Applications of Polynomial Eigenvalue Decomposition to Multichannel Broadband Signal Processing Part 1: Background

Stephan Weiss
Department of Electronic \& Electrical Engineering
University of Strathclyde, Glasgow, Scotland
Tutorial at EUSIPCO 2023, Helsinki

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) Grant number EP/S000631/1 and the MOD University Defence Research Collaboration in Signal Processing.

Part I: Background

1. Overview
2. What are polynomial matrices \& where do they occur?
3. Basic properties and operations
4. 'Standard' multichannel broadband processing
5. Polynomial matrix formulation of broadband problems
6. Summary

2 Polynomial Matrics: What are they \& where to the arise?

1. Overview
2. What are polynomial matrices \& where do they occur?
2.1 basic definition;
2.2 common occurences:

- MIMO communications: matrices of transfer functions
- filter banks: polyphase analysis and synthesis matrices
- array processing/statistics: space-time covariance matrices

3. Polynomial Matrix Basic Operations and Properties
4. 'Standard' Multichannel Broadband Processing
5. Polynomial matrix formulation of broadband problems
6. Summary

2.1 What is a Polynomial Matrix?

- A polynomial matrix is a polynomial with matrix-valued coefficients [14, 19], e.g.:

$$
\boldsymbol{A}(z)=\left[\begin{array}{rr}
1 & -1 \tag{1}\\
-1 & 2
\end{array}\right]+\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] z^{-1}+\left[\begin{array}{rr}
-1 & 2 \\
1 & -1
\end{array}\right] z^{-2}
$$

- a polynomial matrix can equivalently be understood a matrix with polynomial entries, i.e.

$$
\boldsymbol{A}(z)=\left[\begin{array}{cc}
1+z^{-1}-z^{-2} & -1+z^{-1}+2 z^{-2} \tag{2}\\
-1+z^{-1}+z^{-2} & 2-z^{-1}-z^{-2}
\end{array}\right]
$$

- more generally, we will be looking at matrices of (analytic) functions.

Where Do Polynomial Matrices Arise?

- A multiple-input multiple-output (MIMO) system could be made up of a number of finite impulse response (FIR) channels:

- writing this as a matrix of impulse responses:

$$
\mathbf{H}[n]=\left[\begin{array}{ll}
h_{11}[n] & h_{12}[n] \tag{3}\\
h_{21}[n] & h_{22}[n]
\end{array}\right] .
$$

Transfer Function of a MIMO System

- Example for MIMO matrix $\mathbf{H}[n]$ of impulse responses:

- the transfer function of this MIMO system is a polynomial matrix [21,31]:

$$
\begin{equation*}
\boldsymbol{H}(z)=\sum_{n=-\infty}^{\infty} \mathbf{H}[n] z^{-1} \quad \text { or } \quad \boldsymbol{H}(z) \bullet \multimap \mathbf{H}[n] \tag{4}
\end{equation*}
$$

Analysis Filter Bank

- Critically decimated K-channel analysis filter bank [32, 33, 13]:
- equivalent polyphase representation:

Polyphase Analysis Matrix

- With the K-fold polyphase decomposition of the analysis filters

$$
\begin{equation*}
H_{k}(z)=\sum_{n=1}^{K} H_{k, n}\left(z^{K}\right) z^{-n+1} \tag{5}
\end{equation*}
$$

- the polyphase analysis matrix is a polynomial matrix $[33,35]$:

$$
\boldsymbol{H}(z)=\left[\begin{array}{cccc}
H_{1,1}(z) & H_{1,2}(z) & \ldots & H_{1, K}(z) \tag{6}\\
H_{2,1}(z) & H_{2,2}(z) & \ldots & H_{2, K}(z) \\
\vdots & \vdots & \ddots & \vdots \\
H_{K, 1}(z) & H_{K, 2}(z) & \ldots & H_{K, K}(z)
\end{array}\right]
$$

Synthesis Filter Bank

- Critically decimated K-channel synthesis filter bank:
- equivalent polyphase representation [11, 13, 33]:

Polyphase Synthesis Matrix

- Analoguous to analysis filter bank, the synthesis filters $G_{k}(z)$ can be split into K polyphase components, creating a polyphse synthesis matrix

$$
\boldsymbol{G}(z)=\left[\begin{array}{cccc}
G_{1,1}(z) & G_{1,2}(z) & \ldots & G_{1, K}(z) \tag{7}\\
G_{2,1}(z) & G_{2,2}(z) & \ldots & G_{2, K}(z) \\
\vdots & \vdots & \ddots & \vdots \\
G_{K, 1}(z) & G_{K, 2}(z) & \ldots & G_{K, K}(z)
\end{array}\right]
$$

- operating analysis and synthesis back-to-back, perfect reconstruction is achieved if

$$
\begin{equation*}
\boldsymbol{G}(z) \boldsymbol{H}(z)=\mathbf{I} \tag{8}
\end{equation*}
$$

- i.e. for perfect reconstruction, the polyphase analysis matrix must be invertible:

$$
\begin{equation*}
\boldsymbol{G}(z)=\boldsymbol{H}^{-1}(z) \tag{9}
\end{equation*}
$$

