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Summary

Conjugate priors allow for fast inference in large dimensional vector autore-
gressive (VAR) models. But at the same time, they introduce the restriction
that each equation features the same set of explanatory variables. This paper
proposes a straightforward means of postprocessing posterior estimates of a
conjugate Bayesian VAR to effectively perform equation-specific covariate selec-
tion. Compared with existing techniques using shrinkage alone, our approach
combines shrinkage and sparsity in both the VAR coefficients and the error
variance–covariance matrices, greatly reducing estimation uncertainty in large
dimensions while maintaining computational tractability. We illustrate our
approach by means of two applications. The first application uses synthetic
data to investigate the properties of the model across different data-generating
processes, and the second application analyzes the predictive gains from sparsi-
fication in a forecasting exercise for U.S. data.

1 INTRODUCTION

This paper deals with estimating vector autoregressive (VAR) models of the following form:

yt = A1yt−1 + … + Apyt−p + C + 𝜺t, (1)

where yt = (𝑦1t, … , 𝑦mt)′ denotes an m-dimensional vector of time series measured in time t = 1, … ,T, A𝑗 ( 𝑗 = 1, … , p)
is an (m×m)-dimensional matrix of coefficients associated with the jth lag of yt, C is an m-dimensional intercept vector,
and 𝜺t ∼  (0,𝚺) is a Gaussian shock vector with zero mean and an (m×m)-dimensional variance-covariance matrix
𝚺. For further convenience, let a = vec{(A1, … ,Ap,C)′} denote a vector of dimension k=m(mp+ 1) of vectorized coef-
ficients with ai (i = 1, … , k) denoting its ith element. This model class has been extensively used for forecasting and
policy analysis in central banks (see Alessi, Ghysels, Onorante, et al., 2014) as well as a natural starting point for unveiling
stylized time series facts in order to estimate theoretical models (see, inter alia, Hall, Inoue, Nason, & Rossi, 2012).

Conditional on the first p observations, estimation of the model in Equation (1) can be carried out using ordinary
least squares (OLS). In this case, however, overfitting issues arise, translating into imprecise out-of-sample forecasts. As a
potential solution, the Bayesian literature uses informative priors to push the system toward a prior model. For instance,
the widely used Minnesota prior assumes that the elements in yt follow a random walk a priori (Doan, Litterman, &
Sims, 1984; Litterman, 1986; Giannone, Lenza, & Primiceri, 2015). Theoretically inspired restrictions stemming from
structural models can also be used to inform parameter estimates and thus improve inference (Ingram & Whiteman, 1994;
Del Negro & Schorfheide, 2004). The key feature of these priors is that they are conjugate, implying that the likelihood
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and the prior feature the same distributional form. This yields closed-form solutions for key posterior quantities and, if
simulation-based techniques are necessary, greatly improves estimation speed.

In VARs, conjugacy requires that each equation in the system features the same set of predictors, potentially leading to
model misspecification (see, e.g., George, Sun, & Ni, 2008; Koop, 2013). This translates into a Kronecker structure in the
likelihood, prior, and the resulting posterior distribution, implying that inversion of the posterior variance–covariance
matrix of the coefficients is computationally cheap. By contrast, models based on nonconjugate priors allow for differ-
ent predictors across equations by specifying the prior on the VAR coefficients independently of 𝚺. This, however, is
computationally much more demanding, because the convenient Kronecker structure is lost.1

Apart from reduced flexibility in terms of covariate selection across equations, typical shrinkage priors push many
VAR coefficients toward zero. Under continuous shrinkage priors, however, this implies that the probability of observ-
ing a coefficient that exactly equals zero is zero (see, e.g., Bhattacharya, Pati, Pillai, & Dunson, 2015; Carvalho, Polson,
& Scott, 2010; Griffin & Brown, 2010; Huber & Feldkircher, 2019; Huber, Koop, & Onorante, 2020). Spike and slab pri-
ors allow for shrinking coefficients exactly to zero. These priors rely on an additional set of auxiliary binary indicators
that determine whether a coefficient is zero or nonzero. In large models with k covariates (such as the VAR models we
consider), estimating these indicators is cumbersome because the number of potential models is 2k. In such a situation,
Markov chain Monte Carlo (MCMC) techniques often fail to explore this vast model space and convergence issues arise
(see Polson & Scott, 2010).

In recent contributions, Hahn and Carvalho (2015) and Ray and Bhattacharya (2018) propose a way to circumvent
insufficient shrinkage/variable selection in light of an increasing amount of predictors (i.e., the curse of dimensionality
problem). They estimate a large-scale regression model under a suitable shrinkage prior and then post-process a point esti-
mator (the posterior mean) such that the distance between the fit of the model based on the shrinkage prior and a model
based on a sparse estimator (i.e., with coefficients set equal to zero) is minimized while accounting for a penalty term
that depends on the L1-norm of the coefficients. This approach, labeled decoupled shrinkage and selection (DSS), yields
a sparse estimator and is analogous to solving a lasso-type problem. One key disadvantage, however, is the nonautomatic
nature of this approach. A semiautomatic approach that is similar in nature is described in Ray and Bhattacharya (2018).
In this framework, an optimization problem to efficiently set coefficients associated with irrelevant predictors to zero is
solved. But instead of performing cross validation, this task depends only on a single tuning parameter that needs to be
chosen by the researcher. These techniques that combine shrinkage and sparsity have been shown to work well in a wide
range of applications ranging from finance (Puelz, Hahn, & Carvalho, 2017; 2020) to macroeconomics (Huber et al., 2020).

In this paper, we deal with both issues discussed above by proposing a fully conjugate VAR model coupled with the prior
proposed in Kadiyala and Karlsson (1997) and Koop (2013). Our model allows for different covariates across equations,
sparsity in terms of the VAR coefficients, and data-based zero restrictions on the covariance parameters in 𝚺. Instead
of post-processing posterior mean/median estimates, we follow Huber et al. (2020) in sparsifying each draw from the
posterior distribution. This yields an approximate posterior distribution for a sparse vector of coefficients that can be
used for uncertainty quantification. The key advantage is that this significantly reduces estimation uncertainty if the
data-generating process is sparse. For example, if there is strong evidence that ai equals zero, our proposed framework is
capable of selecting this restriction consistently across different draws from the posterior distribution of ai. This implies
that the posterior variance of ai, in the limiting case that each draw of ai is set to zero, also equals zero. In terms of
forecasting, the reduced estimation uncertainty could then lead to more precise predictions, especially in situations where
k is large.

The merits of our proposed approach are illustrated by means of two applications. In the first application, we use syn-
thetic data obtained from a set of different data generating processes (DGPs) that differ in terms of sparsity, model size,
and number of observations. Across DGPs, we find that (i) our framework successfully detects zero values in both the
VAR coefficients and the error variance–covariance matrices and (ii) it outperforms other Bayesian VARs (BVARs) in
terms of root mean square errors (RMSEs). In the second application, we forecast U.S. output, inflation, and short-term
interest rates using the dataset compiled in McCracken and Ng (2016). We find that applying the additional sparsifica-
tion step often improves point and density forecasts. In turbulent times (such as the period of the global financial crisis),
however, our results also show that using sparsification could harm the accuracy of density forecasts by underestimating
the predictive variance. Nevertheless, these accuracy losses are never substantial and forecasts are still competitive.

1For recent solutions that allow for estimating large-scale VARs under nonconjugate priors, see Carriero, Clark, and Marcellino (2019).
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The remainder of the paper is structured as follows. Section 2 introduces the conjugate Bayesian VAR, whereas Section 3
discusses the techniques to achieve sparsity in this model. Section 4 documents model features when applied to synthetic
data. Section 5 summarizes the results of the forecast exercise with real data. Section 6 concludes the findings of the paper,
and the Supporting Information provides details on data and additional empirical results.

2 CONJUGATE BAYESIAN INFERENCE IN VAR MODELS

Before discussing prior implementation, it is worth noting that Equation (1) can be rewritten as a standard regression
model,

yt = (Im ⊗ x′
t)a + 𝜺t, (2)

with xt = (y′
t−1, … , y′

t−p, 1)
′ denoting an n(= pm+ 1)-dimensional vector of explanatory variables. In terms of full-data

matrices Y (with tth row y′
t ) and X (with tth row x′

t), the model reads

Y = XA + E, (3)

where A = (A1, … ,Ap,C)′ and E is a (T×m)-dimensional matrix of stacked shocks with tth row given by 𝜺
′
t .

The model in Equation (3) features k parameters in a and w=m(m+ 1)/2 free parameters in 𝚺. If m and p become
large, the number of parameters sharply increases, making precise estimation almost impossible. To deal with this issue,
Bayesian econometricians rely on informative priors. This implies that more weight is placed on the prior and the resulting
posterior distribution of a and 𝚺 will be strongly influenced by the prior model (such as the random walk).

The general form of the conjugate prior in VARs assumes dependence between a and 𝚺 and is given by

a|𝚺 ∼  (a0,𝚺⊗ V0(𝜹)) . (4)

a0 denotes a k-dimensional prior mean vector and V0(𝜹) is a prior variance–covariance matrix that depends on a lower
dimensional set of q hyperparameters in 𝜹. In what follows, we assume that yt is stationary, and thus, a common choice
for the prior mean would be a0 = 0.

