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Abstract
Electron Bernstein current drive (EBCD) systems in spherical tokamaks are sensitive to plasma
and launch conditions, and therefore require large parametric scans to optimise their design.
One particular bottleneck in the simulation workflow is quasilinear modelling of current drive
efficiency. Linear adjoint models are an attractive alternative, offering a ∼103 × speed-up
compared to quasilinear codes. While linear models are well-tested and commonly used for
electron cyclotron current drive (ECCD), they have seen little use in EBCD modelling. In this
work, variants of the linear model are applied to EBCD and compared to quasilinear results in a
reactor-relevant plasma, i.e. Spherical Tokamak for Energy Production (STEP). This
comparison reveals it is important to accurately model the collision operator and finite Larmor
radius effects in the linear model. When done properly, good agreement is found with
quasilinear calculations, at least for normalised minor radii ρ< 0.7 and at low power densities.
The power density threshold for quasilinear effects during EBCD is found to be significantly
lower than that of ECCD. This is attributed to the much lower group velocity of the electron
Bernstein wave (EBW). Thus, the linear model is only valid for EBCD modelling at low power
densities (e.g. ≲1 MW launched EBW power in STEP). This may be satisfied in present-day
experimental devices, but certainly not in reactors targeting non-inductive operation.
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1. Introduction

Future reactor-relevant spherical tokamaks will most likely
leverage high-beta plasmas which, in turn, allow high fusion
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power output from a device that is smaller than conventional
tokamaks. These plasmas will be over-dense (ωpe/Ωe > 1,
where ωpe is the electron plasma frequency and Ωe is the
electron cylotron frequency), and therefore electron cyclo-
tron current drive (ECCD) systems will suffer from poor
accessibility at the fundamental cyclotron harmonic. In such
a scenario, electron Bernstein waves (EBWs) are an attract-
ive method to non-inductively drive current [1]. EBW’s
have no density limit, and they can strongly damp at
multiple harmonics. In the Spherical Tokamak for Energy
Production (STEP) design, electron Bernstein current drive
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(EBCD) is expected to be nearly three times as efficient as
ECCD [2, 3].

EBW mode-conversion, wave-propagation, damping, and
current-drive efficiency are typically simulated using ray-
tracing/Fokker–Planck codes (e.g. GENRAY/CQL3D [4, 5]).
While these are reduced models, there are significant compu-
tational costs in scoping and optimizing a new EBCD system.
This is ultimately due to the sensitivity of EBCD performance
to plasma and antenna parameters [3, 6].

A relatively resource intensive step in the simulation work-
flow is the Fokker–Planck calculation, which self-consistently
evolves the non-Maxwellian electron distribution and damp-
ing along the ray in accordance with quasilinear theory. At
each flux surface, the quasilinear Fokker–Planck equation is
solved on a 2D velocity mesh. Usually a handful of itera-
tions are required for convergence in a steady-state scenario.
In contrast, a linear current drive model, such as the adjoint
technique [7–11], is semi-analytic and requires a single itera-
tion. When applied to ECCD, the linear model is sufficiently
accurate and ∼103 times faster than quasilinear calculations
[12]. Thus, the application of linear models is promising for
scoping and optimising future EBCD systems. In fact, these
models have already been applied in the TJ-II stellarator [13],
where variants of the linear model are compared against each
other. This work verifies linear models against the quaslinear
codeCQL3D for reactor-relevant plasmas. A candidate plasma
scenario for STEP [14, 15] is used as a simulation test-bed. It is
a conceptual design for a steady-state net fusion energy device
and is expected to require ∼150MW of microwave power for
fully non-inductive operation.

Compared to the well-known Lin–Liu model for ECCD
[10], three additional considerations are required for a linear
EBCDmodel in STEP. First, STEP is a hot, relativistic plasma
(Te ∼ 15 keV). Hence, the high speed limit (HSL) collision
operator used in the Lin–Liu model is invalid, leading to an
underestimation of CD efficiency [16, 17]. A higher fidelity
momentum conserving (MC) operator is more accurate [12,
17, 18]. Second, the EBW has a large wave-number, such
that finite Larmor radius (FLR) effects are important for its
propagation. Similarly, the wave-particle resonance is also
modified by FLR effects. We show that this must be prop-
erly taken into account. Lastly, one must be mindful whether
the linear approximation is indeed valid for EBCD. Due to its
relatively low group velocity (compared to the EC wave), the
EBW imparts a large wave energy density on a flux surface
for a given launched power, which can then lead to an electron
population far from a Maxwellian. Thus, the threshold input
power above which quasilinear effects become important is
significantly lower for the EBW. This is shown to be problem-
atic for STEP.

This paper is structured in the following manner. Section 2
reviews the linear models that are to be applied to EBCD in
STEP. Section 3 introduces a reactor-relevant model STEP dis-
charge and typical EBW launch scenarios. The linear models
are applied to single flux-surfaces. Section 4 applies the linear
model to simulated ray-trajectories, finding reasonable agree-
ment with the quasilinear code CQL3D at low launch power.

Section 5 quantifies the quasilinear threshold for EBCD.
Section 6 summarises the key findings.

2. Review of linear EBCD model

In ECCD simulations, often the workflow is to calculate
ray/beam-trajectories to model the wave propagation and
damping in a Maxwellian plasma. Then, another code must
calculate the electron response and resulting current drive.
The adjoint technique aims to do so analytically, under the
assumption that the actual damping rate does not differ signi-
ficantly from the linear rate. This linearisation of RF damp-
ing is remarkably valid for electron cyclotron damping (as
opposed to Landau damping), because resonant particles are
primarily pushed along the resonance curve (and not across).
See section 4 of Karney and Fisch [19] for more detail.

The adjoint technique was first introduced to the study of
steady-state current drive via NBI [7], and then later via RF
waves [8–10, 20, 21]. This linear technique is particularly
effective for ECCD, where the inclusion of trapped particles
and relativistic effects have lead to satisfactory agreement with
Fokker–Planck codes [16, 22] and experiment [23, 24].

This work compares multiple variants of the linear adjoint
model to quasilinear results. Thus, it is worthwhile to briefly
review these linear models. The basic equations of the adjoint
scheme in the context of ECCD are detailed in [8, 10, 25].
Further modification to the collision operator to account for
momentum conservation are detailed in [12, 17, 18]. The addi-
tion of FLR effects and extension to linear EBCD modelling
is reported in [13, 26]. In this section, the notation in [10, 12]
are closely followed.

The flux-surface averaged current drive efficiency, written
in dimensionless units, is

ζ =
e2ne
ε20Te

〈
j||
〉

2πQe
(1)

where ne,Te are electron density and temperature, j|| ≡ j ·B/B
is the parallel non-inductive current, Qe is density of wave
power damped on electrons, e is electron charge, and B is
the magnetic field. The operator ⟨. . .⟩ denotes the flux-surface
average

⟨A⟩=

¸
C

dℓp
Bp
A¸

C
dℓp
Bp

(2)

where C is the flux surface contour in the poloidal plane, ℓp
is the poloidal distance along C, and A is an arbitrary vari-
able. The quantity ⟨ j||⟩ is related to the electron distribution
function through j|| =

´
dvv||fe(v). The quasilinear approach

to solving for j|| involves solving the steady-state Fokker–
Planck equation for f e including a quasilinear diffusion term
SRF( fe)≡∇v ·Dql(v) ·∇vfe driven by the EBW. The SRF term
is diffusive in velocity space, where Dql is the quasilinear dif-
fusion tensor [27]. ThisDql accounts for wave damping, which
itself depends on f e. In quasilinear codes, f e and Dql are iter-
atively computed until convergence.
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In linear models, one can assume that the electron popula-
tion remains roughly Maxwellian ( fM), such that fe ≈ fM + f1,
where f1 ≪ fM is the first-order perturbation. In addition, it is
assumed that RF damping remains linear: SRF( fe)≈ SRF( fM).
The resulting linearised Fokker–Planck equation is

v||∇||f1 −Cℓ
e f1 = SRF ( fM) (3)

where Cℓ
e = Cℓ

ee+Cℓ
ei is the linear electron collision operator

(which, for the time being, is kept general), and SRF( fM) is a
fixed quantity (usually known from ray-tracing calculations).

