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Abstract

We extend the econometric literature on the role of production networks in the propagation of
monetary policy shocks along two dimensions. First, we allow for time-varying industry-specific
responses, reflecting non-linearities and heterogeneity in direct transmission channels. Second,
we allow for time-varying network structures and dependence. This captures both variation in
the structure of the production network and differences in cross-industry demand elasticities.
Spillover effects among industries appear to be important in periods of elevated economic and
financial uncertainty, often coinciding with tight credit market conditions and financial stress.
Cross-sectional differentials can be explained by how close industries are to end-consumers.

Keywords: High-frequency identification; monetary policy shocks; production networks; spatio-
temporal modeling

JEL classification: C11; C23; C32; C58; E52

I. Introduction

There is a growing body of literature that explores how shocks on the
micro and macro level propagate through economic networks, and how
such shocks relate to aggregate fluctuations (see, for instance, Gabaix,
2011; Acemoglu et al., 2012, 2015; Carvalho and Gabaix, 2013; Elliott
et al., 2014; Baqaee and Farhi, 2019). We contribute to this literature by
analyzing the transmission of monetary policy shocks through the granular
US production network. Our interest centers on assessing time variation
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1262 Heterogeneous network effects of US monetary policy

in the strength of network dependence, and the effects of monetary policy
shocks on industry-level returns that are allowed to vary over time and the
cross-section.

Our approach relates to Ozdagli and Weber (2020), who generalize
the set-up proposed in Bernanke and Kuttner (2005) and Gürkaynak
et al. (2005) for analyzing the effects of changes in monetary policy on
equity prices.1 While Bernanke and Kuttner (2005) and Gürkaynak et al.
(2005) identify a significant and substantial effect of monetary surprises on
aggregate stock market indices, Ozdagli and Weber (2020) decompose these
estimates into direct effects and spillovers through the production network.
They use a conventional network panel model, and provide evidence for
significant higher-order effects of monetary policy on stock market returns
between 55 and 85 percent using disaggregate data on the industry-level.

These higher-order dynamics originate from cross-industry demand
elasticities to the same shock, amplifying direct effects of monetary policy
interventions in the interconnected US production network. We provide
extensions from an econometric and empirical perspective by drawing from
the vast literature on Bayesian state-space modeling (see Kim and Nelson,
1999), combining these methods with network panel data models (see, for
instance, Elhorst, 2014; Aquaro et al., 2015; LeSage and Chih, 2016).

Neglecting heterogeneities over time or the cross-section can conceal
important transmission channels, for two reasons. First, there is evidence
for structural breaks in the transmission of monetary policy shocks
to macroeconomic and financial variables (Cogley and Sargent, 2005;
Primiceri, 2005; Paul, 2020). Several studies find that returns respond
much more strongly to surprise monetary policy shocks during tight credit
market conditions, or during bear markets (see Chen, 2007; Basistha
and Kurov, 2008; Kurov, 2010; Kontonikas et al., 2013). It is unclear,
however, if these differences originate from changes in the covariance
structure across industries that reflect network dependency and higher-
order effects, or whether they stem from direct responses in the conditional
mean of conventional regressions (captured, for instance, via time-varying
parameters, TVPs). While Ozdagli and Weber (2020) assume constant
parameters, they characterize the production network as non-linear and to
exhibit cycles (see Section II of their paper). This motivates our approach
of introducing time-varying network dependence alongside TVPs.

1These articles are among a larger body of diverse literature focusing on measuring monetary non-
neutrality using high-frequency market surprises around central bank policy announcements (see
Cook and Hahn, 1989; Thorbecke, 1997; Kuttner, 2001; Cochrane and Piazzesi, 2002; Rigobon
and Sack, 2004; Gürkaynak et al., 2005; Gertler and Karadi, 2015; Lucca and Moench, 2015;
Nakamura and Steinsson, 2018; Neuhierl and Weber, 2018; Altavilla et al., 2019; Jarociński and
Karadi, 2020; Paul, 2020).
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N. Hauzenberger and M. Pfarrhofer 1263

Second, pooling information across industries can conceal underlying
structural relationships. Also, it potentially distorts the estimated importance
of some industries in the disaggregate transmission of monetary policy
shocks compared with others (see Ehrmann and Fratzscher, 2004;
Gorodnichenko and Weber, 2016). This is a crucial notion, considering that
industries differ substantially in size and use vastly different production
inputs. In a theoretical framework, Pasten et al. (2018, 2020) show
that differences in price rigidities originating from such heterogeneities
are determinants of how policy interventions are transmitted to the
real economy.

To address heterogeneity over time and the cross-section, we develop
a flexible Bayesian state-space model. Both the network dependence
parameter and the regression coefficients are assumed to vary over time
via imposing random-walk state equations. The time-varying regression
coefficients can be estimated by relying on a standard conditionally
Gaussian state-space model using panel data for industry-level returns in the
US. Moreover, as a technical novelty, we propose a sampling algorithm for
the time-varying network dependence parameter. Our approach aims to shed
light on the question whether network effects play a role in determining
the overall time-varying effect of monetary policy shocks on stock returns.

From an empirical perspective, several findings are worth noting.
First, we detect substantial differences over time and the cross-section.
Our estimates indicate that the overall strength of network effects varies
between 40 and 80 percent. Differences over time can be linked to
periods of economic and financial uncertainty, often coinciding with tight
credit market conditions and financial stress. Second, time variation in
network dependence translates to substantial differences in total effects of
monetary policy on stock returns. In fact, we find that estimates in some
periods are about 2 percent in response to a surprise one percentage point
increase in the federal funds rate, while these effects can be as large as
10 percent in others. Third, our results show substantial heterogeneity over
the cross-section. We cluster industries by assessing the joint distribution
of total and network effects econometrically, and we obtain two main
clusters. The clusters can roughly be described as classifying industries
regarding their closeness to end-consumers in the production network. The
closer an industry is to end-consumers, the smaller is the share attributed
to network effects.

The rest of the paper is structured as follows. In Section II, we set forth
the model alongside the Bayesian prior set-up and a sampling algorithm
for inference. In Section III, we introduce the dataset. Our main results on
network dependence in the propagation of US monetary policy shocks are
discussed in Secion IV. We conclude in Section V. Appendix A contains
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1264 Heterogeneous network effects of US monetary policy

further details on the sampling algorithm, Appendix B gives details of the
data, and there is also a supplementary Online Appendix with additional
empirical results.

II. A Time-Varying Network Dependence Panel Model

We define the measurement equation for industry i = 1, . . . , N as

yit = ρt

N∑
j=1

wi jt yjt + αit + x′
itβit + εit, εit ∼ N

(
0, σ2

i

)
, (1)

where yit is the response variable at time t = 1, . . . ,T . We include a time-
varying intercept term αit , K exogenous covariates in the K × 1 vector
xit with associated observation specific TVP vector βit of size K × 1
and a Gaussian error term with zero mean and variance σ2

i . Equation (1)
is a general specification of our model. In the empirical application, the
vector xit reduces to a scalar that is common across all observations i. In
particular, xit = vt where vt denotes the identified monetary policy shocks
(see Section III for details).