For V0(𝜹), we use a variant of the conjugate Minnesota prior (Kadiyala & Karlsson, 1997; Koop, 2013) that can be
implemented using a set of dummy observations (Bańbura, Giannone, & Reichlin, 2010) that are then concatenated to Y
and X:

Y =
⎛⎜⎜⎜⎝

diag(𝜙1𝜎̂1, … , 𝜙m𝜎̂m)∕𝜃1
0m(p−1)×m

diag(𝜎̂1, … , 𝜎̂m)
01×m

⎞⎟⎟⎟⎠ , X =

( Jp ⊗ diag(𝜎̂1, … , 𝜎̂m)∕𝜃1 0mp×1
0m×mp 0m×1
01×mp 𝜋−1∕2

)
,

with V0(𝜹) = (X′X)−1. Here, Jp = (1, … , p)′, 𝜋 is a hyperparameter that determines the prior variance on the intercepts,
and 𝜙i (i = 1, … ,m) represents the prior mean associated with the coefficient on the first own lag of a given variable
(which is consequently set equal to zero). In addition, we let 𝜎̂2

i denote the OLS variances obtained by estimating m
univariate AR(p) models for each element in yt. Finally, 𝜃1 is a hyperparameter that controls the overall tightness of the
prior. Lower values of 𝜃1 imply a stronger prior belief, effectively pushing the elements in a toward a0. For 𝜋, we simply set
it equal to a large value to render the prior on the intercept weakly informative. This prior setup implies that 𝜹 = (𝜃1, 𝜋)′
is a two-dimensional vector.

The final ingredient is a conjugate prior on 𝚺. Here, conjugacy implies a prior on 𝚺 that does not depend on a and
follows an inverted Wishart distribution:

𝚺 ∼ −1(s0, S0). (5)

We let s0 denote the prior degrees of freedom and S0 a prior scaling matrix. The main shortcoming of this prior choice is
that shrinking specific covariances in 𝚺 to zero is impossible. For instance, even if there exists significant evidence that
contemporaneous relations across elements in yt equal zero, this prior is not capable of selecting such restrictions and the
resulting posterior estimate of 𝚺 (and of its inverse) will be nonsparse.
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In the general case (i.e., with any form of the prior hyperparameters), one can show that the conditional posterior of a
is given by

a|𝚺,Y,X ∼  (vec(Ā),𝚺⊗ V̄), (6)
with

V̄ =
(
X′X + V0(𝜹)−1)−1

, (7)

Ā = V̄
(
X′Y + V0(𝜹)−1A0

)
. (8)

Here, we let A0 denote an (n×m)-dimensional matrix reshaped such that a0 = vec(A0).
Using the Minnesota dummies, the posterior moments can be obtained by applying Theil and Goldberger (1961) mixed

estimation:
V̄ =

(
X̄′X̄

)−1
, Ā = V̄ X̄′Ȳ,

where Ȳ = (Y,Y)′ and X̄ = (X,X)′ denote full-data matrices augmented with dummy observations.
Under the prior in Equation (5), the posterior distribution also follows an inverted Wishart distribution,

𝚺|Y,X ∼ −1(s1, S1). (9)

The posterior degrees of freedom are denoted by s1 = T + s0, and S1 = (Ȳ − X̄Ā)′(Ȳ − X̄Ā) represents the
(m×m)-dimensional posterior scaling matrix.

A key advantage of conjugacy is the Kronecker structure in Equation (6), which implies that  = 𝚺 ⊗ V̄ is a
block-diagonal matrix and computing the inverse or the Cholesky factor is computationally cheap. By contrast, if  were a
full (k× k) matrix, computation would quickly become cumbersome and impossible even for moderate values of m and p.
One further advantage of the conjugate prior is that the one-step-ahead predictive density and the marginal likelihood
(ML) are available in closed form (see, for instance, Zellner, 1985). This implies that if interest centers on one-step-ahead
forecasts, no posterior simulation is required.2

Unfortunately, the conjugate prior has two important shortcomings. First, each equation must include the same set
of covariates (see Equation (2)), a feature that could be unappealing if the researcher wishes to introduce theoretically
motivated restrictions across equations. Second, the structure of the prior variance–covariance matrix implies that for
each equation 𝑗 = 1, … ,m, the prior variance is given by 𝜎2

𝑗𝑗
V0(𝜹), with 𝜎2

𝑗𝑗
denoting the (j, j)th element of 𝚺. One

consequence of this is that across equations, the prior variances are proportional to each other. This implies that it is not
possible to discriminate between coefficients on own (which we define as lags of the jth endogenous variable in equation j)
and other (defined as the lags of the ith endogenous variable for i≠ j within equation j) lags. The methods we discuss in
the next section allow for different treatment of own and other lags in a simple way.

3 ACHIEVING SPARSITY IN VAR MODELS

3.1 Overview of the problem
From a forecaster's perspective, heavily parameterized models, such as large-scale VARs, have another important short-
coming. The continuous shrinkage prior described in Section 2 implies that the probability of observing exact zeros in a
equals zero. One could ask whether it makes a big difference to zero out different ai's as opposed to setting them close
to zero. Setting them close but not exactly to zero essentially implies that there exists a lower bound of accuracy one can
achieve under the specific prior distribution (Huber et al., 2020). For small-scale systems, this has negligible implications
on predictive accuracy. However, if k is large (i.e., of order 1000 or 10,000), parameter uncertainty adds up and potentially
dominates the predictive variance. To see this point, notice that under the conjugate prior, the one-step-ahead predictive
density follows a multivariate t-distribution (see Koop, 2013) with predictive variance given by

Var(yT+1|Y,X) = 1
s1 − 2

(
1 +

n∑
i=1

n∑
𝑗=1

(
xiT+1x𝑗T+1vi𝑗

))
S1, (10)

with Var(•) denoting the variance operator, xiT+ 1 the ith element of xT+ 1, and vij referring to the (i, j)th element in V̄.

2For higher-order forecasts or other quantities such as impulse responses, Monte Carlo simulation is necessary.
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Here, it can be seen that the predictive variance depends on the variance of the reduced-form shocks in 𝜺T+ 1 and
parameter uncertainty arising from the term in the parenthesis. Equation (10) indicates that if n increases, posterior
uncertainty rises even if the vij's associated with irrelevant predictors are small. This point clearly highlights the difference
between sparsity and shrinkage, namely, the fact that under a sparse model, vij would be equal to zero if and only if the
relevant predictor is excluded from the model. In the next subsections, we will show how this lower bound on accuracy
(determined by small but nonzero values of vij) can be removed.

Equation (10), moreover, highlights that the uncertainty associated with coefficients potentially adds up in large-scale
models and the variance implied by the reduced-form shocks further influences the predictive variance. Without
additional restrictions, these two sources can act in opposite directions. In the case of a large-scale model, the
variance–covariance matrix might be underestimated due to overfitting while uncertainty surrounding parameter esti-
mates is too large. The second effect is mainly driven by the fact that in VAR models and with standard macroeconomic
datasets, covariates are often highly correlated, and this, in combination with insufficient shrinkage, inflates variance
estimates of the regression coefficients. Since these two sources play a crucial role in forming accurate forecasts, it is
imperative to treat both of them carefully.

3.2 Achieving sparsity on the VAR coefficients
Since obtaining a sparse representation of a is unfeasible in high dimensions due to the necessity to explore a model
space of cardinality 2k, we follow a different route that combines shrinkage and sparsity. Our approach follows Hahn and
Carvalho (2015) and Ray and Bhattacharya (2018) and is based on manipulating an estimator â ex-post by solving the
following optimization problem:

â∗ = arg min
𝜶

{
1
2
‖(Zâ − Z𝜶)‖2

2 +
k∑

𝑗=1
𝜅𝑗|𝛼𝑗|} , (11)

with Z = (Im ⊗ X), 𝜶 being a sparse k-dimensional vector and ‖m‖2 denoting the Euclidean norm of a vector m.
Equation (11) consists of two components. The first part measures the Euclidean distance between the fit of an unre-
stricted model, estimated using the shrinkage prior described in Section 2, and a sparse model determined by 𝜶. The
second part is a penalty term that penalizes nonzero values in 𝜶, with 𝜅 j denoting variable-specific penalties. In light
of large k (which is almost always the case in moderately-sized VARs), choosing the tuning parameters 𝜅 j by means of
cross-validation becomes computational prohibitive.

To circumvent the necessity to employ cross-validation, we adopt the signal adaptive variable selection (SAVS) estimator
proposed in Ray and Bhattacharya (2018). We rewrite Equation (11) in terms of the jth column of Z, Zj, and solve the opti-
mization problem in Equation (11) for each covariate individually, adopting the coordinate descent algorithm (Friedman,
Hastie, Höfling, & Tibshirani, 2007). This yields the following solution to the optimization problem in Equation (11),3

â∗
𝑗 = sign(â𝑗) ||Z𝑗||−2(|â𝑗| ||Z𝑗||2 − 𝜅𝑗

)
+, (12)

for 𝑗 = 1, … , k, with sign(c) returning the sign of a real number c and (c)+ = max{c, 0} returns c if it is positive or zero if
c≤ 0.

The penalty term is set as follows:
𝜅𝑗 =

𝜆|â𝑗|𝜁 . (13)

𝜅 j depends on the nonsparse estimate â𝑗 and two hyperparameters 𝜆> 0 and 𝜁 ≥ 1. Setting 𝜁 ≥ 1 implies that smaller values
of â𝑗 receive a larger penalty and are likely to be zeroed out by the SAVS algorithm.

