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Background We noted that there remains some confusion 
in the health-science literature on reporting sample odds 
ratios as estimated rate ratios in case-control studies.

Methods We recap historical literature that definitively an-
swered the question of when sample odds ratios (ORs) from 
a case-control study are consistent estimators for popula-
tion rate ratios. We use numerical examples to illustrate 
the magnitude of the disparity between sample ORs in a 
case-control study and population rate ratios when suffi-
cient conditions for them to be equal are not satisfied.

Results We stress that in a case-control study, sampling con-
trols from those still at risk at the time of outcome event of 
the index case is not sufficient for a sample OR to be a con-
sistent estimator for an intelligible rate ratio. In such studies, 
constancy of the exposure prevalence together with constan-
cy of the hazard ratio (HR) (i.e., the instantaneous rate ratio) 
over time is sufficient for this result if sampling time is not 
controlled; if time is controlled, constancy of the HR will suf-
fice. We present numerical examples to illustrate how failure 
to satisfy these conditions adds a small systematic error to 
sample ORs as estimates of population rate ratios.

Conclusions We recommend that researchers understand 
and critically evaluate all conditions used to interpret 
their estimates as consistent for a population parameter in 
case-control studies.

© 2023 The Author(s)

A defining feature of a case-control study design is that selection 
into the study is intentionally conditional on the occurrence/
non-occurrence of an outcome event of interest. A common mo-
tivation for this sampling design is to reduce the number of in-
dividuals needed in the study so that it can be carried out with 
less computation or data collection. Traditionally, those expe-
riencing the outcome event are the cases and those not experi-
encing the outcome event are the controls. Common variations 
may allow as controls those cases whose outcome event has not 
occurred by a particular selection time within the study period. 
This selection time may vary across the controls, a design strat-
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egy sometimes called density sampling, or risk-set sampling when the control-selection times are matched 
to the occurrence times of cases. Although these variations have been studied in depth for decades and de-
scribed in many textbooks and review articles [1-3], we still encounter reports that include misconceptions 
about what quantities particular case-control studies estimate.

Some of the authors of the current article (IR, TM, SK, CRS, LR, CR, AS hereafter “the initial authors”) en-
countered this issue in the review process for a recent paper [4]. In this study, the association between symp-
tomatic coronavirus disease 2019 (COVID-19) and COVID-19 vaccination was estimated using a test-nega-
tive case-control design. The study used matched sampling followed by conditional logistic regression. The 
initial authors believed that risk-set sampling was sufficient for the odds ratio (OR) to be a consistent esti-
mator of a simple, intelligible rate ratio [5-7]. For example, a recent paper stated that “case-cohort and in-
cidence-density sampled case-control studies must report risk ratio and incidence rate ratios, respectively” 
[5]. This directive turns out to be inaccurate.

In this paper, we seek to discuss and clarify conditions for estimating and reporting of ORs as rate ratios in 
case-control studies. These conditions were definitively expounded decades ago [1-3]. The OR computed 
from a case-control study is a mixture of population characteristics with design effects (such as the control 
sampling strategy) and biases, in addition to the random variation accounted for by conventional statistical 
methods. This mixture is of no intrinsic scientific or medical interest unless the design effects, biases, and 
random variation are sufficiently accounted for by the analysis methods. Even with that accounting, how-
ever, the population quantity being estimated by a case-control OR will be affected by the sampling design; 
thus, special attention to the details of this design effect is warranted.

METHODS
In reference to a specific cohort (fixed set) of individuals, we will use the term “risk” for the average prob-
ability of an outcome event over the study period. For more general populations, we will use “rate” for the 
person-time rate of an outcome over the study period (that is, the expected number of cases over the pe-
riod divided by the expected person-time at risk of the outcome over the period), and “hazard rate” for its 
instantaneous (limiting) value at a specific time, see Ch. 3 in [1]. By “consistency of an estimator” for a pa-
rameter we will mean that the estimates from a given formula (estimator) tend to cluster ever more tightly 
around the parameter as the sample size increases.

We first illustrate some basic structure of case-control studies using 2 x 2 tables. In 
Table 1 the entry in each cell denotes the number of individuals in a closed cohort 
for each combination of outcome and exposure categories over a study period. Be-
cause it does not affect our discussion, for simplicity we will assume that all cases 
are observed, and we will ignore random variation in the numbers; hence our points 
concern underlying population parameters rather than particular sample estimates.

The population outcome odds ratio in Table 1 is ad/bc. This is also equal to the 
population exposure OR.

If we sample controls from those that did not have the outcome event and find that e were exposed while f 
were not exposed, then assuming no selection bias (i.e., selection is independent of exposure) f/e is a con-
sistent estimator for d/c. It follows that the sample odds ratio af/be is a consistent estimator of the popula-
tion OR ad/bc.

