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Abstract: The current industrial environment relies heavily on maritime transportation. Despite the
continuous technological advances for the development of innovative safety software and hardware
systems, there is a consistent gap in the scientific literature regarding the objective evaluation of the
performance of maritime operators. The human factor is profoundly affected by changes in human
performance or psychological state. The difficulty lies in the fact that the technology, tools, and
protocols for investigating human performance are not fully mature or suitable for experimental
investigation. The present research aims to integrate these two concepts by (i) objectively character-
izing the psychological state of mariners, i.e., mental workload, stress, and attention, through their
electroencephalographic (EEG) signal analysis, and (ii) validating an innovative safety framework
countermeasure, defined as Human Risk-Informed Design (HURID), through the aforementioned
neurophysiological approach. The proposed study involved 26 mariners within a high-fidelity bridge
simulator while encountering collision risk in congested waters with and without the HURID. Subjec-
tive, behavioral, and neurophysiological data, i.e., EEG, were collected throughout the experimental
activities. The results showed that the participants experienced a statistically significant higher
mental workload and stress while performing the maritime activities without the HURID, while
their attention level was statistically lower compared to the condition in which they performed the
experiments with the HURID (all p < 0.05). Therefore, the presented study confirmed the effective-
ness of the HURID during maritime operations in critical scenarios and led the way to extend the
neurophysiological evaluation of the HFs of maritime operators during the performance of critical
and/or standard shipboard tasks.
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1. Introduction

In today’s globalized trade and industrial supply chain, the transport industry, par-
ticularly maritime transportation, plays a vital role. The majority of the world’s trade in
goods, more than 80%, is carried out using ships [1]. However, this increased reliance on
maritime transport has led to a number of issues with the human factors that have a direct
impact on maritime safety. The growth in demand for maritime transport has led to the
development of larger and faster ships, resulting in a significant increase in maritime traffic
and extreme traffic conditions [2]. Despite ongoing efforts by various organizations and
authorities to regulate the industry, the inherent complexities and risks associated with
maritime transport remain. These risks arise in the form of accidents that can disrupt vital
shipping waterways, result in significant financial losses, cause loss of life, and lead to
marine pollution [3,4]. Ensuring maritime safety has always been a top priority for the
international shipping sector.

Addressing these human factor issues is essential to maintaining a safe and efficient
maritime environment. The consequences of failing to manage these factors adequately
can be severe, ranging from accidents and environmental damage to detrimental effects on
the well-being of crew members. Therefore, understanding and integrating human factor
considerations into maritime operations and safety protocols are essential steps to mitigate
risk and ensure safety on board.

The annual statistics provided by the European Maritime Safety Agency (EMSA)
provide an insight into maritime accidents and incidents. According to their latest report,
of the 21,173 accidents and incidents registered between 2011 and 2018, a remarkable
81.1% were attributed to human error [5]. Over the past decade, the maritime industry has
experienced a significant number of different emergency situations, including collisions,
explosions, fires, flooding, groundings, and man-overboard incidents. Unfortunately, these
incidents have resulted in loss of life, loss of goods, and significant environmental damage.
Mitigating the impact and consequences of maritime accidents relies heavily on human
factors and human response. As global maritime trade expands and the number of vessels
navigating congested and narrow waters increases, the likelihood of accidents, particularly
collisions, contacts, and groundings, has increased [6–9].

The contextualization of human factors (HFs) within maritime environments is crucial
for understanding their relevance and impact on safety. Human factors encompass various
psychological, physiological, and ergonomic aspects that influence human performance
in complex work environments [10]. These factors include, but are not limited to, crew
performance, communication, decision-making, fatigue, stress, workload management,
and situational awareness [11].

In the maritime industry, where safety is of utmost importance, it is essential to explore
the role of HFs in accidents occurring in these environments. Specifically, in this case study,
we focus on the contextualization of HFs, such as mental workload, stress, and attention by
measuring neurophysiological signals [12–21].

The literature contains numerous studies conducted by researchers examining the
influence of organizational and human factors on ship accidents [7,22,23]. These studies
have identified various contributing factors to accidents, including fatigue, high workload,
stress, physical deprivation, insufficient knowledge, and lack of situational awareness [24].
In emergency situations, non-technical capabilities, including psychological factors, play
a significant role in collaborative decision-making processes, which significantly impact
maritime safety.