A typical choice, proposed in Ray and Bhattacharya (2018), sets 𝜆 = 1 and 𝜁 = 2. We show below that, in simulations,
this choice works well. The approach stipulated in Hahn and Carvalho (2015) is obtained by setting 𝜁 = 1 while inferring
𝜆 by visually inspecting the posterior output. More specifically, Hahn and Carvalho (2015) suggested choosing 𝜆 such
that the variation-explained by a sparsified linear predictor (which is akin to a standard R2) statistically equals that of the
nonsparsified model. For carrying out structural analysis, this poses no problem because it needs to be done only once.

3Strictly speaking, this is the solution obtained after the first iteration of the optimization algorithm, which, conditional on initializing the algorithm at
the posterior mean, already indicates convergence at this stage.
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However, if the researcher is interested in assessing forecasting accuracy, this procedure has to be repeated sequentially
over a hold-out period. This makes the nonautomatic nature of the approach problematic.

As stated above, the natural conjugate Minnesota prior is not capable of discriminating between the lags of own and
other variables. In this paper, we modify the SAVS estimator accordingly. In what follows, we replace 𝜆 with a lag-wise
parameter that increases the weight associated with coefficients on higher-order lags of yt and impose a stronger penalty
on coefficients related to the other lags within a given equation. Moreover, we do not sparsify the diagonal elements of
A1. These parameters are specified for each Al such that

𝜆l,i𝑗 =
{

𝜆 (l − 1)2 if, i = 𝑗

𝜆 l2 if i ≠ 𝑗,
(14)

for l = 1, … , p; i = 1, … ,m; 𝑗 = 1, … ,m. Here, we assume that 𝜆 is some lag-invariant scaling parameter and 𝜆l, ij
increases quadratically with the lag order. Note that for the first, own lag of a given equation, we set the penalty equal to
zero. This captures the notion that this covariate is crucial and its coefficient should never be set equal to zero (Bańbura
et al., 2010). For coefficients on lags of other variables we increase the penalty slightly by multiplying 𝜆 with l2 instead of
(l− 1)2.4

3.3 Sparsification of the variance–covariance matrix
Up to this point, we have focused attention on obtaining a sparse representation of the VAR coefficients. In large dimen-
sions, 𝚺 also contains w free elements and, without using more sophisticated shrinkage techniques, the existing estimate
would be prone to overfitting. As a potential remedy, we propose postprocessing the estimates of the precision matrix
𝚺−1 (i.e., the inverse of 𝚺). Friedman, Hastie, and Tibshirani (2008) and, more recently, Bashir, Carvalho, Hahn, and
Jones (2019) propose methods to ex-post sparsify precision matrices using the graphical lasso. We follow this literature
and specify a loss function similar to Equation (11) that aims to strike a balance between model fit and parsimony.

Let 𝛀 be a sparse estimate of 𝚺−1 with elements given by 𝜔ij. The loss function is then given by

𝛀̂∗ = arg min
𝛀

{
tr
(
𝛀Ŝ

)
− log (det(𝛀)) +

∑
i≠𝑗

𝜌i𝑗|𝜔i𝑗|} , (15)

with Ŝ denoting an estimate of the variance–covariance matrix, 𝜌ij referring to a parameter-specific penalty and log (det(•))
being the log-determinant while tr(•) denotes the trace of a square matrix. The term tr

(
𝛀Ŝ

)
− log (det(𝛀)) measures the

(negative) expected fit whereas
∑

i≠𝑗𝜌i𝑗|𝜔i𝑗| constitutes a penalty term that penalizes nonzero precision parameters in 𝛀.
Similarly to Equation (11), Equation (15) aims to find a sparse precision matrix that describes the data well while being
parsimonious.5

Optimizing Equation (15) is challenging, and suitable penalty parameters need to be defined. We follow Friedman
et al. (2008) in adopting the coordinate descent algorithm and state Equation (15) as a set of independent soft-threshold
problems that can be solved for each off-diagonal element, respectively.

To determine the penalty parameter, we follow Friedman, Hastie, and Tibshirani (2019) and use

𝜌i𝑗 =
𝜛|ŝ∗i𝑗| 𝜅

2

, (16)

where |ŝ∗i𝑗| denotes the absolute size of the (i, j)th element of Ŝ−1 and𝜛 is a scalar penalty parameter whereas 𝜅 ≥ 1 controls
the penalty on small precision parameters. Equation (16) nests the specification stipulated in Bashir et al. (2019) if we set
𝜅 = 1, ŝi𝑗 to an initial estimate of the (i, j)th element of the precision matrix, and cross-validate 𝜛.

It is worth discussing a promising alternative approach to regularization of precision matrices. One could also regularize
𝚺−1 by stating it as a set of nodewise regressions (Meinshausen & Bühlmann, 2006). Exploiting the triangular decompo-
sition of the precision matrix one can treat each node as an independent lasso problem and use the other endogenous
variables as covariates. This strategy would imply that one replaces the optimization problem in Equation (15) by a set of

4In the empirical application, we specify the penalty on the intercept term equal to zero.
5Note that, if 𝜔̂∗

i𝑗 with i≠ j, the (i, j)th element of 𝛀̂∗, is set to zero, then yit and yjt exhibit no contemporaneous relationship.
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m independent (node-specific) problems as outlined in Equation (11). As noted by Friedman et al. (2008) and Banerjee,
Ghaoui, and D'Aspremont (2008), however, this approach is a special case of the graphical lasso and thus closely related.

3.4 Posterior inference in sparse VARs
Before discussing our posterior simulation algorithm, it is worth noting that up to this point, the different sparsification
techniques have been proposed such that some estimate (i.e., the posterior mean/median) is used and then ex-post sparsi-
fied. This technique provides a sparse point estimator of a and 𝚺 but is not capable of controlling for posterior uncertainty
conditional on zeroing out the vij's.

Following Huber et al. (2020), we sparsify each draw from the joint posterior distribution of a and 𝚺. Drawing from the
joint posterior is easily achieved. Let a(r) and 𝚺(r) denote the rth draw from the posterior, then we first sample 𝚺(r) from
its marginal posterior distribution in Equation (9) and, conditional on this draw, we sample a(r) from Equation (6). Given
this pair of draws, the corresponding loss functions become

â∗(r) = arg min
𝜶

{
1
2
‖‖‖(Za(r) − Z𝜶)‖‖‖2

2
+

k∑
𝑗=1

𝜅
(r)
𝑗
|𝛼𝑗|} , (17)

𝛀̂∗(r) = arg min
𝛀

{
tr
(
𝛀𝚺(r)) − log (det(𝛀)) +

∑
i≠𝑗

𝜌
(r)
i𝑗 |𝜔i𝑗|} . (18)

Equations (17) and (18) indicate that we search for an optimal action that minimizes the loss (instead of the expected
loss) for each draw. This guarantees that the corresponding sparse estimates associated with the rth draw of â∗(r) and 𝛀̂∗(r)

are optimal. To be consistent with the definition of the (variable-specific) penalty parameters in Equations (13) and (16),
we replace the corresponding point estimators with the draws of aj and sij.

This approach is similar in nature to Woody, Carvalho, and Murray (2020), who performed (approximate) uncertainty
quantification around sparse estimators. As opposed to our approach, Woody et al. (2020) estimated a regression model
using MCMC and then project each draw into the sparse posterior for the optimal model. This is very similar to our
strategy with the main exception that we base our inferences on all sparsified MCMC draws. More precisely, while Woody
et al. (2020) relied on a single optimal model (selected using the posterior mean) to project the nonsparse posterior draws
into the sparse regression with q selected covariates, our approach allows for uncertainty about this set of q regressors.
In the simulation exercise, we show that the corresponding (sparse) point estimate is close to the one of the traditional
approach and thus works well empirically.

Our approach can be viewed as an approximate algorithm to draw from the joint posterior of sparsified coefficients
p(â∗

, 𝛀̂∗|Y,X). The optimization problem in Equation (17) is solved using the SAVS estimator. This approach, how-
ever, has been developed under the assumption that the point estimate used is the posterior mean/median. Ray and
Bhattacharya (2018) show that using any of these implies that the gradient descent algorithm converges quickly (after one
iteration). Using draws from the posterior of a instead yields similar favorable properties of the optimization algorithm,
leading to convergence after one iteration.6

As opposed to the approach proposed in Hahn and Carvalho (2015), our method allows for uncertainty quantification
and computation of nonlinear functions of the parameters such as impulse responses or higher-order predictive distribu-
tions. Moreover, it allows for selecting appropriate submodels (defined through inclusion/exclusion of covariates and/or
covariance relations in 𝚺). Applying sparsification to each draw implicitly yields a sparse estimator of a and 𝚺, which can
be viewed as a specific restricted version of the nonsparsified model. Because we average across these different sparse
estimators, we effectively average across different models. Doing this is similar to Bayesian model averaging. In contrast,
the traditional method can be viewed as approximate Bayesian model selection with the shortcoming that uncertainty
across models is not taken into consideration.

As mentioned in Section 1, applying the SAVS algorithm to sparsify draws from the joint posterior during MCMC poten-
tially implies that point estimators such as the posterior mean of â∗ and 𝚺̂∗ are nonsparse. However, this strongly depends
on the information contained in the posterior distribution; if there is significant information that a given coefficient is
equal to zero, the corresponding point estimator of the sparsified coefficient could also be exactly zero.