The above equation for f 1 is still difficult to solve analytic-
ally in a realistic tokamak geometry. Instead, the Green’s func-
tion approach is taken. The adjoint kinetic equation is

v||∇||χ +Cℓ+
e χ =−v||

B
⟨B2⟩

(4)

where fMCℓ+
e χ = Cℓ

e(χ fM) is the adjoint linear collision oper-
ator. This is equivalent to the Spitzer-Härm problem [28], for
which analytic solutions exist. Owing to the adjoint properties
of the linearised collision operator, the current can be determ-
ined from a convolution integral of Green’s function χ and the
RF source SRF( fM). Furthermore, because equation (3) neg-
lects all perpendicular drifts and given that∇ · j= 0, it follows
that j||/B is constant along a flux surface. Consequently, one
can write

ζ =−e4

ε20

ne
Te

⟨B⟩
2π

⟨
´
dvχSRF ( fM)⟩

⟨
´
dvwSRF ( fM)⟩

(5)

where Qe = ⟨
´
dvwSRF( fM)⟩ is the RF damped power density,

w= mec2(γ− 1) is the electron particle energy, me is electron
mass, and γ ≡ (1− v2e/c

2)−1/2 is the Lorentz factor.

2.1. Solution to Green’s function χ

Equation (5) must be solved to find χ in the low-
collisionality limit: ν∗e ≡ νe0/(ϵωb)≪ 1, where νe0 =
(nee4lnΛ)/(4πm2

eε
2
0v

3
th) is the thermal electron collision fre-

quency, ωb is bounce frequency, ϵ is inverse aspect ratio, Λ
is the Coulomb logarithm, and vth =

√
2Te/me is the electron

thermal velocity. This simplification is appropriate for toka-
maks, especially high-Te devices like STEP, where ν∗e ∼ 10−3

in the core and ∼10−1 at the edge. Time-integrating over the
particle orbit for each term in equation (4), and introducing
the normalised quantitites x= v/vth, χ = vthχ̃/(νe0Bmax), and
h= B/Bmax (where Bmax is the maximum magnetic field amp-
litude on the flux surface), results in

〈
h
|ξ|
C̃eχ̃

〉
≈

{
0, trapped particles

−σ x
γ , passing particles

(6)

where ξ = x||/x and σ = sgn(x||). In so doing, the advect-
ive term (v||∇||) cancels out. It is clear from equation (6)
that χ= 0 for trapped particles, that is, these particles do
not contribute to the current response. Henceforth, only the

passing particles are considered. Here, C̃e is the normalised
Cℓ+
e , which can be expanded as:

C̃eχ̃= C̃pχ̃+ νe (x)Lχ̃ (7a)

L=
1
2
∂

∂ξ

(
1− ξ2

) ∂

∂ξ
(7b)

where νeL is the Lorentz pitch-angle scattering operator,
νe(x) = νee(x)+ νei(x) is the velocity-dependent electron col-
lision frequency, and

C̃pχ̃=
∞∑
n=0

Pn (ξ)

[
C̃nee+

n(n+ 1)
2

νee (x)

]
fn (8a)

fn =
2n+ 1

2

ˆ 1

−1
dξPn (ξ) χ̃. (8b)

A Legendre polynomial expansion has been taken for the
slowing down part of the collision operator. Terms up to n= 2
term are retained, resulting in an error of order∼0.05

√
ϵ [29].

Since pitch-angle scattering is the dominant process for reson-
ant particles, the Lorentz term is kept exact. Equation (8) has
the solution

χ̃= σF(x)H(λ) (9a)

H(λ) =
θ (1−λ)

2

ˆ 1

λ

dλ ′〈√
1−λ ′ h

〉 (9b)

C̃1
eF(x)− fbνe (x)F(x) =− 1

fc

x
γ

(9c)

fc =
3
4

〈
h2
〉ˆ 1

0

λdλ〈√
1−λ h

〉 (9d)

where θ(λ) is the Heaviside step function, λ= v2⊥/(hv
2) is

the adiabatic invariant, fc is the circulating particle fraction,
fb = 1/fc− 1, and C̃1

e = C̃1
ee− νei(x). Now, the normalised lin-

ear collision operator is written explicitly:

C̃1
eF= Duu,0

∂2F
∂x2

+Cu,0
∂F
∂x

− νeF+
2c
vth
I(F) (10)

where Duu,0, Cu,0, νe, and I are Coulomb coefficients derived
for a relativistic plasma [30]. Marushchenko et al [17] use the
weakly-relativistic expansion to expand these coefficients to
O(µ−2) where µ−1 ≡ Te/(mec2)≪ 1. Hu et al [12] have pre-
served the fully relativistic coefficients. This latter option is
used presently, though there is little difference between the
two models for Te < 50 keV [12].

The analytic solution to equation (9c) is possible through
Hirshman’s variational technique [7]. The functional is

S= S1 + S2 =
ˆ

dx

{
fMF

[(
C̃1
e − fbνe (x)

)
F− 2

x
γ

]}
− 2β

ˆ
dx

{
xfM

[(
C̃1
e − fbνe (x)

)
F− x

γ

]}
.

(11)

A stationary solution to S1 with respect to changes in F is equi-
valent to solving equation (9c). The second term, S2, must be

3
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imposed in order to conserve momentum. The coefficient β is
the Lagrange multiplier. The following polynomial trial func-
tion is chosen for F(x):

F(x) =
N∑
i=1

ci
xi+1

γk
(12)

and terminated at N= 4. The relativistic exponent k= 1 was
first adopted by [11], though later k= 2 is shown to be prefer-
able as its solution is more accurate at high x (and equally
accurate at low x) [12].

Setting δ(S) = 0 and substituting in the trial solution res-
ults in a set of linear equations along with five unknowns
(c1, . . . ,c4,β). Solving this system of equations results in F(x).
The exact system of equations are provided in [11, 12]. Once
the polynomial formulation of F(x) is found, it is substituted
in equation (9a) to get χ̃.

Next, we return to the source term SRF, which can be re-
written as

SRF ( f) = δ (r− rs) Λ̃Dℓδ

(
ω− k||v|| − ℓ

Ωe

γ

)
Λ̃f (13a)

Λ̃ =
∂

∂w
+
k||
ω

∂

∂p||
(13b)

where δ(x) is now the Dirac delta function, rs is the spatial
point of microwave excitation, Dℓ is the ww (energy-energy)
component ofDql for the ℓth cyclotron harmonic resonance, k||
is the parallel wave-number, and p|| is parallel momentum. The
second Dirac delta in equation (13a) accounts for the wave-
particle resonance condition in velocity-space. Substituting
equation (13) into equation (5) results in

ζℓ =−4⟨h⟩mev2th
lnΛ

´
dγ

(
γ2
)
D̃ℓfMΛ̃χ̃´

dγ (γ2) D̃ℓfM
(14a)

mu2thΛ̃χ̃= σ

[
γ

x
dF
dx
H+

2x||
hx3

(
γx||
x

−
N||vthx

c

)
F
dH
dλ

]
(14b)

where D̃ℓ = Dℓ/|E|2 is the normalised quasilinear coefficient
and N∥ ≡ ck∥/ω. The 2D velocity-space integral is reduced to
a 1D integral in γ along the wave-particle resonance condition.
The corresponding current driven on a flux-surface is:

〈
j||
〉
=

∞∑
ℓ=1

Qℓ
eζ

ℓ = Qe

∑
ℓ ζ

ℓQ̃ℓ
e∑

ℓ Q̃
ℓ
e

(15a)

Q̃ℓ
e =

ˆ
dγ

(
γ2
)
D̃ℓfM (15b)

where Qe is the power density damped on a flux-surface by a
given ray-element, and Q̃ℓ

e corresponds to the fractional contri-
bution from the ℓ harmonic resonance. The second relation in
equation (15a) is straightforward to evaluate from the typical
outputs of a ray-tracer (which sometime outputQe but notQℓ

e).
In STEP, it is usually acceptable to terminate this calculation
at ℓ= 3, as higher harmonic resonances affect an increasingly
small number of fast particles.

