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2 Polynomial Matrics: What are they & where to the arise?

1. Overview
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◮ filter banks: polyphase analysis and synthesis matrices
◮ array processing/statistics: space-time covariance matrices

3. Polynomial Matrix Basic Operations and Properties

4. ’Standard’ Multichannel Broadband Processing

5. Polynomial matrix formulation of broadband problems
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2.1 What is a Polynomial Matrix?

◮ A polynomial matrix is a polynomial with matrix-valued coefficients [14, 19], e.g.:

A(z) =

[

1 −1
−1 2

]

+

[

1 1
1 −1

]

z−1 +

[

−1 2
1 −1

]

z−2 ; (1)

◮ a polynomial matrix can equivalently be understood a matrix with polynomial entries,
i.e.

A(z) =

[

1 + z−1 − z−2 −1 + z−1 + 2z−2

−1 + z−1 + z−2 2− z−1 − z−2

]

; (2)

◮ more generally, we will be looking at matrices of (analytic) functions.
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Where Do Polynomial Matrices Arise?

◮ A multiple-input multiple-output (MIMO) system could be made up of a
number of finite impulse response (FIR) channels:

+h11[n]

h21[n]

h12[n]

h22[n] +

y1[n]

y2[n]

x1[n]

x2[n]

◮ writing this as a matrix of impulse responses:

H[n] =

[

h11[n] h12[n]

h21[n] h22[n]

]

. (3)
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Transfer Function of a MIMO System
◮ Example for MIMO matrix H[n] of impulse responses:
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◮ the transfer function of this MIMO system is a polynomial matrix [21, 31]:

H(z) =
∞
∑

n=−∞

H[n]z−1 or H(z) •—◦ H[n] (4)

.
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Analysis Filter Bank

◮ Critically decimated
K-channel analysis filter
bank [32, 33, 13]:

H1(z)

H2(z)

HK(z)

↓K

↓K

...

↓K

◮ equivalent polyphase representation:

z
−1

z
−1

↓K

↓K

↓K











H1,1(z) . . . H1,K(z)
H2,1(z) . . . H2,K(z)

...
...

HK,1(z) . . . HK,K(z)











H(z) =
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Polyphase Analysis Matrix
◮ With the K-fold polyphase decomposition of the analysis filters

Hk(z) =
K
∑

n=1

Hk,n(z
K)z−n+1 (5)

hk[n]

n

K = 4

◮ the polyphase analysis matrix is a polynomial matrix [33, 35]:

H(z) =











H1,1(z) H1,2(z) . . . H1,K(z)
H2,1(z) H2,2(z) . . . H2,K(z)

...
...

. . .
...

HK,1(z) HK,2(z) . . . HK,K(z)











(6)
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Synthesis Filter Bank

◮ Critically decimated
K-channel synthesis filter
bank:

◮ equivalent polyphase
representation [11, 13, 33]:

↑K

↑K

↑K

G1(z)

G2(z)

GK(z)

...

+

+











G1,1(z) . . . G1,K(z)
G2,1(z) . . . G2,K(z)

...
...

GK,1(z) . . . GK,K(z)











G(z) =

...

+

+

z−1

z−1

↑K

↑K

↑K
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Polyphase Synthesis Matrix

◮ Analoguous to analysis filter bank, the synthesis filters Gk(z) can be split
into K polyphase components, creating a polyphse synthesis matrix

G(z) =











G1,1(z) G1,2(z) . . . G1,K(z)
G2,1(z) G2,2(z) . . . G2,K(z)

...
...

. . .
...