The exposure odds in the cases relative to the exposure odds in the whole cohort is

a b

a c b d

/

/+( ) +( )
.

However, a / (a + c) is the probability of an outcome event among the exposed, and b / (b + d) is the probabil-
ity of an outcome event in the unexposed. Therefore, the exposure OR

a b

a c b d

/

/+( ) +( )

is also the risk ratio
a a c

b b d

/

/

+( )
+( )

 

Table 1. Number of individuals in a 
closed cohort for each combination of 
outcome and exposure categories over  
a study period

Exposed Not 
exposed

Outcome event a b

No outcome event c d
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in the population. If we take as controls a sample from the cohort without regard to the outcome event and 
find g exposed and h not exposed, then, assuming no selection bias,

a b

g h

/

/

is a consistent estimator for the risk ratio
a a c

b b d

/

/

+( )
+( )

.

It follows that the exposure OR in the cases relative to the cohort sample is a consistent estimator of the co-
hort risk ratio. Studies that employ this sampling strategy are called case-cohort studies. Note that a person 
may appear as both a “control” in the cohort sample and as a case in the study (the samples may overlap), 
which necessitates special formulas for statistical analysis [1].

There are some conditions under which a case-control sample OR is consistent for a population outcome-rate 
ratio of interest. In particular, this is true if the analysis employs stratification on sampling time of the con-
trols and outcome-event time of the cases, the hazard ratio (HR) is constant over the study period, and there 
is no selection bias [2]. However, as the strata are made more narrow, more strata will have either no case 
or no control and thus contribute no information to standard statistical analyses. To ensure that this infor-
mation loss does not happen, the usual sampling strategy is to match control sampling times to case out-
come-event times, i.e., risk-set sampling or matched density sampling [1,2]. If the analysis does not stratify 
on time, then the additional condition that the population prevalence of exposure is constant over the study 
period is sufficient for the unmatched odds ratio to also be consistent for the population outcome-rate ratio, 
and the bias produced by violation of this condition is towards the null (OR = 1) [2].

Note that these statements apply to any method that results in a consistent estimator of OR. For example, 
in a logistic model, the conclusions follow immediately by noting that the exponential of a coefficient is an 
OR. The relationship between ORs and rate ratios under risk-set sampling was first noted by Sheehe [8]; 
see [2] and p. 124-125 of [1] for a review, with extension to logistic regression in [3] and p. 429-435 of [1].

To illustrate the magnitude of the differences between population HRs, population outcome-rate ratios, 
and the parameters estimated by case-control sample ORs (the OR estimands), we computed these quan-
tities for several examples summarised in Table 2. For simplicity, the study period was broken up into in-
tervals over which the outcome event rates for each group and the rates of movement of individuals from 
the unexposed to exposed group were taken to be constant, and individuals were removed from risk when 
the outcome occurred (as would be the case with death, for example). The total population is taken to be 
a closed cohort [1] but with internal migration from the unexposed to exposed subpopulation, as would 
usually occur with a vaccination program or an infectious agent. In our examples this means that the pro-
portion exposed will increase over the study interval unless the new-exposure rate is zero and exposure 
increases the hazard rate, and that population ORs and risk ratios would require life tables to compute, 
hence are omitted here.

Table 2. Examples of differences among population rate ratios and the odds-ratio estimands in case-control studies*

Hazard ratio in  
each interval

Rate of new  
exposure in  

each interval
Outcome-rate  

ratio
Matched odds  
ratio estimand

Unmatched odds 
ratio estimand

Final proportion 
unexposed

0.4, 0.4, 0.4 0, 0, 0 0.40 0.40 0.40 0.79

0.4, 0.4, 0.4 0.1, 0.5, 0.1 0.40 0.40 0.43 0.39

0.4, 0.4, 0.4 0.1, 0.1, 0.1 0.40 0.40 0.41 0.58

2.5, 2.5, 2.5 0, 0, 0 2.50 2.50 2.50 0.82

2.5, 2.5, 2.5 0.1, 0.5, 0.1 2.50 2.50 2.31 0.42

2.5, 2.5, 2.5 0.1, 0.1, 0.1 2.50 2.50 2.46 0.61

0.8. 0.4, 0.2 0, 0, 0 0.47 0.47 0.47 0.79

0.8. 0.4, 0.2 0.1, 0.5, 0.1 0.39 0.44 0.45 0.39

0.8. 0.4, 0.2 0.1, 0.1, 0.1 0.42 0.44 0.44 0.58

1.25, 2.5, 5.0 0, 0, 0 2.83 2.84 2.85 0.82

1.25, 2.5, 5.0 0.1, 0.5, 0.1 3.34 3.02 2.61 0.43

1.25, 2.5, 5.0 0.1, 0.1, 0.1 3.11 3.01 2.88 0.62

*In all examples, intervals are one week each and the rates are per person-week; the initial proportion unexposed is 0.8; the out-
come-event rate in the unexposed is 0.025 cases per person-week; and individuals are removed from risk when the outcome occurs.
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RESULTS
Each of the examples in Table 2 shows calculations with three week-long time intervals where the rate ratio 
and exposure rate are constant in each week. So, for example, HR = 0.8, 0.4, 0.2 means the ratio of number of 