Equation (15) can, in principle, be evaluated for each ele-
ment along a ray that is output by the ray-tracer. This is

inefficient because typically there are ∼103 elements, and the
majority of them are only damping negligibly. Instead, our
implementation selects n= {1, . . . ,N} elements along the ray
where the remaining fractional power satisfies Pn/Plaunch =
(N− n)/N, and only evaluates equation (15) for these ele-
ments. It is found that N≈ 100 is sufficient for a converged
current profile.

2.2. The HSL approximation

If the resonant electrons are much faster than the
thermal population (v≫ vth), the collision operator can be
simplified [31]:

C̃1,HSL
e ≈−γ2

x2
d
dx

− γ

x3
(1+Zeff) (16)

where Zeff is effective ion charge. Substituting this into
equation (9c) provides the analytic solution [10]

F(x) =

(
γ+ 1
γ− 1

)ρ̂/2ˆ x

0
dx ′

(
x ′

γ ′

)3(
γ ′ − 1
γ ′ + 1

)ρ̂/2

(17)

where ρ̂≡ (Zeff + 1)/fc. In the large aspect ratio limit,
equation (17) results in F∝ 1/(5+Zeff). Thus, Fisch’s Zeff

scaling of CD efficiency is recovered [31]. The choice of
equation (17) for F is denoted the HSL model, while the
higher-fidelity formulation in section 2.1 is denoted the MC
model.

2.3. Expression for Dℓ

The quasilinear diffusion coefficient D̃ℓ determines the extent
to which resonant particles are ‘pushed’ in velocity-space in
the presence of an RF wave of unit amplitude. Its general form
(in the Stix frame) is [27, 32]:

D̃ℓ = π e2
u2⊥
γ
|Θ|2 (18a)

Θ=
1√
2

[
Ẽ−Jℓ−1 (ς)+ Ẽ+Jℓ+1 (ς)

]
+ Ẽ||

u||
u⊥

Jℓ (ς) (18b)

where Jℓ is a Bessel function of the 1st kind and order ℓ,
ς = k⊥u⊥/Ωe, u= p/me = γv, and Ẽ+, Ẽ−, Ẽ|| are the left-
hand, right-hand, parallel electric field polarizations. Note that
McGregor et al [26] have also modelled EBCD by retaining
FLR effects with a HSL collision operator. However, there is
a typo in their formulation of D̃ℓ (it is stated as ∝ u⊥ where it
should be ∝ u2⊥).

In the context of ECCD, it is standard practice to neglect
FLR effects by taking the limit ς ≪ 1. This results in:

Θ≈ |Ẽ−|√
2

( ς
2

)ℓ−1 1
(ℓ− 1)!

(19)

Equation (19) is not valid for EBW because commonly ς ≳ 1.
FLR corrections, present in equation (18b), are required.
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Figure 1. Poloidal plane of early STEP concept. Solid (dashed)
coloured contours correspond to f = 70(90)GHz. Dashed black
contour denotes the last closed flux surface (LCFS), and × denotes
the magnetic axis (at which point B0 = 2.4 T).

3. EBCD in STEP

The scenario investigated here is an early STEP concept,
focused on EBW operation, which serves to illustrate the main
features of our model. This is an ELM-free H-mode discharge
summarised in figures 1 and 2, with major radius R0 = 2.5m,
on-axis magnetic field B0 = 2.4 T, and plasma current Ip =
15.5MA. In addition, Zeff = 2.1 and is assumed to be a flat
profile. Mainly O-X-B mode-conversion at f∼ 80GHZ is of
interest. (Direct X-B coupling has also been considered, but
is found to be too sensitive to plasma and launch paramet-
ers.) As shown in figure 1 this corresponds tomode-conversion
region just inside the LCFS on the outboard side. The steep
density gradient at the edge results in a low k0Ln and there-
fore an adequately large O-X mode-conversion window [3].
The 1st harmonic is located on the inboard side of the plasma
and the 2nd harmonic is outside the plasma. However, the
B profile is non-monotonic on the outer mid-plane. Thus, as
the EBW propagates into the magnetic well during outboard
launch, it can damp at the Doppler-broadened 2nd harmonic
from a high-field approach. Doppler-broadened damping at the
1st harmonic from a low-field approach is also possible far off-
axis. This is explored in section 4.

3.1. Comparison of linear CD models

Consider a situation where a unit of RF power, correspond-
ing to a monochromatic EBW with parallel wave-number
k||, is damped at position rs = rs(ρ,θp), where θp is the pol-
oidal coordinate. (How this power got here is not import-
ant. No self-consistent ray-tracing is performed.) The per-
pendicular wave-number k⊥ and polarization Ẽ are known

Figure 2. Radial profiles for STEP equilibrium from figure 1.
Electron density (ne), electron temperature (Te), and safety factor
(q) as a function of normalised radius ρ≡

√
ϕ/ϕLCFS, where ϕ is

toroidal magnetic flux.

through the linear EBW dispersion relation. In this work, the
non-relativistic electromagnetic dispersion is used. The wave
and equilibrium parameters are used to calculate ζ.

Three cases are considered. Case A1 tests the linear model
at the outer mid-plane during 2nd harmonic damping. This
unambiguously uses anOhkawaCDmechanism [33]. Case A2
focuses on 1st harmonic damping, and demonstrates that the
linear model can account for the transition fromOhkawa to the
Fisch–Boozer mechanism [34] depending on the position of
the resonance curve in relation to the trapped-passing bound-
ary. Lastly, Case A3 considers wave damping on the inboard
side, where the trapped particle population is small, so that the
Fisch–Boozer mechanism dominates.

For Case A1, consider an EBW wave with N|| ≡ ck||/ω =
0.65 at ρ= 0.65 and θp = 0 (outer mid-plane). The wave fre-
quency is scanned in a range corresponding to a high-field-
side approach (ℓY≡ ℓΩe/ω > 1) of the 2nd harmonic EC res-
onance (ℓ= 2). Figure 3 plots ζ and ς as a function of fre-
quency. TheMC collision operator generally predicts a greater
|ζ| than the HSL operator. The FLR/no-FLR models diverge
at lower ω/Ωe. This corresponds to an increase in ς , and
therefore the growing importance of FLR effects. Note that
ζ < 0, signifying counter-current drive (⟨ j||⟩< 0). The cause
of this is found on examination of the resonance curves in
figure 4. Owing to a high-field approachwithN|| > 0, the wave
interacts strongly with both passing-electrons with u|| < 0 and
trapped-electrons. In turn, this drives a net fast-electron popu-
lation in the u|| > 0 plane via the Ohkawa mechanism. The
final result is a net counter-current. Furthermore, |ζ| is lar-
ger at ℓY= 1.43 than at 1.18. There are two reasons. First,
the latter case interacts with passing particles that are lower
energy and therefore more collisional. Second, a larger frac-
tion of its resonance curve interacts with trapped particles.
Resonant trapped particles do not contribute to the linear cur-
rent response (see equation (6)).

Case A2 has an EBW wave with N|| = 0.8 at ρ= 0.9 and
θp = 0. We consider a range of frequencies corresponding to

5
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Figure 3. Case A1: CD efficiency (left) and normalised k⊥ (right) versus frequency. Parameters: ρ= 0.6,θp = 0, N|| = 0.65, ℓ= 2,
ne = 1.7× 1020m−3, Te = 9.2keV, Zeff = 2.5, B= 1.9T.