Space-Time Covariance Matrix

- Measurements obtained from M sensors are collected in a vector $\mathbf{x}[n] \in \mathbb{C}^{M}$:

$$
\begin{equation*}
\mathbf{x}^{\mathrm{T}}[n]=\left[x_{1}[n] \quad x_{2}[n] \ldots x_{M}[n]\right] ; \tag{10}
\end{equation*}
$$

- with the expectation operator $\mathcal{E}\{\cdot\}$, the spatial correlation is captured by $\mathbf{R}=\mathcal{E}\left\{\mathbf{x}[n] \mathbf{x}^{\mathrm{H}}[n]\right\} ;$
- for spatial and temporal correlation, we require a space-time covariance matrix $[20,23,33,39,40,45,42]$:

$$
\begin{equation*}
\mathbf{R}[\tau]=\mathcal{E}\left\{\mathbf{x}[n] \mathbf{x}^{\mathrm{H}}[n-\tau]\right\} ; \tag{11}
\end{equation*}
$$

- this space-time covariance matrix contains auto- and cross-correlation terms, e.g. for $M=2$

$$
\mathbf{R}[\tau]=\left[\begin{array}{ll}
\mathcal{E}\left\{x_{1}[n] x_{1}^{*}[n-\tau]\right\} & \mathcal{E}\left\{x_{1}[n] x_{2}^{*}[n-\tau]\right\} \tag{12}\\
\mathcal{E}\left\{x_{2}[n] x_{1}^{*}[n-\tau]\right\} & \mathcal{E}\left\{x_{2}[n] x_{2}^{*}[n-\tau]\right\}
\end{array}\right] .
$$

Cross-Spectral Density Matrix

- example for a space-time covariance matrix $\mathbf{R}[\tau] \in \mathbb{R}^{2 \times 2}$:

- the cross-spectral density (CSD) matrix contains (Laurent) polynomials:

$$
\begin{equation*}
\boldsymbol{R}(z)=\sum_{\tau} \mathbf{R}[\tau] z^{-\tau} \quad \text { or short } \quad \boldsymbol{R}(z) \bullet \multimap \mathbf{R}[\tau] . \tag{13}
\end{equation*}
$$

3 Polynomial Matrix Basic Operations and Properties

1. Overview
2. What are polynomial matrices \& where do they occur?
3. Polynomial Matrix Basic Operations and Properties
3.1 polynomial matrix operations;
3.2 polynomial matrix properties;
3.3 some properties of analytic functions;
3.4 arithmetic operations
4. 'Standard' Multichannel Broadband Processing
5. Polynomial matrix formulation of broadband problems
6. Summary

3.1 Parahermitian Operator

- A parahermitian operation is indicated by $\{\cdot\}^{\mathrm{P}}$, and compared to the Hermitian transposition of a matrix additionally performs a time-reversal;
- example:

- parahermitian $\boldsymbol{A}^{\mathrm{P}}(z)=\left\{\boldsymbol{A}\left(1 / z^{*}\right)\right\}^{\mathrm{H}}$:

3.2 Parahermitian Property

- A polynomial matrix $\boldsymbol{R}(z)$ is parahermitian if $\boldsymbol{R}^{\mathrm{P}}(z)=\boldsymbol{R}^{\mathrm{H}}\left(1 / z^{*}\right)=\boldsymbol{R}(z)$;
- this is an extension of the symmetric (if $\mathbf{R} \in \mathbb{R}$) or or Hermitian (if $\mathbf{R} \in \mathbb{C}$) property to the polynomial case:
transposition, complex conjugation and time reversal (in any order) do not alter a parahermitian $\boldsymbol{R}(z)$;
- any CSD matrix is parahermitian;
- example:

$$
=\boldsymbol{R}^{\mathrm{P}}(z)
$$

Paraunitary Matrices

- Recall that $\mathbf{A} \in \mathbb{C}$ (or $\mathbf{A} \in \mathbb{R}$) is a unitary (or orthonormal) matrix if $\mathbf{A} \mathbf{A}^{\mathrm{H}}=\mathbf{A}^{\mathrm{H}} \mathbf{A}=\mathbf{I}$;
- in the polynomial case, $\mathbf{A}(z)$ is paraunitary if

$$
\begin{equation*}
\boldsymbol{A}(z) \boldsymbol{A}^{\mathrm{P}}(z)=\boldsymbol{A}^{\mathrm{P}}(z) \boldsymbol{A}(z)=\mathbf{I} ; \tag{14}
\end{equation*}
$$

- therefore, if $\boldsymbol{A}(z)$ is paraunitary, then the polynomial matrix inverse is simple:

$$
\begin{equation*}
\boldsymbol{A}^{-1}(z)=\boldsymbol{A}^{\mathrm{P}}(z) \tag{15}
\end{equation*}
$$

- example: polyphase analysis or synthesis matrices of perfectly reconstructing (or lossless) filter banks are usually paraunitary.