Information on the cross-sectional dependency structure is incorporated
using weighted averages of the “foreign” quantities yjt ( j = 1, . . . , N)
with time-varying weights wi jt . These weights denote the elements of a
pre-determined N × N weighting matrix Wt subject to the restrictions
wi jt ≥ 0 and

∑N
j=1 wi jt = 1. Cross-sectional weights are commonly based on

observables or simple ad hoc definitions, describing the network structure
in a sensible way. We follow Ozdagli and Weber (2020) and use a weights
matrix capturing intermediate input shares across industries to model the US
production network. The choice of this matrix is derived from a theoretical
model of production with intermediate inputs and provides a precise
structural interpretation. We explicitly allow for the network structure to
change via Wt in our baseline specification to capture the varying relative
importance of industries in the production network (see also Carvalho and
Gabaix, 2013).

We propose that the scalar parameter ρt should feature time variation.2

The state equation for the network dependence parameter ρt is a random-
walk process:

ρt = ρt−1 + ςξt, ξt ∼ N(0, 1). (2)

2This feature is related to time-varying network structures (see Asgharian et al., 2013; Billio
et al., 2016a), assuming that linkage matrices evolve over time, but keeping the overall strength
of network effects constant. By contrast, we introduce additional flexibility by assuming a time-
varying network structure and dependence parameter. Our model can be considered as an extended
Bayesian version of Blasques et al. (2016) and Catania and Billé (2017) that features several
technical novelties, resulting in a more flexible specification.
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N. Hauzenberger and M. Pfarrhofer 1265

The covariance matrix of the reduced-form errors for the stacked version
of the model at time t is given by the expression

(IN − ρtWt )−1Σ(IN − ρtWt )−1 ′,

with Σ = diag(σ2
1 , . . . , σ

2
N ). Econometrically, the parameter ρt can thus

be interpreted as a common factor, capturing a special form of stochastic
volatility. Wt acts as a pre-determined matrix of factor loadings.3 This
relates to measures of dynamic connectedness (Diebold and Yilmaz, 2009;
Demirer et al., 2018), and studies capturing financial contagion and systemic
risk (see Forbes and Rigobon, 2002; Blasques et al., 2016). The structural
interpretation of the proposed Wt relates our study to investigations
regarding network effects of aggregate demand shocks. Intuitively, as
Wt solely captures time-varying relative input shares, ρt governs
time-varying cross-industry elasticities with respect to the exogenous
variables.

Allowing for TVPs is straightforward by drawing from the vast literature
on state-space models (see Kim and Nelson, 1999, for a textbook overview).
The regression coefficients are stacked in a (K+1)×1 vector θit = (αit, β′

it )′.
We assume independent random-walk state equations for industries i =
1, . . . , N:

θit = θit−1 + ηit, ηit ∼ N(0,Ωi).
Here, ηit is a zero-mean Gaussian error term and diagonal covariance
matrix Ωi = diag(ωi1, . . . , ωiK+1) of size (K + 1) × (K + 1). The state
innovation variances in Ωi govern the degree of time-variation in the
regression coefficients.

Interpreting the Model Coefficients

The approach to modeling network dependence pursued in this paper
establishes a large system of simultaneous equations with specific
parametric restrictions. Consequently, standard interpretations for linear
regressions have to be adapted to account for the notion of cross-sectional
dependence.

We follow LeSage and Chih (2016) and derive the impact matrix that
contains the partial derivatives for all industries in yt = (y1t, . . . , yNt )′ with
respect to a change in the kth exogenous covariate xkt = (x1kt, . . . , xNkt )
of industry i = 1, . . . , N , k = 1, . . . ,K , t = 1, . . . ,T . Assuming time-varying

3Although network multipliers (see the next subsection) can also be estimated in unrestricted
multivariate systems by decomposing the covariance matrix of the reduced-form errors, the
identification of specific network connections and their interpretation are less straightforward
(Diebold and Yilmaz, 2009; Bianchi et al., 2015; Billio et al., 2016b).
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1266 Heterogeneous network effects of US monetary policy

network dependence and regression coefficients, we obtain an impact matrix
Skt :

∂yt
∂xkt

= Skt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂y1t/∂x1kt ∂y1t/∂x2kt . . . ∂y1t/∂xNkt

∂y2t/∂x1kt ∂y2t/∂x2kt . . .
...

...
...

. . .
...

∂yNt/∂x1kt . . . . . . ∂yNt/∂xNkt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= (IN − ρtWt )−1Bkt .

Here, Bkt = diag(β1kt, . . . , βNkt ) with βikt referring to the kth coefficient
of industry i at time t, and the term (IN − ρtWt )−1 is a network multiplier
matrix governing the propagation of the shocks through the network
structure. We define the variants of the effects, as follows.

1. Direct effects per industry are given by the main diagonal of Skt .
This corresponds to the partial derivative of the response variable of
industry i with respect to the kth exogenous variable of the same
industry adjusted for higher-order effects stemming from the network
multiplier matrix. The average direct effect is 1/N × tr(Skt ), that is,
the average of the main diagonal of the impact matrix Skt .

2. The total effects per industry can be calculated by Skt ιN (with
ιN denoting an N × 1-vector of ones), reflecting the sum of all
derivatives of the response variable in industry i with respect to the
kth explanatory variable of all other industries and itself. The average
total effect is defined as 1/N × ι′NSkt ιN .

3. The average indirect effect or network effect is the difference between
the total and direct effects, and can also be computed per industry
(indirect effects per industry). This measure thus captures cross-
industry partial derivatives on the off-diagonal positions in Skt . The
share of network effects in percent is calculated as indirect divided by
total effects.

Prior Specification

We estimate the proposed model using Bayesian methods. This involves
selecting suitable prior distributions for all parameters and combining them
with the likelihood of the data given by equation (1). We choose the prior
distributions, as follows.

1. To define the prior distribution on the time-varying regression
coefficients, we consider the state-space model in its non-centered
parametrization (for details, see Frühwirth-Schnatter and Wagner,

C© 2021 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
för utgivande av the SJE/The editors of The Scandinavian Journal of Economics.

 14679442, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjoe.12436 by U

niversity O
f Strathclyde, W

iley O
nline L

ibrary on [05/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



N. Hauzenberger and M. Pfarrhofer 1267

2010). Let
√
Ωi = diag(√ωi1, . . . ,√ωiK+1). Then, we split the

coefficients into a constant and time-varying part: θit = θi0 +
√
Ωi θ̃it .

Using this transformation, θ̃it follows a random walk with standard
normal shocks. For the prior on the initial state of the time-varying
regression coefficients, we assume θi0 ∼ N(0, aVi) where Vi collects
the ordinary least-squares variances on its main diagonal and a = 100
determines the tightness of the prior. This establishes a weakly
informative variant of the g-prior (see Zellner, 1986) for the time-
invariant part of the coefficients. We use independent Gamma priors
on the state innovation variances, which translates to a Gaussian prior
on their square root (see Frühwirth-Schnatter and Wagner, 2010):√
Ωi ∼ N(0, bVi). The tightness parameter b is set to 0.1, resulting

in a comparatively tight prior that is required for regularizing the
high-dimensional TVPs.

2. For the initial state of the network dependence parameter ρ0, we
choose the prior ρ0 ∼ N(μ0, ς

2
0 ) with μ0 = 0 and ς2

0 = 0.1.