Figure 4. Case A1: Wave-particle resonance curves for ℓY= 1.43
(solid red) and 1.18 (dashed red) in momentum-space. Black line
denotes trapped-passing boundary.

a low-field-side approach (ℓY≡ ℓΩe/ω < 1) of the 1st har-
monic EC resonance (ℓ= 1). Figure 5 shows ζ and ς versus
frequency. The HSL model is biased towards lower |ζ|, except
for in the small region 1.3< ω/Ωe < 1.4. The FLR/no-FLR
correction results are significantly different, again due to a
large ς in this parameter range. Of particular interest is the
switch from co- to counter-current at ω/Ωe > 1.3. This is
explained through the resonance curves in figure 6. At larger
ℓY (lower ω/Ωe), the resonance curve intersects the trapped-
passing boundary and switches from a Fisch–Boozer dominant
current drive to one that is Ohkawa dominant. This may also
explain the poor performance of the HSL models at low ℓY.
The large resonant trapped population can mask much of the
inaccuracies of the HSL approximation [16]. This population
is small or non-existent in the Fisch–Boozer regime.

Lastly, Case A3 presents an EBW wave with N|| = 0.85 at
ρ= 0.3 and θp = 0.6π approaching the first harmonic from a

low-field approach. See figures 7 and 8. The wave damps on
the inboard side (|θp|> π/2), where the trapped electron pop-
ulation is relatively small. As a result, the current drive mech-
anism is exclusively the Fisch–Boozer type, and ζ < 0 across
the entire frequency sweep.

4. Ray-tracing + linear CD simulations

Ray-trajectories from the code GENRAY are fed to the lin-
ear CD model. Linear damping along the ray-trajectory is cal-
culated using the weak-damping approximation, while taking
the non-relativistic Hermitian part, and fully-relativistic anti-
Hermitian part of the dielectric tensor. This formulation is
found to be computationally tractable and self-consistent with
CQL3D (see appendix). Four example O-X-B launch cases are
shown, with each case launching a 10 kW O-mode ray from
the LCFS of the plasma summarised in figures 1 and 2. The ray
mode-converts to the X-mode at the O-cutoff (ω = ωpe) and
then mode-converts to the Bernstein wave at the upper-hybrid
resonance (UHR).

Cases B1 and B2 correspond to 72 GHz rays launching
from the outer mid-plane (z= 0m) and above the mid-plane
(z= 1.17m), respectively. A sweep of launch angles have
determined the optimal orientation for O-X mode-conversion.
Strictly-speaking, there are two optimal windows for a given
launch point, one driving co-current and the other driving
counter-current. The chosen ray-trajectories are summarised
in figure 9.

In Case B1, an O-mode wave is launched at the outer mid-
plane, leading to optimal coupling to the X-mode atN|| ≈ 0.65
near ρ= 0.95. This ray undergoes a small N|| down-shift,
and damps strongly on the 2nd harmonic at ρ= 0.65. In fact,
the ray also exhibits weak 1st harmonic damping far off-axis
(ρ≈ 0.8− 0.95) For example, see figure 10(a) for the har-
monic contributions to the damping profile. Such a profile
is counter-intuitive because one typically expects low-field-
side (ℓ= 1) damping further inside the core where |B0| is
larger. This can be explained by the strong magnetic well
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Figure 5. Case A2: CD efficiency (left) and normalised k⊥ (right) versus frequency. Parameters: ρ= 0.9,θp = 0, N|| = 0.8, ℓ= 1,
ne = 8.8× 1019m−3, Te = 5.1keV, Zeff = 2.5, B= 2.0T.

Figure 6. Case A2: Wave-particle resonance curves for ℓY= 0.8 (solid red) and 0.71 (dashed red) in momentum-space. Black line denotes
trapped-passing boundary.

Figure 7. Case A3: CD efficiency (left) and normalised k⊥ (right) versus frequency. Parameters: ρ= 0.3,θp = 0.6π, N|| = 0.85, ℓ= 1,
ne = 2.1× 1020m−3, Te = 14.2keV, Zeff = 2.5, B= 2.4T.

7
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Figure 8. Case A3: Wave-particle resonance curves for ℓY= 0.87 (solid red) and 0.69 (dashed red) in momentum-space. Black line denotes
trapped-passing boundary.

Figure 9. Summary ray-trajectories for Case B1 (green) and B2 (purple). Rays satisfy the optimal O-X mode-conversion condition with
N|| = 0.66 and −0.66, respectively, at their O-mode cutoff. (a) Real-space ray-trajectory in poloidal plane and contours of ρ (solid),
O-cutoff (dotted), and UHR (dashed). Radial profiles of (b) power deposition, (c) N|| along ray, (d) N⊥ along ray. The ‘O’, ‘X’, and ‘B’
labels denote the O-mode, X-mode, and Bernstein-mode, respectively. Subplot (e) shows resonance domain with upper (solid) and lower
(dashed) bounds along ray as described by equation (20).

localised at the outer mid-plane of STEP, which cause these
rays to experience a decrease in |B0| as they travel into the
plasma (see figure 10(b)). This is shown more quantitatively
by analysing the wave-particle resonance condition: ℓY=
γ(1−N∥β∥), where β∥ ≡ v∥/c. Significant damping occurs
for β ⩽ αβth (where βth ≡ vth/c and α≈ 3.5 [35]) due to a
non-negligible resonant electron population. One then expects

strong damping to occur when the following condition is
satisfied [2]:

Y− ≲ ℓY≲ Y+ (20a)

Y± =
1±α|N|||βth√
1− (αβth)

2
. (20b)
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Figure 10. Case B1: (a) Harmonic contributions to power deposition profile. (b) Normalised frequency along ray-trajectory.

Figure 11. Case B1: Current density (left) and cumulative current (right) versus ρ. Parameters: f = 72 GHz and z=+0.0m.

In other words, Y−/Y and Y+/Y bound a Doppler-
broadened resonance domain, and strong damping is expected
when the domain overlaps with an integer ℓ. The domain
widens with increasing |N∥| and Te. Figure 9(e) plots this
domain versus ρ for Case B1. One sees a strong widening
of the resonance domain near ρ= 0.95 as the ray propagates
inwards. This is ascribed to the large increase in Te at the
pedestal. This leads to the Y−/Y boundary grazing ℓ= 1, and
therefore weak damping at the 1st harmonic far off-axis. The
ray then continues its high-field-side approach of the 2nd har-
monic. The Y+/Y bound completely overlaps ℓ= 2 at ρ≈ 0.6,
at which point the ray strongly damps all its remaining power.
In the STEP scenario presented, nearly all possible EBW
launch cases feature strong 2nd harmonic damping.

For Case B1, the resulting current density profiles are sum-
marised in figure 11. A net counter-current is driven by the
Ohkawa mechanism. Excellent agreement is found between
the quasilinear CQL3D calculation and the FLR+MC linear
model. The no-FLR version leads to a 20% underestimation of
CD, and the HSL operator leads to a further 10% underestima-
tion. Nevertheless, all linear models can accurately recover the
location and shape of the current deposition peak due to 2nd
harmonic damping. The small far off-axis peak at ρ= 0.8–0.95
primarily drives Fisch-Boozer current at the 1st harmonic. The
linear models underestimate this broad current peak by∼50%,

but its importance relative to the 2nd harmonic contribution is
small.

Case B2 presents anO-mode launched at z= 1.17 m,which
couples to an EBW with N|| =−0.65 at the UHR. This ray
undergoes a significant |N||| downshift. Compared to the first
case, Case B2 has a more grazing interaction with the mag-
netic well, but still manages to damp the majority of its power
at the 2nd harmonic. Similar to case B1, there is also weak
damping far off-axis at the 1st harmonic. The current dens-
ity profiles are summarised in figure 12. Good agreement is
found between CQL3D and the FLR+MC model. There is a
∼5% over-estimation of the current peak at ρ= 0.55. In con-
trast, the 1st harmonic far off-axis peak is poorly resolved by
the linear models (which under-predict the local current dens-
ity by ∼70%).

Cases B3 and B4 further investigate far off-axis current
drive (see figure 13). These wave parameters are chosen in
order to determine whether the discrepancy is isolated to first-
harmonic damping. To achieve this, the wave frequency is
increased to 78 GHz and 86 GHz, respectively. These cor-
respond to Ohkawa current deposition peaks at ρ= 0.74 and
0.88, respectively, both at the 2nd harmonic. First harmonic
damping is negligible. The FLR+MC linear model results in
an under-prediction of 9% and 16% for the two cases (see
figures 14 and 15). The other linear models perform worse.