The various psychological states, mental workload, stress, and attention have signifi-
cant implications for human performance in maritime contexts. Mental workload refers
to the cognitive demands imposed on individuals while performing tasks [25]. In the
maritime industry, where crews navigate through congested or narrow waterways, main-
tain situational awareness, and respond to complex scenarios, the mental workload can
significantly impact decision-making and performance [24,26,27]. On the other hand, stress
can significantly impact human performance, and that can arise from factors such as time
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pressure, adverse weather conditions, and high-stakes situations [28,29]. The presence of
stress can impair cognitive functioning, attentional focus, and response capabilities, thereby
increasing the risk of accidents in maritime environments.

Attention is crucial for maintaining situational awareness and detecting critical cues
in the maritime setting. Sustained attention and vigilance are necessary to monitor vessel
movements, identify potential hazards, and promptly respond to changing circumstances.
However, lower attention can occur, leading to critical errors and accidents.

This study focuses on measuring neurophysiological signals to understand better and
assess HFs. Neurophysiological signals, such as electroencephalography (EEG), provide a
direct and objective assessment of mental states and cognitive processes. By examining the
neurophysiological correlates of mental workload, stress, and attention, we gain valuable
insights into the underlying mechanisms that influence human performance in maritime
environments. In fact, such an approach relying on neurophysiological signals processing is
widely considered to be more objective in scientific research with respect to the approaches
based on subjective and behavioral measurements. Several previous works already demon-
strated how EEG-based indicators are able to objectively characterize the above-mentioned
humans’ mental states, i.e., the mental workload, the stress, and the attention. More
specifically, refs. [21,30–32] demonstrated how humans’ attention and vigilance can be
characterized by a synthetic EEG-based index. Regarding the mental workload, several
studies [12,33–35] showed the reliability of specific EEG-features to the humans’ mental
workload while performing different activities in operational environments. Concerning
stress evaluation, a plethora of scientific research revealed the sensibility of EEG correlates
to such variations in mental state while performing different operational tasks in both real
and realistic environments [36,37].

In this case study, we aim to contextualize the impact of a human factors analysis
approach (i.e., HURID), specifically mental workload, stress, and attention, on accidents
occurring in maritime environments. Through the assessment of neurophysiological signals,
we strive to deepen our understanding of how these factors influence human performance
and contribute to maritime accidents. By identifying the key HFs and their impact, we can
develop targeted interventions and strategies to enhance safety, reduce the risk of accidents,
and promote efficient operations in maritime settings. The present paper introduces an
innovative approach, the assessment of neurophysiological signals, which represents the
first application of its kind in the maritime domain regarding collisions in congested waters
with a detailed experimental approach. The approach has been tested to demonstrate its
effectiveness in the context of handling ship collision risk in congested water.

1.1. HURID (Human Risk-Informed Design)

There are some challenges to assessing the potential impact of new technologies and
human performance in safety, due to the scarcity of human factors data obtained from
the investigation of safety events (accident/incident/near miss) and the lack of effective
feedback loops from operations back to designers. HURID (Human Risk-Informed Design)
is a bridge facilitating the integration of human factors into the design of systems and
operations, safety assessment, and regulation [38]. The main purpose of HURID is to
serve as a collection of various components, specifically the SHIELD incident database [39],
the Human Factors Toolkit, and the Risk Models. The implementation of these compo-
nents follows a structured procedure that aligns with conventional product development
methodologies, encompassing stages such as development, prototyping, and testing prior
to production or operational implementation. The utilization of the HURID Framework
within the aviation and maritime domains was demonstrated by conducting targeted case
studies within these specific domains in the simulator. The primary objective of these
case studies was to validate the efficacy of HURID interventions concerning the particular
scenarios being examined. Within this framework, the significance of the human factor
and human responses were explored in emergency scenarios by employing real-time, full-
mission bridge simulator. Extensive investigations have been conducted to study human
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behaviors and response actions from various perspectives in the context of emergency
situations by using subjective and objective methods. Throughout the experimental investi-
gations, the cognitive workload, stress levels, and attention were observed by employing
EEG within a bridge simulator. Simulated operational tasks were employed to analyze and
gain insights into human behavior under normal conditions as well as during emergency
situations, both with and without the implementation of HURID intervention. Furthermore,
potential outcomes resulting from these analyses were revealed.

