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Abstract 

Developments in computational omics technologies have provided new means to access the 

hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, 

artificial intelligence approaches have led to exciting developments in the computational drug 

design field, facilitating biological activity prediction and de novo drug design for molecular 

targets of interest. Here, we discuss current and future synergies between these 

developments to effectively identify drug candidates out of the plethora of molecules produced 

by nature. 

Introduction 

Plants, fungi, animals, and bacteria produce a wide range of specialized metabolites, also 

known as natural products (NPs). Across the tree of life, these comprise hundreds of 

thousands of different chemical structures—including terpenes, polyketides, peptides, 

saccharides and alkaloids—that facilitate an organism’s ability to thrive in a particular 

environment. They play critical roles in complex inter-organismal interactions, functioning as 

signals, weapons, nutrient-scavenging agents and stress protectants to mediate competition 

and collaboration. In the host-microbiome context, specialized metabolites mediate 

competition and collaboration between microbes and their host. These natural products have 

historically been applied toward the benefit of society with remarkable success as crop 

protection agents, antibiotics, chemotherapeutics, immunosuppressants, food preservatives, 

pigments and ingredients for cosmetics. Natural products remain a promising source for the 

discovery of such drugs based on their relatively high degree of three-dimensionality–as 

opposed to the often ‘flat’ synthetic structures–and their origins as natural metabolites, making 

them likely substrates for transporter systems1,2. 

While natural product discovery programs diminished between roughly 1990 and 2010 to 

make space for combinatorial chemistry and high-throughput screening3, there has been a 

recent renaissance in natural products research in both academia and small biotech start-ups. 

This renaissance is catalyzed by the availability of large-scale omics data, which allows 

significantly deeper access to the hidden chemical treasure troves of the biosphere. The genes 

for most specialized metabolite biosynthetic pathways in bacteria and fungi (and some in 

plants and animals) appear as clusters in the genome of the producing organisms: over 2,000 

of these biosynthetic gene clusters (BGCs) and their products have now been characterized 

experimentally4. This physical clustering has the potential to facilitate the identification of 

millions of putative biosynthetic pathways for novel molecules through computational genomic 

analysis5, with the prospect of revolutionizing drug discovery. Fueled by data on known 

biosynthetic pathways and their chemical products, which is increasingly standardized and 

stored in public databases, artificial intelligence (AI) approaches are now being developed to 

train machine learning algorithms that predict (parts of) chemical structures of BGC products 

based on DNA sequence alone. While this helps distinguish new from known chemistry 

(dereplication) and link molecules to their biosynthetic genes6, there is an urgent need for more 

effective ways to prioritize the enormous predicted natural product biosynthetic diversity for 

concrete drug leads. 

In the field of computational drug design, a range of AI strategies are being developed that 

may help address this challenge by better understanding structure-activity relationships and 

predicting macromolecular targets for molecules based on their chemical structures. Here, 

traditionally two main disciplines prevail. On the one hand, the statistical modeling field 

https://paperpile.com/c/SpqKGv/yzPdh+IDNQJ
https://paperpile.com/c/SpqKGv/wNBrk
https://paperpile.com/c/SpqKGv/7MT3w
https://paperpile.com/c/SpqKGv/E0vf1
https://paperpile.com/c/SpqKGv/2DAIU


Artificial intelligence for natural product drug discovery 

4 

focuses on finding correlations between chemical structure and biological activity, termed 

quantitative structure–activity-relationship modeling. On the other hand, the structure-based 

field attempts to fit three-dimensional chemical structures to protein targets (docking) and 

subsequently study their behavior on the nano to millisecond timescale (molecular dynamics). 

For both fields, introducing AI methods has opened up new possibilities in the design, 

synthesis, and biological profiling of existing and new small molecules. Central to these 

methods are public databases that provide biological activity data for large numbers of 

(protein) targets and chemical structures. Based on chemical similarity, advanced machine 

learning can use these data to obtain models able to predict the potential activity of untested 

chemical structures within these extensive chemical collections. Moreover, these methods can 

also be used to systematically analyze large datasets routinely produced from extended 

molecular dynamics and identify hidden patterns in the protein dynamics. This has led to 

exciting successes that have advanced the understanding of the complex interplay between 

small molecules and protein macromolecules. Examples include new, computer-suggested 

chemical structures (de novo design), drug repurposing through the prediction of unexpected 

activities, and guiding medicinal chemistry approaches to modify and optimize drug molecules 

for their biological effects (both on and off-target). 

There is thus great potential for cross-fertilization between the fields of omics-based natural 

product discovery and computational drug design (Figure 1). The use of AI leads to a rapid 

acceleration of scientific progress in these fields and to a convergence of their methods and 

directions. For example, suppose machine learning algorithms could predict structural 

features of molecules from sequence information. In that case, these predictions could then 

be used in AI approaches to predict their functions and mechanisms of action. However, to 

date, these fields have interacted very little, and scientists from these disciplines thus far 

mainly participate in conferences in their respective fields. Additionally, some challenges are 

apparent, for example, matching synthetic product chemical space (‘drug like’, consisting 

mostly of planar small molecules designed using Lipinski’s rule of five 7)   to natural-product-

like chemical space for which no such rules exist. This matching is key to accurately estimate 

models’ applicability domains and therefore reliability. In this current paper, scientists from 

both areas have come together to write a joint perspective on new ways to connect these 

research areas and jointly leverage the power of AI to utilize the vast chemical diversity of the 

biosphere for the development of novel drugs that can protect humanity from the threats of 

antimicrobial resistance and future infectious-disease pandemics. 

 

https://paperpile.com/c/SpqKGv/7dLl
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Figure 1. Applications of machine learning in natural-product and drug discovery. Classical analyses 

typically only use a small fraction of multifaceted datasets. AI methods can help to integrate different data types to 

learn complex feature relationships and develop meaningful hypotheses. 

 

Advances in AI technologies 

In recent years, scientists have started to apply machine learning for the discovery and 

structural characterization of NPs and to predict relationships between structure and 

pharmaceutical properties. Machine learning  is a subfield of AI that generates insights by 

using algorithms to recognize patterns from data. In this article, AI is used as a broad term 

encompassing machine learning. As algorithms and featurization methods become more 

powerful and diverse, we expect AI technologies to play an increasingly important role in NP 

exploration. 

 

Current applications of AI in natural product drug discovery 

Natural product genome and metabolome mining 

Several AI technologies have been developed to accelerate the discovery of natural products 

by predicting biosynthetic genes and metabolite structures from sequence or spectral data, 

respectively. Identifying natural product biosynthetic gene clusters (BGCs) still largely relies 

on rule-based methods such as those used in antiSMASH8 and PRISM9. While these 

approaches are successful at detecting known BGC classes, they are less proficient at 

identifying novel types of BGCs or unclustered pathways10,11. In these more complex cases, 

ML algorithms have been shown to offer significant advantages over rule-based methods. For 

https://paperpile.com/c/SpqKGv/4TYMA
https://paperpile.com/c/SpqKGv/FMQFf
https://paperpile.com/c/SpqKGv/gkEMJ+naXHp
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example, the HMM-based method ClusterFinder12, the deep-learning approaches DeepBGC13 

and GECCO 14, and several RiPP genome mining algorithms 15–18 each employ deep learning 

or support vector machines (SVMs) to identify BGCs not captured using canonical rule-based 

annotation approaches. These methods were trained on sequence-based features such as 

gene families, protein domains and amino acid sequence properties.19,20 Although they still 

have a higher false positive rate than rule-based approaches and also suffer from false 

negatives for known types of BGCs, they have already demonstrated utility in identifying novel 

classes of natural product biosynthetic pathways10. For example, the decRiPPter algorithm, 

aimed at predicting novel RiPP families, identified pristinin, which belongs to a novel class of 

lanthipeptides15. In addition, DeepRiPP, thanks to its deep-learning-based RiPP precursor 

detection module, enabled the discovery of the RiPPs deepflavo and deepginsen, whose 

precursor peptides were encoded distantly from any of their associated biosynthetic 

enzymes17. 

While genome mining algorithms can hint at biosynthetic potential, metabolomics 

allows direct detection of biosynthesized components, even if their precise structures are 

unknown. However, inferring molecular structures and substructures from mass spectrometry 

(MS) data is far from straightforward. Therefore, AI has been leveraged to target common 

challenges in MS-based metabolome mining21, including library matching/searching using 

mass spectral similarity metrics22,23, molecular-formula annotation24,25, molecular-class 

annotation26,27 and retention time prediction28. The efficacy of these algorithms is still limited 

by the relatively small sets of MS/MS spectra annotated with the fragment ion chemical 

structures of their corresponding metabolites. However these algorithms can be enhanced by 

imputing missing data, e.g., by predicting molecular fingerprints or simulated spectra from 

metabolite structures directly27. Similarly, NMR metabolome mining tasks are undergoing 

significant transformations29, as deep learning provides new avenues towards improving NMR 

spectrum reconstruction, denoising30, peak picking, J-coupling prediction31 and spectral 

deconvolution32. 