3.3 Matrix-Valued Polynomials and Power Series

- A power series $a(z)$ arises as the z-transform

$$
\begin{equation*}
a(z)=\sum_{n} a[n] z^{-n} \quad \text { or } \quad \text { short } \quad a(z) \bullet \multimap a[n], \tag{16}
\end{equation*}
$$

- for $a(z)$ to exist as a power series, $a[n]$ must be causal: $a[n]=0 \forall n<0$; absolutely convergent: $\sum_{n}|a[n]|<\infty$
- absolute convergence implies that $a[n]$ decays at least as fast as an exponential function;
- a polynomial is a power series, but of finite length;
- polynomials or power series can form the entries of a matrix $\boldsymbol{A}(z)$.

Example of a Power Series

- For the geometric series

$$
a[n]=\left\{\begin{array}{rr}
0, & n<0 \\
\left(\frac{1}{2}\right)^{n}, & n \geq 0
\end{array}\right.
$$

we have

$$
\begin{equation*}
\sum_{n}|a[n]|=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots \quad=2<\infty \tag{18}
\end{equation*}
$$

- therefore $a[n]$ is an absolutely convergent power series, and $a(z)$ exists as an analytic function;
- here, for $a(z)$:

$$
\begin{equation*}
a(z)=1+\frac{1}{2} z^{-1}+\frac{1}{4} z^{-2}+\frac{1}{8} z^{-3}+\ldots \quad=\frac{1}{1-\frac{1}{2} z^{-1}} \tag{19}
\end{equation*}
$$

- this looks like the transfer function of a causal infinite impulse response (IIR) filter.

Laurent Series and Laurent Polynomials

- A Laurent series $a[n]$ is potentially infinite, but can include non-negative terms for both $n \geq 0$ and $n<0$;
- for $a(z) \bullet — a[n]$ to exist, $a[n]$ needs to decay at least exponentially in both positive and negative time direction [1];

- if it possesses finite support, $a(z)$ is a Laurent polynomial.

Analyticity and Polynomial Approximation

- Absolute convergence of $a[n]$ implies analyticity of $a(z) \bullet —<a[n]$;
- the best approximation of an infinite order, analytic $a(z)$ in the least squares sense is by truncation (power series \longrightarrow polynomial) [9, 10, 42];
- likewise, a Laurent series can be approximated by a polynomial through truncation (\longrightarrow Laurent polynomial) and an appropriate delay (\longrightarrow polymomial) [45];

- hence polynomials can typically approximate any general analytic function well, and arbitrarily closely.

Arithmetic Operations - Attempt of Gaussian Elimination

- System of polynomial equations:

$$
\left[\begin{array}{ll}
A_{11}(z) & A_{12}(z) \tag{20}\\
A_{21}(z) & A_{22}(z)
\end{array}\right] \cdot\left[\begin{array}{l}
X_{1}(z) \\
X_{2}(z)
\end{array}\right]=\left[\begin{array}{l}
B_{1}(z) \\
B_{2}(z)
\end{array}\right]
$$

- modification of 2 nd row (provided no division by spectral zeros):

$$
\left[\begin{array}{cc}
A_{11}(z) & A_{12}(z) \tag{21}\\
A_{11}(z) & \frac{A_{11}(z)}{A_{21}(z)} A_{22}(z)
\end{array}\right] \cdot\left[\begin{array}{c}
X_{1}(z) \\
X_{2}(z)
\end{array}\right]=\left[\begin{array}{c}
B_{1}(z) \\
\frac{A_{11}(z)}{A_{21}(z)} B_{2}(z)
\end{array}\right]
$$

- upper triangular form by subtracting 1st row from 2nd:

$$
\left[\begin{array}{cc}
A_{11}(z) & A_{12}(z) \tag{22}\\
0 & \frac{A_{11}(z) A_{22}(z)-A_{12}(z) A_{21}(z)}{A_{21}(z)}
\end{array}\right] \cdot\left[\begin{array}{l}
X_{1}(z) \\
X_{2}(z)
\end{array}\right]=\left[\begin{array}{c}
B_{1}(z) \\
\bar{B}_{2}(z)
\end{array}\right]
$$

- we end up with rational functions; through delay and truncation, these can be arbitrarily closely approximated by polynomials.

4. 'Standard' Multichannel Broadband Processing
5. Overview
6. What are polynomial matrices \& where do they occur?
7. Basic properties and operations
8. 'Standard' Multichannel Broadband Processing
4.1 narrowband vs broadband
4.2 tap delay line processing
4.3 DFT bin-wise processing
9. Polynomial matrix formulation of broadband problems
10. Summary

4.1 Narrowband vs Broadband

- Assume as source a bandpass signals $u(t)$ of finite bandwidth ω_{b} and with centre frequency ω_{c} :

- using a baseband representation

$$
\begin{equation*}
u(t)=\tilde{u}(t) \cdot \mathrm{e}^{\mathrm{j} \omega_{c} t} \tag{23}
\end{equation*}
$$

with $\tilde{u}(t)$ the baseband signal.