9
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Figure 12. Case B2: Current density (left) and cumulative current (right) versus ρ. Parameters: f = 72 GHz and z=+1.17m.

Figure 13. Summary ray-trajectories for Case B3 (green) and B4 (purple). Rays satisfy the optimal O-X mode-conversion condition with
N|| = 0.66 and 0.63, respectively, at their O-mode cutoff. (a) Real-space ray-trajectory in poloidal plane and contours of ρ (solid), O-cutoff
(dotted), and UHR (dashed). Radial profiles of (b) power deposition, (c) N|| along ray, (d) N⊥ along ray. The ‘O’, ‘X’, and ‘B’ labels denote
the O-mode, X-mode, and Bernstein-mode, respectively. Subplot (e) shows resonance domain with upper (solid) and lower (dashed) bounds
along ray as described by equation (20).

Hence, the discrepancy also exist for the 2nd harmonic, albeit
to a lesser extent. In addition, the error is found to steadily
increase with ρ.

4.1. Zeff scan

A scan of Zeff is conducted for Case B2 (f = 72GHz and
z=+1.17m). Electron-ion collision frequency scales with
Z2eff, and so affects CD efficiency. Tokamaks have Zeff well
above unity, and its value is often an experimental uncertainly.

The scaling and sensitivity of CD to Zeff is therefore import-
ant to understand. Figure 16 plots ICD versus Zeff for the
FLR+MC and FLR+HSL linear model and CQL3D. The
plasma is assumed to have a uniform Zeff profile, which is
scanned while all other parameters are kept fixed. Microwaves
operate at high frequencies, such that ω ≫ ωpi,Ωi (where sub-
script i denotes the ion species). Thus, wave propagation and
linear damping rate are unaffected by the ion species, and
the same ray-data can be used for each CD calculation. It is
found that ICD/P0 ∝ 1/(α+Zeff), where α is a coefficient.

10
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Figure 14. Case B3: Current density (left) and cumulative current (right) versus ρ. Parameters: f = 78 GHz and z=+0.933m.

Figure 15. Case B4: Current density (left) and cumulative current (right) versus ρ. Parameters: f = 86 GHz and z=+0.7m.

Figure 16. Zeff scan. Markers denote simulation. Dotted lines
denote best-fit. Simulation parameters same as Case B2 in section 4.

This dependence is consistent with theory. The best-fit to
α is 1.75 for the FLR+MC model, 2.3 for the FLR+HSL
model, and 1.5 for CQL3D. Note that α= 5 is predicted for

non-relativistic, large aspect-ratio devices [31]. This is clearly
not appropriate for STEP. In the non-relativistic limit, the HSL
model predicts α= 1+ 4fc [9]. In the present case, fc ≈ 0.33
at the current deposition peak. This corresponds to α≈ 2.4,
which is close to the FLR+HSL result of 2.3. However, both
are a poor match to the FLR+MC and CQL3D results. Lastly,
it should be noted that the omission of FLR effects does not
affect α.

5. Power threshold for quasilinear effects

The analysis in section 4 assumed an EBW launched with
P0 = 10 kW. In order to drive ∼1MA of non-inductive cur-
rent in STEP, it is expected that ∼150 MW of EBW power
is required. Thus, it is pertinent to verify whether the lin-
ear model is valid at these powers, since there is con-
cern that the electron distribution is no longer close to
Maxwellian.

A power-scan is conducted for Case B1 from section 4
(f = 72 GHz and z= 0m). Figure 17 plots the global CD effi-
ciency as P0 is scanned from 1 kW to 100 MW. In the linear
regime (P0 ≲ 100 kW) global CD efficiency is independent
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Figure 17. Case B1: Global CD efficiency (ICD/P0) versus launched
power (P0). Markers denote CQL3D results, and dotted line denotes
FLR+MC result.

Figure 18. Case B1: Contours of f e at ρ= 0.58 for P0 = 1 kW
(dotted) and 100 MW (solid). Legend refers to the electron
cyclotron resonance harmonic. Also plotting trapped-passing
boundary (dashed blue) and edge of velocity domain (dashed black).

of power. Above this threshold, it increases roughly expo-
nentially with power and peaks at P0 = 100MW, where the
quasilinear efficiency is roughly 15% greater than the lin-
ear prediction. To further confirm the breakdown of the lin-
ear approximation, the electron distribution at ρ≈ 0.6 is plot-
ted in figure 18 for a low power (P0 = 1 kW) and high power
(P0 = 100MW) case. At this flux surface, the EBW predom-
inantly damps on the second harmonic. The low power case
exhibits aMaxwellian electron distribution. In contrast, at high
power there exists a large increase in x⊥ for the trapped near-
resonant electrons. This will modify both the linear damping
rate and CD efficiency.

At intermediate powers (P0 = 1–100MW) the increase in
global CD efficiency can be explained by the redistribution of
fractional damped power between the 1st and 2nd harmonic
(see figure 19). In the linear regime, roughly 15% of power
is damped far off-axis at the 1st harmonic (at ρ≈ 0.8–0.95),
where linear CD efficiency is relatively low (see figure 20(a)).
At intermediate powers, damping at the 1st harmonic starts to
saturate, and an increasing fraction of power instead damps
at the 2nd harmonic near ρ= 0.65. The linear CD efficiency
is greater at this 2nd harmonic peak, leading to an overall

Figure 19. Case B1: Fractional power damped on 1st and 2nd
harmonic versus launched power (P0).

increase in global CD efficiency as P0 increases. This trend
breaks at P0 = 100MW, at which point the fraction of power
damping at the 1st harmonic is negligible, and virtually all
power damps at the 2nd harmonic.

At powers greater than P0 = 100MW, there is a sharp
decrease in global CD efficiencywith increasingP0. This trend
is attributed to the saturation of power redistribution as dis-
cussed above, and to an inward radial shift of the 2nd har-
monic power deposition peak (see figures 20(b) and (c)). The
inward shift in the peak (in this case by ∆ρ≈−0.05 at P0 =
200MW) is a common quasilinear effect, and can be explained
by the flattening of the electron distribution along the reson-
ance curve. Near ρ= 0.65, the linear CD efficiency increases
with radius (d|(⟨ j||⟩/Qe)lin.|/dρ > 0), as shown in figure 20(a).
Such an effect has been explored for Ohkawa CD using EC
waves [36, 37]. There exists an optimal ρ for Ohkawa CD,
and it is sensitive to the location of the resonance curve rel-
ative to the trapped-passing boundary. In this case, the power
deposition peak is quasilinearly pushed farther away from this
optimal ρ (which happens to be 0.75 according to figure 20(a)).
This ultimately leads to a decrease in global CD efficiency.

A similar study is conducted on Case B3 from section 4
(f = 78 GHz and z=+0.933m). Figure 21(a) shows the
quasilinear threshold is P0 ≈ 10MW, above which the power
deposition peak significantly shifts inward and global CD effi-
ciency decreases with power. This is due to the peak being
pushed farther away from the optimal location, which in this
case is near the LCFS (see figures 21(b) and (c)). Notably,
global CD efficiency is 35% lower at 200MW compared to in
the linear regime. Unlike the power scan of Case B1, the trend
in figure 21(a) is monotonic. This is because there is no signi-
ficant damping at the 1st harmonic (or at ℓ > 2), and therefore
no possibility of power redistributing between harmonics.

As shown above, quasilinearity has complex and signific-
ant impacts on the current profile. It is therefore important
to understand where linear models break down. It is expec-
ted, based on numerical quasilinear calculations, that linear
ECCD models are valid as long as 2Qe [MWm−3]/n219 < 1
[38], where n19 is electron density in 1019m−3. Experiment
on DIII-D suggests this is in fact a conservative limit [39]. It is
surprising, then, that quasilinear effects during EBCD in STEP
become important for P0 > 1MW. In such a scenario (and
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Figure 20. Case B1: Subplot (a) shows radial profile of linear CD efficiency. This is calculated in CQL3D by launching the ray with
P0 = 1 kW. Scan of launched EBW power and its effect on the normalised current density profile (b) and the cumulative power deposition
profile (c).