Ultimately, AI algorithms that link genome-mined BGCs and GCFs to untargeted 

metabolome-mined spectra and predicted molecular classes should be developed. For 

example, a new deep learning algorithm was recently published that can predict biosynthetic 

routes from natural product chemical structures, which could provide a basis for matching with 

BGCs33. Such algorithms will help de-orphan BGCs and molecular structures to address the 

large annotation gap between genomics and metabolomics. This may allow the combination 

of sequence and metabolome data to predict metabolite structures synergistically. 

 

 

Structural characterization of natural products 

Successful NP drug discovery studies require the ability to unambiguously solve the structures 

of isolated compounds34. This task is challenging due to the chemical complexity of 

metabolites existing in nature. Structure elucidation requires the collection, analysis and 

compilation of multiple data types, including NMR, HRMS, MS/MS, IR, UV, ECD, X-ray, and 

experimental and/or computational inspection of the encoded enzymes within the producing 

BGC35,36. Recently, the microcrystal electron diffraction (MicroED) technique was added to this 

arsenal, which has the potential to significantly accelerate structure elucidation by allowing 

analysis of submicron-sized crystals of chemical compounds37,38.  

In general, significant efforts have been made to improve the structural 

characterization of NPs through methodological, instrumentational, and computational means, 

such as quantum-chemistry-based theoretical calculations and AI-based structure predictions 

https://paperpile.com/c/SpqKGv/Sqsum
https://paperpile.com/c/SpqKGv/PrPFG
https://paperpile.com/c/SpqKGv/LnKQy
https://paperpile.com/c/SpqKGv/TNYj+pPpq+crcu+fi6W
https://paperpile.com/c/SpqKGv/5njd+QKyH
https://paperpile.com/c/SpqKGv/gkEMJ
https://paperpile.com/c/SpqKGv/TNYj
https://paperpile.com/c/SpqKGv/crcu
https://paperpile.com/c/SpqKGv/hOIv8
https://paperpile.com/c/SpqKGv/6nBgp+3sJU9
https://paperpile.com/c/SpqKGv/GVfjU+vUvjp
https://paperpile.com/c/SpqKGv/f7faN
https://paperpile.com/c/SpqKGv/BvMm
https://paperpile.com/c/SpqKGv/KmrK5
https://paperpile.com/c/SpqKGv/BvMm
https://paperpile.com/c/SpqKGv/mzWIe
https://paperpile.com/c/SpqKGv/l9qvI
https://paperpile.com/c/SpqKGv/JL1jR
https://paperpile.com/c/SpqKGv/iDXUr
https://paperpile.com/c/SpqKGv/IoCX0
https://paperpile.com/c/SpqKGv/qayX4
https://paperpile.com/c/SpqKGv/y4XRq
https://paperpile.com/c/SpqKGv/1sZRs
https://paperpile.com/c/SpqKGv/jPmLy+MAKSc
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from MS and NMR data. Since as early as 1960, AI has been used to complement rule-based 

approaches in de novo identification of unknown compounds from MS data39,40. Subsequently, 

AI has been used to predict molecular formulae from MS spectra41, match MS spectra to 

compounds in molecular databases using deep neural networks41,39, elucidate structures de 

novo as SMILES strings from MS/MS spectra42, and predict chemical properties and identify 

small molecules from MS1 and collisional cross section (CCS) data43. Similarly, AI has been 

used to augment NMR-based structure elucidation and annotation. Computer-Assisted 

Structure Elucidation (CASE) programs 44 reduce erroneous structural assignments by 

generating a probability-based ranking of all possible structures given an NMR dataset, which 

can guide structure determination. Examples include the convolutional-neural-network-based 

tool SMART 2.0, which guided the discovery and structure elucidation of a novel class of NPs 

including the new macrolide symplocolide A 45, SMART-Miner46 and COLMAR47, which identify 

and annotate primary metabolites from the NMR spectra of complex mixtures, and DP4-AI, 

which combines quantum chemistry-based theoretical calculations of NMR shifts with a 

Bayesian approach that assigns correctness probabilities to candidate structures, and with 

objective model selection for picking peaks and reducing noise 48,49. One drawback of quantum 

chemistry-based theoretical calculations of NMR shifts lies in the need for extensive 

exploration of a metabolite’s conformational space, which is computationally demanding for 

conformationally flexible molecules. Machine learning models such as ASE-ANI50 have been 

developed to address this issue by filtering force field-generated conformations and thus 

significantly minimizing the computational cost.  

 

Structure-activity relationship prediction 

The rapid deployment of NPs or NP-inspired compounds in medicine is often hampered by 

the fact that the targets of these NPs are rarely known. This caveat impedes their preclinical 

testing and rational optimization. Given the complexity of metabolite isolation and handling, 

large-scale experimental determination of mechanisms of action for these molecules is not 

feasible due to the costs and effort required. Computational models that rapidly predict the 

most likely targets from the molecular structure are therefore an area of active research 51. 

Virtually all computational drug discovery approaches have been successfully applied to 

elucidate targets of NPs, including docking52, clustering53, bioactivity fingerprints 54, 

pharmacophores55, and machine learning56. In some cases, this has also led to new insights 

regarding the mechanisms of action of NPs that were already in clinical trials 57. Although 

applicability is currently limited, given this success and the increasing accuracy of advanced 

machine learning models, we expect further developments in this area that will lead to tailored 

and further improved models to predict the biological activities of NPs from their chemical 

structures. 

 

In all of the application areas mentioned above, AI technology is still in its infancy and suffers 

from a lack of (high-quality) standardized data. However, refined approaches for building ML 

models using sparse or variable training set data are under active development, and new 

(often community-driven) initiatives to curate or generate high-quality datasets are starting to 

emerge. Together these advances suggest that major improvements in AI methodological 

accuracy are within reach. Below, we will discuss algorithmic developments that could have a 

significant impact. Subsequently (in section 3), we will consider data generation and 

standardization challenges that will need to be addressed to exploit the full potential of these 

algorithms. 

 

https://paperpile.com/c/SpqKGv/7Vi8y+tC8vh
https://paperpile.com/c/SpqKGv/VpGLQ
https://paperpile.com/c/SpqKGv/VpGLQ
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https://paperpile.com/c/SpqKGv/gkzmP
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New AI technologies to boost natural product drug discovery 

New chemical featurization technologies 

Complex molecular data are made machine-readable through featurization, and the extent to 

which the most important information in a dataset can be captured concisely is crucial for the 

success of machine-learning algorithms (Figure 2). Simplification is inherent to featurization. 

In rare cases this can lead to clashes where two or more molecules are represented by the 

same fingerprint. Hence, a featurization technique that aligns with the goal of the use should 

be carefully chosen. The most ubiquitous method for featurizing a molecule is to convert its 

molecular structure into a sequence of bits or counts58. Algorithms to create such fingerprints 

are readily implemented in cheminformatic software packages such as RDKit59 and the 

Chemistry Development Kit60; however, molecule features can be manually determined as 

well61. 

 

Circular fingerprints have enabled the most accurate identification of structurally related NPs62–

65. However, circular fingerprints were found to be less useful than pharmacophore-based 

descriptors for scaffold hopping from NPs to synthetic mimetics 66. Other recent examples are 

MAP4 fingerprints, which combine substructure and atom-pair concepts and can be used to 

distinguish bacterial from fungal NPs 67,68. Also, features created from short molecular dynamic 

simulations can be used to accurately predict partition coefficients and solvation free 

energies69–72. Recent approaches to ‘k-merize’ 3D shapes73, which can be sampled from 

molecule conformers, may also provide promise for fingerprinting, as they may take into 

account the three-dimensional shape of molecules. Conversely, compound features that do 

not describe the compound structure at all can also be helpful, as exemplified by bioactivity 

fingerprints74–78.  

 

 
Figure 2. Chemical featurization techniques. Numerous featurization technologies are available to encode 

chemical information in a manner that machine learning techniques can process. These technologies range from 

simple physicochemical properties, via commonly used circular fingerprints, to advanced 3D and neural net-based 

encoders. Usage of an appropriate featurization method is key as the interpretation of a machine learning model 

is based on the features this model is trained on. Although possible, combinations of featurization techniques are 

not common.  

https://paperpile.com/c/SpqKGv/Ypb4x
https://paperpile.com/c/SpqKGv/UBCcC
https://paperpile.com/c/SpqKGv/Tyfub
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https://paperpile.com/c/SpqKGv/18Pai
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Deep learning 

A diverse array of AI algorithms have been developed over the past decade, many of which 

have been successfully applied to NP research (Figure 3A-F). One machine learning 

technology that has recently received considerable attention and application is deep learning. 