6More precise results based on averages of the loss functions of the optimization routine are available in Figure S1.
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4 SIMULATION-BASED EVIDENCE

We use a set of different data generating processes (DGPs) that vary in terms of dimension (m∈ {3, 10, 30}), length of
the time series (T∈ {80, 240}), and whether the model is sparse, moderately sparse, or dense to analyze if sparsification
improves estimation accuracy. All simulated VAR models feature five lags (p = 5), with the coefficient matrix Aj (for
𝑗 = 1, … , 5) being drawn from  (0, (𝜉∕𝑗)2). In the case of m = 3, we set 𝜉 = 0.3, and for stability reasons, we define
𝜉 = 0.2 for m = 10 and 𝜉 = 0.1 for m = 30. Moreover, we add 0.25 to the diagonal elements of A1. To capture that higher
lag orders become less important, we rescale the variance of the Gaussian by 1/j2 (for 𝑗 = 2, … , 5). Similarly, the nonzero
off-diagonal elements of the lower Cholesky factor of 𝚺 are sampled from  (0, 𝜉2), whereas the elements of diag(𝚺) are
all nonzero and set to 0.25.

Sparsity is introduced by randomly setting off-diagonal elements in Aj (for 𝑗 = 1, … , 5) and in the lower Cholesky factor
of 𝚺 to zero. As stated above, we consider three levels of sparsity. The dense model features around 10% zeroes in the coef-
ficients whereas the moderately sparse model features around 60% zeroes. Finally, we also consider an extremely sparse
DGP with approximately 90% zeroes. The dense DGP turns out to be a challenging case for our model. This is because it
features a large number of nonzero but small coefficients (especially for Aj with j> 1), which might be erroneously set
equal to zero.

To assess the sensitivity of the results with respect to different choices of 𝜆 and 𝜛, we compute a range of sparse models
and benchmark them to the nonsparse competitor. This nonsparse competitor is a Minnesota-prior BVAR with hyperpa-
rameters obtained by optimizing the marginal likelihood of the model over a grid (see, e.g., Carriero et al., 2019). Moreover,
we consider the stochastic search variable selection (SSVS) prior as competitor (George & McCulloch, 1993, 1997). This
model assumes a mixture of Gaussians prior to introduce sparsity but has the severe drawback of being nonconjugate
and thus challenging to estimate in large dimensions. For the SSVS, we follow George et al. (2008) and rescale the spike
and slab component with the OLS coefficient variances denoted by v̂ii. The corresponding spike variance is then given by
0.01 × v̂ii, whereas the slab variance is considerably larger with 100 × v̂ii.

Finally, we add two additional competing specifications. The first one (labeled SAVS-Median) is the traditional SAVS
approach stipulated in Ray and Bhattacharya (2018), which sparsifies the posterior median. This model allows us to
assess whether sparsifying the posterior median yields similar insights (in terms of point estimates) as our approach. The
second one, labeled CDA, sparsifies each draw from the joint posterior using a standard coordinate descent algorithm
(i.e., without stopping after the first iteration). This specification serves to illustrate whether using more iterations yields
similar insights compared with stopping after the first iteration.

Table 1 shows (relative) mean absolute errors (MAE) between the posterior median of the coefficients for the sparsified
BVAR and the true parameter values, averaged across 150 replications per DGP. Note that all numbers in the table feature a
numerical standard error which is relatively small. Nevertheless, these findings need to be interpreted with some caution
and we aim to focus on results that imply substantial differences relative to the benchmark after taking into account the
simulation-induced variation. All MAEs are divided by the MAEs of the nonsparse competitor.

The upper panel of Table 1 presents the results for the VAR coefficients, whereas the lower panel displays the MAEs
associated with the covariance parameters. In order to investigate how differing values of 𝜆 and 𝜛 impact estimation
accuracy, we also estimate the model over a grid of values for 𝜆∈ {0.01, 0.1, 0.5, 1} and set 𝜛 = 𝜆∕10. Before proceeding,
it is worth noting that we estimate all VAR models with five lags.

Considering the upper panel of Table 1, a few results are worth emphasizing. First, we observe that sparsification pays
off in terms of achieving lower estimation errors. These improvements rise with the true level of sparsity and decrease
with the length of the sample. Especially when T is small relative to the number of parameters, sparsification improves
against the traditional Bayesian VAR model.

Second, the sensitivity of estimation accuracy with respect to 𝜆 varies with the level of sparsity. For instance, we find
slightly more pronounced differences if the DGP is either dense or moderately dense, but as long as 𝜆 is set greater to
0.01, we find only small differences in MAEs. It is worth noting, however, that these small differences across different
penalty terms are often insignificant. Once we take into account numerical standard errors, the specific choice of 𝜆 (as
long as it is not set too small) seems to play a minor role with differences being smaller than 10% in MAE terms (and
thus often within one standard deviation). This also provides some evidence that the specific choice proposed in Ray and
Bhattacharya (2018) (i.e., 𝜆 = 1) works well in most circumstances.

Third, for large models, we find that the SAVS estimator yields substantial gains, improving upon the shrinkage-only
estimator by large margins. These improvements even arise if the DGP is characterized by relatively few zeros in the VAR
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TABLE 1 MAE ratios of coefficients and covariances to nonsparse BVAR estimates

DGP Specification Alternatives with 𝝀 = 1
m T Sparsity MIN - 𝝀 = 0.01 MIN - 𝝀 = 0.1 MIN - 𝝀 = 0.5 MIN - 𝝀 = 1 SSVS SAVS - Median CDA

Coefficients
S 80 Sparse 0.654 0.504 0.451 0.446 0.546 0.446 0.446

Moderate 0.727 0.636 0.623 0.629 0.669 0.629 0.629
Dense 0.847 0.818 0.830 0.846 0.860 0.846 0.846

240 Sparse 0.618 0.454 0.414 0.413 0.505 0.413 0.413
Moderate 0.717 0.612 0.604 0.611 0.651 0.611 0.611
Dense 0.844 0.819 0.846 0.865 0.865 0.865 0.865

M 80 Sparse 0.637 0.491 0.436 0.436 0.632 0.436 0.436
Moderate 0.758 0.697 0.696 0.710 0.797 0.710 0.710
Dense 0.913 0.924 0.970 0.999 1.018 0.999 0.999

240 Sparse 0.588 0.423 0.377 0.382 0.505 0.382 0.382
Moderate 0.716 0.642 0.644 0.665 0.692 0.665 0.665
Dense 0.886 0.890 0.927 0.960 0.963 0.960 0.960

L 80 Sparse 0.579 0.507 0.507 0.507 1.572 0.507 0.507
Moderate 0.800 0.794 0.798 0.798 1.513 0.798 0.798
Dense 0.984 1.023 1.032 1.032 1.432 1.032 1.032

240 Sparse 0.577 0.441 0.439 0.442 0.704 0.442 0.442
Moderate 0.760 0.735 0.770 0.779 0.876 0.779 0.779
Dense 0.953 1.005 1.070 1.086 1.075 1.086 1.086

Covariances
S 80 Sparse 0.996 0.971 0.903 0.847 0.647 0.847 0.847

Moderate 0.998 0.981 0.935 0.899 0.792 0.899 0.899
Dense 1.000 1.000 1.001 1.007 1.090 1.007 1.007

240 Sparse 0.987 0.919 0.771 0.694 0.700 0.694 0.694
Moderate 0.994 0.955 0.871 0.835 0.829 0.835 0.835
Dense 0.999 0.999 1.010 1.039 1.153 1.039 1.039

M 80 Sparse 0.998 0.980 0.918 0.859 0.594 0.859 0.859
Moderate 0.999 0.988 0.953 0.922 0.826 0.922 0.922
Dense 1.000 0.999 1.000 1.007 1.174 1.007 1.007

240 Sparse 0.992 0.936 0.788 0.687 0.639 0.687 0.686
Moderate 0.996 0.973 0.915 0.889 0.863 0.889 0.889
Dense 1.000 1.003 1.032 1.081 1.248 1.081 1.082

L 80 Sparse 0.998 0.985 0.934 0.882 0.632 0.882 0.881
Moderate 0.999 0.988 0.950 0.913 0.809 0.913 0.912
Dense 0.999 0.992 0.968 0.950 1.004 0.950 0.950

240 Sparse 0.993 0.938 0.780 0.658 0.604 0.658 0.656
Moderate 0.996 0.966 0.887 0.841 0.827 0.841 0.840
Dense 0.999 0.993 0.998 1.026 1.106 1.026 1.026

Note: Bold numbers indicate the smallest MAE ratios. We simulate a DGP for a small-scale (m = 3), medium-scale (m = 10), and large-scale (m = 30)
VAR for two different number of observations T and for three different degrees of sparsity (zero parameters as percentage of total number of coefficients
k = m(mp + 1) and covariances w = m(m + 1)∕2, ranging from a dense DGP to a fully sparse DGP. SAVS-Med. refers to a sparse estimator, where we
minimize the expected loss of the posterior median (see Hahn & Carvalho, 2015), whereas for the CDA specification, we replace the SAVS estimator with a
coordinate descent algorithm; that is, we do not stop after the first iteration for both coefficients and covariances.

coefficients. This finding is not surprising given the fact that the absolute number of zeros increases with the dimension
of the parameter space and the small but negligible posterior estimates under the Minnesota BVAR have a detrimental
effect on estimation accuracy.

Fourth, we find that the conjugate VARs in combination with SAVS very often improve upon the nonconjugate and
more flexible VAR coupled with the SSVS prior. For large-scale models, we even find that the SSVS prior performs rather
poorly and this might be caused by mixing issues in the indicators that determine which of the Gaussians is chosen. In
smaller-sized models, accuracy differences decrease but still favor our proposed sparsified model.