Figure 21. Case B3: Subplot (a) shows radial profile of linear CD efficiency. This is calculated in CQL3D by launching the ray with
P0 = 1 kW. Subplot (b) shows scan of launched EBW power (P0) and its effect on the normalised current density profile. Subplot (c) shows
global CD efficiency (ICD/P0) versus P0. Markers denote CQL3D results, and dotted line denotes FLR+MC result.

even for P0 ∼ 100MW), the condition 2Qe [MWm−3]/n219 ≪
1 is satisfied everywhere in the core. In revisiting the work
by Harvey et al, who first characterised the ECCD quasilinear
threshold, it is apparent that this threshold actually depends
on |E|2/ne or equivalently U/ne, where |E| and U are the flux-
surface averaged wave amplitude and power density, respect-
ively. The dependence on Qe/n2e is simply a proxy.

The power along a ray (P) can be related to |E| orU through
the equation

U=
P

|vg · n̂|Af
=

1
4
ε0ω|E|2

(
ê∗k ·

∂DH

∂ω
· êk

)
(21)

where vg · n̂ is the component of group velocity normal to the
flux surface, Af is the area of the flux isosurface, DH is the
Hermitian part of the dispersion tensor, êk is the wave elec-
tric field polarization, and ∗ denotes the complex conjugate.
Figure 22 plots the ratio of quasilinear and linear CD efficiency
versus |E|/√ne at multiple flux surfaces. The data points are
generated from a power scan performed on all four Cases
from section 4, neglecting the far off-axis region (ρ> 0.8).
The x-axis is normalised for direct comparison with figure 3 in
Harvey et al [38]. Notably, quasilinear CD enhancement exists
for |E−|/

√
n19lnΛ/16≳ 40V cm−1, which is in reasonable

agreement with the earlier results. However, the commonly
cited 2Qe[MWm−3]/n219 ≲ 1 threshold is not valid for EBCD.
It is closer to ≲ 10−3. The following explanation is proposed.
On a given flux surface, there exists aUcrit (equivalently |Ecrit|)
above which quasilinear effects matter. The EBW group velo-
city is ∼102 smaller than that of a ECCD-relevant O or X
mode wave. Thus, Pcrit must also be that much smaller for
the EBW. Assuming Qe ∝ P (by definition true in the linear
regime) and that its relation is roughly equivalent between the
EBW and ECW, one can expect Qe,crit to be ∼102 smaller, as
well. Hence, this explains why the Qe threshold for quasilin-
earity during EBCD is significantly more stringent than during
ECCD.

6. Discussion

Various versions of the linear CD model have been applied to
EBCD in a reactor-relevant plasma, i.e. STEP. These models
account for realistic tokamak geometry, as well as trapped/-
passing particle physics. It is found that both FLR effects and
an accurate MC collision operator are required to match fully-
numeric, quasilinear calculations. This is to be expected, since
(a) EBW’s are high-k and therefore FLR effects significantly
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Figure 22. Ratio of quasilinear and linear calculation of CD
efficiency as a function of |E−|/

√
n19lnΛ/16. Marker colour

denotes value of 2Qe[MWm−3]/n219, the commonly cited
quasilinear threshold for ECCD.

modify Dql, and (b) STEP is a high-Te plasma and therefore
the simple HSL operator does not suffice. Neglecting either
consideration leads to an under-estimation of ζ. In regards to
the choice of collision operator, these findings agree with prior
studies [11, 12, 16]. In addition, it is found that use of the HSL
operator under-predicts the impact of Zeff on current drive.

The FLR+MC linear model is able to achieve good agree-
ment with CQL3D (error in ICD is < 5%) in situations of
low power and ρ< 0.7. If the deposition peak is outside this
radial region, the linear model underestimates ICD by as much
as 16% at ρ≈ 0.9. It is not clear what causes this discrep-
ancy. In the linearised collision operator, the slowing-down
term is approximated with a second-order Legendre polyno-
mial expansion (see equations (8) and (9)). One consequence
is that electron de-trapping effects are neglected, and there-
fore the error is expected to increase with the mirror ratio. A
previous study has found that the resulting error scales with√
r/R, where r and R denote the minor and major radius for a

plasma of circular cross-section [29]. STEP is a low-ϵ device,
so this error may be significant far off-axis. The error should
also increase with ν∗e [40]. (In this STEP scenario, ν∗e = 0.005
at ρ= 0.5 and 0.035 at ρ= 0.9.) This hypothesis may be tested
by simulating a high-ϵ device, by scaling collisionality, or by
modifying the collision operator in CQL3D to make the same
approximation in the slowing-down term. This is left to future
work. Alternatively, a linear model that numerically solves the
Spitzer–Härm equation may achieve better results [40].

A scan in launched power reveals the quasilinear threshold
for EBCD is remarkably low in STEP (P0crit ≈ 1MW, com-
pared to the ∼150MW needed for non-inductive operation).
Compared to EC waves, the EBW has a much smaller group
velocity, which results in a larger flux-surface averaged wave
energy density, and therefore a lower power threshold for

quasilinear effects. Above this threshold, quasilinearity affects
both the local current drive efficiency and the actual location
of power deposition. Two particular launch cases are studied
in STEP. They demonstrate that global CD efficiency is sens-
itive to power, and that these trends vary depending on launch
conditions. This suggest the linear model, as it stands, is only
valid at exceedingly low powers, and certainly invalid for typ-
ical EBCD scenarios in STEP.

A notemust bemade regarding computational cost. The lin-
ear CD model requires ∼0.1 CPU-minutes per ray. In nearly
all STEP launch conditions considered, one ray is sufficient to
simulate a beam of realistic width. (This is in contrast to pre-
vious studies of ECCD and EBCDwhich required several rays
[13, 16]. Those studies have focused on relatively long beam-
trajectories, or beams that tangentially approach the cyclotron
resonance. Such trajectories are uncommon for the STEP scen-
ario presented in this paper.) In contrast, CQL3D computation
time does not scale with number of rays, but rather with its
momentum grid resolution. In the linear regime, a 200 × 100
(u, ξ)-grid is found sufficient, resulting in CQL3D run-times
of ∼10 CPU-minutes. At high powers, grid resolutions up to
850 × 250 are required, resulting in far longer run-times and
memory requirements.

Given the computational speed of the linear model, it
remains attractive as a fast, approximate tool for large first-
pass parametric scans. The general trends in ζ versus plasma
and launch parameters are likely sufficiently accurate, and
would offer valuable information when scoping the EBCD
system. Alternatively, one can attempt to model quasilin-
ear effects in an ad hoc manner, or via machine-learning
[41]. This would require fitting a reduced model to numerous
fully-numeric, quasilinear runs. Further complications would
arise if two EBW beams were to quasilinearly interact on a
flux-surface. Whether such ad hoc approaches are advantage-
ous (compared to exclusively running quasilinear codes) is
unclear.

7. Conclusion

The linear CD model is found to agree well with the quasilin-
ear code CQL3D in its application to EBCD. There are sev-
eral caveats. (1) The appropriate collisional operator must be
used, and FLR effects must be retained. (2) In the far off-axis
region (ρ≳ 0.8), the linear model can significantly underes-
timate CD efficiency. (3) The validity of the linear model is, by
definition, bound by the quasilinear threshold. This threshold
is found to be quite restrictive for EBWs due to their large
electric-field amplitude. For example, the linear CD model is
certainly not valid for reactor-relevant microwave powers in
STEP. However, given its relative speed compared to CQL3D,
it remains attractive as a reduced ‘first-pass’ model.
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Figure 23. Electron cyclotron damping along ray trajectory.
Calculations assume P0 = 10 kW, so that quasilinear effects are
negligible. Same plasma and launch parameters as Case B1 in
section 4.