Deep learning has the flexibility to capture nonlinear relationships and to accept non-tabular 

input that extends the applicability of AI for NP computational research to non-Euclidean 

domains79,80. Deep learning for molecular function prediction on molecular graphs sometimes 

outperforms simpler machine-learning models on circular fingerprints 81, although this seems 

to vary between datasets and applications82,83. Furthermore, explainable AI methods (XAI) 

have been shown to improve interpretability of such deep-learning models 84,85, for example in 

the assessment of preclinical relevance86 and for pharmacophore and toxicophore 

identification87,88.  

Applications of deep learning include molecular graph neural network-approaches  89–

92, for instance, for predicting drug-target binding affinity 93, SMILES-based approaches for 

de novo drug-like molecule generation 94,95 and property prediction 96,97 and surface mesh-

based approaches for protein pocket-conditioned molecular representations 98. Moreover, 

encoder-decoder architectures are used to featurize compounds for virtual screening from 

different input formats 99–101. A comprehensive overview of deep learning molecular 

representations, which can be applied to molecular structure data in NP research, is found in 

ref. 102. 
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Figure 3. AI technologies key to natural product drug discovery and example applications. These techniques 

include, but are not limited to, A) non-machine learning methods such as correlation and regression e.g., linking 

metabolomic and genomic data103, B) traditional machine learning such as self-organizing maps (SOMs) e.g., for 

macromolecular target prediction103 and  clustering e.g., grouping gene cluster families105. C) deep learning such 

as convolutional neural networks e.g., for chemical structure elucidation45 computer vision e.g., automatic chemical 

image recognition106 and natural language processing e.g., topic modeling for chemical substructure exploration 

and annotation107.  

 

One of the most notable deep learning approaches of the past years is AlphaFold108, 

which can predict the 3D structure of protein structures from their primary amino acid 

sequence by learning from the entire corpus of the Protein Data Bank. Since the landmark 

breakthrough by AlphaFold, accurate modeling approaches building on this work continue to 

raise the bar109 by tackling challenges such as multimeric structure prediction110. For NP 

research, structural prediction is highly relevant as it can, e.g., help predict the substrate 

specificities across NP biosynthetic enzyme families or help predict the evolution of drug 

resistance by target modification. The precedent set by AlphaFold suggests that deep learning 

has the potential to solve long-standing problems in NP computational research, although NP 

data are currently much sparser. As deep learning for NP computational research is still in its 

infancy, caution should be applied to its predictions111,112. To build trust and utilize the full 

potential of deep learning, we believe a set of best practices needs to be established for using 

deep learning techniques in NP research113,114:  

1. Compare the performance of new deep learning models with simpler models to 

validate and motivate the trade-off between interpretability and prediction results115–

119. 

2. Clarify the scope in which the model optimally performs by defining its applicability 

domain and adding confidence estimates to predictions120,121. 

3. Evaluate the model through cross-validation and using a true hold-out set, avoiding a 

random splitting approach with a preference for chemical clustering or temporal 

splitting116, and, if applicable, including prospective experiments. Due to the practice 

to publish synthetic compounds as chemical analogs with a Structure-Activity 

Relationship, random splitting for validation overestimates models' abilities to 

generalize. Therefore, chemical clustering or temporal splitting is essential  to truly 

validate created models. 116. 

4. Understand the results of a new model. If allowed by the chosen method, map what 

the algorithm learned back to input features and provide proper visualizations that 

allow interpretation of results for bench scientists88,122,123. 

Deep learning algorithms will definitely not always be the most suitable tools124. Nonetheless, 

we do expect they will become increasingly useful to address challenges like structure 

elucidation and activity prediction as datasets in compatible formats grow. 

Data, transfer, active, and reinforcement learning 

One of the biggest challenges for deep learning in NP research is open access to big, curated 

data regimes. This would involve convincing more public funding agencies and joint consortia 

(e.g., Melloddy for federated learning) to support the creation and maintenance of curated and 

FAIR datasets125. Data augmentation and synthetic data generation, while valuable 

techniques, should be done with care to avoid the accumulation of bias. In addition, data error 

is a challenge in the field. Heterogeneous biological public data generated in many labs tends 

to provide multiple sources of error that can hamper highly sensitive deep learning 

methods126,127. 
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While deep learning techniques can overcome issues of incomplete sample labeling 

and small datasets, semi-supervised learning (combining labeled with unlabeled data) can 

assist with learning on datasets with incomplete labeling 128,129. This has been applied in the 

past, for example, to improve substrate specificity predictions of NP biosynthetic enzymes 

using transductive support vector machines, where this helped map the shape of unlabeled 

sequence space to better know how queries would relate to labeled data points130. An 

alternative is transfer learning131, a strategy in which knowledge from a task learned on an 

extensive dataset can then be transferred to a related task for which fewer data are available. 

This can improve model efficiency and mitigate issues relating to low data regimes132, for 

example, in de novo molecular design133–135. 

Active learning techniques, which guide the selection of unlabeled data for labeling 

through experimentation, can also be deployed when labeled training data are limited136. This 

has been successfully applied for identifying small molecules that inhibit the protein-protein 

interaction between the anti-cancer target CXC chemokine receptor 4 and its ligand by actively 

retrieving informative active compounds that continuously improved the adaptive structure-

activity model 137. Multiple practical challenges remain before active learning can be broadly 

deployed 136, many of which revolve around the time requirements and cost of standardized 

experimental data acquisition. This might explain why active learning has not yet been broadly 

deployed in NP research, where experiments are commonly complex. For example, 

CANOPUS27, a deep neural network-based structure class annotation tool that is based on 

MS spectra, utilizes other AI tools including Classyfire138 and NPClassifier139 to label data and 

thus train the network. This enabled the structural elucidation of the novel rivulariapeptolide 

protease inhibitors from complex mixtures27,140. With increasing experimental resolution and 

automation, we believe that active learning will play a central role in future NP research.  

Similarly, reinforcement learning, which steers the output of a machine learning 

algorithm toward user-defined regions of optimality via a predefined (computational) reward 

function, has shown promise in de novo design towards attractive regions of chemical space 
141–143, for rule-based organic chemistry and for retrosynthesis prediction144–147. 

 

Data sources and data standardization 

 

High-quality training datasets underpin and are thus critical to the success of AI algorithms. 

Unstructured datasets (e.g. unannotated mass spectrometry data) can be used for 

unsupervised learning applications such as dimensionality reduction and bioactivity prediction. 

By contrast, supervised learning requires training data that are both accurately annotated and 

of sufficient scope to answer the question being addressed. This is a particular challenge for 

natural products applications where the breadth of chemical space is high but the coverage of 

most published datasets is low. Integrating data from different datasets and ensuring that 

annotation methods are consistent is therefore a major bottleneck for ML training set 

development.  

In this section, we explore the characteristics and attributes necessary for creating high-quality 

datasets to advance natural product discovery. In particular, we assess the prerequisites 

needed in relation to standardization, accuracy, and completeness, review the current state of 
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natural product data and databases, and identify key challenges and potential solutions for 

database development. 

The NP database landscape 

The NP database landscape is large and diverse, but is also highly fragmented and currently 

contains few comprehensive and well-curated data resources148. Unfortunately, NP-related 

data are often underrepresented or not annotated as NPs in large generalist databases (e.g., 

PubChem, ChEMBL, Reaxys, Scifinder); for example, as of January 2023, only 8951 natural 

products have a ChEMBL identifier according to WikiData149. Additionally, documentation of 

data sources, acquisition, and changes–known as data provenance– is not well maintained in 

most NP databases. For example, literature citations or information on source organisms and 

associated biosynthetic gene clusters may be missing. Furthermore, although some 

databases include bioassay data for pure compounds (e.g., ChEMBL150, BindingDB151), very 

few include bioassay data for natural product extracts and fractions. Finally, some NP 

databases lack options for full data download, or are not licensed for open use by academic 

groups. Together, these issues severely limit the availability of amenable datasets to train AI 

models.  