3. On the state innovation variances of the network dependence
parameter, we assume a mildly informative inverse Gamma prior,
ς2 ∼ G−1(cς, dς ) with cς = 3 and dς = 0.03.

4. The measurement equation error variances are assigned weakly
informative independent inverse Gamma priors, σ2

i ∼ G−1(cσ, dσ),
with cσ = dσ = 0.01.

Estimating Time-Varying Network Dependence

Combining the likelihood of the model with the proposed prior distributions
yields a set of well-known conditional posterior distributions for most
parameters. These conditional posteriors can be used for setting up a
Markov chain Monte Carlo (MCMC) sampling algorithm involving forward-
filtering backward-sampling (FFBS; see Carter and Kohn, 1994; Frühwirth-
Schnatter, 1994). Most of the quantities involved are standard, and we
discuss details in Appendix A.

However, producing draws for the full history of the time-varying
network dependence parameter is novel to the literature. In the following,
we propose a sampling algorithm for the time-varying network dependence
parameter. Because of the non-Gaussian set-up, Kalman-filter based
methods (such as FFBS) are inapplicable. Simulation from the posterior
distribution can be carried out using a Metropolis–Hastings algorithm.

We label the current draw of the respective quantity by s−1, and s refers
to a proposal from the candidate density. The procedure is similar to the
algorithm proposed in the context of Bayesian stochastic volatility models in

C© 2021 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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1268 Heterogeneous network effects of US monetary policy

Jacquier et al. (2002). As no initial value ρ0 is available, we rely on Jacquier
et al. (2002) who show that this quantity can be obtained by drawing
from a Gaussian distribution ρ(s)0 ∼ N(μ̄0, S0). The corresponding moments

are S0 = (ς2
0 ς

2)/(ς2
0 + ς

2) and μ̄0 = ς
2
0 (μ0/ς2

0 + ρ
(s−1)
1 /ς2). Moreover,

we rely on the following three conditional prior distributions defined
by equation (2).

1. The conditional prior at t = 1 is given by ρ(s)1 ∼ N(μ̄1, S1), where

μ̄1 = (ρ(s)0 + ρ
(s−1)
1 )/2 and S1 = ς

2/2.

2. For all points in time other than the first and last period, the
conditional prior distribution for ρ(s)t is ρ(s)t ∼ N(μ̄t, St ), with μ̄t =
(ρ(s)

t−1 + ρ
(s−1)
t+1 )/2 and St = ς2/2.

3. For the final value at t = T , because ρT+1 is not available, the
conditional prior density is ρ(s)T ∼ N(μ̄T , ST ) with μ̄T = ρ

(s)
T−1 and

ST = ς2.

For each period, we generate a proposal ρ(s)t ∼ N(ρ(s−1)
t , c) where

c is a tuning parameter. This proposal is used to calculate the
acceptance probability of the Metropolis–Hastings algorithm. To simplify
notation, we define ỹit (ρ(s)t ) = ρ(s)t

∑N
j=1 wi j,t yjt × σ−1

i and ỹt (ρ(s)t ) =
(ỹ1t (ρ(s)t ), . . . , ỹNt (ρ(s)t ))′ as the vector of network lags depending on the
current value ρ(s)t , with σ2

i referring to the error variance of industry i, and
we set ε̃it = (yit − αit − x′

it βit ) × σ−1
i . Again, we stack these quantities in

ε̃ t = (ε̃1t, . . . , ε̃Nt )′. Let

L(ρ(s)t ) = det(IN − ρ(s)t Wt ) × exp{−0.5(ε̃ t − ỹt (ρ(s)t ))′(ε̃ t − ỹt (ρ(s)t ))}.

Then, the acceptance probability ζ of the proposal ρ(s)t implied by the
likelihood is

ζ = min
��

L
(
ρ
(s)
t

)
× N

(
ρ
(s)
t ; μ̄t, St

)
L

(
ρ
(s−1)
t

)
× N

(
ρ
(s−1)
t ; μ̄t, St

) , 1����
.

The candidate draw ρ(s)t is accepted with probability ζ . Otherwise, we retain
the previous draw ρ(s−1)

t . After obtaining the full history for ρt , we simulate
the variance ς2 using standard posterior moments for the error variance in
Bayesian linear regression models.
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N. Hauzenberger and M. Pfarrhofer 1269

III. Data and Model Specification

In this section, we describe the dataset. We first provide information
on the exogenous monetary policy shocks. This discussion is followed
by our classification of industries and the construction of the cross-
sectional linkages. Michael Weber kindly provided us with the original
industry-level dataset and the exogenous monetary policy measure used
in Ozdagli and Weber (2020). All our codes and the dataset are available
at https://github.com/mpfarrho/tvp-network-panel.

Measuring Monetary Policy Shocks

As an exogenous measure of the monetary policy shocks, we rely on high-
frequency changes in federal funds futures. The predetermined nature of
monetary policy announcement dates – eight regular Federal Open Market
Committee (FOMC) meetings per year, with press releases communicating
policy decisions typically around 14:15 Eastern time – allows for extracting
the surprise component of the monetary policy action. We use high-
frequency data on forward-looking financial instruments in a tight window
of Δt = τ(1)+ τ(2) = 30 minutes around the press release. In particular, we
define monetary policy shocks vt as

vt =
D

D − t

(
FFt+τ(2) − FFt−τ(1)

)
.

Here, FFt+τ(2) is the rate implied by federal funds futures after the
announcement at time t, FFt−τ(1) denotes the same rate before the FOMC
announcement, and D is the number of days in the month, which is
needed for adjusting for the fact that the federal funds futures settle on
the average effective overnight federal funds rate. The tight window around
the announcement defined by τ(1) = 10 minutes and τ(2) = 20 minutes
reduces the risk of other events than monetary policy decisions affecting
futures prices, and provides support for the claim of exogeneity (see also
Bernanke and Kuttner, 2005; Gürkaynak et al., 2005).

We focus on scheduled FOMC meetings and exclude emergency
meetings to reduce the risk of biasing our estimates with confounding
signaling effects (see, for instance, Nakamura and Steinsson, 2018;
Jarociński and Karadi, 2020). Our information set includes data between
February 1994 and December 2008 (i.e., T = 120). The sample starts in
1994 because the Federal Reserve (Fed) changed its communication strategy
at this time and tick-by-tick stock market data are not available prior to
1993. It ends in 2008 to exclude the period when the Fed started its various
unconventional monetary policy measures when approaching the zero lower
bound.

C© 2021 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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1270 Heterogeneous network effects of US monetary policy

The exogenous vector xit in equation (1) features the scalar shock
vt that is common to all i, while βit is the associated time-varying
observation-specific parameter capturing the sensitivity of industry i to the
monetary policy shock at time t. Moreover, we include an industry-specific
constant αit .

Industry-Level Event Returns

The industries are selected based on the availability of input–output (IO)
tables published by the Bureau of Economic Analysis (BEA) and the United
States Department of Commerce. These tables are needed to calculate the
cross-sectional linkages in Wt . They are published every five years, and we
utilize their 1992, 1997, and 2002 versions.