Finally, comparing the performance of the SAVS-Median and CDA approaches with the corresponding model based
on setting 𝜆 = 1 reveals no differences in estimation accuracy. This remarkable result shows that sparsifying each draw
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from the joint posterior yields (almost) identical sparsified point estimators and provides evidence that using only a single
iteration of the coordinate descent algorithm seems to be sufficient when compared with using a stopping rule (and thus
potentially many more iterations).

The lower panel of Table 1 provides similar but more mixed insights. Sparsification of the variance–covariance matrix
sometimes yields accuracy improvements over its nonsparsified counterpart. These improvements range from being small
(or in some rare cases even negative) to very large (in case the DGP is sparse and the model is moderately large).

Considering the performance of the SSVS prior shows that it provides more accurate estimates of 𝚺 but at substantially
higher computational costs. In most instances where the SSVS prior improves upon our SAVS-based model, these perfor-
mance gains are often small (i.e., below 10% to 15% in MAE terms). So given that the additional costs of applying SAVS
to the posterior draws of 𝚺 are small (see Table S3), we can recommend adding this additional step to further improve
estimation accuracy.

We stressed one key advantage in Section 3, namely, that sparsification reduces estimation uncertainty by zeroing out
the coefficient under scrutiny during posterior simulation. Thus, while the discussion in the previous paragraphs high-
lights that using sparsification improves estimation performance in terms of point estimators, we now investigate its
consequences on the posterior variance of a. Figure 1a and Figure 1b are heatmaps that show the absolute distance
between the posterior median and the true coefficients (left panel) as well as a corresponding heatmap that presents
the posterior standard deviation of the parameter under scrutiny (right panel). These heatmaps are created for a single
realization from the sparse DGP with T = 240 and m = 30.

FIGURE 1 Heatmaps of coefficients and covariances for m = 30 endogenous variables, p = 5, T = 240, and the degree of sparsity is 90%.
Notes: Panel (a) lists the m endogenous variables on the x-axis and the (mp+1) regressors for each equation on the y-axis. The ith (m×m) block
denotes the ith lag coefficient matrix, while the constant is ordered last (indicated by cons). Moreover, in panel (b) the lower Cholesky factor
of the variance-covariance matrix is an (m×m)-dimensional lower triangular matrix
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Considering the heatmaps reveals that sparsification improves estimation accuracy and accurately detects zeroes, as
evidenced by the abundance of white cells in the figure. The slight bias along the main diagonal (which also exists
under the shrinkage-only model) stems from the informative prior that is centered around zero. However, note that even
with a high degree of shrinkage, the corresponding estimate of a with the Minnesota prior is quite dense. By contrast,
applying SAVS yields a very sparse coefficient matrix and, in addition, a sparsified estimate of the variance–covariance
specification.

The left panel of Figure 1 shows that sparsity is, not surprisingly, accompanied by appreciable decreases in poste-
rior variance. White cells imply that the posterior standard deviation is (close to) zero. This is often the case if we
postprocess the posterior using SAVS. As expected, we see that the coefficients associated with the first lag often fea-
ture considerable posterior uncertainty. For higher lag orders, however, SAVS effectively reduces posterior uncertainty
and, in light of the strong accuracy gains for the point estimator, leads to a much more favorable bias–variance rela-
tionship. For a standard Minnesota prior without SAVS, we observe a more dense heatmap with a great deal of purple
shaded areas. We would like to emphasize that even for the Minnesota prior, these standard deviations are often
small (especially compared with some weakly informative prior). But these small elements in vij could add up (see
Equation 10) and thus be deleterious for predictive accuracy. And it is precisely this problem that we try to circumvent by
applying SAVS.

On the variance–covariance matrix, we again see more white cells under the sparse model. This shows that we reduce
estimation uncertainty. Considering the right panel of Figure 1b, moreover, implies that we also successfully reduce
posterior uncertainty around the free elements in 𝚺.

5 FORECASTING APPLICATION

5.1 Data overview, design of the forecasting exercise, and competitors
To illustrate the merits of our approach for forecasters in central banks and other policy institutions, we now carry out a
U.S. macroeconomic forecasting exercise. Several recent papers have analyzed this dataset using various shrinkage and
sparsification techniques (Cross, Hou, & Poon, 2020; Giannone, Lenza, & Primiceri, 2017) and find mixed evidence for
sparsity. Nevertheless, using this application, we aim to illustrate that even when there is little evidence in favor of sparsity,
the proposed framework is still capable of improving upon a model that relies solely on shrinkage priors.

In this application, we use the quarterly variant of the McCracken and Ng (2016) dataset that spans the period from
1959:Q1 up to 2018:Q4. To investigate whether combining shrinkage and sparsity improves predictive performance, we
rely on a recursive forecasting design. Using the period that runs from 1959:Q1 to 1989:Q4 as an initial training period to
compute the h-step-ahead predictive distribution (for h∈ {1, 4, 8}), we expand the initial estimation period by one quarter
and repeat this procedure until we reach the penultimate point in the sample (i.e., 2018:Q3). The period from 1990:Q1 to
2018:Q4 serves as a hold-out period to evaluate the predictive accuracy of the models using root-mean-squared forecast
errors (RMSEs), log predictive likelihoods (LPLs), and normalized forecast errors.7

The existing literature highlights the necessity to exploit large information sets (see, for instance, Bańbura et al., 2010;
Carriero, Clark, & Marcellino, 2015; Giannone et al., 2015; Koop, 2013). Building on this evidence, we apply our techniques
to a VAR model that features m = 165 macroeconomic and financial variables. Out of these, we select three traditional
target variables: output (GDPC1), consumer price inflation (CPIAUCSL), and the Federal Funds Rate (FEDFUNDS).
Because the computational burden of using nonconjugate priors increases dramatically with model size, we do not use
the SSVS prior for the large dataset.

Apart from this large-scale VAR (L-VAR), we investigate how our techniques perform across different model sizes and
dimension-reduction techniques. These competing models range from small- and medium-scale VARs to dynamic factor
models in the spirit of Bernanke, Boivin, and Eliasz (2005). These competing approaches are as follows8:

• S-VAR: This specification is inspired by the literature using small-scale three equation VAR models that feature the
three target variables exclusively.

7As alternative metric, we also compute continuous rank probability scores (CRPS). Compared with the LPLs, the CRPS yield qualitatively similar
insights. For the sake of brevity, we focus on LPLs in the paper. The results for CRPS can be found in Table S4.
8In Appendix S1, we show a detailed list of the variables included along the transformation codes.
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• M-VAR: This model extends the small-scale information set by additionally including financial market variables. In
total, this specification includes m = 21 variables and thus resembles the size of typical reduced-form models employed
by the ECB to carry out its short-term inflation projections.

• FA-VAR: As a competitor that exploits the full information set but reduces the dimensionality of the estimation
problem, we use a factor-augmented VAR (FA-VAR). This model augments the small-scale VAR by including three
principal components extracted from the remaining quantities (see Bańbura et al., 2010; Koop, 2013).

All models feature p = 5 lags of the endogenous variables.

5.2 Choice of hyperparameters
Because we use VAR models that do not only differ in the size of their information sets but also how these information is
used during estimation, careful choice of the prior hyperparameters is necessary. Using the prior outlined above, we need
to set 𝜃1 as well as the sparsification parameters 𝜆 and 𝜛.

To set the hyperparameters of the Minnesota prior, we follow two different routes. The first (and simplest) way is to set
𝜃1 such that shrinkage increases with the size of the information set (see, for instance, Bańbura et al., 2010; Koop, 2013)
and select 𝜃1 over a grid of potential values.

The second approach is based on optimizing the marginal likelihood (which is available in closed form) a priori (see
Carriero et al., 2015). One problem with this strategy, however, is that the marginal likelihood might be ill-behaved, which
renders optimization difficult.9

Optimizing the marginal likelihood in huge models is often unfeasible due to numerical reasons. As a solution, we assess
the sensitivity of the forecasts with respect to three choices of the hyperparameter 𝜃1 = {0.025, 0.05, 0.075}. These three
values all lead to an informative prior, but the weight placed on prior information ranges from being large (𝜃1 = 0.025) to
moderate (𝜃1 = 0.075). Using these values enables us to assess how shrinkage and sparsification interact. For example, if
𝜃1is set to 0.025, it is very likely that the SAVS estimator will lead to a sparse model while a shrinkage parameter 𝜃1 = 0.075
allows for larger elements in a and thus a more dense model under the SAVS estimator.

For the small- and medium-scale models and the FA-VAR specification, we define a large grid of values for
𝜃1 ∈ {0.01, 0.025, 0.050, 0.075, 0.10, 0.125, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.75, 1, 2, 5}. Using this grid, we seek
the value of 𝜃1 that maximizes the marginal likelihood. Over the hold-out sample, this procedure yields an average of
𝜃1 = 0.457 for the small-scale model, 𝜃1 = 0.392 for the FA-VAR specification, and 𝜃1 = 0.149 for the medium-scale
model. These values indicate that the larger the model becomes, the more weight needs to be placed on the prior. Simi-
lar to Carriero et al. (2015), we find that the hyperparameters tend to display little variation over the hold-out period. For
example, in the case of the medium-scale model, we find that 𝜃1 ranges from 0.125 to 0.15.

Finally, we investigate how forecasting performance changes for different values of 𝜆 and 𝜛, again, using a grid of
candidate values. More precisely, we set 𝜆∈ {0.01, 0.1, 0.5, 1} and 𝜛 = 𝜆∕10.