Narrowband Assumption

- Narrowband: propagation delay across the array must be small w.r.t. any changes in the baseband signal $\tilde{u}(t)$ (or of the envelope of $u(t)$);

Received Narrowband Array Signal

- An array receives a single modulated bandpass signal $u(t)$:

$$
\begin{aligned}
\mathbf{x}(t) & =\left[\begin{array}{c}
u\left(t-\tau_{1}\right) \\
\vdots \\
u\left(t-\tau_{M}\right)
\end{array}\right]=\left[\begin{array}{c}
\tilde{u}\left(t-\tau_{1}\right) \\
\vdots \\
\tilde{u}\left(t-\tau_{M}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
\mathrm{e}^{\mathrm{j} \omega_{\mathrm{c}}\left(t-\tau_{1}\right)} \\
\vdots \\
\mathrm{e}^{\mathrm{j} \omega_{\mathrm{c}}\left(t-\tau_{M}\right)}
\end{array}\right] \\
& \approx \tilde{u}\left(t-\tau_{1}\right) \mathrm{e}^{\mathrm{j} \omega_{\mathrm{c}} t}\left[\begin{array}{c}
\mathrm{e}^{-\mathrm{j} \omega_{\mathrm{c}} \tau_{1}} \\
\vdots \\
\mathrm{e}^{-\mathrm{j} \omega_{\mathrm{c}} \tau_{M}}
\end{array}\right]=\tilde{u}\left(t-\tau_{1}\right) \mathrm{e}^{\mathrm{j} \omega_{\mathrm{c}} t} \mathbf{s}_{\vartheta, \omega_{\mathrm{c}}}
\end{aligned}
$$

- after sampling: $\mathbf{x}[n]=\tilde{u}[n] \cdot \mathrm{e}^{\mathrm{j} \omega_{\mathrm{c}} \tau_{1}} \cdot \mathbf{s}_{\vartheta_{\ell}, \Omega_{\mathrm{c}}}$;
- for the covariance matrix:

$$
\mathbf{R}=\mathcal{E}\left\{\mathbf{x}[n] \mathbf{x}^{\mathrm{H}}[n]\right\}=\mathcal{E}\left\{\tilde{u}[n] \tilde{u}^{*}[n]\right\} \mathbf{s}_{\vartheta, \Omega_{\mathrm{c}}} \mathbf{s}_{\vartheta_{\ell}, \Omega_{\mathrm{c}}}^{\mathrm{H}}=\sigma^{2} \mathbf{s}_{\vartheta, \Omega_{\mathrm{c}}} \mathbf{s}_{\vartheta, \Omega_{\mathrm{c}}}^{\mathrm{H}} .
$$

Narrowband Assumption — Limits

- For L independent source signals, $\mathcal{E}\left\{\tilde{u}_{\ell}[n] \tilde{u}_{k}^{*}[n]\right\}=0$ for $\ell \neq k$;
therefore in the noise-free case:

$$
\begin{equation*}
\mathbf{R}=\sum_{\ell=1}^{L} \sigma_{\ell}^{2} \mathbf{s}_{\vartheta_{\ell}, \Omega_{\mathrm{c}}} \mathbf{s}_{\vartheta_{\ell}, \Omega_{\mathrm{c}}}^{\mathrm{H}} \tag{24}
\end{equation*}
$$

- this matrix has rank L as long as the steering vectors $\mathbf{s}_{\vartheta_{\ell}, \Omega_{\mathrm{c}}}$ are linearly independent;
- when is the narrowband assumption violated?
$-\operatorname{rank}\{\mathbf{R}\}>L$ [50];
- signals at opposite ends of the array are no longer fully correlated [7];
- can be tied to performance of processing [8,24,25,36];
- rule of thumb: fractional bandwidth $\omega_{\mathrm{b}} / \omega_{\mathrm{c}}$ exceeds 5%;
- "it's broadband when you need a tap delay line" (John McWhirter).

Broadband Case

- In the broadband case, the signal $u[n]$ experiences

University of
Strathclyde Engineering propagation delays, which need to be explicitly accounted:

$$
\mathbf{x}[n]=u[n] *\left[\begin{array}{c}
f_{\tau_{1}}[n] \tag{25}\\
\vdots \\
f_{\tau_{M}}[n]
\end{array}\right]=u[n] * \mathbf{a}[n]
$$

- $\mathbf{a}[n]$ is a broadband steering vector $[2,3,23,38]$;
- e.g. coherent combining requires explicit (fractional) delay filters; phase shifts are insufficient;
- broadband nature requires a space-time covariance matrix

$$
\begin{equation*}
\mathbf{R}[\tau]=\mathcal{E}\left\{\mathbf{x}[n] \mathbf{x}^{\mathrm{H}}[n-\tau]\right\}=r_{u u}[\tau] * \mathbf{a}[\tau] * \mathbf{a}^{\mathrm{H}}[-\tau] . \tag{26}
\end{equation*}
$$

4.2 Tap Delay Line Processing

- A window of T samples can be used for filtering each channel [$6,34,23]$:

- e.g. implementation of fractional delay filters for coherent signal alignment [18, 27].