We aggregate industries at the four-digit IO aggregation level, which
can be mapped to the Standard Industrial Classification (SIC) and North
American Industry Classification System (NAICS). The event returns for
industry i used as dependent variables yit are constructed based on returns
for all common stocks trading on the New York Stock Exchange, American
Stock Exchange or National Association of Securities Dealers around press
releases by the FOMC, weighted by the corresponding market capitalization
at the end of the previous trading day for industries i = 1, . . . , N . The
dependent variable is defined as the difference between the last trade
observation before, and the first observation after, the event window. Note
that we exclude industries with fewer than three firms to ensure diversified
industry returns and to limit the risk of outliers affecting our results.

The panel framework requires consistent availability of event returns
over time. Industry classifications change between 1992 and subsequent IO
table publications. For our main results in Section IV, we thus rely on the
codes in use from 1997 onwards. Following Ozdagli and Weber (2020),
we exclude zero event returns, which results in N = 58 industries in our
baseline specification. Details on the industries are provided in Appendix B.
For the robustness checks provided in the Online Appendix, we also present
estimates using time-invariant weighting matrices, resulting in different
numbers of available non-zero industry returns due to differences in the
aggregation scheme governed by the IO tables.

Cross-Sectional Dependency

To establish the cross-sectional dependency structure via the weighting
matrix Wt , we use IO tables capturing dollar trade flows between industries.
The BEA provides so-called “make” (denoted by an industry-by-commodity
matrix W(make)

t of size N×C with elements w
(make)
ict , the production of goods

by industries) and “use” tables (denoted by a commodity-by-industry matrix

C© 2021 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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N. Hauzenberger and M. Pfarrhofer 1271

W(use)
t of size C × N with elements w

(use)
c jt , the uses of commodities by

intermediate and final users).
Following Ozdagli and Weber (2020), we define the market shares

W(share)
t of the production industries as

w
(share)
ict =

w
(make)
ict∑N

i=1 w
(make)
ict

.

The share and use tables are used to calculate the amount of dollars industry
j sells to industry i, denoted by the N × N matrix W(rev)

t :

W(rev)
t =W(share)

t W(use)
t .

The final step uses this matrix to derive the percentage of industry i inputs
purchased from industry j, which defines the elements of the weight matrix
Wt introduced in Section II:

wi jt =
w

(rev)
i jt∑C

c=1 w
(use)
c jt

.

In our baseline model, we allow for time variation in Wt . We achieve
this by using the consistently available coding of industries starting 1997,
using the 1997 IO tables from 1994 to the last FOMC announcement in
2001, and we rely on the 2002 IO tables from this point onwards. Because
of the changes of industry classifications in 1997, we cannot use the 1992
weights matrix in this context. Thus, the weights matrix changes once at
the first FOMC meeting in 2002. This specification allows for changes in
the strength of overall network dependence, while addressing changes in
the overall structure of industry relations via the weights matrix.

IV. Network Effects of US Monetary Policy

In a first step, we compare the results estimated with our proposed model
to a set of related specifications from the established literature. For the
models featuring heterogeneous coefficients, we take the arithmetic mean
over all industries and over time per iteration of the algorithm and report
the resulting posterior percentiles (the posterior median, and the bounds
marking the 99 percent posterior credible set). This provides a measure of
the average impact of monetary policy shocks on heterogeneous industry
returns.

The different specifications are summarized in Table 1. “Data” indicates
whether the model was estimated using aggregate (S&P 500) or granular
industry-specific data (Industries). The aggregate S&P 500 returns in
30-minute windows around FOMC announcement dates are taken from

C© 2021 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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1272 Heterogeneous network effects of US monetary policy

Table 1. Model specifications
Model Data Heterogeneity Network References

A1 S&P 500 – – Gürkaynak et al. (2005)
A2 S&P 500 t – Chen (2007)

B1 Industries – – Bernanke and Kuttner (2005)
B2 Industries i – Ehrmann and Fratzscher (2004)
B3 Industries – ρ Ozdagli and Weber (2020)
B4 Industries i ρ Ozdagli and Weber (2020)

C1 Industries – ρt

C2 Industries i ρt

C3 Industries i, t – Basistha and Kurov (2008)
C4 Industries i, t ρ

C5 Industries i, t ρt

Notes: “Data” indicates whether the model was estimated using aggregate (S&P 500) or granular industry-specific
(Industries) data. “Heterogeneity” marks whether we pool estimates over time and the cross-section (–), or allow
for variation over the cross-section (i), over time (t), or the cross-section and over time (i, t). “Network” refers to
the specification of the network dependence parameter, where “–” means no network dependence, ρ marks constant
network dependence, and ρt refers to time-varying network dependence model proposed in this paper. In the final
column, we provide references to similar specifications in the established literature.

Gorodnichenko and Weber (2016), and the exercise corresponds roughly
to Bernanke and Kuttner (2005) and Gürkaynak et al. (2005). The industry-
level data are constructed as discussed in Section III.

“Heterogeneity” marks which coefficients allow for heterogeneity.
Relevant cases are pooled specifications over time and the cross-section
(–), implying that we rule out time variation in the coefficients and set
θ1 = . . . = θN and σ2

1 ,= . . . = σ
2
N . Specifications marked with an i indicate

that we allow for industry-specific coefficients θi and σ2
i , but suppress time

variation in the regression coefficients. Those marked with t refer to time-
varying regression coefficients (relevant only for the aggregate data), while
i, t refers to all parameters being estimated freely across industries and over
time. All of these specifications are nested in our proposed model.

“Network” refers to the specification of the network dependence
parameter, where “–” denotes no network dependence, ρ marks constant
network dependence, and ρt refers to the time-varying network dependence
model proposed in this paper. The weights matrix Wt features time variation
and is described in detail in Section III.

“References” provides an overview of papers with similar specifications
referred to in Section I. Note that Chen (2007) and Basistha and Kurov
(2008), referenced in the context of TVP models, rely on a different
specification of the TVPs using regime-switching models. Chen (2007)
uses a two-state Markov-switching model for aggregate stock market data,
estimating the regime allocation endogenously (disregarding the production

C© 2021 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
för utgivande av the SJE/The editors of The Scandinavian Journal of Economics.

 14679442, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjoe.12436 by U

niversity O
f Strathclyde, W

iley O
nline L

ibrary on [05/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



N. Hauzenberger and M. Pfarrhofer 1273

network), while Basistha and Kurov (2008) use firm-level data with
pre-determined (binary) recession indicators to differentiate between two
regimes and do not consider spillover effects. By contrast, we allow
for gradual changes in the regression coefficients and consider granular
industry-level data in our time-varying network dependence model.

The results across the different model types are displayed in Table 2.
For the cases where there is no network dependence or where we
rely on aggregate data, the regression coefficient associated with the
monetary policy shocks corresponds to the total effect (no spillovers).
Negative values for total effects imply stock market responses in line
with standard economic theory. Monetary tightening induces a reduction
of future expected dividends, and by basic asset pricing theory, higher
interest rates increase the discount rate of future dividends, resulting in
stock market declines. Robustness checks showing very similar results
for different specifications of the weights matrix or industry aggregations,
alongside a split-sample analysis, are provided in the Online Appendix.