outcome events per person time in the exposed relative 
to the unexposed was 0.8 in the first week, 0.4 in the 
second week, and 0.2 in the third week. The exposure 
rate is the rate per person-week at which unexposed 
individuals become exposed. The rate ratios and ORs 
were calculated using numeric integration based on 
1000 equal-sized subintervals per week, which may 
lead to slight discrepancies of the ratios presented from 
theoretical expectations. Further details of the calcu-
lation can be found in Box 1. R code for the calculator 
is available on GitHub at https://github.com/EAVE-II/
odds-rate-ratio-calculator and this can be used to fur-
ther explore the sensitivity of this calculation.

As can be seen in Table 2, the HR, rate ratio, matched 
OR, and unmatched OR estimands are not equal ex-
cept in some special cases. The magnitudes of the dif-
ferences are determined by the sizes of the departures 
from a constant HR (the proportional-hazards assump-
tion) and a constant exposure prevalence (the sta-
ble-population assumption). Although the departures 
used are large and the differences that result are not 
dramatic, the examples do show that the ratios are not 
identical without further assumptions. It may be seen 
that, even if the HR is changing, when the exposure 
prevalence changes little, both ORs equal or approx-
imate the rate ratio. On the other hand, if the expo-
sure prevalence changes and the HR is constant, only 
the matched OR equals the rate ratio. In particular, if 
the exposure prevalence and the HR vary much over 
the sampling period, the time-matched ORs obtained 
upon case-control density sampling need not closely 
approximate the ordinary person-time rate ratio in the 
source population.

DISCUSSION
The established convention in statistical studies in epidemiology is to report parameter estimates assum-
ing, but not explicitly spelling out, a set of conditions that are specific to the fitted model and sufficient for 
the estimator (the formula providing the estimates) to be consistent. These assumptions are usually omit-
ted from research articles because they are standard, and because this allows greater brevity and simplicity 
in presentation. Nonetheless, we believe that any additional assumptions beyond these that are relied upon 
by the authors to interpret their estimator as consistent for some population parameter should be careful-
ly evaluated and reported. This kind of discussion is usually expected and often seen for basic validity as-
sumptions such as no confounding, no selection bias, and no measurement error. We advise mention of 
additional assumptions that concern the mapping of the sample estimates (such as ORs) to targeted popu-
lation quantities (such as rate ratios).

An additional source of confusion is the use of terms such as “case-control study” and “estimator” without 
giving the precise definition being used. In A Dictionary of Epidemiology by Porta M, case-control study 
is defined as:

The observational epidemiological study of persons with the disease (or another outcome variable) of in-
terest and a suitable control group of persons without the disease (comparison group, reference group). 
The potential relationship of a suspected risk factor or an attribute to the disease is examined by compar-

Box 1. Details of numerical calculations

This discussion is taken from [2]. Let A
i
 (t), B

i
 (t) denote the number of 

outcome cases and controls sampled respectively by time t, with i = 1 
referring to exposed and i = 0 referring to unexposed. Then the un-
matched odds ratio is OR

u
(t) = A

1
 (t) B

0
 (t) / A

0
 (t) B

1
 (t).

Let N (t) denote the size of the total population at risk at time t, P
i
 (t), 

the proportion of N (t) in exposure group i at time t, and R
i
 (t) the haz-

ard rate for the outcome event in exposure group i at time t. In the 
interval (t, t + dt) the expected number of cases in exposure group i is 
a

i
 (t) dt = N (t) P

i
 (t) R

i
 (t) dt and

A t a u dui

t

i( )= ( )∫
0

.

Similarly, the expected number of controls in the interval (t, t + dt) in 
exposure group i is b

i
 (t) dt = a

+
 (t) P

i
 (t) dt, where a

+
 (t) = a

0
 (t) + a

1
 (t) and

B t b u dui

t

i( )= ( )∫
0

.

The matched OR conditions on membership in each case-control stra-
tum, resulting in the following form.

OR t
M t

M tm ( )=
( )
( )

10

01

.