Appendix. Linear damping of EBW ray

The power along a ray-trajectory is determined by

P(s) = P0 exp

{
−2
ˆ s

0
kI (s ′) · ds ′

}
(A.1)

where s is distance along the ray, and kI is the imaginary com-
ponent of the wave-vector. In quasilinear calculations of CD,
the accuracy of the linear damping rate (meaning kI calculated
for a Maxwellian plasma) is generally not important. After all,
the linear rates are simply over-written during the first time-
iteration in the quasilinear model. However, for a linear CD
model, the accuracy of the linear kI is paramount.

In GENRAY, there are several methods of calculating the
linear kI . The two main classes are non-weak-damping and
weak-damping methods. The former directly computes the
complex root of D(k) = 0, where D≡ detD is the disper-
sion relation. The latter assumes kI ≪ kR, so that a Taylor-
expansion of D around kR leads to

kI =− DA

∂DH/∂kR

∣∣∣∣
k=kR

(A.2)

whereH and A denote the Hermitian and anti-Hermitian parts,
respectively. This is a good approximation for microwaves
because kR is already very large compared to the system size.

GENRAY can evaluate D in either its relativistic or non-
relativistic form. The evaluation of relativistic DH requires
a difficult numeric integration in velocity space, making
it orders of magnitude more expensive than for its non-
relativistic counterpart [42, 43]. We constrain ourselves to
using the non-relativistic DH. (Impact of a relativistic DH on
both propagation and damping may be important, but is out-
side the scope of this work.) Given the important relativistic
modification to the resonance curves, DA is evaluated in its
relativistic form.

In GENRAY, the two standard options for calculating EBW
damping is (1) use of the warm DH and (2) use of the cold
DH. The latter option is inaccurate because the cold disper-
sion does not account for the EBW root. The impact of using
either option is shown in figure 23. These results are overlayed
with CQL3D results for a low-power case in which quasilin-
ear effects are negligible. There is significant difference in ray
damping, with obvious disagreement for the cold DH case.
This makes sense, given CQL3D uses GENRAY’s kR data

to treat damping, and therefore implicitly assumes the warm
DH in its damping calculation. Thus, for proper comparison
between the linear CD model and CQL3D, it is necessary to
use self-consistent methods of calculating kI .

ORCID iDs

Bodhi Biswas https://orcid.org/0000-0001-7993-3732
David Speirs https://orcid.org/0000-0001-5705-6126
Simon Freethy https://orcid.org/0000-0003-4535-565X
Roddy Vann https://orcid.org/0000-0002-3105-2546

References

[1] Laqua H.P. 2007 Electron Bernstein wave heating and
diagnostic Plasma Phys. Control. Fusion 49 R1–R42

[2] Wilson T., Freethy S., Henderson M., Köhn-Seemann A.,
Konoplev I., Saarelma S., Speirs D. and Vann R. (the STEP
team) 2023 Electron Bernstein wave (EBW) current drive
profiles and efficiency for STEP EPJ Web Conf. 277 01011

[3] Freethy S. et al (the STEP team) 2023 Microwave current drive
for STEP and MAST Upgrade EPJ Web Conf. 277 04001

[4] Smirnov A. and Harvey R. 2001 The GENRAY ray tracing
code Technical Report CompX

[5] Harvey R.W. and Mccoy M.G. 2005 The CQL3D
Fokker-Planck Code (reconstituted in editable form from
General Atomics Report GA-A20978, 1992) Technical
Report

[6] Urban J., Decker J., Peysson Y., Preinhaelter J.,
Shevchenko V., Taylor G., Vahala L. and Vahala G. 2011 A
survey of electron Bernstein wave heating and current drive
potential for spherical tokamaks Nucl. Fusion 51 083050

[7] Hirshman S.P. 1980 Classical collisional theory of
beam-driven plasma currents Phys. Fluids 23 1238

[8] Cohen R.H. 1987 Effect of trapped electrons on current drive
Phys. Fluids 30 2442

[9] Taguchi M. 1989 ECRH current drive in Tokamak plasmas
Plasma Phys. Control. Fusion 31 241–54

[10] Lin-Liu Y.R., Chan V.S. and Prater R. 2003 Electron cyclotron
current drive efficiency in general tokamak geometry Phys.
Plasmas 10 4064–71

[11] Marushchenko N.B., Beidler C.D. and Maassberg H. 2009
Current drive calculations with an advanced adjoint
approach Fusion Sci. Technol. 55 180–7

[12] Hu Y.M., Hu Y.J., Chen J.L., Huang Y.H., Tao J., Ma L.H. and
Wang L.Q. 2021 A full relativistic model of electron
cyclotron current drive efficiency in tokamak plasmas Phys.
Plasmas 28 112105

[13] García-Regaña J.M., Castejón F., Cappa A.,
Marushchenko N.B. and Tereshchenko M. 2010
Comparison of different models for EBCD calculation in the
TJ-II Stellarator Plasma Phys. Control. Fusion 52 065007

[14] Wilson H., Chapman I., Denton T., Morris W., Patel B.,
Voss G. and Waldon C. (the STEP Team) 2022 STEP—on
the pathway to fusion commercialization Commercialising
Fusion Energy (IOP Publishing)

[15] Anand H., Bardsley O., Humphreys D., Lennholm M.,
Welander A., Xing Z., Barr J., Walker M., Mitchell J. and
Meyer H. 2023 Modelling, design and simulation of plasma
magnetic control for the Spherical Tokamak for Energy
Production (STEP) Fusion Eng. Des. 194 113724

[16] Prater R. et al (the ITPA Steady State Operation Topical
Group) 2008 Benchmarking of codes for electron cyclotron
heating and electron cyclotron current drive under ITER
conditions Nucl. Fusion 48 035006

15

https://orcid.org/0000-0001-7993-3732
https://orcid.org/0000-0001-7993-3732
https://orcid.org/0000-0001-5705-6126
https://orcid.org/0000-0001-5705-6126
https://orcid.org/0000-0003-4535-565X
https://orcid.org/0000-0003-4535-565X
https://orcid.org/0000-0002-3105-2546
https://orcid.org/0000-0002-3105-2546
https://doi.org/10.1088/0741-3335/49/4/R01
https://doi.org/10.1088/0741-3335/49/4/R01
https://doi.org/10.1051/epjconf/202327701011
https://doi.org/10.1051/epjconf/202327701011
https://doi.org/10.1051/epjconf/202327704001
https://doi.org/10.1051/epjconf/202327704001
https://doi.org/10.1088/0029-5515/51/8/083050
https://doi.org/10.1088/0029-5515/51/8/083050
https://doi.org/10.1063/1.863103
https://doi.org/10.1063/1.863103
https://doi.org/10.1063/1.866136
https://doi.org/10.1063/1.866136
https://doi.org/10.1088/0741-3335/31/2/010
https://doi.org/10.1088/0741-3335/31/2/010
https://doi.org/10.1063/1.1610472
https://doi.org/10.1063/1.1610472
https://doi.org/10.13182/FST55-180
https://doi.org/10.13182/FST55-180
https://doi.org/10.1063/5.0066576
https://doi.org/10.1063/5.0066576
https://doi.org/10.1088/0741-3335/52/6/065007
https://doi.org/10.1088/0741-3335/52/6/065007
https://doi.org/10.1016/j.fusengdes.2023.113724
https://doi.org/10.1016/j.fusengdes.2023.113724
https://doi.org/10.1088/0029-5515/48/3/035006
https://doi.org/10.1088/0029-5515/48/3/035006


Nucl. Fusion 63 (2023) 126011 B. Biswas et al

[17] Marushchenko N.B., Beidler C.D., Kasilov S.V.,
Kernbichler W., Maaßberg H., Prater R. and Harvey R.W.
2011 Electron cyclotron current drive in low collisionality
limit: on parallel momentum conservation Phys. Plasmas
18 032501

[18] Romé M., Erckmann V., Gasparino U. and Karulin N. 1998
Electron cyclotron resonance heating and current drive in
the W7-X stellarator Plasma Phys. Control. Fusion
40 511–30