1.2. Validation of the HURID

A Lookout is a person assigned to the bridge of a ship with the primary duty of keeping
constant watch over the surrounding sea in order to immediately notify the navigation
staff of any possible threats that might endanger safe navigation or the ship. A Lookout
attends training to learn the core watchkeeping information and abilities before taking on
the duty of a Lookout. A Lookout is required by the COLREG (International Regulations
for Preventing Collisions at Sea) to always give the ship’s navigation their full attention,
making sure that any observed entities—such as other vessels, fishing boats, navigational
aids, or floating objects—are promptly reported to the officer on watch (OOW) [40].

The Lookout’s presence on the ship’s bridge and their presentation of thorough infor-
mation about the surrounding area greatly assist the OOW in doing their tasks success-
fully [41]. Furthermore, in order to retain maximum attention, the person given watch duty
must avoid engaging in any other activities. Maintaining a good Lookout throughout the
watch is considered part of the considered work on board a vessel as per COLREG Rule-5
and Part 3-1 of STCW95 [40,42]. The officer on watch (OOW) is tasked with safely operating
the vessel while also performing the Lookout duties during daylight hours. However, it
is necessary to have a dedicated Lookout on duty when there is darkness or poor vision.
The Master of the vessel may designate an assistant as an extra Lookout depending on the
navigating conditions, such as congested waters or heavy weather conditions.

Regarding the function of the only Lookout, the related responsibilities, and degree
of watchkeeping, many rules, suggestions, and standards have been created to guarantee
safe navigation. However, as noted in a study by the Marine Accident Investigation Branch
(MAIB) in 2004 [43], there is a gap between the actual work performed and the specified
tasks connected to the sole Lookout and its responsibilities.

The watchkeeping officer must be accompanied by a committed Lookout to maintain
efficient watchkeeping. The Lookout must refrain from taking on any additional obligations
and concentrate entirely on the task they have been given. Such support for the principal
operator should also remain around the specified duty area until their shift is over. In
congested waterways with high traffic density, such as the Dover Strait, Gibraltar Strait, and
Singapore Strait, the presence of a Lookout on the bridge is essential. In these situations,
the Lookout plays a crucial role as a bridge team member, reporting to the officer on
watch (OOW) on recognized targets and possible dangers and allowing the preservation of
situational awareness about the potential threats in the surroundings. The “sole Lookout”
factor was the most commonly recognized contributing factor in an inquiry involving
33 incidents and 41 boats between the years 1994 and 2003, according to the Marine
Accident Investigation Branch’s (MAIB) research on bridge watchkeeping safety [43]. This
report emphasizes the significance of having a Lookout; in other words, adding an extra
person onboard for specific conditions on the bridge.

1.3. Scenario Selection

According to a report by EMSA 2022 [1], between 2011 and 2022, collisions accounted
for the largest proportion of accidents investigated, about 44% of all accidents, followed
by groundings (38%) and contacts (18%). Ship collisions are the most common type of
maritime accident, resulting in fatalities, injuries, and damage to ships and the environment.
Human error was found to be a contributing factor in approximately 78% of collisions,
groundings, and collisions investigated.
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On the other hand, it is of paramount importance to observe and identify the mental
and physical state of the seafarers. The selection and design of the most appropriate
scenario is crucial when conducting experimental studies. Therefore, a collision accident in
the Strait of Dover, widely recognized as one of the busiest waterways in the world, was
selected from the accident database. The experiments were designed not only to observe
human performance during the experiments in the full mission ship bridge simulator, but
also to measure the mental state of the participants. The mental state of the participants was
monitored using an EEG device within the bridge simulator. The same collision scenario
involving the same ship was used for all participants, requiring them to perform a series
of actions.

1.4. Background of An Accident Selected for Analysis Using HURID

In October 2008, a collision took place in the Dover Strait involving the bulk carrier
MV Wadi Halfa and the general cargo vessel MV Scott Isles at 4:49 a.m. Figure 1 displays
the collision approach on the map obtained from the accident report. The incident occurred
under good visibility and calm weather conditions, with congestion in the navigational
area contributing to increased traffic. As outlined in the accident report by the MAIB,
2009 [44], the processes leading to the accident can be summarized as follows using the
critical incident technique.
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MAIB) [44].