Challenges with NP data dissemination 

Literature curation 

Scientific publication remains the dominant mechanism for disseminating new natural product 

information. Unfortunately, automated data extraction from natural product journals is often 

impossible because data are not in machine-readable formats, despite the existence of simple 

solutions like compact identifiers. This presents a significant challenge for database 

development152. Consequently, database developers must manually curate articles to convert 

them into structured data formats. Database completeness is also hampered by the broad 

spectrum of journals that feature NP research. Curation difficulties include image-to-structure 

conversion, absence of core data (e.g., BGC sequence), resolving name conflicts (multiple 

structures with the same name, or structures with multiple names) and extracting data and 

metadata for biological assays. Improvements are underway for structure recognition from 

images using DECIMER 1.0106,153 and through new formats for reporting of chemical-structure 

data154. Nevertheless, high-quality digitization of research data into structured open formats 

remains an unsolved challenge. This is further complicated by the byzantine and overly 

restrictive copyright rules currently governing journal articles. Finally, because most NP 

databases focus on only one feature of NP data, there is presently high redundancy in curation 

efforts, as the existence of minor variations in the extracted data (e.g., structure 

standardization methods or character encodings for compound names) may interfere with 

linking records between databases. 

One solution to this issue would be to encourage authors to include a standardized machine-

readable file for each compound described in the paper, similar to the cif file required for each 

X-ray structure. This machine-readable file could contain critical information about each 

structure (e.g., SMILES, compound name, availability and location of spectral data, source 

organism, BGC) and would offer a central point of reference for data dissemination and 

automated database importation by NP-centric resources. 
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Data deposition 

 Several of the larger NP data repositories, including Minimum Information about a 

Biosynthetic Gene cluster (MIBiG)155, the Natural Products Atlas156,157, Global Natural Product 

Social Molecular Networking (GNPS)158, Natural Products Magnetic Resonance Database 

(NP-MRD)159 and Norine160 offer mechanisms to accept user-deposited data (Figure 4). 

However, without clear incentives to deposit data, deposition rates are low. In addition, 

managing the infrastructure for data depositions (interactive web page construction, database 

version control, authentication management and database security) and curating/correcting 

errors is complicated and time-consuming, and often beyond the capacity of academic 

database developers.  

The extensive and often manual data entry requirements for journal article submission 

lead to ‘deposition fatigue’ for authors. The varied NP-related data types (e.g., source 

organisms, MS, NMR, BGC, SMILES, etc.) amplify this, and increase the number of platforms 

users must navigate to deposit raw data in open repositories. The community must therefore 

develop mechanisms to streamline, incentivize, and reward data and metadata deposition, 

such as with the development of a centralized venue for pre-publication data deposition that 

can disseminate these data to specialty databases (Figure 4). 

Two principal avenues exist to incentivize data deposition to public repositories: ‘value 

added’ and ‘requirements’. Firstly, authorships during data-‘curatathons’, increased citations, 

opportunities for collaboration, and facilitated automated re-analysis are very beneficial for 

depositors161. An example of added value is ReDU, which aids in rapid re-analysis of existing 

and future data162 through subscription to one’s own and public datasets158. Alternatively, 

repositories can offer validation reports, quality metrics, prevalence statistics (e.g., the 

statistics page of MIBiG that facilitates cross-species comparisons of biosynthetic potential), 

and other feedback on data to depositors that provides a tangible and immediate benefit to 

deposition155. We acknowledge that, at present, data deposition is usually a long process that 

requires submitters to fill in as much metadata as possible following ontologies or controlled 

vocabularies. These extended processes should become more user-friendly, for example by 

including an autofill during metadata reporting, employing tools that automatically generate 

entries from well-defined ontologies, and automated emails to authors with filtered web-

crawled data that authors can complete and send into relevant repositories. Secondly, journals 

and/or funding agencies can mandate data deposition, eliminating the need for incentives. An 

excellent example of this is a recent announcement that the Journal of Natural Products will 

require the deposition of raw NMR data starting in January 2023163. Regardless of the 

motivation, promoting community-driven data deposition is indispensable to making the 

natural products field AI-compatible. 

 

The need for data standardization 

The foundation of high-quality datasets begins with experimental design and practice, the key 

being consistency. Currently, the most extensive, high-quality natural-product-related datasets 

in the public domain have been generated by a select few laboratories. Typically, however, 

the value of these datasets is limited due to the lack of sample diversity and the limited number 

of data types available for a single study. Furthermore, even if appropriate controls and 

replication are used, there can be fundamental differences in the quality and quantity of 

detected features for the same sample set, as demonstrated for intra-laboratory LCMS/MS 

analyses164. As a result, a global assemblage of data would be incredibly valuable; yet 
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challenges exist of poor interoperability (i.e., connecting data between resources) and weak 

compatibility (i.e., resources use different standards and ontologies to annotate and identify 

their contents). It is important to note that the quality of biologically-derived data (e.g., MS 

resolution and/or accuracy, gene-sequencing depth and/or error rate) should be defined in 

light of the desired outcome. The metabolomics field, for example, has initiated the 

Metabolomics Standards Initiative165, which describes key parameters to report to facilitate 

quality assessment. Often, AI tasks rely on having a large corpus of data to train and/or search 

(e.g., clustering MS/MS spectra166, binning metagenomes167). One challenge with this 

requirement is that experimental datasets may contain only a single or very few 

representatives in each class, limiting their value for model building. Dedicating the effort to 

creating comprehensive training sets is an essential step for the field as it looks to embrace 

AI technologies.  

To achieve standardization, a key focus must be the interoperability between existing 

NP databases. At present, most database managers communicate updates on an ad hoc 

basis. In addition, some databases like NP Atlas maintain interoperable APIs to enable 

regular, automatic data crawls between resources. However, this becomes exceedingly 

complex if databases operate in a continuously updating fashion, mainly if resources use 

varied data standardization strategies, such as PubChem versus ChEMBL structure 

standardization protocols.  

Besides specific, persistent identifiers, data interoperability requires common 

languages (i.e., controlled vocabulary). Open standards play an essential role here, defining 

exchange formats, vocabularies and ontologies, and experimental protocols. For example, 

they could facilitate accurate description and reporting of the structural characterization of 

NPs168. Furthermore, the adoption of Universal Spectrum Identifiers (USIs) for identifying mass 

spectra in proteomics169 and metabolomics170 showcase standardization tools, enabling data 

analysis across datasets. Such tools play a pivotal role in enabling large-scale studies by 

structuring omics data and represent an area of development that the NP community should 

consider. The implementation of semantic web approaches is also an essential step forward, 

which standardizes how we disseminate knowledge and data and integrate exchange formats, 

linking between resources, and ontological representation171. An overview of current NP 

ontologies is provided in Table 2. 

The need for standardization is apparent in describing bioactivities of natural products 

and ensuring that experimental conditions are comparable between laboratories. While 

standards exist for reporting the biological activities of purified compounds (e.g. ChEMBL150, 

PubChem172, Supernatural II173, NPASS174), such standardization does not extend to microbial 

crude extracts and fractions. In addition, metadata such as extract preparation methods can 

substantially impact bioactivity data, yet they are rarely recorded in NP databases. Finally, as 

further discussed in Section 3.5, experimental conditions must be described as accurately as 

possible, with scientists preferably using the same growth conditions for their experiments. 

Overall, while it is clear that the move towards FAIR (findable, accessible, interoperable, and 

reusable) data and metadata is happening in natural product research, many depositions still 

fail to include all required components. 

The need for data annotation 

In addition to essential metadata (e.g. sample taxonomy, extract preparation protocol, 

instrument parameters) the addition of contextual annotations can greatly increase the value 

of NP datasets. For example, accurate annotation of compound structures to metabolomics 
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datasets would provide many opportunities to build ML models that integrate structural and 

biological/ genomic data. However, creation of annotated datasets faces two significant 

hurdles. The first is that most datasets can be annotated in many different ways, making it 

unrealistic to aggregate annotations from different studies into a single monolithic training set. 

Secondly, most annotation methods include elements of bias and false assignment that will 

influence model structure and accuracy. Therefore, while dataset annotation by subject 

experts is very valuable for AI developers, the creation and adoption of annotation standards 

for core information types should be seen as a priority for the field. 

Integration of data 

The value of linked/paired data 

As omics technologies mature, there is an increasing need for data integration between 

platforms. This is relevant to the development of AI models because some questions can only 

be answered by considering data from multiple data types. For example, large-scale 

integration of NMR spectra and MS fragmentation data could dramatically affect the accuracy 

and coverage of automated compound identification platforms.  

Integration of NP data involves two core activities: the pairing of datasets for analysis, such 

as that of the Paired Omics Data Platform, or the linking of raw or processed data across data 

types, such as the peptidogenomics, glycogenomics, metabologenomics, or NP Linker 

platforms 175–182. In the first case the objective is to define which data types exist for each 

sample, while in the second case the goal is to perform paired analyses where both data types 

are mined at the same time 183. An example of this combined data approach is the integration 

of enzyme-constrained models and omics analysis of Streptomyces coelicolor to reveal 

metabolic and genetic changes that enhance heterologous production 184. Also, 

transcriptomics has been used as a constraints to improve the statistical association of BGCs 

from genome data to metabolites in metabolome data by identifying which BGCs are in fact 

expressed under the conditions where certain metabolite features are observed 185 

Methodology and opportunities for data integration 

Data integration faces several current challenges that are mostly centered around inter-

dependencies of the data types and the various data formats that need to ‘talk’ to each other. 