We start by comparing the disaggregate, industry-based estimates
with those obtained from regressing aggregate S&P 500 returns around
announcement dates on the monetary policy shocks displayed in the first
row of Table 2. For this purpose, we replicate the set-up in Gürkaynak
et al. (2005), who rely on data from January 1990 to December 2004,
using our updated dataset from February 1994 to December 2008. At this
point, we note that our estimates of the total effects are rather similar for
point estimates across all different specifications (with minor differences
in posterior credible sets), indicating that our proposed model produces
reasonable results in line with the established literature.

Accounting for posterior uncertainty and the different sample period, our
estimates for the aggregate Model A1 corroborate the findings in Gürkaynak
et al. (2005). A surprise increase of 1 percentage point in the federal
funds rate translates to a decline in stock market returns of about 3.1
percent. Considering a hypothetical positive 25 basis point (bp) shock to
the federal funds rate – the usual magnitude of Fed policy adjustments for
the considered period – yields a decline of the S&P 500 index between
1.2 and 0.3 percent. These effects are in line with Gürkaynak et al. (2005)
and Bernanke and Kuttner (2005), and also mirror those of Ozdagli and
Weber (2020) in the context of an identical replication exercise for our
sample period. Allowing for time variation in the coefficient measuring the
sensitivity of S&P 500 returns to monetary policy shocks (Model A2) and
aggregating the response over time ex post yields marginally larger point
estimates with a slightly inflated posterior credible interval. We discuss
time-varying dynamics below, but note that effect sizes differ strongly over
time, a finding in line with Chen (2007).
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N. Hauzenberger and M. Pfarrhofer 1275

The results for models estimated with industry-level data, disregarding
time variation in the regression coefficients or the network dependence
parameter for the moment, are summarized in rows three to six (labeled
Model B1–B4) in Table 2. Starting with Models B1 and B2, abstracting
from higher-order effects captured by network dependence models, we find
point estimates to be similar to those obtained from estimating the model
using aggregate data. It is worth mentioning that the posterior credible
sets are much narrower. We provide a detailed discussion of cross-sectional
heterogeneity below, but note that our estimates corroborate the notion
of asymmetric effects of monetary policy shocks on industry returns, as
suggested by Ehrmann and Fratzscher (2004).

Crucial benchmarks are Model B3 and B4, which are the main
specifications in Ozdagli and Weber (2020). Recall that our proposed
specifications feature the time-varying weights matrix Wt and are estimated
using the balanced panel of N = 58 industries. Compared with the original
paper, the estimates are remarkably robust to this different sample in terms
of total effect sizes. However, our estimates for the parameter ρt are
appreciably lower. While Ozdagli and Weber (2020) estimate the network
dependence parameter for the homogeneous coefficient specification (Model
B3) to be around 0.87, our estimate lies in the credible set between 0.65
and 0.7. Turning to Model B4 featuring idiosyncratic regression coefficients
and variances, our results are almost identical to those presented in Table 2,
column 5 in Ozdagli and Weber (2020), which is the corresponding
specification. Calculating relative network effects, this implies that roughly
74 percent of the overall market response can be explained by higher-order
effects.

Specifications featuring TVPs or a time-varying network dependence
parameter are shown in the bottom panel of Table 2 (labeled Model C1–
C5). Starting with Model C1, ruling out TVPs and pooling over the cross-
section but allowing for a time-varying ρt , we find that the total effects
are slightly lower than in all others. The estimates for network effects
in percent are comparable with Model B3. Relaxing the assumption of
homogeneity over the cross-section increases the share attributed to network
effects substantially. Estimated effects and network effects are similar to
those in Model B4, the main specification of Ozdagli and Weber (2020).
For Model C3, where we neglect higher-order effects, we find average total
effects of −3.05 percent in response to a surprise increase of 1 percentage
point in the federal funds rate.4

4These estimates are smaller in size compared with Basistha and Kurov (2008) who neglect
spillover effects. Note, however, that we rely on a different sampling period, and rather than
using a deterministic regime-switching model, we allow for gradually evolving coefficients and
observe substantial variation in the effects over time.
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1276 Heterogeneous network effects of US monetary policy

Model C4 and C5 reflect variants of our main specification. We obtain
significantly larger estimates for the network dependence parameter if we
rule out time-varying network dependence. This translates to a slightly
higher share of the total effects attributed to higher-order network effects
of about 75 percent. Relaxing the assumption of constant regression
coefficients slightly increases (decreases) our estimates for direct effects
(indirect effects). This dynamic yields an estimate for the network effects
between 67.5 and 71.3 percent, leaving the total effects roughly unchanged.
Interestingly, our estimates for total effects are comparable with Model A2
using aggregate data, albeit with narrower credible sets.

Summing up, we observe small differences across the model
specifications. However, all of them are in line with the established literature
and our proposed modeling approach appears to deliver plausible results.
In the following, we illuminate driving factors of these differences based
on cross-sectional heterogeneities, time variation in regression coefficients
and the network dependence parameter.

Time-Varying Effects of Monetary Policy Shocks on Stock Returns

In this section, we investigate average effects over time. Direct, indirect,
total, and network effects in percent are displayed in Figure 1. We focus
on Models B4 (constant parameter benchmark model), C2, and C4, and we
compare them with our main specification C5. As an aggregate benchmark,
we also include Model A2. The models are selected based on illuminating
differences over time, arising from the introduction of different types of
heterogeneities.

Before turning to explanations of why effects change over time, we
provide a description of the estimated effects. Several findings are worth
noting. Direct effects mostly exhibit a smooth path, albeit with several high-
frequency spikes. Differences across model specifications featuring TVPs
appear especially in 1999, and between 2002 and 2003. In particular, Model
C2 estimates much smaller effects in absolute value alongside movements
in the opposite direction when compared with C4 and C5. It is worth
mentioning that indirect effects for C2 are extremely smooth over time
(and look similar to direct effects, given the constant specification of
ρt ), while the models featuring a time-varying network parameter exhibit
numerous high-frequency spikes. Comparing Models C4 and C5 in detail
and assessing the effect of allowing for time-varying regression coefficients,
we find that differences are muted. We estimate slightly larger direct effects
in absolute value for C4, but the dynamic evolution of the impact measures
is rather similar.

One of the main questions this paper aims to address is how total
effects of monetary policy on stock market returns evolve over time.

C© 2021 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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Fig. 1. Effects over time across different model specifications
Notes: Details on the impact measures are described in Section II. For model specifications,
see Table 1. Solid lines and shaded areas depict the 99 percent posterior credible set and the
posterior median. The gray shaded area marks recessions dated by the NBER Business Cycle
Dating Committee. The vertical black solid line indicates the policy meeting on 30 January 2002,
where the weights matrix changes (because of changes in the industry classification scheme, we
cannot use the 1992 weights matrix for this exercise).