Tap Delay Line and Covariance Matrix

- Spatio-temporal data vector:

$$
\begin{equation*}
\boldsymbol{\chi}[n]=\left[\mathbf{x}^{\mathrm{T}}[n], \quad \mathbf{x}^{\mathrm{T}}[n-1], \ldots \mathbf{x}^{\mathrm{T}}[n-T+1]\right]^{\mathrm{T}} \tag{27}
\end{equation*}
$$

- the associated covariance matrix

$$
\mathbf{R}_{\chi}=\mathcal{E}\left\{\chi[n] \chi^{\mathrm{H}}[n]\right\}=\left[\begin{array}{cccc}
\mathbf{R}[0] & \mathbf{R}[1] & \ldots & \mathbf{R}[T-1] \tag{28}\\
\mathbf{R}[-1] & \mathbf{R}[0] & & \vdots \\
\vdots & & \ddots & \vdots \\
\mathbf{R}[1-T] & \ldots & \ldots & \mathbf{R}[0]
\end{array}\right]
$$

contains samples of the space-time covariance $\mathbf{R}[\tau]$.

TDL Processing and Challenges

- The selection of T should exceed the coherence time;
- otherwise signal correlations are missed, and the 2nd order statistics may be insufficiently characterised [23];
- with \mathbf{R}_{χ}, we have mixed time and spatial domains;
- eigenvalue decomposition, with partitioning into signal-plus-noise and noise-only subspaces:

$$
\mathbf{R}_{\chi}=\left[\begin{array}{ll}
\mathbf{Q}_{\mathrm{s}} & \mathbf{Q}_{\mathrm{n}}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{\Lambda}_{\mathrm{s}} & \tag{29}\\
& \boldsymbol{\Lambda}_{\mathrm{n}}
\end{array}\right]\left[\begin{array}{l}
\mathbf{Q}_{\mathrm{s}}^{\mathrm{H}} \\
\mathbf{Q}_{\mathrm{n}}^{\mathrm{H}}
\end{array}\right]
$$

- the number of dominant eigenvalues cannot be used for source enumeration;
- in case of a single source, \mathbf{Q}_{S} does not represent a steering vector of that source [23].

4.3 Processing in DFT Bins

- DFT matrix W applied to each tap delay line yields

$$
\begin{equation*}
\boldsymbol{\xi}[n]=\left(\mathbf{W} \odot \mathbf{I}_{T}\right) \boldsymbol{\chi}[n] ; \tag{30}
\end{equation*}
$$

- covariance matrix:

$$
\begin{equation*}
\mathbf{R}_{\xi}=\left(\mathbf{W} \odot \mathbf{I}_{T}\right) \mathbf{R}_{\chi}\left(\mathbf{W} \odot \mathbf{I}_{T}\right)^{\mathrm{H}} \tag{31}
\end{equation*}
$$

- this matrix is dense; regardless, often only a block-diagonal component is considered, and processing is performed independently in frequency-bins;
- independent DFT-bin processing is inexpensive, but ignores spectral coherence [43] and is suboptimal;
- cross-terms between bins can be introduced to achieve time-domain optimality $[17,28,12,49,47,48]$ but increase computational cost.

5. Polynomial Matrix Formulation of Broadband Problems
6. Overview
7. What are polynomial matrices \& where do they occur?
8. Basic properties and operations
9. 'Standard' Multichannel Broadband Processing
10. Polynomial Matrix Formulation of Broadband Problems
5.1 MIMO system decoupling
5.2 broadband steering vector
5.3 linearly constrained minimum variance beamforming
11. Summary

5.1 MIMO System Decoupling

- Aim: spatially decouple a channel by appropriate precoding and equalisation;

- narrowband case - SVD [15]:

$$
\mathbf{H}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}}
$$

- spatial decoupling leads to optimality in various senses [37];
- broadband case [5, 44]:

$$
\boldsymbol{H}(z)=\boldsymbol{U}(z) \boldsymbol{\Sigma}(z) \boldsymbol{V}^{\mathrm{P}}(z)
$$

- diagonalisation for all values of z (or all values on the unit circle) $[20,22,31,30]$.

5.2 Broadband Steering Vector

- Assume an array of M sensors, and a single source $u[n]$:

$$
\mathbf{x}[n]=\left[\begin{array}{c}
a_{1}[n] \\
\vdots \\
a_{M}[n]
\end{array}\right] * u[n]
$$

- it can contain fractional delay filters [18] or general transfer functions;
- set of filters operating on the array signals:

$$
\begin{equation*}
\boldsymbol{w}^{\mathrm{P}}(z)=\left[w_{1}(z), w_{2}(z), \ldots w_{M}(z)\right] \tag{32}
\end{equation*}
$$

Simplistic Beamforming

- Filtering to coherently combine $u[n]$ and to suppress $v[n]$:

- we want $\boldsymbol{w}^{\mathrm{P}}(z) \boldsymbol{a}(z)=1$ and $\boldsymbol{w}^{\mathrm{P}}(z) \boldsymbol{b}(z)=0$;
- narrowband case:
- broadband case:

$$
\mathbf{w}=\left[\begin{array}{l}
\mathbf{a}^{\mathrm{H}} \\
\mathbf{b}^{\mathrm{H}}
\end{array}\right]^{\dagger}\left[\begin{array}{l}
1 \\
0
\end{array}\right] ; \quad \boldsymbol{w}(z)=\left[\begin{array}{l}
\mathbf{a}^{\mathrm{P}}(z) \\
\mathbf{b}^{\mathrm{P}}(z)
\end{array}\right]^{\dagger}\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

5.3 Linearly Constrained Minimum Variance Beamforming

- To address unknown interferers, we want to minimize the output power subject to constraints (e.g. in look direction):

$$
\left[\begin{array}{l}
\mathbf{a}^{\mathrm{P}}(z) \\
\mathbf{b}^{\mathrm{P}}(z)
\end{array}\right] \boldsymbol{w}(z)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] ;
$$

- narrowband case [16]:

$$
\min _{\mathbf{w}} \mathbf{w}^{\mathrm{H}} \mathbf{R w} \quad \text { s.t. } \mathbf{C w}=\mathbf{f} ;
$$

- broadband case [38]:

$$
\begin{aligned}
& \min _{\boldsymbol{w}(z)} \oint_{|z|=1} \boldsymbol{w}^{\mathrm{P}}(z) \boldsymbol{R}(z) \boldsymbol{w}(z) \frac{\mathrm{d} z}{z} \\
& \text { s.t. } \boldsymbol{C}(z) \boldsymbol{w}(z)=\boldsymbol{f}(z)
\end{aligned}
$$

LCMV Solution

- Narrowband formulation [16]:

$$
\min _{\mathbf{w}} \mathbf{w}^{\mathrm{H}} \mathbf{R w} \quad \text { s.t. } \mathbf{C w}=\mathbf{f} ;
$$

- narrowband solution:

Capon beamformer [29]:

$$
\mathbf{w}_{\mathrm{opt}}=\mathbf{R}^{-1} \mathbf{C}^{\mathrm{H}}\left\{\mathbf{C R}^{-1} \mathbf{C}^{\mathrm{H}}\right\}^{-1} \mathbf{f} ;
$$

- broadband formulation [38]:

$$
\begin{aligned}
& \min _{\boldsymbol{w}(z)} \oint_{|z|=1} \boldsymbol{w}^{\mathrm{P}}(z) \boldsymbol{R}(z) \boldsymbol{w}(z) \frac{\mathrm{d} z}{z} \\
& \text { s.t. } \boldsymbol{C}(z) \boldsymbol{w}(z)=\boldsymbol{f}(z) .
\end{aligned}
$$

- broadband solution:

Capon equivalent [38, 4]:

$$
\begin{aligned}
\boldsymbol{w}_{\mathrm{opt}}(z)= & \boldsymbol{R}^{-1}(z) \boldsymbol{C}^{\mathrm{P}}(z) \\
& \left\{\boldsymbol{C}(z) \boldsymbol{R}^{-1}(z) \mathbf{C}^{\mathrm{P}}(z)\right\}^{-1} \boldsymbol{f}(z) .
\end{aligned}
$$

6. Summary

- "Polynomial matrices" is simplistic for what potentially are Laurent series; absolute convergence implies analyticity, and arbitrarily close approximations can be obtained by polynomials of sufficient order;
- operations and properties:

	real-valued	complex-valued	polynomial
transposition	\mathbf{A}^{T}	$\mathbf{A}^{\mathrm{H}}=\left(\mathbf{A}^{\mathrm{T}}\right)^{*}$	$\boldsymbol{A}^{\mathrm{P}}(z)=\left\{\boldsymbol{A}\left(1 / z^{*}\right)\right\}^{\mathrm{H}}$
energy	orthonormal	unitary	para-unitary
\quad preservation	$\mathbf{A}^{-1}=\mathbf{A}^{\mathrm{T}}$	$\mathbf{A}^{-1}=\mathbf{A}^{\mathrm{H}}$	$\boldsymbol{A}^{-1}(z)=\boldsymbol{A}^{\mathrm{P}}(z)$
structure	symmetric	Hermitian	para-Hermitian
	$\mathbf{A}^{\mathrm{T}}=\mathbf{A}$	$\mathbf{A}^{\mathrm{H}}=\mathbf{A}$	$\boldsymbol{A}^{\mathrm{P}}(z)=\boldsymbol{A}(z)$

- using polynomial notation, broadband formulations generally just extend from the narrowband case;
- to access solutions to polynomial matrix formulations, the eigenvalue decomposition of a parahermitian $\boldsymbol{R}(z) \bullet — \mathbf{R}[\tau]$ will be key;
- such an EVD must provide a diagonalisation for every value of z or for every lag $\tau[20,26,39,46,41]$.