While crossing the NE traffic lane of the Dover Strait Traffic Separation Scheme during
its passage from Rochester to Antwerp, the watchkeeping officer on MV Scot Isles failed to
detect the approaching vessel MV Wadi Halfa prior to the collision. Despite attempting
evasive maneuvers, the collision could not be avoided. Notably, there were no Lookouts
on either bridge during the collision, and the radar and other bridge equipment on both
vessels were not utilized effectively. The accident analysis of the collision, conducted
using critical incident techniques, identified several critical aspects that contributed to the
incident. One of the most crucial findings was the absence of a Lookout on both vessels’
bridges at the time of the collision. The lack of dedicated personnel keeping a vigilant watch
compromised the ability to detect and respond to potential collision risks. Additionally, it
was highlighted that the radar systems and other bridge equipment on both vessels were
not effectively utilized, further limiting situational awareness and early detection of the
approaching vessel. These factors combined to create a significant gap in the vessels’ ability
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to prevent the collision. The analysis underlines the importance of maintaining proper
Lookout practices and utilizing navigational equipment to ensure the safety of vessels
navigating in congested waters like the Dover Strait.

1.5. Research Questions

This study generated a set of research questions (RQs) that will provide the founda-
tion for examining the effects of how the HURID approach might improve the safety of
navigation. The following questions will be assessed:

RQ 1: What are the differences in reaction times experienced by participants when
they encounter collision risks in congested waters between two conditions—sole Lookout
and with Lookout?

RQ 2: How does operational safety, specifically the number of collisions, differ between
two conditions—sole Lookout and with Lookout—when participants encounter collision
risks in congested waters?

RQ3: What are the differences in terms of mental workload experienced by participants
under collision risks in congested waters between two conditions—sole Lookout and
with Lookout?

RQ 4: How do stress levels vary among participants when they encounter collision
risks in congested waters between two conditions—sole Lookout and with Lookout?

RQ 5: What variations occur in participants’ attention levels under collision risks in
congested waters between two conditions—sole Lookout and with Lookout?

2. Materials and Methods

This section is constituted by different subparagraphs in order to properly describe
the experimental scenario design, the sample size involved in the experimental activities,
and the data collection procedures.

2.1. Experimental Scenario Design

The past-accident case study was run in a real-time, full-mission ship bridge simulator
to explore the significance of human factors and examine human responses in emergency
contexts. The study focused explicitly on ship collision scenarios. Throughout the experi-
mental investigations, the designated individual’s cognitive workload, stress levels, and
attentional states were meticulously monitored using EEG within the bridge simulator
environment. Simulated operational activities were deployed to comprehensively analyze
and gain insights into human behavior in both baseline and emergency situations, with
and without the implementation of HURID intervention. The experiment involved two
stages of simulator tests aimed at evaluating the effectiveness of HURID. Specifically, the
intervention chosen for verification was the increase in manning level by introducing a
Lookout to support OOW. Introducing the Lookout is not only in line with the company’s
ISM procedures but also aligned with the findings of the SHIELD and Collision Risk Model
analyses. Therefore, the proposed intervention was deemed most suitable for the scenario.

In the initial phase of the experiment, 13 participants were placed in the Dover Strait
simulation without the implementation of the HURID intervention. Throughout the simu-
lation, the participants were tasked with managing the situation without a bridge Lookout,
testing their ability to handle the scenario independently.

In the second iteration of the experiment, the simulator was operated with the HURID
intervention, which involved increasing the manning level. The experiments involved
13 new participants, with the same grade of skills and experience in the maritime context,
while an additional crew member, i.e., the Lookout, with maritime experience was the
Lookout in all scenarios. The assigned Lookout was the same for every experiment, and
the Lookout had the specific task of timely reporting during the simulation, ensuring that
all targets were reported consistently across all sessions.