[19] Karney C.F.F. and Fisch N.J. 1981 Currents driven by electron
cyclotron waves Nucl. Fusion 21 1549

[20] Karney C.F.F. and Fisch N.J. 1985 Efficiency of current drive
by fast waves Phys. Fluids 28 116–26

[21] Antonsen T.M. and Chu K.R. 1982 Radio frequency current
generation by waves in toroidal geometry Phys. Fluids
25 1295

[22] Figini L., Decker J., Farina D., Marushchenko N.B.,
Peysson Y., Poli E. and Westerhof E. (ITM-TF contributors)
2012 Benchmarking of electron cyclotron heating and
current drive codes on ITER scenarios within the European
Integrated Tokamak Modelling framework EPJ Web Conf.
32 01011

[23] Lin-Liu Y.R., Chan V.S., Luce T.C., Prater R., Sauter O. and
Harvey R.W. 1999 Modeling of electron cyclotron current
drive experiments on DIII-D The 13th Topical Conf. on
Radio Frequency Power in Plasmas (Annapolis, Maryland,
USA) pp 249–52

[24] Maaßberg H., Romé M., Erckmann V., Geiger J., Laqua H.P.,
Marushchenko N.B. and (the W7-AS Team) 2005 Electron
cyclotron current drive in the Wendelstein 7-AS stellarator
Plasma Phys. Control. Fusion 47 1137–63

[25] Antonsen T.M. and Hui B. 1984 The generation of current in
tokamaks by the absorption of waves in the electron
cyclotron frequency range IEEE Trans. Plasma Sci.
12 118–23

[26] McGregor D.E., Cairns R.A., Lashmore Davies C.N. and
O’Brien M.R. 2008 Flux averaged current drive efficiency
of electron Bernstein waves Plasma Phys. Control. Fusion
50 015003

[27] Kennel C.F. and Engelmann F. 1966 Velocity space diffusion
from weak plasma turbulence in a magnetic field Phys.
Fluids 9 2377

[28] Spitzer L. and Härm R. 1953 Transport phenomena in a
completely ionized gas Phys. Rev. 89 977–81

[29] Karney C.F.F., Fisch N.J. and Reiman A.H. 1989 Green’s
function for RF-driven current in a toroidal plasma AIP
Conf. Proc. 190 430–3

[30] Braams B.J. and Karney C.F.F. 1989 Conductivity of a
relativistic plasma Phys. Fluids B 1 1355–68

[31] Fisch N.J. 1987 Theory of current drive in plasmas Rev. Mod.
Phys. 59 175–234

[32] Lerche I. 1968 Quasilinear theory of resonant diffusion
in a magneto-active, relativistic plasma Phys. Fluids
11 1720

[33] Ohkawa T. 1976 Steady-state operation of tokamaks by RF
heating General Atomics Report GA-A13847

[34] Fisch N.J. and Boozer A.H. 1980 Creating an asymmetric
plasma resistivity with waves Phys. Rev. Lett. 45 720–2

[35] Decker J. 2005 Electron Bernstein wave current drive
modeling in toroidal plasma confinement PhD ThesisMIT

[36] Zheng P., Gong X., Lu X., He L., Cao J., Huang Q. and
Deng S. 2018 On current drive by Ohkawa mechanism of
electron cyclotron wave in large inverse aspect ratio
tokamaks Nucl. Fusion 58 036010

[37] Li C., Zheng P., Jiang X., Lu L., Yin L., He L., Huang Q.H.,
Zhong Y. and Gong X. 2022 Effective current drive in the
pedestal region of high-confinement tokamak plasma
using electron cyclotron waves Nucl. Fusion
62 096027

[38] Harvey R.W., McCoy M.G. and Kerbel G.D. 1989 Power
dependence of electron-cyclotron current drive for low- and
high-field absorption in tokamaks Phys. Rev. Lett.
62 426–9

[39] Prater R. 2004 Heating and current drive by electron cyclotron
waves Phys. Plasmas 11 2349–76

[40] Kapper G., Kasilov S.V., Kernbichler W., Martitsch A.F.,
Heyn M.F., Marushchenko N.B. and Turkin Y. 2016
Electron cyclotron current drive simulations for finite
collisionality plasmas in Wendelstein 7-X using
the full linearized collision model Phys. Plasmas
23 112511

[41] Wallace G., Bai Z., Sadre R., Perciano T., Bertelli N.,
Shiraiwa S., Bethel E. and Wright J. 2022 Towards fast and
accurate predictions of radio frequency power deposition
and current profile via data-driven modelling: applications
to lower hybrid current drive J. Plasma Phys.
88 895880401

[42] Ram A.K., Decker J. and Peysson Y. 2005 On electron
Bernstein waves in spherical tori J. Plasma Phys.
71 675

[43] Nelson-Melby E., Harvey R.W., Smirnov A.P. and Ram A.K.
2007 Relativistic ray-tracing of electron Bernstein waves in
a spherical tokamak reactor Plasma Phys. Control. Fusion
49 1913–29

16

https://doi.org/10.1063/1.3558584
https://doi.org/10.1063/1.3558584
https://doi.org/10.1088/0741-3335/40/4/006
https://doi.org/10.1088/0741-3335/40/4/006
https://doi.org/10.1088/0029-5515/21/12/004
https://doi.org/10.1088/0029-5515/21/12/004
https://doi.org/10.1063/1.865191
https://doi.org/10.1063/1.865191
https://doi.org/10.1063/1.863906
https://doi.org/10.1063/1.863906
https://doi.org/10.1051/epjconf/20123201011
https://doi.org/10.1051/epjconf/20123201011
https://doi.org/10.1088/0741-3335/47/8/002
https://doi.org/10.1088/0741-3335/47/8/002
https://doi.org/10.1109/TPS.1984.4316304
https://doi.org/10.1109/TPS.1984.4316304
https://doi.org/10.1088/0741-3335/50/1/015003
https://doi.org/10.1088/0741-3335/50/1/015003
https://doi.org/10.1063/1.1761629
https://doi.org/10.1063/1.1761629
https://doi.org/10.1103/PhysRev.89.977
https://doi.org/10.1103/PhysRev.89.977
https://doi.org/10.1063/1.38487
https://doi.org/10.1063/1.38487
https://doi.org/10.1063/1.858966
https://doi.org/10.1063/1.858966
https://doi.org/10.1103/RevModPhys.59.175
https://doi.org/10.1103/RevModPhys.59.175
https://doi.org/10.1063/1.1692186
https://doi.org/10.1063/1.1692186
https://doi.org/10.1103/PhysRevLett.45.720
https://doi.org/10.1103/PhysRevLett.45.720
https://doi.org/10.1088/1741-4326/aaa338
https://doi.org/10.1088/1741-4326/aaa338
https://doi.org/10.1088/1741-4326/ac7c7e
https://doi.org/10.1088/1741-4326/ac7c7e
https://doi.org/10.1103/PhysRevLett.62.426
https://doi.org/10.1103/PhysRevLett.62.426
https://doi.org/10.1063/1.1690762
https://doi.org/10.1063/1.1690762
https://doi.org/10.1063/1.4968234
https://doi.org/10.1063/1.4968234
https://doi.org/10.1017/S0022377822000708
https://doi.org/10.1017/S0022377822000708
https://doi.org/10.1017/S0022377805003636
https://doi.org/10.1017/S0022377805003636
https://doi.org/10.1088/0741-3335/49/11/011
https://doi.org/10.1088/0741-3335/49/11/011

	Application of linear electron Bernstein current drive models in reactor-relevant spherical tokamaks
	1. Introduction
	2. Review of linear EBCD model
	2.1. Solution to Green's function χ
	2.2. The HSL approximation
	2.3. Expression for D

	3. EBCD in STEP
	3.1. Comparison of linear CD models

	4. Ray-tracing + linear CD simulations
	4.1. Zeff scan

	5. Power threshold for quasilinear effects
	6. Discussion
	7. Conclusion
	Appendix. Linear damping of EBW ray
	References