5.3 Point forecasting performance
In this subsection, we first consider point forecasting accuracy of the different models and compare sparse with nonsparse
models. Table 2 depicts the relative RMSEs to a small-scale VAR with a Minnesota prior (henceforth called the benchmark
model) and without sparsification for the three target variables. The asterisks indicate statistical significance for each
model relative to the benchmark as measured by the Diebold and Mariano (1995) test. The numbers in parentheses refer
to the ranking of the three best specifications using the procedure outlined in Hansen, Lunde, and Nason (2011).

We start by considering the average model performance (in terms of computing average RMSEs across the three focus
variables) for the one-step-ahead forecasts. In general, there exists no single superior modeling approach that outperforms
its competitors in a statistically significant manner. However, when it comes to lowest RMSEs, our results suggest that the
most accurate one-step-ahead forecasts can be found for smaller-sized models with sparsification (with the S-VAR with
𝜆 = 0.5 yielding the lowest average RMSEs). Irrespective of 𝜆, sparse small-scale models perform well and are the only
ones that improve upon the benchmark Minnesota BVAR.

To analyze point forecasts in more detail, we now discuss the one-step-ahead forecasting performance across the three
focus variables. For output, we observe that most large models display relative RMSEs below or close to one, suggest-

9To circumvent this issue, Bańbura et al. (2010) and Koop (2013), for example, define a training sample which serves the purpose to calibrate 𝜃1 by
minimizing the distance of the mean square error (MSE) of a large-scale model and a three-variable VAR estimated with OLS. Intuitively, this strategy
implies that large dimensional models are shrunk to a larger degree than smaller-scale models (De Mol, Giannone, & Reichlin, 2008).
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ing that their predictions tend to improve forecast accuracy compared with the ones obtained from using the simple
small-scale Bayesian VAR. When we compare sparsified large-scale BVARs with the nonsparsified counterparts, we find
limited evidence that sparsification improves point forecasts (but it also never substantially hurts predictive accuracy).
Turning to the medium-scale models, we find more pronounced improvements relative to the benchmark model and that
using SAVS improves predictive accuracy. These performance gains depend on the specific value of 𝜆. For example, set-
ting 𝜆 = 0.01 yields a model that improves upon all competitors and produces statistically significant better forecasts than
the nonsparsified benchmark model (at the five percent significance level).

Considering the one-step-ahead forecasts of inflation, it appears that none of the larger-scale competitors is capable
of improving upon the benchmark small-scale VAR. Notice, however, that for the medium-sized model and the FA-VAR
specification, introducing sparsity through our SAVS estimator sometimes yields more accurate short-run predictions and
tends to outperform not only the nonsparsified model but also the SSVS prior. In general, and similarly to output, we find
relative RMSEs close to unity (and in fact often slightly exceeding unity).

Analyzing one-quarter-ahead interest rate forecasts reveals that medium- to large-sized models yield forecasts that
are more accurate than the ones obtained from the benchmark VAR. This result is particularly pronounced for the
moderately-sized VAR and 𝜆 = 0.5. Moreover, using SAVS in combination with shrinkage improves accuracy markedly.
These improvements are substantial and often statistically significant.

Next, we consider four- and eight-step-ahead predictions. The results differ from the ones discussed above. While
we find again mixed evidence that sparsification improves point predictions, one striking difference between one- and
multi-step-ahead forecasts is that more information seems to be beneficial for accurately forecasting multiple periods
ahead. For the one-year-ahead horizon, our findings suggest that a nonsparsified L-VAR with a tight Minnesota prior
(𝜃1 = 0.025) yields the most accurate point forecasts. For 2-year-ahead forecasts, the sparse medium-scale model (with
𝜆 = 0.5) dominates all competitors.

In terms of the three focus variables, we find small gains for the larger models when interest focus on predicting out-
put 1-year-ahead. When 2-year-ahead output predictions are considered, large VARs with sparsification work well and
improve upon the nonsparse models. For 1-year-ahead inflation forecasts, we find limited evidence that SAVS improves
forecast accuracy. However, adding the SAVS step slightly improves 2-year-ahead inflation forecasts for some of the larger
VARs. In terms of interest rate forecasts, we still find that SAVS improves predictive accuracy but these improvements
diminish with higher order forecasts.

Overall, there is only mixed evidence that point forecasts can be improved by adding the SAVS step. There are cases
where gains from SAVS become more pronounced (such as longer run forecasts for output and inflation or short-term
interest rate forecasts), but there also exist several instances where using a sparse model slightly hurts forecast accuracy.
One important thing to note is that sparsification only very rarely harms predictive accuracy in a statistically significant
manner.

To further substantiate this observation we consider the model confidence set (MCS) procedure of Hansen et al. (2011),
implemented by Bernardi and Catania (2018), to obtain a measure for model uncertainty. Table 3 shows the cardinality of
the superior model set across variables and forecast horizons. Moreover, the table shows the number of sparsified models
included in the MCS. Considering a total number of 33 models (including the benchmark) and using a mean squared
error loss function, the MCS procedure suggests a quite large superior model set, including around 26 to 33 models.
These numbers strongly depend on the variable and forecast horizon considered. In general, only few specifications are
eliminated by the MCS procedure with no single class of models significantly outperforming its alternatives. It is worth
emphasizing that in most instances, the share of models using SAVS is high.

Focusing exclusively on point forecasts ignores what can be considered the main advantage of SAVS: the corresponding
reduction in estimation uncertainty and the potentially positive effect on the full predictive distribution. This theme will
be the subject of the next subsection.

5.4 Density forecasting performance
Table 4 shows differences in LPLs relative to the small-scale Minnesota VAR, corresponding to log predictive Bayes factors
(henceforth labeled BFs). Apart from focusing on variable-specific relative LPLs, the table also displays joint BFs over
the three target variables. These serve as a general measure of how well some approach performs in forecasting output,
inflation and interest rates jointly. Numbers greater than zero imply that a given model improves upon the benchmark
while negative BFs suggest that the benchmark yields more precise density predictions. Moreover, we compute a two-sided
Amisano and Giacomini (2007) test for each specification with a null hypothesis of equal average LPLs relative to the
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benchmark and report the statistical significance based on the obtained p values.10 We start with the joint predictive BFs
and the one-step-ahead horizon shown in Table 4. It is worth noting that these numbers can be interpreted as a relative
training sample marginal likelihood (Geweke & Amisano, 2010). For this measure, we find that the best performing model
is the moderately-sized sparse VAR with 𝜆 = 0.1, suggesting that using SAVS appreciably improves density predictions.

The large VARs are generally outperformed by smaller-sized ones according to one-step-ahead joint BFs. For large
models, we also find that sparsification hurts density forecast performance. In contrast, in the case of the small- and
medium-scale VARs, we find statistical significant accuracy gains from using the additional SAVS step. This pattern can
also be found for the FA-VAR.

At the one-step-ahead horizon, varying 𝜆 between 0.01 and 0.1 yields a similar forecasting performance for most models
considered. If 𝜆 is set too large, forecasting accuracy drops. This can be traced back to the fact that a larger penalty leads to
an overly sparse model, and this, in turn, decreases the predictive variance too much. The resulting predictive distribution
is too narrow, which makes capturing outliers increasingly difficult.

To dig into the sources on why some models work well while others perform poorly when all three variables are jointly
considered, we now consider marginal relative LPLs. Considering the density forecasting performance for output, we
observe that the model that does well for the joint predictive BF also excels (i.e., the medium-size VAR with 𝜆 = 0.01).
However, considering the large VARs for output alone reveals that they are also highly competitive and close to the single
best performing specification (as long as 𝜆 is set not too large) and that sparse models often outperform the nonsparse
competitor.

Turning to inflation forecasts highlights that they are the main driver of the bad performance of most large-scale models.
Irrespective of the choice of 𝜆 and 𝜃1, the small-scale VAR outperforms each specification and it seems that using SAVS
only reduces predictive performance for inflation in large datasets. This result is well known in central bank practice,
where these specifications are commonly outperformed by small and medium-sized models that include only a selected
set of endogenous variables (see, e.g., Giannone et al., 2015).

For interest rates, the story found for inflation is reversed. We find that the best models by large margins feature large
information sets and are sparse. The main reason behind this strong performance is that the SAVS step sets most coef-
ficients to zero. This yields a predictive distribution for the interest rate, which is strongly centered on zero. During the
period of the zero lower bound, the corresponding predictive density will feature a mean/median close to zero with a
rather small variance, and this yields large predictive gains in terms of LPLs.

Inspecting multistep-ahead density forecasting performance yields similar insights to the one-step-ahead case. Consid-
ering relative joint LPLs indicates that sparse medium-scale models perform best. The accuracy gains from using SAVS
are especially pronounced for this size of the information set. Interestingly, and in contrast to the one-step-ahead case,
we find that larger values of 𝜆 (i.e., 𝜆 = 1 for 1-year-ahead and 𝜆 = 0.5 for 2-year-ahead forecasts) translate into the
largest gains. Again, we observe that large VARs are generally outperformed by medium-sized models but, as opposed to
one-quarter-ahead forecasts, we find that small values of 𝜆 improve upon the corresponding nonsparse counterpart.