GK,1(z) GK,2(z) . . . GK,K(z)











; (7)

◮ operating analysis and synthesis back-to-back, perfect reconstruction is achieved if

G(z)H(z) = I ; (8)

◮ i.e. for perfect reconstruction, the polyphase analysis matrix must be invertible:

G(z) = H−1(z) . (9)
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Space-Time Covariance Matrix

◮ Measurements obtained from M sensors are collected in a
vector x[n] ∈ C

M :
xT[n] = [x1[n] x2[n] . . . xM [n]] ; (10)

◮ with the expectation operator E{·}, the spatial correlation is captured by
R = E

{

x[n]xH[n]
}

;

◮ for spatial and temporal correlation, we require a space-time covariance
matrix [20, 23, 33, 39, 40, 45, 42]:

R[τ ] = E
{

x[n]xH[n− τ ]
}

; (11)

◮ this space-time covariance matrix contains auto- and cross-correlation terms, e.g. for
M = 2

R[τ ] =

[

E{x1[n]x
∗
1[n− τ ]} E{x1[n]x

∗
2[n− τ ]}

E{x2[n]x
∗
1[n− τ ]} E{x2[n]x

∗
2[n− τ ]}

]

. (12)
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Cross-Spectral Density Matrix
◮ example for a space-time covariance matrix R[τ ] ∈ R

2×2:
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◮ the cross-spectral density (CSD) matrix contains (Laurent) polynomials:

R(z) =
∑

τ

R[τ ]z−τ or short R(z) •—◦ R[τ ] . (13)
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3 Polynomial Matrix Basic Operations and Properties

1. Overview

2. What are polynomial matrices & where do they occur?

3. Polynomial Matrix Basic Operations and Properties

3.1 polynomial matrix operations;

3.2 polynomial matrix properties;

3.3 some properties of analytic functions;

3.4 arithmetic operations

4. ’Standard’ Multichannel Broadband Processing

5. Polynomial matrix formulation of broadband problems

6. Summary
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3.1 Parahermitian Operator

◮ A parahermitian operation is indicated by {·}P, and compared to the
Hermitian transposition of a matrix additionally performs a time-reversal;

◮ example:

A(z) =










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

◮ parahermitian AP(z) = {A(1/z∗)}H:

AP(z) =










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1










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3.2 Parahermitian Property

◮ A polynomial matrix R(z) is parahermitian if RP(z) = RH(1/z∗) = R(z);

◮ this is an extension of the symmetric (if R ∈ R) or or Hermitian (if R ∈ C)
property to the polynomial case:
transposition, complex conjugation and time reversal (in any order) do not alter a
parahermitian R(z);

◮ any CSD matrix is parahermitian;

◮ example:

R(z) =





















−2 −1 0 1 2
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















= RP(z) .
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Paraunitary Matrices

◮ Recall that A ∈ C (or A ∈ R) is a unitary (or orthonormal) matrix if
AAH = AHA = I;

◮ in the polynomial case, A(z) is paraunitary if

A(z)AP(z) = AP(z)A(z) = I ; (14)

◮ therefore, if A(z) is paraunitary, then the polynomial matrix inverse is simple:

A−1(z) = AP(z) ; (15)

◮ example: polyphase analysis or synthesis matrices of perfectly reconstructing (or
lossless) filter banks are usually paraunitary.
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3.3 Matrix-Valued Polynomials and Power Series

◮ A power series a(z) arises as the z-transform

a(z) =
∑

n

a[n]z−n or short a(z) •—◦ a[n] , (16)

◮ for a(z) to exist as a power series, a[n] must be
causal: a[n] = 0 ∀n < 0;
absolutely convergent:

∑

n |a[n]| < ∞

◮ absolute convergence implies that a[n] decays at least as fast as an exponential
function;

◮ a polynomial is a power series, but of finite length;

◮ polynomials or power series can form the entries of a matrix A(z).
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Example of a Power Series
◮ For the geometric series

a[n] =

{

0, n < 0
(12)

n, n ≥ 0
(17)

we have

∑

n

|a[n]| = 1 +
1

2
+

1

4
+

1

8
+ · · · = 2 < ∞ ; (18)

◮ therefore a[n] is an absolutely convergent power series, and a(z) exists as an analytic
function;