Fortunately, early tools such as NPLinker104, GraphOmics187 and anvi’o188 are starting to 

overcome some of these challenges. However, the number of tools available that facilitate and 

ease the analysis and interpretation of linked data is currently very limited with users still 

needing considerable expertise to interpret the results. Furthermore, overparameterization of 

models is a risk when linking two or multiple datasets. For example, the same information can 

be present in more than one data type; it is then essential to effectively correct for that to avoid 

bias. Another bottleneck is getting the data in the appropriate format so it can be used by AI 

algorithms. Standardization remains the main issue here, particularly in areas such as 

metabolomics where the data are inherently heterogeneous due to the nature of the samples.  

The fields of genomics, proteomics and transcriptomics have all developed excellent 

community standards that have encouraged data standardization. Outstanding challenges 

with separating and identifying individual components from complex mixtures have hampered 

similar standardization efforts in metabolomics. This is particularly true for the field of natural 

products where the range of possible compounds from any source organism can number in 

the thousands, and where many of the structures remain to be discovered. The wide range of 
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sources, processing methods, chromatographic separation conditions and analytical 

approaches all combine to make data standardization particularly difficult in this area.  

 

 
Figure 4. Depositing and sharing natural product data: infrastructure and incentives. 

Toward the future: training sets for AI models and benchmarking 

Requirements for high-quality training sets 

Machine-readable data are essential for the creation of training sets for AI models. While the 

data have often already been collected, they are either converted into an unstandardized 

written form within publications, or not reported at all. Furthermore, well-curated and consistent 

metadata are also key to training successful models. Indeed, data can be of various quality 
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due to inherent differences, for example, in analytical equipment used; however, when this is 

documented well, researchers can select the relevant data for AI. 

Examples of existing NP-based training and benchmarking sets 

Chemical structure and biosynthetic data for natural products are now reasonably well-

standardized and centralized. For example, the Natural Products Atlas189,190, COCONUT191 

and LOTUS192 databases provide information about chemical structures, while the MIBiG 

database contains information on BGCs155. These resources have been applied as training 

datasets for a wide array of machine learning applications, including the prediction of natural 

product-likeness of molecules193, de novo BGC predictions 13,14, matching of chemical 

structures to their mass spectra194, automated chemical classification of NP structures139, and 

the identification of unknown metabolites from NMR spectral matching45.  

Using Universal Spectrum Identifiers (USIs) for mass spectra will enable standardized access 

to the mass spectral data of NPs enabling the community to easily retrieve and visualize the 

underlying raw data. In this regard, spectral databases for natural products are under active 

development, such as the Global Natural Products Social Molecular Network (GNPS) for MS 

and MS/MS data and the Natural Products Magnetic Resonance Database (NP-MRD) for 

NMR data. Importantly, entries in MIBiG, GNPS, and the NP-MRD are now all cross-linked to 

the Natural Products Atlas, creating a central hub that connects structural, spectroscopic, and 

biosynthetic data for natural products.  

By contrast, two areas lacking NP database coverage are catalytic activities of biosynthetic 

tailoring enzymes (key to predicting NP structures) and biological activities (key to 

understanding structure-activity and structure-property relationships). In the former case, 

absence of well-curated data for tailoring enzymes limits our ability to predict core structures 

and their modifications from BGC data. In the second case, the absence of well-standardized 

bioactivity training sets prevents us from predicting potential target space for newly discovered 

NPs, or NP structures predicted from bioinformatic tools. Together these two issues limit our 

ability to deliver on the promise offered by massively parallel whole-genome sequencing and 

large-scale discovery and annotation of BGCs.  

While well-curated training sets for chemical structures and BGCs increasingly meet the 

demands for creating AI models, almost no high-quality datasets exist for benchmarking the 

performance of AI models in genome mining (sequence-quality-dependent) or mass 

spectrometry data (instrument parameter-dependent). As a result, various datasets are 

currently used for performance comparisons, making it difficult to reliably establish how well a 

novel algorithm truly outperforms its predecessor. 

Opportunities for generating standardized data sets: the case of biological activities 

Data on biological activities and modes of action of natural products perhaps constitute the 

most critical type of data to guide future natural product drug discovery. At the same time, 

these data are currently the least standardized and systematically documented. While 

databases such as ChEMBL150 can host such data, stored using standardized ontologies195,196, 

the vast majority of natural product activity data is never deposited. It can only be found in the 

text or supplementary materials of manuscripts. Additionally, the protocols by which activity 

data have been generated are highly diverse, which further frustrates the direct comparison 

of datasets generated in different laboratories. A unified effort for data standardization also 

calls for using standardized growth media and culturing conditions. For example, the 

International Streptomyces Project (ISP) media have been designed with this in mind. The 
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media can be ordered from the same source, allowing direct comparison of growth conditions. 

Negative data for molecules not showing activity (equally important for machine learning 

purposes) are mostly not reported at all, leading to large biases in the primary literature. 

Populating biological activity databases with targeted standardized datasets and culturing 

conditions would be highly beneficial. Some efforts already do exist that generate specific 

types of data. For example, the NCI60 panel of tumor cell lines for anticancer drug screening 

has existed for years and molecules can be sent to the US National Cancer Institute to be 

subjected to this panel197. Similarly, CO-ADD constitutes a community-driven approach to 

antibiotic discovery198, allowing compounds to be sent to a central location to test their 

activities according to standardized protocols. 

The future of NP data repositories 

Because of the vast array of data types associated with NP research it is unlikely that a single 

monolithic repository will serve the needs of the NP community. Instead, specialized 

repositories that focus on different aspects of NP data (e.g., structures, BGCs, spectral data, 

biological activities, etc.) must focus on improving interoperability to develop a distributed 

network of data resources. This interoperability must not only involve the connection of entries 

between databases but must also consider integrated data deposition and the adoption of 

common standardization protocols for core data types. There is much to learn about repository 

structure and governance strategies from other areas of science, such as the Protein Data 

Bank (PDB) for structural biology and the Cambridge Structural Database (CSD) for X-ray 

crystallography. The NP community must prioritize and promote these efforts if they are to 

benefit from the new and exciting applications being offered by AI-based technologies. 

 

 

Biological activity and target prediction 

One of the most important application areas for AI in natural product drug discovery is 

predicting associated biological activities, macromolecular targets, and possible toxicities. 

Accurate predictions of these characteristics will provide direct clues as to which areas of 

molecular structure and sequence space are most promising for drug discovery. This will be 

key to the potential success of genome mining, which currently suffers from yielding too large 

lists of candidate BGCs with few strategies available to target efforts towards parts of NP 

space with actual pharmaceutical potential. Below, as a case study, we will discuss how AI 

techniques (combined with other technologies) can make a difference in addressing this 

challenge (Figure 5). 

 

Visualizing and navigating chemical space 

One strategy to successfully develop new drugs is to target regions of chemical space that are 

structurally novel and have favorable drug-like properties. However, it should be noted that 

there is a mismatch between the typical chemical features of natural products and drug-like 

properties199,200. The success of finding such molecules largely depends on a) the nature of 

the dataset that is used for screening and b) the underlying search algorithm (usually based 

on some form of similarity). In contrast to more conservative approaches, which try to identify 

activities based on analog series, screening virtual libraries sampled from an estimated 1063 
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drug-like molecules has become feasible thanks to the latest improvements in AI-related 

technologies.  

The concept of chemical space itself is somewhat unsatisfactorily defined in cheminformatics, 

when it comes to the space spanned by chemicals based on their properties. For visualization 

purposes, a high-dimensional space will be reduced to only two or three dimensions. Also, 

depending on the properties of interest (physicochemical properties, target profiles, toxicity, 

etc.), the chemical space to be explored will be constructed differently. Still, given the 

impressive number of underexplored possibilities, taking the challenge of solving the 

multiparameter optimization problem to navigate chemical space is a very promising 

strategy201–203. 