Zooming into variable-specific performance highlights that large and sparse models yield precise GDP density forecasts
that are always better than the nonsparse variant of the model under consideration. These gains are often substantial
and sometimes significant at the 10% level. For multistep-ahead GDP forecasts, we even find that predictive performance
increases with model size. This pattern is quite consistent with one exception. The FA-VAR shows the weakest perfor-
mance among all models. This indicates that when the researcher wishes to produce multistep-ahead forecasts, additional
information that might be ignored by introducing a factor structure seems to be important.

In terms of inflation, we again see that large models do not perform well, yielding the most inaccurate forecasts across
models. Moreover, for multistep-ahead inflation predictions, we find little evidence that applying SAVS helps to improve
forecasts because in most cases the dense model performs better than the sparse variant.

Short-term interest rates are again most precisely predicted using large models with sparsification. In both cases
(1- and 2-year-ahead), we find that the large VAR with 𝜃1 = 0.075 and 𝜆 = 1 performs best. Lower values of 𝜆 yield highly
competitive interest rate forecasts with little differences across the different values of 𝜆.

Similarly to the discussion of the point forecasts, we investigate these statements using MCS. Table 5 shows the num-
ber of models included in the MCS when we use the negative LPL as a loss function. Starting with an initial set of 33
models we find that, depending on the variable and forecast horizon, a large number of competitors is eliminated. The
majority of surviving models is comprised of sparse specifications. While the reduction of models in the case of joint

10Note that the test statistics must be interpreted with caution, because we use a recursive forecast design.
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LPLs is moderate to large, we find much smaller MCSs when we focus on variable-specific forecasting performance.
Especially for output and interest rates, we find that the MCS consists of a handful models. In fact, for 2-year-ahead
predictions, all except for a single model are removed to form the MCS. In both cases, this specification is the large
VAR with 𝜆 = 1 and 𝜃1 = 0.075. For the remaining cases, the top three of these models can be read of from Table 4
and always includes several sparsified variants. For inflation, the MCS corroborate the findings discussed above. The
corresponding set of superior models remains elevated and consequently only a relatively small number of models
is eliminated.

Before discussing forecasting performance over time, we provide guidance on how to select the penalty parameter 𝜆
(and thus 𝜛). As opposed to the simulation exercise, we find that forecast accuracy as measured by relative LPLs differs
across specific values of 𝜆 and forecast horizons. In general, we can recommend setting 𝜆 to a rather small value (i.e., to
0.01 or 0.1) if interest centers on one-step-ahead predictions. This holds for most model sizes. By contrast, if higher-order
forecasts are of interest, we can recommend setting 𝜆 to a larger value (i.e., 0.5 or 1). With very few exceptions, these are
the values that yield the highest LPLs across models. At a first glance, the necessity to discriminate between short and
longer run forecasts might point toward a weakness of our approach. However, this consistent pattern can be exploited
by setting 𝜆 as a function of h such that it increases with the forecast horizon.

5.5 Forecasting performance over time
So far, we computed LPLs over the whole holdout period to provide a measure of average forecast quality. But it could be
the case that models have varying performances in different periods. To investigate whether this is indeed the case, we
consider density forecast performance over time and across two distinct periods: before the global financial crisis (until
2008:Q1) and thereafter.

Figure 2 shows the evolution of cumulative joint LPLs relative to the benchmark model for 1-quarter and 1-year-ahead
predictions over time. The 2-year-ahead LPLs look similar and are included in Appendix S3. The figure includes stan-
dard BVARs without SAVS (dashed lines) and BVARs post-processed with an additional SAVS step (solid lines) for all
considered information sets. We focus on sparse models with the 𝜆 that maximizes the LPLs at the end of the hold-out
within each model class (see Table 4). Moreover, for the large-scale BVAR we depict the evolution of relative LPLs for the
different values of 𝜃1 ∈ {0.025, 0.05, 0.075}.

Considering the period before the financial crisis clearly shows that using SAVS often yields more precise forecast
distributions. This finding is especially pronounced for higher order forecasts, where we see strong and sustained gains
over the period up to the financial crisis. The performance of the sparsified large models with 𝜃1 = {0.075, 0.05} and the
medium-scale BVAR with SAVS appear to be the best specifications during this time span.

When we focus attention on the global financial crisis, we observe a pronounced decline in model evidence for the
large model with SAVS (right panels in Figure 2). During the crisis, evidence in favor of sparsification also slightly
decreases for the medium-scale model. This can be seen by comparing the solid and dashed red lines in Figure 2.
While the nonsparse, medium-sized BVAR is outperformed in the run-up to the crisis, model evidence marginally
supports the nonsparse variant during the recession. The main reason why predictive accuracy of sparsified mod-
els deteriorates in turbulent periods is that the forecast error variance becomes too small and large shocks become
increasingly unlikely under the predictive distribution. In such situations, dense models often feature a larger variance
because of many small but nonzero v′i𝑗s in Equation (10). This makes capturing outliers (or rapid shifts) easier and thus
improves LPLs.

After the financial crisis, we see that applying SAVS helps for some models (especially the medium-scale VAR). How-
ever, predictive evidence in favor of SAVS declines with the forecast horizon. This pattern is the opposite of the one
observed before the financial crisis. But note that this is mostly driven by the dismal performance during the recession.
For 1-year-ahead forecasts, we observe that the slopes of most LPL curves relative to sparse models are steep, indicating
a period-by-period outperformance vis-á-vis the benchmark model.

5.6 Assessing model calibration using probability integral transforms
In this section, we investigate how sparsification impacts the calibration of predictive densities. Therefore, we follow
Giordani and Villani (2010) and Clark (2011) in analyzing normalized forecast errors that are obtained by applying the
probability integral transform (PIT).11 If a given model is well calibrated, these normalized forecast errors should be stan-

11For more details on how the normalized forecast errors are computed, see Clark (2011).
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FIGURE 2 Cumulative joint log predictive likelihoods for 1-quarter- and 1-year-ahead predictions benchmarked against the small-scale
BVAR without SAVS. Note: Dashed lines indicate classic BVARs while solid lines depict the best performing sparsified version within each
information set. Gray shaded areas denote NBER recessions [Colour figure can be viewed at wileyonlinelibrary.com]

dard normally distributed. Deviations from the standard normal distribution provide information along which dimension
the model might be misspecified.

We focus on 1-year-ahead predictive densities for brevity. Moreover, in the main text, we focus on the large-scale mod-
els.12 In Figure 3, we compare the 1-year-ahead normalized forecast errors for the large sparse VAR (with 𝜆 = 1) to the
nonsparsified BVAR model for the three target variables. Because this purely visual analysis might be misleading, we add
a legend to each panel that provides information on whether departures from standard normality are statistically signif-
icant. The null hypothesis is that the normalized forecast errors are zero mean, feature a variance of one and no serial
correlation (Berkowitz, 2001).13

Before focusing on sparsified models, we analyze the nonsparsified counterparts. For the standard BVAR forecasts, the
mean is very often not significantly different from zero. With regards to the variance we find that normalized forecast
errors display variances well below unity for both GDP and the interest rate, while displaying a particularly high variance
for inflation forecasts. A variance of forecast errors below one indicates that for many periods in the hold-out, the predic-
tive distribution is too spread out. As discussed above, this may be at least in part attributed to the imprecisely estimated
small parameters. By contrast, a variance above one would indicate that the predictive density tends to be too tight. More-
over, we observe a high autocorrelation of forecast errors for the interest rate. This feature is also commonly found in the
literature (see, e.g., Clark, 2011).

12The normalized forecast errors for the other forecast horizons and model sizes are available in the Online Appendix.
13Following Clark (2011), the p value of a zero mean is computed with a Newey–West variance with five lags, the p value of a unit variance is obtained by
regressing the squared normalized forecast errors on an intercept and using a Newey–West variance with three lags, and the p value of no autocorrelation
is computed with an AR(1) model, featuring an unconditional mean and heteroskedasticity-robust standard errors.
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FIGURE 3 Normalized 1-year-ahead forecast errors of large-scale models. Note: The black solid lines represent the sparsified versions
(SAVS) with 𝜆 = 1 while the red dash-dotted lines depict classic BVARs. The gray dash-dotted horizontal lines indicate the 95% interval of the
standard normal distribution and the gray shaded areas denote NBER recessions. Moreover, the legends show the corresponding test
statistics of normalized errors. We follow Clark (2011) and show the mean, the variance (Var.), and the autoregressive coefficient (AR(1)
coef.) of normalized errors. In parenthesis we depict the corresponding p-values. The null-hypotheses, a zero mean, a variance of one, and no
autocorrelated errors, are tested separately [Colour figure can be viewed at wileyonlinelibrary.com]
[Correction added on 19 February 2021, after first online publication: Figure 3 has been updated in this version.]

If we apply the additional SAVS step, the properties of the normalized forecast errors often improve. In the case of GDP,
sparsifying the BVAR typically increases the variances at a small cost of a slightly more negative mean (which is not signif-
icantly different from zero in almost all instances). For inflation, and especially during the financial crisis, sparsification
does not seem to help. The nonsparsified BVAR estimates tend to produce already too tight predictive distributions. These
become even tighter after applying sparsification. For the interest rate, BVAR models produce normalized forecast errors
with variances well below unity. Using large VARs coupled with a relative loose prior and adding SAVS improves this.
More precisely, for the sparsified large VAR with 𝜃1 = 0.075, we find that the variance increases from 0.16 to approxi-
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mately 0.5. Although this is still below the unit variance we would expect under a well calibrated model, we consider this
a substantial improvement at the costs of slightly higher autocorrelation in the errors.