◮ here, for a(z):

a(z) = 1 +
1

2
z−1 +

1

4
z−2 +

1

8
z−3 + . . . =

1

1− 1
2z

−1
; (19)

◮ this looks like the transfer function of a causal infinite impulse response (IIR) filter.
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Laurent Series and Laurent Polynomials

◮ A Laurent series a[n] is potentially infinite, but can include non-negative
terms for both n ≥ 0 and n < 0;

◮ for a(z) •—◦ a[n] to exist, a[n] needs to decay at least exponentially in both positive
and negative time direction [1];

a[n]

n

0

1

2

3

4

5

-1-2-3-4-5

( 4
5
)n

( 1
2
)|n|

◮ if it possesses finite support, a(z) is a Laurent polynomial.
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Analyticity and Polynomial Approximation

◮ Absolute convergence of a[n] implies analyticity of a(z) •—◦ a[n];

◮ the best approximation of an infinite order, analytic a(z) in the least squares
sense is by truncation (power series −→ polynomial) [9, 10, 42];

◮ likewise, a Laurent series can be approximated by a polynomial through truncation
(−→ Laurent polynomial) and an appropriate delay (−→ polymomial) [45];

â[n− 1]

n

0 1

2

3

4

5-1-2-3-4

6

◮ hence polynomials can typically approximate any general analytic function well, and
arbitrarily closely.
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Arithmetic Operations — Attempt of Gaussian Elimination
◮ System of polynomial equations:

[

A11(z) A12(z)
A21(z) A22(z)

]

·

[

X1(z)
X2(z)

]

=

[

B1(z)
B2(z)

]

(20)

◮ modification of 2nd row (provided no division by spectral zeros):
[

A11(z) A12(z)

A11(z)
A11(z)
A21(z)

A22(z)

]

·

[

X1(z)
X2(z)

]

=

[

B1(z)
A11(z)
A21(z)

B2(z)

]

(21)

◮ upper triangular form by subtracting 1st row from 2nd:
[

A11(z) A12(z)

0 A11(z)A22(z)−A12(z)A21(z)
A21(z)

]

·

[

X1(z)
X2(z)

]

=

[

B1(z)
B̄2(z)

]

(22)

◮ we end up with rational functions; through delay and truncation, these can be
arbitrarily closely approximated by polynomials.
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4. ’Standard’ Multichannel Broadband Processing

1. Overview

2. What are polynomial matrices & where do they occur?

3. Basic properties and operations

4. ’Standard’ Multichannel Broadband Processing

4.1 narrowband vs broadband

4.2 tap delay line processing

4.3 DFT bin-wise processing

5. Polynomial matrix formulation of broadband problems

6. Summary
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4.1 Narrowband vs Broadband

◮ Assume as source a bandpass signals u(t) of finite bandwidth ωb

and with centre frequency ωc:

F{ũ(t)} F{u(t)}

ω

ωc

ωb

0

◮ using a baseband representation

u(t) = ũ(t) · ejωct , (23)

with ũ(t) the baseband signal.
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Narrowband Assumption

◮ Narrowband: propagation delay across the array must be small w.r.t. any
changes in the baseband signal ũ(t) (or of the envelope of u(t));
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Received Narrowband Array Signal
◮ An array receives a single modulated bandpass signal u(t):

x(t) =







u(t− τ1)
...

u(t− τM )






=







ũ(t− τ1)
...

ũ(t− τM )






·







ejωc(t−τ1)

...

ejωc(t−τM )







≈ ũ(t− τ1)e
jωct







e−jωcτ1

...
e−jωcτM






= ũ(t− τ1)e

jωctsϑ,ωc

◮ after sampling: x[n] = ũ[n] · ejωcτ1 · sϑℓ,Ωc
;

◮ for the covariance matrix:

R = E
{

x[n]xH[n]
}

= E{ũ[n]ũ∗[n]} sϑ,Ωc
sHϑℓ,Ωc

= σ2sϑ,Ωc
sHϑ,Ωc

.

x1[n]u[n] 25/45



Narrowband Assumption — Limits

◮ For L independent source signals, E{ũℓ[n]ũ
∗
k[n]} = 0 for ℓ 6= k;

therefore in the noise-free case:

R =
L
∑

ℓ=1

σ2
ℓ sϑℓ,Ωc

sHϑℓ,Ωc
; (24)

◮ this matrix has rank L as long as the steering vectors sϑℓ,Ωc
are linearly independent;

◮ when is the narrowband assumption violated?