Here,
M t a u P u duij

t

i j( )= ( ) ( )∫
0

is the expected number of matched pairs over the interval (t, t + dt) 
where the case is in exposure group i, and the control is in exposure 
group j. Our numerical examples calculate Riemann sum approxima-
tions to the above integrals. So, for example, A

i
 (t) is approximated by 

Σ
u
 N (u) P

i
 (u) R

i
 (u) Δu, where the sum is over time subintervals of length 

Δu, and u is time at the start of each subinterval. N (t) P
i
 (t) changes dis-

continuously at the end of each subinterval of length Δt according to

N (t + Δt) P
0
 (t + Δt) = (1- R

0
 (t) Δt - E (t) Δt) N (t) P

0
 (t)

N (t + Δt) P
1
 (t + Δt) = (1 - R

1
 (t) Δt + E (t) Δt) N (t) P

1
 (t).

Here, E (t) is the rate per subinterval of person time at which unex-
posed individuals become exposed.

https://github.com/EAVE-II/odds-rate-ratio-calculator
https://github.com/EAVE-II/odds-rate-ratio-calculator
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ing the diseased and non-diseased subjects with regard to how frequently the factor or attribute is pres-
ent (or, if quantitative, the levels of the attribute) in each of the groups (diseased and non-diseased) [9].

We think this definition is somewhat ambiguous as to whether the dependent variable in a case-control 
study must be exposure rather than the outcome of interest. By contrast, Rothman KJ et al. [1] defined 
case-control studies as follows:

Case-control studies are best understood and conducted by defining a source population at the outset, 
which represents a hypothetical study population in which a cohort study might have been conducted, 
and by identifying a single disease of interest. If a cohort study were undertaken, the primary tasks 
would be to identify the exposed and unexposed denominator experience, measured in person-time 
units of experience or as the number of people in each study cohort, and then to identify the number of 
cases occurring in each person-time category or study cohort. In a case-control study, these same cases 
are identified and their exposure status is determined just as in a cohort study, but denominators from 
which rates could be calculated are not measured. Instead, a control group of study subjects is sampled 
from the entire source population that gave rise to the cases.

This definition is in accordance with the long-standard use of disease as the dependent variable in regres-
sion models for case-control studies, which is based on extensive theoretical results from the 1970s [1,3]. 
The idea that it is not possible to estimate outcome ORs in a case-control study and that only exposure-ORs 
can be estimated, may have contributed to the misplaced claim in [5] that all case-control studies with risk-
set sampling must report rate ratios rather than ORs.

In most technical literature, an estimator is called consistent for a parameter if it converges in probability to 
the parameter; it thus refers to an approximation whose error shrinks toward zero as the sample size becomes 
large without bound. This type of approximation is quite different from the approximations discussed in 
the literature relating risk ratios, rate ratios and ORs under “rare-disease assumptions” [1,6]. It appears that 
in the latter literature, “estimator” is sometimes used to mean “consistent estimator”, and this has generated 
confusion over when a rare-disease assumption is needed. For example, given an event with positive risk 
probability (p), the odds p/(1 - p) of the event may be said to approximate p when p is “small”, but it is not a 
consistent estimator of p because the approximation error remains positive no matter how large the sample 
becomes. The same caution applies when using population ORs as approximations to risk ratios; further-
more, as the risk p becomes larger, odds and their ratios are increasingly affected by “noncollapsibility” ar-
tefacts that do not afflict risks and their ratios [10]. Similar comments apply to use of rate ratios to approx-
imate risk ratios, although the approximation error and artefacts are smaller than that for population ORs 
[2]. We thus advise authors to be precise about the approximations they are using when making assertions 
about what they are estimating.

Finally, we have ignored random variation and focused only on large-sample properties. In practice howev-
er it will be essential to take account of that variation and also to be on guard against misinterpretations of 
the statistics [11,12] as well as the small-sample and sparse-data biases that can afflict sample ORs, regard-
less of what they are estimating [13].

CONCLUSIONS
Risk-set sampling is not sufficient for a sample OR from a case-control study to be consistent for an intelligi-
ble outcome-rate ratio. As has long been known, if the HR is constant over the study period, the case-control 
sampling is time-matched, the matching is accounted for in the estimator, and there is no source of uncon-
trolled bias, then consistency follows. If the constant HR condition is dropped, the sample ORs are consistent 
for a weighted mean of HRs, which under certain conditions may coincide with a population-standardised 
rate-ratio but otherwise lacks a simple and useful interpretation. In a case-control study that is not matched, 
the matching assumptions can be replaced by the condition that the ratio of individuals in exposed vs. un-
exposed groups is constant over time. Generalisation to case-control logistic regression model follows from 
noting that the exponential of a treatment coefficient in the model equals an OR defined within a sampling 
process. Consistency for a population quantity follows if there is no source of large-sample bias. Nonethe-
less, further assumptions beyond the usual validity conditions are needed to equate this OR with a rate ratio 
[1,2]. In particular, we suggest that if researchers use constancy of the hazard rate or proportion exposed to 
interpret an OR as a rate ratio, then these additional conditions should be explicitly reported.
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