
potential numbers of EVs that are integrated with different
11kV/0.415kV substations, totaling 0.64 MW, 20.686 MW

FIGURE 10. Local 11 kV distribution network supporting the education city
community, Doha, Qatar.

FIGURE 11. Typical daily profiles of normalised residential demands and
PV power outputs in hot seasons.

and 364 EVs respectively. The time series of residential de-
mands and available PV power outputs at each substation
across 24 hours of a day are synthesised here based on their
peaks and capacities in combination with their respective nor-
malised typical daily profiles characterised for hot seasons, as
shown in Fig. 11.

The driving behaviour of each EV is randomly produced
by the MCMC simulation for 2 × 104 consecutive daily trips
in order to ensure the convergence. The samples of daily trip
distances are then translated into daily energy usages by the
average fuel consumption at 43 oC in Fig. 6, based on which
the energy left in EV batteries at the subsequent arrival time
is updated. Then the charging profiles of EV batteries with
a 90% charging efficiency are estimated to follow a 22 kW
or 7 kW nominal rate under a particular CC-CV regulation
[20] until it is fully charged or meets the subsequent depar-
ture time, depending on which comes first. Furthermore, it is
assumed that the plugged EVs additionally consume 1.5 kW
for continuous battery cooling (based on the heating demand
study conducted in [30], which is assumed to be equivalent).
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FIGURE 12. Demand curve (kW) of a drained EV under the 7 kW-based
CC-CV regulation in time or SoC domain.

Fig. 12 shows a typical demand curve of a fully drained EV
comprising the cooling and communication consumption and
the 7 kW-based CC-CV charging profile in the time domain
or the state of charge (SoC) domain respectively where the
battery enters the CV stage when its SoC reaches 80% at
around 8 hr. Finally, the power demands of EVs parking at
home are added onto the net residential demands (i.e., the rises
of existing residential demands above PV outputs), with their
impacts on power flows and voltage profiles across the local
network being quantified by solving the active and reactive
power balance equations for all the network buses in each
15-minute period [31]:

Pb =
Nb∑

β=1

|Vb|
∣∣Vβ

∣∣ (Gbβ · cos �bβ + Bbβ · sin �bβ
) ∀b (8)

Qb =
Nb∑

β=1

|Vb|
∣∣Vβ

∣∣ (Gbβ · sin �bβ − Bbβ · cos �bβ
) ∀b (9)

where Vb, Pb and Qb are the voltage, net active and reactive
power injected at the bus b (b = 1, . . . , Nb), respectively; Gbβ

and Bbβ are the real and imaginary parts of the element in
the bus admittance matrix corresponding to the buses b and
β; and �bβ denotes the voltage angle difference between bus
b and bus β. The power flows and voltage profiles across
the network will be compared with the network capacities
and voltage limits (i.e., 100%±5% of the nominal voltage
levels) respectively to perform a steady-state evaluation on
the feasibility of the community-scale vehicle electrification
at the Education City Community.

IV. RESULTS AND MODEL VALIDATION
The driving behaviour modelling and the electric network
simulation are carried out using MATLAB [32]. In addition,
the electric network status with EV integration is estimated
in conjunction with MATPOWER [33]. This section first vali-
dates the MCMC-based daily trip samples based on historic
observations, and then evaluates the community-scale EV
power demand profiles, followed by discussing their potential
influences on the local network.

FIGURE 13. Independent PDFs of weekday departure time modelled by
one, four and six VM components.

FIGURE 14. BIC and the maximised log-likelihood obtained by different
numbers of VM components for the weekday departure time modelling.

FIGURE 15. Empirical conditional distributions of daily outdoor durations
(hour) and trip distances (km) of weekday trips departing over 8 am-9 am
and their modelling by a mixture of two or four TPN components.