◮ rank{R} > L [50];

◮ signals at opposite ends of the array are no longer fully correlated [7];

◮ can be tied to performance of processing [8, 24, 25, 36];

◮ rule of thumb: fractional bandwidth ωb/ωc exceeds 5%;

◮ “it’s broadband when you need a tap delay line” (John McWhirter).
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Broadband Case

◮ In the broadband case, the signal u[n] experiences
propagation delays, which need to be explicitly
accounted:

x[n] = u[n] ∗







fτ1 [n]
...

fτM [n]






= u[n] ∗ a[n] (25)

◮ a[n] is a broadband steering vector [2, 3, 23, 38];

◮ e.g. coherent combining requires explicit (fractional)
delay filters; phase shifts are insufficient;

x1[n]

x2[n]

xM [n]

u[n]

◮ broadband nature requires a space-time covariance matrix

R[τ ] = E
{

x[n]xH[n− τ ]
}

= ruu[τ ] ∗ a[τ ] ∗ a
H[−τ ] . (26)
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4.2 Tap Delay Line Processing
◮ A window of T samples can be used for filtering each channel [6, 34, 23]:

z−1 z−1 z−1

z−1 z−1 z−1

z−1 z−1 z−1

x1[n]

x2[n]

xM [n]

x1[n− 1]

x2[n− 1]

xM [n− 1]

x1[n− T + 1]

x2[n− T + 1]

xM [n− T + 1]

...
...

◮ e.g. implementation of fractional delay filters for coherent signal alignment [18, 27].
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Tap Delay Line and Covariance Matrix

◮ Spatio-temporal data vector:

χ[n] =
[

xT[n], xT[n− 1], . . . xT[n− T + 1]
]T

; (27)

◮ the associated covariance matrix

Rχ = E
{

χ[n]χH[n]
}

=













R[0] R[1] . . . R[T − 1]

R[−1] R[0]
...

...
. . .

...
R[1− T ] . . . . . . R[0]













(28)

contains samples of the space-time covariance R[τ ].
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TDL Processing and Challenges

◮ The selection of T should exceed the coherence time;

◮ otherwise signal correlations are missed, and the 2nd order statistics may be
insufficiently characterised [23];

◮ with Rχ, we have mixed time and spatial domains;

◮ eigenvalue decomposition, with partitioning into signal-plus-noise and noise-only
subspaces:

Rχ = [Qs Qn]

[

Λs

Λn

] [

QH
s

QH
n

]

(29)

◮ the number of dominant eigenvalues cannot be used for source enumeration;

◮ in case of a single source, Qs does not represent a steering vector of that source [23].
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4.3 Processing in DFT Bins

◮ DFT matrix W applied to each tap delay line yields

ξ[n] = (W ⊙ IT )χ[n] ; (30)

◮ covariance matrix:

Rξ = (W ⊙ IT )Rχ(W ⊙ IT )
H ; (31)

◮ this matrix is dense; regardless, often only a block-diagonal component is considered,
and processing is performed independently in frequency-bins;

◮ independent DFT-bin processing is inexpensive, but ignores spectral coherence [43]
and is suboptimal;

◮ cross-terms between bins can be introduced to achieve time-domain
optimality [17, 28, 12, 49, 47, 48] but increase computational cost.
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5. Polynomial Matrix Formulation of Broadband Problems