This decision aimed to replicate the conditions found in the accident report, where
both vessels had a Lookout during the night watch. However, prior to the accident, both
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officers granted permission to their respective Lookouts to leave the bridge temporarily
for various reasons, such as cleaning, checking provisions, supporting technical personnel,
or safety rounds. The full-mission ship bridge simulator laboratory at the University of
Strathclyde (UoS) served as the setting for the creation of the scenario, which was designed
and developed based on the accident report. A general view of the simulator experiment is
shown below in Figure 2.
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The schematic representation of the scenario is illustrated in Figure 3. The main vessel
deployed for the purpose of role-sharing among participants was identified as MV Wadi
Halfa. A pre-defined speed and course were assigned to MV Scott Isles, designating it as
the target vessel. To ensure the fidelity of the navigational environment within the Dover
Strait, the scenario design was meticulously aligned with the comprehensive vessel details
outlined in the accident report.
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2.2. Participants

A total of 26 participants were engaged in this case study to ascertain the efficacy and
effectiveness of the HURID intervention. By examining the performance of individuals in
various simulated emergency situations, the study aimed to evaluate the impact and efficacy
of the HURID intervention on human responses in ship collision scenarios. Each participant
(OOW) was fitted with the EEG to ensure compliance with data protection regulations,
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operators provided comprehensive information regarding the experiment and demon-
strated adherence to the General Data Protection Regulation (EU regulation 2016/679).
Before the experiments, the participants were thoroughly briefed on utilizing their personal
information, after which they willingly provided informed consent by signing consent
forms and an orientation script. An additional interactive familiarization process was
implemented to familiarize the participants with the specific scenario, replicating the same
ship and environmental conditions as the actual scenario. A demographic questionnaire
was administered to gather general participant information. Once participants indicated
their readiness, they were equipped with an EEG device for calibration. In the second
phase of the simulator study, participants executed the designated scenario with a Lookout.
Following the conclusion of the scenarios, participants engaged in open-ended discussions
during the debriefing session regarding their experiences with the simulator trials and the
maneuvers executed. The NASA Task Load Index (NASA-TLX) [45] was also employed
as a subjective measure to assess the perceived workload. Furthermore, participants were
requested to complete a post-scenario questionnaire as part of the debriefing process.

2.3. Experimental Data Collection

During the validation experiments conducted, both subjective and objective mea-
sures were implemented to assess the effectiveness of the HURID. The first experiment
involved a total of fifteen participants, while the second experiment included nineteen
participants. However, due to signal artefacts and technical issues, certain participants had
to be excluded. We finally obtained thirteen participants for the “no HURID” and thirteen
participants for the “HURID” experimental condition.

2.3.1. Subjective and Behavioural Data Collection and Analysis

The experimental protocol foresaw subjective and behavioral data collection. In par-
ticular, the number of Very High Frequency (VHF) radio calls made by the participants
while performing the maritime tasks was collected. The number of VHF calls made by the
participant indicates the extent to which the OOW tried to contact other vessels and shore
support to handle potential risky situations arising during maritime activities. Moreover,
the reaction times exhibited by the participants to properly respond to the different events
during the maritime simulation were collected. In this context, the number of collisions
experienced by participants during the experimental activities was also recorded. Finally,
the NASA-TLX questionnaire was performed by each participant at the end of the experi-
mental session. The NASA-TLX is a widely recognized and extensively used measurement
tool that evaluates the subjective workload experienced by individuals performing complex
tasks, especially in high-pressure environments. It provides valuable insights into the men-
tal and physical demands placed on individuals during task execution, allowing for the
identification of potential areas of improvement and optimization in task design, workload
distribution, and resource allocation [46]. The above-described NASA-TLX, reaction times,
number of VHF calls, and number of collisions were included in the statistical analysis.
Before performing the analysis, the number of calls made, and the number of collisions
were combined in a unique performance index as follows:

Per f ormance index = 1−
(

CallNum−minCallNum
maxCallNum −minCallNum

+
CollNum−minCollNum

maxCollNum −minCollNum

)
· 0.5

where CallNum represents the number of VHF calls, and CollNum represents the number of
collisions. The presented index was defined by assigning the same significance to the factor
related to the VHF calls and the one related to the collisions number [47].

2.3.2. Neurophysiological Signal Collection and Analysis

The ship operators’ EEG signals were recorded by the digital monitoring system
LiveAmp (Brain Products, Germany) with a sampling frequency of 125 (Hz). The eight
water-based recording electrodes were properly placed over the frontal and parietal brain
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areas commonly considered for mental state assessment [30,35,48,49]. In particular, the
EEG channels were the following ones: AFz, AF3, AF4, AF7, AF8, Pz, P3, P4, all referenced
to the left mastoid and grounded to the right mastoid. Once the electrodes’ impedances
(kept below 50 (kΩ)) and the quality of the EEG signals were checked, the experimental
protocol started.