A. DETERMINATION OF MIXED VM AND TPN MODELS
Fig. 13 shows the independent distributions of weekday de-
parture time fitted by one, four, and six VM components
respectively. Although a higher number of VM components
captures more departure time peaks and gives a better dis-
tribution fitting, the use of excessive VM components might
cause an over-fitting problem and increase the BIC, as shown
in Fig. 14. Therefore, a mixture of four VM components
resulting in the smallest BIC with a reasonably high likelihood
is adopted here to model the departure time distribution of the
first daily trip.

The BIC level examination is also applied to different
mixed TPN models which form the distributions of daily trip
distance or temporal distance conditioning on each hourly
segmented departure or arrival time. Although a mixture of
three or four TPN components are required to provide a better
fitting for some particular distributions, a single TPN or a
combination of two TPN components is evaluated to achieve
the lowest BIC for most distributions. For example, Fig. 15
shows the empirical and modelled conditional distributions of
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FIGURE 16. Convergence of averages and standard deviations of daily
outdoor durations (hour) and trip distances (km) for weekday trips
departing over 8 am–9 am and home parking durations (hour) starting over
8 pm–9 pm before weekday trips to their respective observation-based
levels.

daily outdoor durations and trip distances respectively for the
weekday trips that depart over 8 am–9 am. The use of four
TPN components captures more data clusters and generates
the log-likelihood values of about 171.8 for outdoor duration
and −881 for trip distance, which are slightly greater than
those that are achieved by mixing two TPN components,
i.e., 165.6 and −884.8 respectively. However, the mixture of
four TPN components using more parameters eventually leads
to greater BIC levels (i.e., −286.3 for outdoor duration and
1819.3 for trip distance) than the use of two TPN components
which has corresponding BIC levels of −305.1 and 1795.6.
According to the indication of the BIC, the mixed TPN models
having the best trade-off in the number of components are
selected for the MCMC-based daily trip simulation.

B. VALIDATION OF DRIVING BEHAVIOUR SIMULATION
The driving behaviour sampled for the 364 vehicles over
2 × 104 daily trips (or iterations) are examined here to vali-
date the effectiveness of the MCMC-based simulation. Fig. 16
show the variations of averages and standard deviations of out-
door durations and travel distances for weekday trip samples
departing over 8 am–9 am and those of the home parking dura-
tion samples that start over 8 pm–9 pm prior to weekday trips
respectively when the number of iterations increases towards
2 × 104. The averages and standard deviations gradually con-
verge to their respective observation-based levels by up to 1

FIGURE 17. Distributions of MCMC samples or observations of departure
and arrival time for weekday and weekend trips.

× 104 iterations and then stabilize till the end of 2 × 104

iterations. However, there still exists slight differences in stan-
dard deviations between samples and observations, mainly
due to the fact that the associated conditional distributions are
smoothed by the TPN models which aim to derive a general
driving behaviour from the limited number of participants (see
Fig. 15).

The smoothing effects of the mixed TPN models are also
reflected in the distributions of departure and arrival time that
are linked via temporal distance samples, as shown in Fig. 17
respectively. Although the MCMC samples reflect departure
and arrival time distributions on average, especially the depar-
ture time shift between weekdays and weekends, they cannot
fully depict some particular peak periods such as departure
time clusters over 6 am–7 am on weekdays or 11 am–12 pm
on weekends and arrival time clusters over 8 pm–9 pm. The
issues associated with the smoothing effects can be addressed
by generating MCMC samples from empirical distributions of
temporal distances directly, though this would highlight the
specific driving behaviour of the limited participants in the
resulting MCMC samples. Provided with the collection of a
sufficient number of daily trip data from diverse participants
in further work, the mismatch between random samples and
observations found here due to the smoothing effects could be
mitigated.