Advances in technologies to navigate chemical space 

Chemical space is vast. Exploring it is a daunting task, not only because of the sheer quantity 

of compounds that can be (virtually) enumerated but also because the description and labeling 

of compounds is by definition a multidimensional problem. To navigate chemical space visually 

we therefore need dimensionality-reduction approaches. A common way to reduce 

dimensionalities is via principal component analysis (PCA). PCA of chemical properties has 

revealed that both drug molecules and NPs occupy a very similar topological diversity 

distribution, which was not the case for combinatorial compounds. Another method is t-

distributed stochastic neighbor embedding (t-SNE), which has been used successfully for the 

design of new drug classes, for example new kinase inhibitors201. A recent development to t-

SNE is the uniform manifold approximation and projection (UMAP) algorithm, which is less 

computationally expensive than the previous approach and can therefore be applied to larger 

data sets202. More recently, a TMAP (Tree MAP) algorithm was developed to visualize data 

sets with sample sizes up to around 107 in a tree layout 203. Using TMAP, a tree of all the 

compounds in the ChEMBL database (1.13 million) with their associated biological-assay data 

was constructed within a mere 10 minutes. 

The application of unsupervised learning approaches (e.g., PCA, t-SNE, UMAP, and TMAP) 

to reduce dimensionalities in chemical-space data can be used to infer the likely biological 

activity of compounds and ultimately identify new scaffolds. This approach has proven 

successful in the small-molecule discovery field and we believe its application to NPs will open 

up new avenues to characterize and address, amongst others, biological activity and 

pharmacokinetic properties. It would be exciting to implement the newly developed 

dimensionality reduction tools, with their improved computational capabilities, in mapping both 

NP and small molecules, to identify overlapping chemical space and ultimately transfer 

knowledge between the two fields. 

 

Predicting bioactivities from chemical and protein-structure data 

Classical cheminformatics and pharmacophore-based predictions 

Methods relying on the use of classical cheminformatics and computer-assisted drug-

discovery tools for predicting bioactivities for natural products are plentiful51. For example, the 

direct application of the popular prediction methods PASS204 and SEA205 to natural products 

have shown some successes. Given the distinct chemical structures and physicochemical 

properties of natural products53,206, the most successful applications use additional 
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preprocessing steps or rely on chemical descriptions and representations that are agnostic to 

the chemical differences between natural products and the training data of synthetic 

compounds. For example, the SPiDER method was specifically developed to predict the 

bioactivities of molecules and has been successfully applied to predict the biological activity 

of macrocyclic natural products53,206 and fragment-like natural products 55. Other successful 

applications of bioactivity predictions have used representations such as 3D 

pharmacophores55, bioactivity signatures78,207, and learned representations207, which capture 

essential properties of natural products without directly employing classic chemical 

fingerprints. Notably, learned representations aided in the prediction of the bactericidal activity 

of halicin and eight additional molecules with antibiotic properties structurally-distinct from 

known antibiotic classes 208.” 

 

Molecular-dynamics simulations and structure-based predictions 

Structure-based approaches leverage a protein target’s spatial information to predict a 

compound’s binding mode. This information can be obtained from experimentally determined 

structures or modeling approaches such as AlphaFold.108 Then, potential binding modes can 

be enumerated via strategies such as molecular docking with protein dynamics accounted for 

via molecular-dynamics approaches. These methods are computationally expensive, but have 

been taking advantage of both hardware (GPU computing) and software improvements 209. 

Structure-based methods can provide a wealth of information, an example is the free-energy 

perturbation (FEP) method, which recently grew in popularity and saw a substantial increase 

in the applicability of the method in drug discovery in academic and industrial settings210 

Molecular docking, molecular-dynamics, and FEP could be extended to study affinities of NPs. 

Besides binding affinities, the computational prediction of enzyme kinetics, for instance using 

the empirical valence bond (EVB) approach, holds promise for the design of artificial 

biocatalysts211.  
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Figure 5. Predicting biological activities and macromolecular targets from genomic, metabolomic and phenotypic 

data. Omics datasets can be mined to identify genetic features of NP biosynthetic pathways, such as resistance 

genes, transporters and links with primary metabolism, which are predictive of the biological activity or 

macromolecular target of the products of the pathway. Metabolomics and NMR (in concert with analysis of 

biosynthetic genes) can be used to identify chemical features of metabolites that are predictive for certain activities 

or targets. Finally, large-scale standardized phenotypic bioassays are key. There is considerable potential for AI 

approaches to then predict targets and activities based on combined sets of genetic/chemical features of NPs and 

their biosynthetic pathways. 

 

Sequence- or BGC-based predictions and natural language processing 

In recent years, a growing number of approaches have been used to predict bioactivities 

based on DNA/protein sequence data with machine learning, while other strategies have the 

potential to do so in the near future. The sequence boundaries for BGCs predicted by mining 

tools are not precise, often missing portions of the BGC or fusing with others. Often it is 

necessary for an expert to manually update the BGC boundaries. Improvement in BGC 

prediction is vital for bioactivity prediction methods and remains an active area where further 

research is needed. 
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One approach that leverages knowledge of existing small molecules is to predict the final 

product of a BGC and infer its activity directly, as exemplified by PRISM 9. One issue with this 

method is the challenge faced in predicting activities for BGCs with poorly predicted structures, 

where even small mistakes in the final prediction could yield vastly different activities for the 

real compound. As substructure prediction is more robust, using of substructural features such 

as β-lactam rings or specific amino acids may produce more accurate results for a broader 

range of BGCs.  

 

Alternate approaches emerging for bioactivity prediction draw on the field of natural language 

processing (NLP). NLP-based methods like word2vec212, originally developed for context-

aware embedding of words within sentences in text documents, have been extended to embed 

protein domains within BGCs using pfam2vec213. DeepBGC, a de novo BGC prediction tool, 

represents predicted BGCs using pfam2vec-derived features from protein domains; these 

features are then supplied to a Random Forest classifier to predict natural product activity. 

Building on the DeepBGC framework, Deep-BGCpred implements dual-model serial 

screening and a 'sliding window' strategy for more accurate BGC boundary detection 214. Just 

as NLP has revolutionized other fields, we expect continued, rapid advances in applications 

of NLP for BGC and bioactivity prediction.  

 

Bioactivity predictions based on self-resistance, regulatory, or evolutionary features 

Bacteria have long been known to harbor resistance to their own antibacterials via resistance 

genes 213, and numerous antimicrobial resistance determinant databases are available (e.g., 

the comprehensive antibiotic resistance database [CARD]215, a national database of antibiotic 

resistant organisms [NDARO]216, and ResFinder217. To leverage resistance information, 

various algorithms were created to attempt to link these resistance genes with BGCs, as the 

resistance genes are necessary to confer immunity in the host218,219. Walker and Clardy 

recently incorporated both general protein domains and resistance genes to create a more 

robust feature set; this method proved accurate when sufficient training data were available, 

such as for antibacterial prediction in bacterial BGCs 220.  

 

As an additional layer of biological information, transcription factor networks and their cognate 

regulatory elements can be used to cluster BGCs based on how they are controlled and to 

which (environmental) signals they respond. The EvoMining framework221 is based on the 

concept that streptomycetes adapt to their ecological niche by evolving their primary and 

secondary metabolism in response to their environment222. Regulatory networks that control 

BGCs and the cognate signals that unlock their biosynthesis may provide key information on 

the function of the natural products they specify. Regulatory networks have so far been largely 

ignored in genome mining approaches but may well be a key determinant for biological 

understanding and function prediction. While BGCs predict what types of metabolites may be 

produced, regulatory networks can be harnessed to cluster BGCs on how they are controlled 

and – notably – in response to which signals. This information may serve as a beacon to find 

BGCs/metabolites required for specific purposes (stress, disease). This could, for example, 

be used to predict which gene clusters are expressed in mutualist microbes in response to 

pathogen invasion, which may help prioritize BGCs for antibiotic discovery. 
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Algorithmic innovations for activity prediction 

Algorithmic innovations will only improve performance if training datasets are sufficient to 

support model complexity. One solution to reduce the number of effective data points is to use 

weights from pre-trained models on larger chemical datasets. Using pre-validated and pre-

trained chemical models such as ChemBERTa223 or MoleculeNet82 reduces the computational 

load required to train new models from scratch. In many cases, pre-trained models will also 

yield higher prediction accuracies224. 

 

 

Conclusions and future outlook 

In summary, progress in AI for natural product drug discovery is primarily limited by a shortage 

of large, high-quality datasets rather than a lack of innovative algorithms. As a general 

recommendation for the field, we caution against using new algorithms solely for their ‘hype’ 

factor. Rather than jumping on the bandwagon of the latest AI trend, we advise carefully 

considering which algorithms are best suited for the type and quantity of data available; the 

fact that natural product datasets are generally considerably smaller than, e.g., generic 

computer-vision-related datasets may mean that simpler models with fewer parameters may 

be more successful and less likely to suffer from overfitting; also in AI, Occam's razor is more 

relevant than ever. That said, many breakthroughs in the field have been made by crossing 

disciplinary boundaries to draw on algorithms from other fields, such as natural language 

processing. Algorithmic advances are especially needed to extract meaningful features from 

heterogeneous data sources with multiple inputs, including chemical spectra, DNA 

sequences, structures, and bioactivity information. Another opportunity for the field is adopting 

an ‘active-learning’ approach toward dataset generation. By this, we mean characterizing 

underexplored areas of sequence, chemical, structural, or bioactivity space where gold-

standard datasets are lacking to increase the number of effective data points. New data-driven 

AI discoveries depend on underlying databases being preserved and maintained over time. 