The third panel in Figure 1 shows these effects for several models
estimated using industry-level data, and also plots Model A2, which is
based on the aggregate S&P 500 index. With aggregate data, the credible
sets are inflated and include zero for a substantial part of the sample.
Time variation in the estimates is occurring at a rather low frequency,
similar to C2. The overall dynamic evolution is comparable to models C4
and C5, although we observe differences in 1999 and 2002/2003. These
differences can be explained by the fact that the time-varying network
dependence model allows for shifts in the covariance structure across
industries (and thus time-varying variances), a feature that is not present in
the case of our aggregate data specification. We refer to the discussion
of interpreting ρt as a common factor capturing a form of stochastic
volatility. Trends towards larger effects at the end of the sample are clearly
visible.
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1278 Heterogeneous network effects of US monetary policy

Part of the total effect can be explained by higher-order network effects,
which are shown in the bottom panel in percent. We observe that network
effects for Models C4 and C5 are approximately the same. Similarly, C2
and B4 are rather similar, and correspond to the average of C4 and C5 over
time (about 80 percent). Interestingly, we observe substantial variation in
the strength of network effects over time. Between 1994 and 1998, about
50 percent of the total effect can be explained by network effects. After a
period of elevated network effects and several higher-frequency movements
exceeding 80 percent, we observe the posterior median to drop to about
40 percent. Towards the end of the sample, we estimate a persistently high
importance of network effects of around 80 percent.

As a next step, we investigate the time-varying dependence parameter
ρt in the upper panel of Figure 2. Comparing this time-series to indirect,
total, and network effects in Figure 1, high-frequency movements are clearly
driven by the network dependence parameter. Recall that the parameter ρt
can be interpreted as a common factor scaling the covariance matrix of
the reduced-form errors, and thus captures a special form of stochastic
volatility. As such, the parameter captures time-varying cross-industry
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Fig. 2. Explaining time variation in the network dependence parameter
Notes: Posterior median of the network dependence parameter ρt alongside the 99 percent
posterior credible set. “VIX” is the Chicago Board Options Exchange Volatility Index, “FSI” is
the St Louis Fed Financial Stress Index, “NFCI” is the Chicago Fed National Financial Conditions
Credit Subindex, “EPU” is the three-component economic policy uncertainty index developed by
Baker et al. (2016), and “MPU” is the monetary policy uncertainty index of Husted et al. (2020).
These series are normalized such that they lie in the unit interval to be comparable in scale. For
values x, with min and max referring to the minimum and maximum values, the normalization
is [x −min(x)]/[max(x) −min(x)]. The gray shaded areas marks recessions dated by the NBER
Business Cycle Dating Committee.
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N. Hauzenberger and M. Pfarrhofer 1279

elasticities. The lower panel of Figure 2 collects several series that we
link to the observed dynamics in higher-order network effects of monetary
policy to explain the time variation.

The related literature provides several potential explanations for time
variation in the transmission of monetary policy interventions. They include
differences across investor sentiments over stock market regimes (bull and
bear markets), credit conditions and financial stress, but also financial and
economic uncertainty (see Chen, 2007; Kurov, 2010; Kontonikas et al.,
2013; Baker et al., 2019; Husted et al., 2020). The parameter ρt drives the
magnitude of cross-industry elasticities, and monetary policy shocks act as
demand shocks in the production network. In light of the characteristics
that uncertainty shocks share with demand shocks (see Leduc and Liu,
2016), we argue that monetary policy interventions are amplified during
such periods, a notion that is reflected in our results and discussed in more
detail below.

We focus on five series of interest that reflect such conditions. They
are obtained from the FRED database maintained by the Federal Reserve
Bank of St Louis, and normalized to lie in the unit interval to make them
commensurable in scale. We include the Chicago Board Options Exchange
Volatility Index (VIX), which captures the stock market’s expectation of
volatility based on S&P 500 index options. The VIX captures overall
financial market uncertainty. Moreover, we investigate the St Louis Fed
Financial Stress Index (FSI) and the Chicago Fed National Financial
Conditions Credit Subindex (NFCI). These indices serve as measurements
for financial stress and the tightness of credit market conditions. As a
broader measure of uncertainty, we refer to the economic policy uncertainty
(EPU) index developed by Baker et al. (2016), accompanied by a measure
of monetary policy uncertainty (MPU; Husted et al., 2020).5

It is worth mentioning that all series exhibit a substantial degree of
comovement, with EPU and MPU showing several differences, particularly
between 2002 and 2005. Table 3 shows pairwise correlations. If publication
frequencies are higher than monthly, we aggregate them at a monthly
frequency using the arithmetic mean and match them with the FOMC
meeting dates. The network dependence parameter exhibits the highest
correlation with NFCI, followed by FSI and the VIX. This points towards
the importance of financial uncertainty increasing higher-order demand
effects of monetary policy, alongside tight credit market conditions.

The first substantial peak occurs during the Asian financial crisis in
1997, followed by the Russian crisis and the related collapse of the hedge-
fund Long-Term Capital Management in late 1998. During these periods, all

5The economic policy and monetary policy uncertainty indices (see Baker et al., 2016; Husted
et al., 2020) are obtained from https://www.policyuncertainty.com.
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1280 Heterogeneous network effects of US monetary policy

Table 3. Correlation matrix of the network dependence parameter with various indices
ρt NFCI FSI VIX EPU

NFCI 0.533∗∗∗

FSI 0.447∗∗∗ 0.720∗∗∗

VIX 0.429∗∗∗ 0.623∗∗∗ 0.845∗∗∗

EPU 0.205∗ 0.491∗∗∗ 0.611∗∗∗ 0.525∗∗∗

MPU 0.255∗∗ 0.208 0.314 0.290∗∗ 0.501∗∗∗

Notes: “VIX” is the Chicago Board Options Exchange Volatility Index, “FSI” is the St Louis Fed Financial Stress
Index, “NFCI” is the Chicago Fed National Financial Conditions Credit Subindex, “EPU” is the three-component
economic policy uncertainty index developed by Baker et al. (2016), and “MPU” the monetary policy uncertainty
index of Husted et al. (2020). If publication frequencies are higher than monthly, we aggregate them at a monthly
frequency using the arithmetic mean and match them with FOMC meeting dates. ∗∗∗p < 0.001; ∗∗p < 0.01;
∗p < 0.05.

measures indicate elevated levels, pointing towards these events increasing
US stock market volatility, uncertainty, and financial stress. The second
major peak occurs in the context of the burst of the dot-com bubble in
2000. From this point on, network dependence is persistently high, with
minor high-frequency movements during the 9/11 terrorist attacks and the
outbreak of Gulf War II. The latter is mainly observable in the EPU and
MPU indices, pointing towards increased demand effects of monetary policy
measures during periods of high economic uncertainty. Significant drops are
observable in early 2003 and mid-2004, periods where EPU and MPU show
large decreases. We detect persistently increasing high network dependence
up to the collapse of Lehman Brothers in late 2008.

Our findings corroborate those of the earlier literature that time variation
in stock market responses to monetary policy shocks are related to
economic and financial uncertainty, investor sentiment in bull and bear
markets, and financial stress and credit market conditions.

Assessing Heterogeneity and Clustering of Industries

In this section, we shed light on industry-specific effects over time. As a
first step, we abstract from the time dimension and assess clusterings of
industries based on average values over the full sample period. The methods
proposed in our paper do not allow for clustering the effects in a unified
econometric approach. This is due to non-linearities in the conditional mean
of the model, and because the effects of interest are non-linear functions
depending on the reduced-form parameters.