The EEG signal was first band-pass filtered with a 5th-order Butterworth filter in the
interval 2–30 (Hz). The eye blink artefacts were detected and corrected online by a modified
implementation of the Multi-Channel Wiener filtering through the Reblinca method [50].
For further sources of artefacts, specific algorithms of the EEGLAB toolbox [51] were
applied. Specifically, the preprocessed EEG signal has been divided into 1 s long epochs.
Three criteria have been applied to recognize artifactual data automatically. Firstly, EEG
epochs with the signal amplitude exceeding ±80 µV (Threshold criterion) were marked as
“artefacts”. Then, each EEG epoch was interpolated to check the trend’s slope within the
considered epoch (Trend estimation). If such a slope is higher than 20 µV/s, the considered
epoch is marked as “artefact”. Finally, the signal sample-to-sample difference (Sample-to-
sample criterion) was analyzed: if such a difference, in terms of absolute amplitude, was
higher than 25 µV, i.e., an abrupt variation (no-physiological) happened, the EEG epoch
was marked as “artefact”. In the end, the EEG epochs marked as “artefacts” were removed
from the EEG dataset with the aim of having a clean EEG signal to perform the analyses.

From the artefact-free EEG, the Global Field Power was calculated for the EEG fre-
quency band of interest for the mental state evaluation, which was the Theta, Alpha, and
Beta. The GFP was chosen as the parameter of interest describing brain EEG activity since
it has the advantage of representing, in the time domain, the degree of synchronization or a
specific cortical region of interest in a specific frequency band [52–54]. More specifically, the
GFP was mathematically computed according to the same approach described by Vecchiato
and colleagues [55]. The EEG frequency bands were defined according to the Individual
Alpha Frequency (IAF) value [56] computed for each participant. Since the Alpha peak
is mainly prominent during rest conditions, the subjects were asked to keep their eyes
open for one minute before starting the experiment. Such a condition was then used to
estimate the IAF value specifically for each participant. The GFP was calculated over
all the EEG channels for each epoch using a Hanning window of the same length of the
considered epoch (1 s, which means 1 Hz of frequency resolution according to the time
resolution required from the presented approach). After the EEG data preprocessing, the
EEG GFP-derived features were computed to objectively characterize the relevant mental
states within the above-described experimental protocol design. In particular, the mental
workload, the stress, and the attention indexes were computed as follows:

Mental workload =
Frontal ThetaGFP{A f 3, A f z, A f 4}

Parietal AlphaGFP{P3, Pz, P4}

Stress = Parietal Beta HighGFP{P3, P4}

Attention =
Frontal BetaGFP{A f 8, A f 4, A f z, A f 3, A f 7}

Frontal ThetaGFP{A f 8, A f 4, A f z, A f 3, A f 7}
In this regard, it has to be noted that computation of the mental workload and stress

indexes were defined according to different studies carried out previously in which such
mental states were deeply investigated as EEG-derived features [12,57,58]. Similarly, the
attention index definition was selected according to the inverse of the so-called Theta-Beta
Ratio, an EEG-derived feature broadly validated as an indicator of ADHD [59–61].

2.3.3. Statistical Analysis

The statistical analysis was performed after the data normalization. More specifically,
the subjective and behavioral data, i.e., the NASA-TLX, reaction times, and the number of
VHF calls, were normalized according to their respective maximum and minimum values
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throughout the entire experimental session. The neurophysiological derived features, i.e.,
mental workload, stress, and attention, were normalized through the z-score technique
according to the entire experimental session as follows:

Xz−scored =
Xi −median(X)

mad(X)

where X corresponds to the neurometrics distributions and mad corresponds to the median
absolute deviation.

Subsequently, the Shapiro–Wilk test was used to assess the normality of the distribu-
tion related to each of the considered parameters. If normality was confirmed, Student’s
t-test was performed for the comparison of independent conditions (i.e., no HURID vs.
HURID). In the case of non-normal distribution, the Mann–Whitney test was performed.