Ironically, while AI is entirely reliant on high-quality data, longitudinal and stable financial 

support for the maintenance of databases is challenging to obtain. Therefore, for future AI 

advances, we feel that continued support for database maintenance and interoperability 

should be a priority for international and national funding agencies. In addition, it is important 

to realize that AI approaches will generally not be able to predict entirely novel chemistry, 

mechanisms of actions that have never been observed before, or completely new catalytic 

activities of enzymes; therefore, investments in fundamental biochemical research needs to 

be continued as well to shed light on those parts of biochemical space on which AI currently 

does not yet provide meaningful insights 225. As a final outlook, we emphasize that the 

collective resources of our global scientific community far outweigh the capacity of any single 

lab. If appropriate incentives and guidelines are available, community-generated and curated 

datasets can have enormous potential to advance the field of AI-driven natural product drug 

discovery.  
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Box 1. Standard practices for evaluating a machine learning model 

  

“Garbage in, garbage out” is a well-known concept in machine learning that is intuitive to 

understand, but without proper model validation it can be challenging to identify the true 

predictive power of a model. There are two key points to keep in mind when assessing a 

model: data balancing and model evaluation on an independent test set. 

  

Data balancing 

Datasets that are used for machine learning are usually not homogeneous. Imbalance can 

exist in multiple ways that lead to incorrect model evaluation: 

1. Overrepresentation of one or more data labels. Consider a binary classification 

problem for drug-target interaction with a dataset of 10,000 positive and 100 negative 

data points. Without addressing this imbalance prior to training, the model will likely 

always predict an interaction between drug and target regardless of the input. The 

model will be correct 99% of the time even though it has no predictive power. 

2. Overrepresentation of one or more data features. This is a very common imbalance 

in biological data: some species and molecule types have been researched far more 

extensively than others, leading to datasets with an overrepresentation of certain 

sequences or molecular structures. Models trained on such data without 

consideration for this type of imbalance usually seem to perform very well, as they 

make good predictions for sequences or molecules from overrepresented 

phylogenetic branches or compound classes. Poor predictions on underrepresented 

clades often go unnoticed: either the few mispredictions in the independent test set 

form such a small proportion of the total tested data points that they do not affect the 

average performance much; or worse, the underrepresented clades do not appear in 

the test set at all.  

  

These data imbalanced have to be targeted at three stages of model development: 

1. Data selection for training and test sets prior to model training. For each type of data 

label and data feature, data points should first be filtered for duplicates or near-

duplicates, and subsequently be divided proportionally across training and test sets. 

For sequence data, pre-filtering could mean selecting one representative of a 

phylogenetic clade and excluding the rest; for compound data, one could cluster 

based on chemical similarity and include only one member for each cluster. This 

avoids (near)-duplicates in training and test sets which would yield an automatic 

correct prediction. Proportional division of the resulting data points across training 

and test sets based on class and feature labels (e.g. 80% training 20% test for each 

label) ensures that the model can be separately evaluated on each data subclass, 

resulting in more accurate model evaluation. 

2. Sampling and data weighting during model training. When a model is not instructed 

otherwise, it will prioritise overall accuracy. Often, this means that the model tolerates 

mispredictions for underrepresented data classes. To prevent this, data can be 

weighted during model training: underrepresented classes should receive higher 

weights or contribute more towards a model’s loss function such that the model 

penalises prediction errors for those classes more than prediction errors for 

overrepresented classes. Alternatively, it is possible to undersample or oversample 

the dataset to artificially reduce or expand the dataset such that each data class is 

proportionally represented. Both approaches result in models that should be more 
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generally applicable and less biased towards overrepresented data labels or 

features. 

3. Class-specific model evaluation after model training. To evaluate how the model 

performs for each data subclass, regardless of how many data points belong to that 

class, it is important to assess predictive power for each class separately. This can 

be done for data labels with true/false positive/negative rates, and for data features 

by assessing performance for each sequence/compound cluster. 

 

Cross-validation and independent test sets 

Usually, machine learning algorithms are not trained just once: developers have to play 

around with input features, model parameters and model types before they find a model that 

works. A frequent inaccuracy in this process is that the same test set is often used for 

evaluation of these in-between models and for the evaluation of the final model. At this point, 

the test set is no longer truly independent, as decisions that influence model performance 

have been made based on the test set. Thus, overfitting of the model may remain unnoticed 

this way. Therefore, it is crucial to hold out an independent test set prior to any training, and 

only use this test set to assess the model’s performance at the very end of development. 

Monitoring model performance during development can be done by selecting a validation set 

from training data, or by doing cross-validation with all training data. Optimally multiple runs 

should be performed with a representative standard deviation to be able to statistically test 

observed improvements for significance. When selecting (cross-)validation sets, it is equally 

important to take into account data imbalance. 
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Table 1: Databases for natural product data 
 

Resource name Chemi
cal 
identif
iers 

Chemic
al 
structur
es 

Documen
ted 
entries 

Is NP-
specifi
c 

Has an 
API 

Full dump 
available 

Notable 
experimental 
data 

Notable 
calculated data 

Has version 
control & 
archive 
available to 
download 

Has a user 
submission 
system for new 
data upload 

Link Primary 
reference 

Licenc
e 

Chemical NP-specific resources 

LOTUS yes yes yes all NP yes yes producer 
taxonomy 

molecular 
descriptors, 
chemical 
classification, 
bioactivities 

yes no LOTUS 10.1101/2021.
02.28.433265 

CC0 

COCONUT yes yes yes all NP yes yes none molecular 
descriptors, 
chemical 
classification, 
bioactivities 

yes no COCON
UT 

10.1186/s1332
1-020-00478-9 

CC BY-
SA 

NP Atlas yes yes yes microbi
al NP 

yes yes producer 
taxonomy 

chemical 
classification 

yes yes Natural 
Products 
Atlas 

10.1021/acsce
ntsci.9b00806 

CC BY 

BGC resources 

MIBiG yes yes yes microbi
al NP 

yes yes BGC genomic 
co-ordinates 
and gene 
function 
annotation; 
compound 
produced by 
BGC 

antiSMASH 
annotations 

yes yes MIBiG: 10.1093/nar/gk
z882 

CC BY 

antiSMASH DB yes no no microbi
al NP 

yes yes none BGC genomic 
co-ordinates 
and gene 
function 
annotations; 
compounds 
produced by 
BGC 

yes no antiSMA
SH 
database 

10.1093/nar/gk
aa978 

CC BY 

PRISM no no no microbi
al NP 

no yes genomic co-
ordinates and 
gene function 
annotation; 
compound 
produced by 
BGC 

BGC genomic 
co-ordinates 
and gene 
function 
annotations; 
compounds 
produced by 
BGC 

yes no PRISM 10.1038/s4146
7-020-19986-1 

CC BY 

Spectral resources 

GNPS no yes yes yes yes yes   no yes GNPS 10.1038/nbt.35
97 

CC0 

MassBank yes yes yes no no yes MS and tandem 
MS spectra 

none no yes MassBan
k 

10.1002/jms.1
777 

CC 
BY-NC 

NP-MRD yes yes yes yes no yes NMR no yes yes NP-MRD 10.1093/nar/
gkab1052 

CC BY 

CH-NMR-NP Yes 

(CAS 

Regist

ry No.) 