In addition to linking departure time with arrival time, the
daily outdoor duration sample itself must be correlated with
the daily trip distance to reflect their relationship implied in
observations. By employing the Copula to produce their joint
distributions from observations, as shown in Fig. 18(a) for
weekday trips departing over 8 am–9 am, the trip distance is
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FIGURE 18. (a) Copula-based joint distribution of daily outdoor duration
(hour) and trip distance (km) for weekday trips departing over 8 am–9 am
and (b) the resulting sample pairs against the observations or unpaired
samples.

randomly generated from its Copula-based conditional distri-
bution given an already sampled outdoor duration. Fig. 18(b)
shows that the Copula-based samples of outdoor duration and
trip distance generally comply with the relationship of the
observed data pairs. Compared with the unpaired samples of
daily outdoor duration and trip distance which are indepen-
dently produced from their respective marginal distributions
and have a linear correlation coefficient of almost zero, the
Copula-based sample pairs achieve a positive correlation co-
efficient of 0.32 which is close to the observed coefficient
of 0.42. The slight difference in correlation coefficient is in
part due to the smoothing effects of the Copula and the TPN
models, as was noted above, and expected to be reduced with
the number of daily trip records.

C. IMPACT OF EV INTEGRATION ON LOCAL NETWORK
Given that the MCMC process converges by up to 1 × 104

iterations (equivalent to about 30 simulation years) in this
work, the daily trip sequences generated for the 364 EVs
over 30 simulation years are translated into their respective
demand profiles based on 22 kW or 7 kW nominal charge rates
respectively, as shown in Fig. 19 for five particular EVs over
two consecutive simulation days. The use of the 7 kW nominal
rate is shown to cause a longer charging period, presenting a
certain risk of not being fully charged before departure. It is
evaluated that the EV batteries would reach at least 80% and
100% SoC before departure for 99.9% and 97.3% of daily
trips respectively when the 7 kW nominal rate is adopted.
For the use of the 22 kW nominal rate, the number of daily

FIGURE 19. Individual demand profiles (kW) of five particular EVs over
two consecutive simulation days based on 22 kW or 7 kW nominal charge
rates.

FIGURE 20. Distributions of EV demand profiles (MW) on weekdays and
weekends under 22 kW or 7 kW nominal rates based on 30 simulation
years.

trips that the pre-departure SoC is lower than 80% or 100% is
reduced to 0 or 3 out of about 4 million daily trips.

To understand the overall demand scale of the 364 EVs
within the community, the distribution of their aggregate de-
mands at each 15-minutes of a weekday or a weekend is
estimated from the 30-year simulation, as shown in Fig. 20.
The EV demand profiles generally increase with the EV ar-
rival in the evening, and then decrease to around 0.55 MW
which supplies the battery cooling for the 364 EVs before
morning departure. When most of the EVs depart from home
in the daytime, the aggregate EV demands continue dropping.
Noticeable differences in EV demand profiles between week-
days and weekends are observed over 6 am–1 pm mainly due
to the battery cooling and communication consumptions for
the EVs that leave home later on weekends (see Fig. 17).
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FIGURE 21. Distributions of the highest loads (MVA) on 11kV/0.415kV
transformers at each 15-minutes of weekdays and weekends based on 22
or 7 kW nominal charge rates.

Furthermore, due to the non-concurrent charging phases of
EVs, their aggregate demand profiles never exceed 1.7 MW
(or 1.4 MW) which is equivalent to around 77 (or 200) EVs
being simultaneously charged at 22 kW (or 7 KW) nominal
rates. In addition, the aggregate EV demand distributions esti-
mated based on the 7 kW nominal rates are more concentrated
and thus more predictable than those for the 22 kW nominal
rates, which will benefit the management of EV integration
with local networks. Given the low probability of partial
charge events in this work, the 7 kW nominal rates would
be preferred for more predictable EV demands and reduced
battery degradation [34].