3. Results

This section is divided into subheadings to provide a concise and precise description
of the experimental results in terms of subjective, behavioral, and neurophysiological data.

3.1. Subjective Results

The statistical analysis performed on the NASA-TLX revealed no statistical differences
(p = 0.52) between the no-HURID and the HURID groups. In other words, no statistical
differences were observed, in terms of perceived mental workload demand, between the
participants who experienced the HURID (with Lookout) and no HURID, those who
performed the maritime operations as sole Lookout. The results indicate that this method
might not be effective for simulator studies involving different groups of participants.
Furthermore, in the experiments conducted with and without HURID, the involvement of
different individuals had an impact on the results in terms of subjectivity.

3.2. Behavioral Results

The independent sample t-test performed on the reaction times revealed that the
participants who performed the maritime operations with the HURID (with Lookout) were
significantly faster than the ones who performed the operations as sole Lookout. In partic-
ular, the reaction times associated with the HURID group were statistically significantly
lower than the ones associated with the no-HURID group (p = 0.01) (Figure 4). In this
regard, it has to be highlighted that the operators included in the HURID group reacted
22.5% faster than the ones included in the no-HURID group.

These findings confirm the role of a Lookout in providing assistance to the officer on
watch. Specifically, the presence of a Lookout enables earlier reactions concerning collision
prevention action.

Similarly, Figure 5 reveals that the performance index associated with the HURID
group resulted in being significantly higher than the one associated with the no-HURID
group (p = 0.007). Regarding the performance index improvement observed for the HURID
group, the overall performance increase was 74.6% for the operators who conducted the
maritime simulation tasks with the support of the Lookout compared to the no-HURID
group. The collision rate is the most crucial performance index in both groups, and the
presence of a Lookout was found to result in a lower collision rate. This indicates that
having a Lookout on the bridge has a positive impact on reducing the likelihood of collisions
and enhancing overall safety.
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3.3. Neurophysiological Results

The following Figures 6–8 represent the statistical analysis results related to the com-
parison between the two experimental conditions, e.g., HURID and no HURID, in terms of
ship operators’ mental workload, stress, and attention. In particular, the Mann–Whitney
test showed a statistically significant increase in the ship operators’ mental workload during
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the no-HURID experiments compared to the HURID ones (p = 0.03). This outcome indicates
that the presence of the Lookout consistently reduced the operators’ mental workload while
dealing with the maritime operations included within the experimental protocol (Figure 6).
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Similarly, the Mann–Whitney test for the independent sample revealed that the oper-
ators’ stress consistently and significantly increased while performing the experimental
tasks without the HURID compared to the condition in which they were supported by
the Lookout (p = 0.008). Such a stress increase resulted to be even more consistent with
respect to the mental workload, and it indicates that the absence of the Lookout played a
crucial role in stressing the operators while performing the maritime operations (Figure 7)
in emergency situations.

The statistical analysis revealed a statistically significant decrease in the ship operators’
attention within the no-HURID condition compared to the one with HURID (p = 0.01)
(Figure 8). This result also confirms the findings of the previous EEG-based parameters
that people in HURID condition demonstrated better attention performance.

4. Discussion

The collision rate serves as the primary criterion utilized for the validation of the
HURID system. Both scenarios, with and without HURID validation, were studied and
compared regarding their collision rates. The experimental investigation involved a total
of 26 participants. The influence of the lookout in terms of enhancing bridge manning is
illustrated in Figure 9.

Taking early action is crucial to prevent collision risks. Therefore, in the HURID
scenario, the presence of a Lookout aided the participant in taking prompt and appropriate
action (RQ 1) (Figure 4).