References

[1] L. V. Ahlfors.
Complex analysis: An introduction to the theory of analytic functions of one complex variable.
[2] M. Alrmah and S. Weiss.
Filter bank based fractional delay filter implementation for widely accurate broadband steering vectors.
In 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Saint Martin, December 2013.
[3] M. Alrmah, S. Weiss, and S. Lambotharan.
An extension of the MUSIC algorithm to broadband scenarios using polynomial eigenvalue decomposition.
In 19th European Signal Processing Conference, pages 629-633, Barcelona, Spain, August 2011.
[4] A. Alzin, F. Coutts, J. Corr, S. Weiss, I. Proudler, and J. Chambers.
Polynomial matrix formulation-based Capon beamformer.
In IMA International Conference on Signal Processing in Mathematics, Birmingham, UK, December 2016.
[5] G. Barbarino and V. Noferini.
On the Rellich eigendecomposition of para-Hermitian matrices and the sign characteristics of $*$-palindromic matrix polynomials. Linear Algebra and its Applications, 672:1-27, Sept. 2023.
[6] K. M. Buckley and L. J. Griffith.
An Adaptive Generalized Sidelobe Canceller with Derivative Constraints.
IEEE Transactions on Antennas and Propagation, 34(3):311-319, March 1986.
[7] R. T. Compton.
Adaptive Antennas.
Prentice Hall, 1988.
[8] R. T. Compton.
"The Bandwidth Performance of a Two-Element Adaptive Array with Tapped Delay-Line Processing". IEEE Transactions on Antennas and Propagation, Vol.36(No.1):pp.4-14, January 1988.

References II

[9] J. Corr, K. Thompson, S. Weiss, I. Proudler, and J. McWhirter.
Row-shift corrected truncation of paraunitary matrices for PEVD algorithms.
In 23rd European Signal Processing Conference, pages 849-853, Nice, France, August/September 2015.
[10] J. Corr, K. Thompson, S. Weiss, I. Proudler, and J. McWhirter.
Shortening of paraunitary matrices obtained by polynomial eigenvalue decomposition algorithms.
In Sensor Signal Processing for Defence, Edinburgh, Scotland, September 2015.
[11] R. E. Crochiere and L. R. Rabiner.
Multirate Digital Signal Processing.
Prentice Hall, Englewood Cliffs, NJ, 1983
[12] Z. Cvetkovic and M. Vetterli.
Oversampled filter banks.
IEEE Transactions on Signal Processing, 46(5):1245-1255, May 1998.
[13] N. J. Fliege.
Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets.
John Wiley \& Sons, Chichester, 1994.
[14] I. Gohberg, P. Lancaster, and L. Rodman.
Matrix Polynomials.
Academic Press, New York, 1982.
[15] G. H. Golub and C. F. Van Loan.

Matrix Computations.

John Hopkins University Press, Baltimore, Maryland, 3rd edition, 1996.

References III

[16] S. Haykin.
Adaptive Filter Theory.
Prentice Hall, Englewood Cliffs, 2nd edition, 1991.
[17] W. Kellermann and H. Buchner.
Wideband algorithms versus narrowband algorithms for adaptive filtering in the DFT domain.
In Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, volume 2, pages 1278-1282, Nov. 2003.
[18] T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine.
Splitting the Unit Delay.
IEEE Signal Processing Magazine, 13(1):30-60, January 1996.
[19] P. Lancaster and M. Tismenetsky.
The Theory of Matrices.
Academic Press, 1985.
[20] J. G. McWhirter, P. D. Baxter, T. Cooper, S. Redif, and J. Foster.
An EVD Algorithm for Para-Hermitian Polynomial Matrices.
IEEE Transactions on Signal Processing, 55(5):2158-2169, May 2007.
[21] A. Mertins.
MMSE Design of Redundant FIR Precoders for Arbitrary Channel Lengths.
IEEE Transactions on Signal Processing, 51(9):2402-2409, September 2003.
[22] N. Moret, A. Tonello, and S. Weiss.
MIMO precoding for filter bank modulation systems based on PSVD.
In IEEE 73rd Vehicular Technology Conference, pages 1-5, May 2011.
(best paper award).

References IV

[23] V. Neo, S. Redif, J. McWhirter, J. Pestana, I. Proudler, S. Weiss, and N. P.A.
Polynomial eigenvalue decomposition for multichannel broadband signal processing.
IEEE Signal Processing Magazine, to appear 2023.
[24] M. Oudin and J. P. Delmas.
Robustness of adaptive narrowband beamforming with respect to bandwidth.
IEEE Transactions on Signal Processing, 56(4):1532-1538, April 2008.
[25] T. Qin, H. Zhang, and X. Zhang.
Criterion for narrowband beamforming.
Electronics Letters, 40:846-847(1), July 2004.
[26] S. Redif, S. Weiss, and J. G. McWhirter.
An approximate polynomial matrix eigenvalue decomposition algorithm for para-hermitian matrices.
In 11th IEEE International Symposium on Signal Processing and Information Technology, pages 421-425, Bilbao, Spain, December 2011.
[27] J. Selva.
An efficient structure for the design of variable fractional delay filters based on the windowing method.
IEEE Transactions on Signal Processing, 56(8):3770-3775, August 2008.
[28] J. J. Shynk.
Frequency-Domain and Multirate Adaptive Filtering.
IEEE Signal Processing Magazine, 9:14-37, January 1992.
[29] P. Stoica, Z. Wang, and J. Li.
Robust Capon beamforming.
IEEE Signal Processing Letters, 10(6):172-175, June 2003.