As a solution, we rely on k-means clustering of industries using the
joint distribution of total and network effects based on each individual
draw from the posterior. We choose total and network effects for assessing
clusters based on arguments of structural differences arising from how
close the respective industries are to end-consumers, provided in Ozdagli
and Weber (2020).
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N. Hauzenberger and M. Pfarrhofer 1281

Table 4. Identifying the number of clusters
Number of clusters

2 3 4 5

Probability (percent) 86.9 8.5 2.4 2.2

Notes: Industries are clustered based on total and network effects per industry. We use silhouette analysis for all
posterior draws using a maximum value of 15 clusters. The number of clusters is selected based on the so-called
silhouette coefficient, which yields an empirical distribution for the most adequate number of clusters.

Our analysis requires the number of clusters k to be chosen a priori.
A common way to choose k is to rely on silhouette analysis to study the
separation distance between the resulting clusters. We set the maximum
number of clusters to 15 and compute so-called silhouette coefficients for
all of them. For all draws, we choose the optimal number of clusters based
on this coefficient, which yields an empirical distribution of the number
of clusters. Our findings are displayed in Table 4. The procedure selects
k = 2 in 86.9 percent of the draws, and more clusters than k = 5 are never
supported. Consequently, we choose k = 2 for all subsequent analyses.

The procedure outlined above produces empirical inclusion probabilities
in clusters for all industries, across posterior draws.6 The findings for
this exercise are summarized in Figure 3. To provide a more detailed
interpretation of the obtained clusters, Figure 4 shows a scatter plot between
the posterior median of network and total effects. Industry categories are
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Fig. 3. Cluster allocation of industries
Notes: The number of clusters is chosen to be k = 2, based on silhouette analysis. Indicated
values are empirical inclusion probabilities for industries in clusters across posterior draws. The
white line marks the 50 percent threshold. See Appendix B for details on industries.

6Note that clusters are subject to identification issues (see Frühwirth-Schnatter, 2006). We solve
these by imposing an ordering constraint such that for each draw, the mean of network effects in
Cluster 1 is always larger than in Cluster 2.
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för utgivande av the SJE/The editors of The Scandinavian Journal of Economics.

 14679442, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjoe.12436 by U

niversity O
f Strathclyde, W

iley O
nline L

ibrary on [05/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1282 Heterogeneous network effects of US monetary policy
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Fig. 4. Effect sizes and clustering of industries
Notes: Points indicate the posterior median of the indicated effect across industries. Industry
categories are based on the two-digit level NAICS codes. The number of clusters is chosen to be
k = 2, based on silhouette analysis. The gray shaded areas mark the empirical distribution of the
cluster centers across all posterior draws. See Appendix B for details on industries.

based on the two-digit level NAICS codes. The gray shaded areas mark the
empirical distribution of the cluster centers across all posterior draws.

The clusters are of different sizes, and Cluster 1 features fewer
observations than Cluster 2. For industries assigned to Cluster 1,
probabilities are often close to 50 percent, indicating that membership
assignment is fuzzy. Assessing the means of the estimated clusters in
Figure 4, we find that Cluster 1 is characterized by high network (exceeding
100 percent) and comparatively small total effects (just below −2), while
Cluster 2 exhibits larger total effects (albeit with larger variance across
industries) and network effects of about 55 percent. Interestingly, we find
a negative correlation between total effect sizes in absolute value and the
strength of network effects per industry.

Zooming in on industry characteristics in the context of our clustering
analysis, several findings are worth noting. First, there is no clear-cut
assignment of industries by their aggregate category. We can explain
this finding by the respective closeness to end-consumers of industries.
Monetary policy shocks in our framework are interpreted as demand
shocks, which implies that industries that are closer to end-consumers
are affected directly, while these effects are transmitted upstream via
network effects to the suppliers of these industries in the production
network. An illustrative example is “Securities, Commodity Contracts,
and Other Financial Investments and Related Activities (5230)”, with a
small magnitude of network effects, but large total effects. Second, with
some exceptions, most manufacturing industries are located in Cluster 1,

C© 2021 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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Fig. 5. Industry effects over time
Notes: Details on the impact measures are described in Section II. The heatmap shows the
estimated posterior median effects across industries and over time. The vertical black solid line
indicates the policy meeting on 30 January 2002, where the weights matrix changes (because of
changes in the industry classification scheme, we cannot use the 1992 weights matrix for this
exercise).

indicating comparatively low network effects. Assessing the manufacturing
industries associated with Cluster 2 in detail, we find that these are
mainly industries located further up the supply chain (based on calculations
using IO tables), such as “Food/Beverage manufacturing (3110/3121)”, or
“Medical Equipment and Supplies Manufacturing (3391)”.

Turning to industry effects over time and the cross-section, Figure 5
shows posterior estimates of direct, indirect, and total effects. Here,
we again observe several noteworthy patterns. First, average patterns of
differences of the effects over time addressed previously are clearly visible
in the industry-specific plots. The peak between the years 2002 and 2003

C© 2021 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
för utgivande av the SJE/The editors of The Scandinavian Journal of Economics.

 14679442, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjoe.12436 by U

niversity O
f Strathclyde, W

iley O
nline L

ibrary on [05/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1284 Heterogeneous network effects of US monetary policy

is clearly featured in all industries, while the gradual increase of monetary
policy effects towards the end of the sample is visible.

Second, a substantial share of industries shows small or even positive
direct effects. Even though some direct effects are positive, total effects
are for the most part, as expected, negative. This is mainly driven by
the higher-order network effects. These findings relate directly to our
previous discussion of industry clusters and closeness to end-consumers
as determinants of the share of network effects, in line with Ozdagli and
Weber (2020).

Third, while there is clearly a substantial degree of comovement across
industries for all three impact measures, we detect several differences
in industry-specific effects over time. Starting with direct effects, there
are some industries such as “Securities, Commodity Contracts, and Other
Financial Investments and Related Activities (5230)” or several of the
manufacturing industries where we observe persistently strong or weak
direct effects. By contrast, high-frequency movements are, for instance,
observable in “Industrial Machinery Manufacturing (3332)”, while, in
general, higher-frequency movements in total effects are almost exclusively
driven by indirect effects. Finally, there appears to be a break in the relative
importance of industries in the production network governed by the network
structure in Wt . In January 2002, when the weights matrix is updated, we
find that indirect effect patterns change for some industries. Examples are
“Industrial Machinery Manufacturing (3332)”, where indirect effects played
only a minor role up to this date, or “Apparel Manufacturing (3150)”,
where after 2002 indirect effects are muted. It is worth mentioning that
this break is not visible in the network dependence parameter or the effects
averaged across industries. Additional empirical results on comovements
across industries are provided in the Online Appendix.

V. Closing Remarks

This paper studies the effects of monetary policy on stock returns. We
propose a novel Bayesian network panel state-space model to capture
the propagation of shocks through the US production network. Alongside
TVPs, our model addresses time-varying higher-order effects of monetary
policy. Our results suggest substantial differences in industry responses that
also vary significantly over time. We identify periods featuring increased
economic and financial uncertainty, and periods when credit market
conditions are tight, as those where the effect of monetary policy actions
is amplified. Moreover, our results suggest that policy responses in the US
production network can be characterized by two main clusters. The clusters
can be related to the closeness to end-consumers of the respective industries.
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N. Hauzenberger and M. Pfarrhofer 1285

Appendix A: MCMC Algorithm

We use the following steps to generate draws for all parameters of the
model by a standard MCMC sampling algorithm. Specifically, the sampler
iterates through the following steps.