In order to assess the potential impacts of EV integration
on the local network, the individual demand profiles of
the EVs connected to a common 11kV/0.415kV substation
(see Table 1) are added onto the existing net demand profile
of the substation to simulate steady-state power flows and
voltage profiles across the network at each 15-minutes. Since
the 11kV/0.415kV substations with 2.5 MVA transformers are
the critical network branches that suffer from the severest
voltage drops and the heaviest loads relative to branch capac-
ities, the possible ranges of the highest loads and the greatest
voltage deviations occurring at the 11kV/0.415kV transform-
ers are estimated here for each 15-minutes of a weekday
or a weekend based on the 30-year simulation, as shown in
Figs. 21 and 22 respectively. Fig. 21 also shows the greatest
transformer loading profile estimated without EV integration,
compared with which the connection of EVs would increase
the transformer loads by up to 0.2 MVA only. The relatively

FIGURE 22. Distributions of the largest voltage deviations (%) on
secondary sides of 11kV/0.415kV transformers at each 15-minutes of
weekdays and weekends based on 22 or 7 kW nominal charge rates.

small load growths can not only be met by the capacity head-
room of the transformers but will also lead to insignificant
reductions in the secondary voltage levels of the transformers
which are well kept within the 5% limits (see Fig. 22). There-
fore, the community-scale vehicle electrification investigated
here can be handled by the local network without rein-
forcements, especially when 7 kW nominal charge rates are
selected.

V. CONCLUSION
The ability of electricity distribution networks to support lo-
cal community-scale vehicle electrification must be assessed
prior to deciding the network upgrades required to accommo-
date home charging electric vehicle demands. Accordingly,
this article has developed a data-driven method to randomly
sample daily trip sequences for the residential EVs based
on the vehicle mobility data recorded by in-car diagnostic
devices in Doha, Qatar. This particular case demonstrates
learnings for regions where high per km energy consump-
tions of journeys may be common and will elongate peaks
resulting from charging. The mixed von Mises models have
been used to articulate the independent distribution of depar-
ture time from home due to its circular nature, whereas the
distributions of daily trip distances and temporal distances
between departure and arrival time conditioning on the hourly
segmented departure or arrival time are fitted by the mixed
truncated positive normal models due to their non-negativity.
Furthermore, the correlations between daily trip distances and
outdoor durations implied in historic records have been in-
corporated into their sample pairs via the Clayton Copula.
In the main, the sequence of daily trip samples generated
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through the Markov chain Monte Carlo process has reflected
the average driving behaviour of the participants observed
on weekdays and weekends. However, slight deviations still
exist in the departure/arrival time distributions and the conver-
gence of temporal/trip distances due to the smoothing effects
of the mixture models which could be mitigated by fitting
them to more vehicle mobility data measured from diverse
drivers.

Based on 22 kW or 7 kW nominal charge rates combined
with 1.5 kW additional consumptions for battery cooling and
communication, the daily trip sequence samples comprising
departure/arrival time and trip distance (or equivalent energy
usage) over 30 simulation years have been converted into
the power demand profiles for 364 EVs within a particu-
lar community. Compared with the 22 kW nominal rates
which almost always allow EVs to be fully charged before
departure, the 7 kW nominal rates would lead to a 100%
pre-departure state of charge for around 97.3% of daily trips.
However, the 7 kW nominal rates have reduced the demand
magnitudes and increased the predictability of aggregate EV
demand profiles, and would be preferable here from an EV
battery health perspective. The reductions in EV demands
have also alleviated the growths of power flows and voltage
deviations at the critical branches within the local network
which would accommodate the EV integration without rein-
forcements. This is mainly because the power networks in
Qatar are recent installations which have enough spare capac-
ity to host additional demands [35]. The power flow study was
conducted here for the summer case to examine the worst-
case scenarios. During mild winter months, the distribution
network is not expected to be strained to the same extent as
the load on the network is significantly lower than the summer
season [35].

Provided with sufficient vehicle mobility data from diverse
participants, the proposed data-driven methods for the driving
behaviour modelling will be enhanced to distinguish the daily
trip characteristics for each day of a week in future work.
Furthermore, the mobility data for the vehicles within the
community, together with the changes of EV fuel consump-
tions with time-varying air temperature and diverse driving
performance of residents, will be considered to perform a
more localised assessment on community-scale vehicle elec-
trification. In addition, future work will exploit the role of EVs
in demand side management by smoothing the power import
from the upstream grid and/or reducing electricity costs for
EV charging.
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