1. Overview

2. What are polynomial matrices & where do they occur?

3. Basic properties and operations

4. ’Standard’ Multichannel Broadband Processing

5. Polynomial Matrix Formulation of Broadband Problems

5.1 MIMO system decoupling

5.2 broadband steering vector

5.3 linearly constrained minimum variance beamforming

6. Summary

32/45



5.1 MIMO System Decoupling
◮ Aim: spatially decouple a channel by appropriate precoding and equalisation;

s1[n]

sN [n]

r1[n]

rM [n]H(z)

V (z) U
P(z)

RXchannelTX

◮ narrowband case — SVD [15]:

H = UΣVH ;

◮ spatial decoupling leads to optimality in
various senses [37];

◮ broadband case [5, 44]:

H(z) = U(z)Σ(z)V P(z) ;

◮ diagonalisation for all values of z (or all
values on the unit circle) [20, 22, 31, 30].
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5.2 Broadband Steering Vector

◮ Assume an array of M sensors, and
a single source u[n]:

x[n] =







a1[n]
...

aM [n]






∗ u[n] ;

◮ a[n] •—◦ a(z) is a broadband steering vector;

◮ it can contain fractional delay filters [18] or general
transfer functions;

u[n] x1[n]

x2[n]

xM [n]

a1[n]

a2[n]

aM [n]

◮ set of filters operating on the array signals:

wP(z) = [w1(z), w2(z), . . . wM (z)] . (32)
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Simplistic Beamforming
◮ Filtering to coherently combine u[n] and to suppress v[n]:

x1[n]

x2[n]

xM [n]

w1[n]

w2[n]

wM [n]

+ y[n]

v[n]

a[n]
u[n]

b[n]

◮ we want wP(z)a(z) = 1 and wP(z)b(z) = 0;
◮ narrowband case:

w =

[

aH

bH

]† [
1
0

]

;

◮ broadband case:

w(z) =

[

aP(z)
bP(z)

]† [
1
0

]

.
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5.3 Linearly Constrained Minimum Variance Beamforming

◮ To address unknown interferers, we
want to minimize the output power
subject to constraints (e.g. in look
direction):

[

aP(z)
bP(z)

]

w(z) =

[

1
0

]

;

x1[n]

x2[n]

xM [n]

w1[n]

w2[n]

wM [n]

+ y[n]

◮ narrowband case [16]:

min
w

wHRw s.t. Cw = f ;

◮ broadband case [38]:

min
w(z)

∮

|z|=1
wP(z)R(z)w(z)

dz

z

s.t. C(z)w(z) = f(z) .
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LCMV Solution

◮ Narrowband formulation [16]:

min
w

wHRw s.t. Cw = f ;

◮ broadband formulation [38]:

min
w(z)

∮

|z|=1
wP(z)R(z)w(z)

dz

z

s.t. C(z)w(z) = f(z) .

◮ narrowband solution:
Capon beamformer [29]:

wopt = R−1CH{CR−1CH}−1f ;

◮ broadband solution:
Capon equivalent [38, 4]:

wopt(z) = R−1(z)CP(z)·

{C(z)R−1(z)CP(z)}−1f(z) .
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6. Summary
◮ “Polynomial matrices” is simplistic for what potentially are Laurent series;

absolute convergence implies analyticity, and arbitrarily close approximations
can be obtained by polynomials of sufficient order;

◮ operations and properties:
real-valued complex-valued polynomial

transposition AT AH = (AT)∗ AP(z) = {A(1/z∗)}H

energy orthonormal unitary para-unitary

preservation A−1 = AT A−1 = AH A−1(z) = AP(z)

structure symmetric Hermitian para-Hermitian

AT = A AH = A AP(z) = A(z)
◮ using polynomial notation, broadband formulations generally just extend from the

narrowband case;
◮ to access solutions to polynomial matrix formulations, the eigenvalue decomposition

of a parahermitian R(z) •—◦ R[τ ] will be key;
◮ such an EVD must provide a diagonalisation for every value of z or for every lag

τ [20, 26, 39, 46, 41].
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