References V

[30] C. H. Ta, C. Liu, and S. Weiss.
An approach for block transmission based precoding and equalisation with improved performance.
In IEEE International Symposium on Power Line Communications and Its Applications, pages 331-335, Jeju Island, Korea, April 2008.
[31] C. H. Ta and S. Weiss.
A design of precoding and equalisation for broadband MIMO systems.
In Forty-First Asilomar Conference on Signals, Systems and Computers, pages 1616-1620, Pacific Grove, CA, USA, Nov. 2007.
[32] P. P. Vaidyanathan.
Multirate Digital Filters, Filter Banks, Polyphase Networks, and Applications: A Tutorial.
Proceedings of the IEEE, 78(1):56-93, January 1990.
[33] P. P. Vaidyanathan.
Multirate Systems and Filter Banks.
Prentice Hall, Englewood Cliffs, 1993.
[34] B. D. Van Veen and K. M. Buckley.
Beamforming: A Versatile Approach to Spatial Filtering.
IEEE Acoustics, Speech, and Signal Processing Magazine, 5(2):4-24, April 1988.
[35] M. Vetterli.
"a theory of multirate filter banks".
IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.35(No.3):pp.356-372, March 1987.
[36] E. W. Vook and R. T. Compton, Jr.
Bandwidth Performance of Linear Adaptive Arrays with Tapped Delay-Line Processing.
IEEE Transactions on Aerospace and Electronic Systems, Vol.28(No.3):pp.901-908, July 1992.

References VI

[37] M. Vu and A. Paulraj.
MIMO Wireless Linear Precoding.
IEEE Signal Processing Magazine, 24(5):86-105, Sept. 2007.
[38] S. Weiss, S. Bendoukha, A. Alzin, F. Coutts, I. Proudler, and J. Chambers.
MVDR broadband beamforming using polynomial matrix techniques.
In 23rd European Signal Processing Conference, pages 839-843, Nice, France, September 2015.
[39] S. Weiss, J. Pestana, and I. K. Proudler.
On the existence and uniqueness of the eigenvalue decomposition of a parahermitian matrix.
IEEE Transactions on Signal Processing, 66(10):2659-2672, May 2018.
[40] S. Weiss, J. Pestana, I. K. Proudler, and F. K. Coutts.
Corrections to "on the existence and uniqueness of the eigenvalue decomposition of a parahermitian matrix".
IEEE Transactions on Signal Processing, 66(23):6325-6327, Dec 2018.
[41] S. Weiss, I. Proudler, F. Coutts, and J. Deeks.
Extraction of analytic eigenvectors from a parahermitian matrix.
In International Conference on Sensor Signal Processing or Defence, Edinburgh, UK, 2020.
[42] S. Weiss, I. Proudler, F. Coutts, and F. Khattak.
Eigenvalue decomposition of a parahermitian matrix: extraction of analytic eigenvectors.
IEEE Transactions on Signal Processing, 71:1642-1656, Apr. 2023.
[43] S. Weiss and I. K. Proudler.
Comparing Efficient Broadband Beamforming Architectures and Their Performance Trade-Offs.
In 14th International Conference on Digital Signal Processing, volume I, pages 417-422, Santorini, Greece, July 1-3 2002. (invited paper).

References VII

[44] S. Weiss, I. K. Proudler, G. Barbarino, J. Pestana, and J. G. McWhirter. On properties and structure of the analytic singular value decomposition.
IEEE Transactions on Signal Processing, 2023.
to be submitted.
[45] S. Weiss, I. K. Proudler, and F. K. Coutts.
Eigenvalue decomposition of a parahermitian matrix: extraction of analytic eigenvalues.
IEEE Transactions on Signal Processing, 69:722-737, 2021.
[46] S. Weiss, I. K. Proudler, F. K. Coutts, and J. Pestana.
Iterative approximation of analytic eigenvalues of a parahermitian matrix EVD.
In IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, May 2019.
[47] S. Weiss, A. Stenger, R. Rabenstein, and R. Stewart.
Lower Error Bound for Oversampled Subband Adaptive Filters.
IEE Electronics Letters, 34(16):1555-1557, August 1998.
[48] S. Weiss, A. Stenger, R. Stewart, and R. Rabenstein.
Steady-State Performance Limitations of Subband Adaptive Filters.
IEEE Transactions on Signal Processing, 49(9):1982-1991, September 2001.
[49] S. Weiss, R. W. Stewart, A. Stenger, and R. Rabenstein.
Performance Limitations of Subband Adaptive Filters.
In 9th European Signal Processing Conference, volume III, pages 1245-1248, Rodos, Greece, September 1998.
[50] M. Zatman.
How narrow is narrowband?
IEE Proceedings - Radar, Sonar and Navigation, 145:85-91(6), April 1998.