In general, the PITs suggest that using SAVS has the potential to improve model calibration for some models and most
variables. A recommendation for practitioners might be that if the variance of normalized forecast errors of a BVAR is well
below one, SAVS can substantially improve forecast density calibration (see, e.g., the normalized errors for output and
interest rate forecasts). Conversely, if the predictive variance of a BVAR is already too tight, characterized by normalized
forecast errors that feature a variance above one, SAVS tends to hurt predictive accuracy (see the case of inflation).

6 CONCLUSIONS

This paper proposes methods to shrink-and-sparsify VAR models with conjugate priors. The main feature of our SAVS
approach is that we postprocess each draw from the joint posterior by solving an optimization problem to search for
a sparse coefficient vector. Without breaking the conjugacy of the model, this approach allows for different predictors
across the equations in the VAR. And, instead of pushing coefficients close to zero, our approach introduces exact zeros,
removing the lower bound on accuracy one can achieve under a popular shrinkage prior in the Minnesota tradition.
Because the error covariance matrix in large VARs also features a large number of coefficients, we adapt techniques from
the literature on graphical models to obtain a sparse estimate of the variance–covariance matrix of the system.

Using synthetic data, we show that combining shrinkage and sparsity pays off in large models with DGPs being sparse.
These improvements in additional estimation accuracy come with little additional computational costs. In our real-data
application, we investigate the forecasting properties of our sparse VARs. Using U.S. data, we show that although our
methods do not substantially improve point forecasts of output, inflation, and interest rates, density forecasts arising from
the sparse models are often much better than those obtained from the shrinkage-alone models.
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Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1), 71–92.
Banerjee, O., Ghaoui, L. E., & D'Aspremont, A. (2008). Model selection through sparse maximum likelihood estimation for multivariate

Gaussian or binary data. Journal of Machine Learning Research, 9, 485–516.
Bashir, A., Carvalho, C. M., Hahn, P. R., & Jones, M. B. (2019). Post-processing posteriors over precision matrices to produce sparse graph

estimates. Bayesian Analysis, 14(4), 1075–1090.
Berkowitz, J. (2001). Testing density forecasts, with applications to risk management. Journal of Business & Economic Statistics, 19(4), 465–474.
Bernanke, B. S., Boivin, J., & Eliasz, P. (2005). Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR)

approach. The Quarterly Journal of Economics, 120(1), 387–422.
Bernardi, M., & Catania, L. (2018). The model confidence set package for r. International Journal of Computational Economics and Economet-

rics, 8(2), 144–158.
Bhattacharya, A., Pati, D., Pillai, N. S., & Dunson, D. B. (2015). Dirichlet–Laplace priors for optimal shrinkage. Journal of the American Statistical

Association, 110(512), 1479–1490.
Carriero, A., Clark, T. E., & Marcellino, M. (2015). Bayesian VARs: Specification choices and forecast accuracy. Journal of Applied Econometrics,

30(1), 46–73.

HAUZENBERGER ET AL. 325

 10991255, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.2807 by U

niversity O
f Strathclyde, W

iley O
nline L

ibrary on [05/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://qed.econ.queensu.ca/jae/datasets/hauzenberger001/


Carriero, A., Clark, T. E., & Marcellino, M. (2019). Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors.
Journal of Econometrics, 212(1), 137–154.

Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97(2), 465–480.
Clark, T. E. (2011). Real-time density forecasts from Bayesian vector autoregressions with stochastic volatility. Journal of Business & Economic

Statistics, 29(3), 327–341.
Cross, J. L., Hou, C., & Poon, A. (2020). Macroeconomic forecasting with large Bayesian VARs: Global-local priors and the illusion of sparsity.

International Journal of Forecasting, 36(3), 899–915.
De Mol, C., Giannone, D., & Reichlin, L. (2008). Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to

principal components? Journal of Econometrics, 146(2), 318–328.
Del Negro, M., & Schorfheide, F. (2004). Priors from general equilibrium models for VARs. International Economic Review, 45(2), 643–673.
Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13(3), 253–263.
Doan, T., Litterman, R., & Sims, C. (1984). Forecasting and conditional projection using realistic prior distributions. Econometric Reviews, 3(1),

1–100.
Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007). Pathwise coordinate optimization. The Annals of Applied Statistics, 1(2), 302–332.
Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432–441.
Friedman, J., Hastie, T., & Tibshirani, R. (2019). glasso: Graphical lasso: Estimation of gaussian graphical models. R package version 1.11.
George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881–889.
George, E. I., & McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statistica Sinica, 7(2), 339–373.
George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553–580.
Geweke, J., & Amisano, G. (2010). Comparing and evaluating Bayesian predictive distributions of asset returns. International Journal of

Forecasting, 26(2), 216–230.
Giannone, D., Lenza, M., & Primiceri, G. E. (2015). Prior selection for vector autoregressions. Review of Economics and Statistics, 97(2), 436–451.
Giannone, D., Lenza, M., & Primiceri, G. E. (2017). Economic predictions with big data: The illusion of sparsity. CEPR Discussion Paper No.

DP12256.
Giordani, P., & Villani, M. (2010). Forecasting macroeconomic time series with locally adaptive signal extraction. International Journal of

Forecasting, 26(2), 312–325.
Griffin, J. E., & Brown, P. J. (2010). Inference with normal-gamma prior distributions in regression problems. Bayesian Analysis, 5(1), 171–188.
Hahn, P. R., & Carvalho, C. M. (2015). Decoupling shrinkage and selection in Bayesian linear models: A posterior summary perspective. Journal

of the American Statistical Association, 110(509), 435–448.
Hall, A. R., Inoue, A., Nason, J. M., & Rossi, B. (2012). Information criteria for impulse response function matching estimation of DSGE models.

Journal of Econometrics, 170(2), 499–518.
Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453–497.
Huber, F., & Feldkircher, M. (2019). Adaptive shrinkage in Bayesian vector autoregressive models. Journal of Business & Economic Statistics,

37(1), 27–39.
Huber, F., Koop, G., & Onorante, L. (2020). Inducing sparsity and shrinkage in time-varying parameter models. Journal of Business & Economic

Statistics, 1–15.
Ingram, B. F., & Whiteman, C. H. (1994). Supplanting the Minnesota prior: Forecasting macroeconomic time series using real business cycle

model priors. Journal of Monetary Economics, 34(3), 497–510.
Kadiyala, K. R., & Karlsson, S. (1997). Numerical methods for estimation and inference in Bayesian VAR-models. Journal of Applied

Econometrics, 12(2), 99–132.
Koop, G. M. (2013). Forecasting with medium and large Bayesian VARs. Journal of Applied Econometrics, 28(2), 177–203.
Litterman, R. B. (1986). Forecasting with Bayesian vector autoregressions—Five years of experience. Journal of Business & Economic Statistics,

4(1), 25–38.
McCracken, M. W., & Ng, S. (2016). FRED-MD: A monthly database for macroeconomic research. Journal of Business & Economic Statistics,

34(4), 574–589.
Meinshausen, N., & Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34(3),

1436–1462.
Polson, N. G., & Scott, J. G. (2010). Shrink globally, act locally: Sparse Bayesian regularization and prediction. Bayesian Statistics, 9, 501–538.
Puelz, D., Hahn, P. R., & Carvalho, C. M. (2017). Variable selection in seemingly unrelated regressions with random predictors. Bayesian

Analysis, 12(4), 969–989.
Puelz, D., Hahn, P. R., & Carvalho, C. M. (2020). Portfolio selection for individual passive investing. Applied Stochastic Models in Business and

Industry, 36(1), 124–142.
Ray, P., & Bhattacharya, A. (2018). Signal adaptive variable selector for the horseshoe prior. arXiv:1810.09004.
Theil, H., & Goldberger, A. S. (1961). On pure and mixed statistical estimation in economics. International Economic Review, 2(1), 65–78.
Woody, S., Carvalho, C. M., & Murray, J. S. (2020). Model interpretation through lower-dimensional posterior summarization. Journal of

Computational and Graphical Statistics, 1–9.

HAUZENBERGER ET AL.326

 10991255, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.2807 by U

niversity O
f Strathclyde, W

iley O
nline L

ibrary on [05/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Zellner, A. (1985). Bayesian econometrics. Econometrica, 53(2), 253–269.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Hauzenberger N, Huber F, Onorante L. Combining shrinkage and sparsity in
conjugate vector autoregressive models. J Appl Econ. 2021;36:304–327. https://doi.org/10.1002/jae.2807

HAUZENBERGER ET AL. 327

 10991255, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.2807 by U

niversity O
f Strathclyde, W

iley O
nline L

ibrary on [05/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/jae.2807
https://doi.org/10.1002/jae.2807

	Combining shrinkage and sparsity in conjugate vector autoregressive models
	Abstract
	1 INTRODUCTION
	2 CONJUGATE BAYESIAN INFERENCE IN VAR MODELS
	3 ACHIEVING SPARSITY IN VAR MODELS
	3.1. Overview of the problem
	3.2. Achieving sparsity on the VAR coefficients
	3.3. Sparsification of the variance–covariance matrix
	3.4. Posterior inference in sparse VARs

	4 SIMULATION-BASED EVIDENCE
	5 FORECASTING APPLICATION
	5.1. Data overview, design of the forecasting exercise, and competitors
	5.2. Choice of hyperparameters
	5.3. Point forecasting performance
	5.4. Density forecasting performance
	5.5. Forecasting performance over time
	5.6. Assessing model calibration using probability integral transforms

	6 CONCLUSIONS
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