1. Conditional on all other parameters of the model, the time-varying
regression coefficients are simulated independently on an industry-
by-industry basis using an FFBS algorithm (Carter and Kohn, 1994;
Frühwirth-Schnatter, 1994).

2. Given the full history of the TVPs {θ̃it }Tt=1, the initial state θi0 and
the square root of the state innovation variances ωi1, . . . ,

√
ωiK+1 are

drawn in one block from their Gaussian posterior distribution (see
Frühwirth-Schnatter and Wagner, 2010).

3. The measurement equation error variances σ2
i are drawn from

their inverse Gamma conditional posterior distributions, again on an
industry-by-industry basis. The posterior moments can be found, for
instance, in Koop (2003).

4. The full history of the network dependence parameter {ρt }Tt=1
conditional on all other model parameters is simulated using the
Metropolis–Hastings algorithm discussed in Section II. The algorithm
involves proposing new values for ρt at each point in time.
These values are subsequently evaluated and used for constructing
acceptance probabilities.

5. Conditional on {ρt }Tt=1, the state innovation variances for the network
dependence parameter are simulated from their inverse Gamma
posterior distribution, with the moments corresponding to a standard
linear regression model (see Koop, 2003).

This completes the MCMC algorithm to simulate from the posterior
distribution. After choosing starting values and a sufficient burn-in period,
we store draws from the conditional posterior distributions. In particular,
we discard the initial 5,000 draws, while Bayesian inference is performed
based on every second of the subsequent 10,000 draws, resulting in a set
of 5,000 draws from the posterior. For the sake of brevity, we only report
posterior estimates of parameters and higher-order functions of them that
are of direct interest. Additional results are available upon request.

The sampler takes about 37 minutes to produce the 15,000 draws in
the case of the most flexible specification on a 2016 Macbook Pro with a
2.9-GHz Dual-Core Intel Core i5 with 8GB RAM running R 4.0.0. This
runtime excludes the construction of the impact matrix Skt , which can be
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1286 Heterogeneous network effects of US monetary policy

quite time-consuming due to the dimensionality of the underlying panel
data. However, this step can be performed outside the main sampling loop.

Appendix B: Data

All data and replication files are available from the authors upon request.
Table B.1 shows the four-digit NAICS codes alongside a description of
the industry and categories derived from two-digit level codes for the
aggregation scheme in the context of the 1997 and 2002 IO tables.

Table B.1. List of industries
NAICS Description Category Cluster

1110 Crop Production Agriculture, Forestry, Fishing and
Hunting

1

2110 Oil and Gas Extraction Mining 2
2120 Mining (except Oil and Gas) Mining 2
2130 Support Activities for Mining Mining 1
2211 Electric Power Generation,

Transmission and Distribution
Utilities 1

2212 Natural Gas Distribution Utilities 1
2300 Construction (Miscellaneous) Construction 2
3110 Food Manufacturing Manufacturing 1
3121 Beverage Manufacturing Manufacturing 1
3130 Textile Mills Manufacturing 2
3150 Apparel Manufacturing Manufacturing 2
3160 Leather and Allied Product

Manufacturing
Manufacturing 1

3210 Wood Product Manufacturing Manufacturing 2
3220 Paper Manufacturing Manufacturing 2
3230 Printing and Related Support

Activities
Manufacturing 2

3240 Petroleum and Coal Products
Manufacturing

Manufacturing 1

3250 Chemical Manufacturing Manufacturing 1
3260 Plastics and Rubber Products

Manufacturing
Manufacturing 2

3270 Nonmetallic Mineral Product
Manufacturing

Manufacturing 1

3331 Agriculture, Construction, and
Mining Machinery Manufacturing

Manufacturing 2

3332 Industrial Machinery
Manufacturing

Manufacturing 2

3333 Commercial and Service Industry
Machinery Manufacturing

Manufacturing 2
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N. Hauzenberger and M. Pfarrhofer 1287

Table B.1. Continued
NAICS Description Category Cluster

3339 Other General Purpose Machinery
Manufacturing

Manufacturing 2

3341 Computer and Peripheral
Equipment Manufacturing

Manufacturing 2

3344 Semiconductor and Other
Electronic Component
Manufacturing

Manufacturing 2

3345 Navigational, Measuring,
Electromedical, and Control
Instruments Manufacturing

Manufacturing 2

3350 Electrical Equipment, Appliance,
and Component Manufacturing

Manufacturing 2

3360 Transportation Equipment
Manufacturing

Manufacturing 2

3370 Furniture and Related Product
Manufacturing

Manufacturing 2

3391 Medical Equipment and Supplies
Manufacturing

Manufacturing 1

3399 Other Miscellaneous
Manufacturing

Manufacturing 2

331A Primary Metal Manufacturing (A) Manufacturing 2
331B Primary Metal Manufacturing (B) Manufacturing 2
332B Fabricated Metal Product

Manufacturing (B)
Manufacturing 2

334A Computer and Electronic Product
Manufacturing (A)

Manufacturing 2

4200 Wholesale Trade (Miscellaneous) Wholesale Trade 2
4A00 Commercial (Miscellaneous) Wholesale Trade 2
4810 Air Transportation Transportation and Warehousing 2
4820 Rail Transportation Transportation and Warehousing 2
4840 Truck Transportation Transportation and Warehousing 2
5111 Newspaper, Periodical, Book, and

Directory Publishers
Information 2

5112 Software Publishers Information 2
5120 Motion Picture and Sound

Recording Industries
Information 2

5230 Securities, Commodity Contracts,
and Other Financial Investments and
Related Activities

Finance and Insurance 2

5240 Insurance Carriers and Related
Activities

Finance and Insurance 2
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1288 Heterogeneous network effects of US monetary policy

Table B.1. Continued
NAICS Description Category Cluster

52A0 Finance and Insurance
(Miscellaneous)

Finance and Insurance 2

5330 Lessors of Nonfinancial Intangible
Assets (except Copyrighted Works)

Real Estate and Rental and Leasing 2

5415 Computer Systems Design and
Related Services

Professional, Scientific, and
Technical Services

2

5417 Scientific Research and
Development Services

Professional, Scientific, and
Technical Services

2

5418 Advertising and Related Services Professional, Scientific, and
Technical Services

2

5610 Administrative and Support
Services

Administrative and Support
and Waste Management and
Remediation Services

2

5620 Waste Management and
Remediation Services

Administrative and Support
and Waste Management and
Remediation Services

1

6210 Ambulatory Health Care Services Health Care and Social Assistance 2
6220 Hospitals Health Care and Social Assistance 1
6230 Nursing and Residential Care

Facilities
Health Care and Social Assistance 1

7130 Amusement, Gambling, and
Recreation Industries

Arts, Entertainment, and Recreation 1

7210 Accommodation Accommodation and Food Services 1
7220 Food Services and Drinking Places Accommodation and Food Services 1

Notes: “NAICS” gives the industry classification code, “Description” is the name of the respective industry, and
“Category” provides summary aggregates of industries using the two-digit level codes.

Supporting Information

Additional supporting information may be found online in the Supporting
Information section at the end of the article.

Online Appendix
Replication Files
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