The implementation of HURID intervention, specifically increasing bridge manning,
resulted in a 61.5% reduction in collision probability (RQ 2). This outcome demonstrates
that the HURID intervention significantly mitigates collision risks by enhancing bridge
manning. In integrated bridge systems, numerous parameters are available to assess the
surrounding environment. However, it becomes challenging for the Officer On Watch
(OOW) to accurately evaluate the situation when operating alone in congested or narrow
waters with high traffic (Figure 5).
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The simulator-based evaluation aimed to test HURID-based interventions aimed at
improving the response of the onboard crew during emergencies. The real accident, which
simulated the Dover Strait collision accident, was designed and executed in a full-mission
bridge simulator equipped with EEG equipment. The objective measures, i.e., the EEG,
provided statistical evidence supporting the effectiveness of increasing the manning level
on the bridge in enabling the OOW to take appropriate actions early and prevent collisions.
In fact, the experimental results revealed that the operators’ mental workload and stress
were significantly higher when performing the maritime operations without the Lookout
(i.e., the noHURID condition) (Figures 6 and 7) (RQ 3). This indicates that the presence of the
Lookout (i.e., the HURID condition) consistently reduced the impact of the critical maritime
operations on the operators’ mental states. In other words, the results indicated that the
presence of the Lookout can play a crucial role in terms of crew’s safety and efficiency by
reducing the mental workload and stress experienced by the main actor of the vessel’s
operations while dealing in critical and non-critical scenarios (RQ4). This observation is
also supported by the results related to the EEG-based attention index computed along the
noHURID and HURID conditions (Figure 8). The maritime operators were objectively and
significantly more attentive toward the experimental scenario when they were supported
by the Lookout (RQ5).

The HURID intervention resulted in reduced workload and stress, as objectively
measured. The Lookout’s reporting further facilitated the OOW’s understanding and
assessment of the situation during the experiments.

It has to be observed that despite the positive and promising results the presented
work was characterized also by some limitations. In particular, the sample size appeared to
be not large. In this regard, it has to be noted that it results to be challenging to recruit such a
specific target of participants to be involved in a long and complex experimental protocol in
a simulated environment. Furthermore, the presented evaluations were computed overall
the experimental conditions. An important next step of the proposed methodology will
increase the time resolution of the mental states while performing maritime operations in
critical environments.
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However, key findings from the simulator experiments include the possibility of
objectively measuring various parameters during watchkeeping, such as workload, stress,
and visual attention through the use of neurophysiological-based indicators such as the
EEG-based parameters. Excessive mental workload and stress can impair susceptibility,
delay reaction times, and increase the likelihood of wrong decisions and actions during
emergencies. Results from the experiments demonstrated that the Lookout intervention
improves the performance of OOW significantly and assists the OOW in taking early
actions to prevent collisions. Moreover, the OOW had more time to utilize the electronic
equipment and assess the situation with reduced mental workload and stress due to the
HURID intervention.

5. Conclusions

Human error is the most prevalent cause of maritime accidents, consequently, the
human factor is the primary focus of maritime safety. The Lookout is an integral and crucial
component of the bridge team. The meaning of “Lookout” appears traditional or possibly
useless. On the contrary, the ship’s “Lookout” role remains highly important, particularly
in congested waterways, narrow water, extreme conditions, and heavy traffic.

Collisions and grounding incidents still occur despite the complex bridge system
and cutting-edge technology. Human error contributes to the great majority of accidents.
Workload, stress, and lack of attention can all contribute to human error. During an
emergency, the OOW needs to track the number of parameters on the displays in order to
take immediate action to prevent a collision or dangerous situation.

The aim of the study was to investigate the significance of Human Factors and examine
human responses in emergency scenarios within the maritime context by using real-time,
full-mission bridge simulators. Specifically, simulations were conducted to analyze and
gain insights into human behavior under normal and emergency conditions, taking into
account the presence or absence of HURID interventions in procedural design. In this
regard, we designed ship collision situations and employed a bridge simulator equipped
with EEG technology to assess the mental workload, stress, and attention of participants
with and without the HURID.

The findings derived from the simulator experiments hold substantial value for mar-
itime stakeholders and regulatory bodies, as they can inform the revision of international
rules and regulations. Furthermore, the outcomes can prompt shipping companies to
implement the measures in terms of bridge manning levels within their Safety Manage-
ment Systems properly and according to their ISM procedures, particularly in critical
areas. Similarly, the proposed approach could lead to a deeper investigation of the most
critical maritime operations in terms of required mental demands and, therefore, focusing
the training on such directions. In this regard, it has to be highlighted that the training
optimization would have a relevant benefit, especially in terms of safety but also in terms
of overall economic cost associated with the training programs. It may be emphasized that
implementing ISM procedures appropriately will improve the crew’s performance and
enhance navigational safety. These results highlight the significance of adhering to ISM
protocols, which can lead to a more competent and efficient crew, ultimately contributing
to a safer maritime environment.
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