Yes Yes All NP No No NMR 

Producer 

  

Molecular 

weight 

No No CH-

NMR-

NP 

- - 

MetaboLights yes yes yes no no yes MS and tandem 
MS spectra; 
NMR 

none no yes MetaboLi
ghts 

10.1093/nar/gk
z1019 

EMBL-
EBI's 
Terms 
of use  

Paired Omics 
Data Platform 

no no yes yes no yes LC MS, 
genomics 

none no yes Paired 
Omics 
Data 
Platform 

10.1038/s4158
9-020-00724-z 

CC BY 

NMRshiftDB no yes yes no yes no NMR calculated NMR no yes nmrshiftd
b2 

10.1002/mrc.4
263 

Modifie
d CC 

https://lotus.naturalproducts.net/
https://coconut.naturalproducts.net/
https://coconut.naturalproducts.net/
https://www.npatlas.org/terms
https://www.npatlas.org/terms
https://www.npatlas.org/terms
https://mibig.secondarymetabolites.org/
https://antismash-db.secondarymetabolites.org/
https://antismash-db.secondarymetabolites.org/
https://antismash-db.secondarymetabolites.org/
https://zenodo.org/record/3985982
https://doi.org/10.1038/s41467-020-19986-1
https://doi.org/10.1038/s41467-020-19986-1
https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
https://massbank.eu/MassBank/
https://massbank.eu/MassBank/
https://np-mrd.org/
https://www.j-resonance.com/en/nmrdb/
https://www.j-resonance.com/en/nmrdb/
https://www.j-resonance.com/en/nmrdb/
https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
http://www.ebi.ac.uk/about/terms-of-use
http://www.ebi.ac.uk/about/terms-of-use
https://pairedomicsdata.bioinformatics.nl/
https://pairedomicsdata.bioinformatics.nl/
https://pairedomicsdata.bioinformatics.nl/
https://pairedomicsdata.bioinformatics.nl/
https://nmrshiftdb.nmr.uni-koeln.de/
https://nmrshiftdb.nmr.uni-koeln.de/
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BY 

NP-friendly useful resources   

ZINC yes yes no no yes no none molecular 
descriptors, 
bioactivities 

no yes ZINC20 10.1021/acs
.jcim.0c0067
5 

CC0 

ChEBI yes yes yes no yes yes none chemical 
classification, 
bioactivities 

yes yes ChEBI 10.1093/nar/gk
v1031 

CC BY 

ChEMBL yes yes yes no yes yes bioactivities molecular 
descriptors 

yes yes ChEMBL 10.1093/nar/gk
w1074 

CC 
BY-SA 

WikiPathways yes no yes no yes yes metabolic 
networks 

none yes yes WikiPat
hways 

10.1093/nar/gk
aa1024 

CC0 

Reactome yes no yes no yes yes metabolic 
networks 

metabolic 
networks 

yes no Reactom
e 

10.1093/nar/gk
z1031 

CC0 

CO-ADD yes yes no no no yes bioactivities none no yes CO-
ADD 

10.1021/acsinf
ecdis.5b00044 

Copyri
ght (c) 
2016 
The 
Univer
sity of 
Queen
sland 

Wikidata yes yes yes no yes yes none none yes yes Wikidata:
WikiProje
ct 
Chemistr
y/Natural 
products 

10.7554/eLife.
52614 

CC0 

 

  

https://zinc20.docking.org/
https://www.ebi.ac.uk/chebi/
https://www.ebi.ac.uk/chembl/
https://www.wikipathways.org/index.php/WikiPathways
https://www.wikipathways.org/index.php/WikiPathways
https://reactome.org/
https://reactome.org/
https://db.co-add.org/
https://db.co-add.org/
https://www.wikidata.org/wiki/Wikidata:WikiProject_Chemistry/Natural_products
https://www.wikidata.org/wiki/Wikidata:WikiProject_Chemistry/Natural_products
https://www.wikidata.org/wiki/Wikidata:WikiProject_Chemistry/Natural_products
https://www.wikidata.org/wiki/Wikidata:WikiProject_Chemistry/Natural_products
https://www.wikidata.org/wiki/Wikidata:WikiProject_Chemistry/Natural_products
https://www.wikidata.org/wiki/Wikidata:WikiProject_Chemistry/Natural_products
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Table 2: Recommended ontologies and controlled vocabularies for natural product research. 
 

Ontology name Focus Description 

Biology 

Plant Ontology (PO) Controlled vocabulary, formats, standards Structured description of terms to plant 
anatomy, morphology and growth and 
development to plant genomics data. 

BRENDA Tissue Ontology (BTO) Controlled vocabulary, formats Structured description for enzyme sources: 
tissues, cell lines, cell types and cell cultures. 

Gene Ontology (GO) Controlled vocabulary, formats, standards Framework and set of concepts for 

describing the functions of gene products. 

PIERO Enzyme Reaction Ontology Controlled vocabulary, standards Description of partial reaction characteristics 
of enzymatic reactions. 

Phenotype And Trait Ontology (PATO) Controlled vocabulary, formats Description of phenotypic qualities: 
properties, attributes and characteristics. 

NCBI Taxonomy (NCBITAXON) Controlled vocabulary NCBI organismal taxonomy 

BioAssay Ontology (BAO) Controlled vocabulary, formats, standards Description of the biological screening 
assays 

Chemistry 

ChEBI Controlled vocabulary, chemical classes, 
standards 

Structured classification of ‘small’ chemical 
compounds of biological interest. 

NPClassifier Ontology Semantic vocabulary and categories in NP Structured description of terms to secondary 

metabolism in natural products 

ChemOnt (from ClassyFire) Controlled vocabulary, formats Structured description of terms by extracting 

common or existing chemical classification 

category terms from the scientific literature 

and available chemical databases. 

Chemical Information Ontology (CHEMINF) Controlled vocabulary, formats Terminology for the descriptors commonly 
used in cheminformatics software 
applications and algorithms. 

Chemical Methods Ontology Controlled vocabulary Description of the methods and instruments 
used to collect data in chemical experiments. 

Reaction Ontology (RXNO) Controlled vocabulary Reaction-name ontology. 

Omics 

Experimental Factor Ontology (EFO) Controlled vocabulary, formats Systematic description of many experimental 
variables available in the EBI databases. 

Metabolomics Standards Initiative Ontology 
(MSIO) 

Controlled vocabulary, formats, standards Application ontology for supporting 
description and annotation of mass-
spectrometry and NMR-spectroscopy based 
metabolomics experiments and fluxomics 
studies. 

Sequence types and features ontology (SO) Controlled vocabulary, formats Structured controlled vocabulary for 
sequence annotation, for the exchange of 
annotation data and for the description of 
sequence objects in databases. 

The RNA Ontology (RNAO) Controlled vocabulary Controlled vocabulary pertaining to RNA 
function and based on RNA sequences, 
secondary and three-dimensional structures. 

GENO ontology Controlled vocabulary, formats, standards OWL model for genotypes, their sequence 

http://purl.obolibrary.org/obo/po.owl
http://purl.obolibrary.org/obo/bto.owl
http://purl.obolibrary.org/obo/go.owl
http://reactionontology.org/
http://purl.obolibrary.org/obo/pato.owl
http://obofoundry.org/ontology/ncbitaxon.html
http://www.bioassayontology.org/bao/bao_complete.owl
http://purl.obolibrary.org/obo/chebi.owl
https://npclassifier.ucsd.edu/
http://classyfire.wishartlab.com/
http://semanticchemistry.github.io/semanticchemistry/ontology/cheminf.owl
http://purl.obolibrary.org/obo/chmo.owl
http://purl.obolibrary.org/obo/rxno.obo.owl
http://www.ebi.ac.uk/efo/efo.owl
http://purl.obolibrary.org/obo/msio.owl
http://purl.obolibrary.org/obo/msio.owl
http://purl.obolibrary.org/obo/so.owl
http://purl.obolibrary.org/obo/rnao.owl
http://purl.obolibrary.org/obo/geno.owl
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components, and links to corresponding 
biological and experimental entities. 

PRIDE Controlled Vocabulary Controlled vocabulary, formats, standards Ontology for PRIDE (PRoteomics 
IDEntifications), a centralized, standards 
compliant, public data repository for 
proteomics data.  

Medical/Biomedical 

Ontology for Biomedical Investigations (OBI) 
 
 

Controlled vocabulary, formats, standards Description of biomedical investigations: 
study design, protocols, instrumentation, 
data and analyses. 

The Drug Ontology (DRON) Controlled vocabulary Ontology for drugs, containing ingredients, 
mechanisms of action, physiological effects, 
and therapeutic intent. 

Antibiotic Resistance Ontology (ARO) Controlled vocabulary Description of antibiotic resistance genes 
and their mutations. 

Integration 

Semanticscience Integrated Ontology (SIO) Controlled vocabulary Integrated ontology of types and relations for 
rich description of objects, processes and 
their attributes. 

Unit Ontology (UO) Controlled vocabulary Standardized description of units of 
measurements 

Citation Typing Ontology (CiTO) Controlled vocabulary Description of the nature of reference 
citations in scientific research articles and 
other scholarly works. 

 

 

http://purl.obolibrary.org/obo/pride_cv.obo
http://purl.obolibrary.org/obo/obi.owl
http://purl.obolibrary.org/obo/dron.owl
http://purl.obolibrary.org/obo/antibiotic_resistance.owl
http://semanticscience.org/ontology/sio.owl
http://purl.obolibrary.org/obo/uo.owl
http://purl.org/net/cito/
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