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Abstract: This is the first investigation to perform an unsupervised cluster analysis of activities
performed by individuals with lower limb amputation (ILLAs) and individuals without gait impair-
ment, in free-living conditions. Eight individuals with no gait impairments and four ILLAs wore
a thigh-based accelerometer and walked on an improvised route across a variety of terrains in the
vicinity of their homes. Their physical activity data were clustered to extract ‘unique’ groupings
in a low-dimension feature space in an unsupervised learning approach, and an algorithm was
created to automatically distinguish such activities. After testing three dimensionality reduction
methods—namely, principal component analysis (PCA), t-distributed stochastic neighbor embedding
(tSNE), and uniform manifold approximation and projection (UMAP)—we selected tSNE due to
its performance and stable outputs. Cluster formation of activities via DBSCAN only occurred
after the data were reduced to two dimensions via tSNE and contained only samples for a single
individual. Additionally, through analysis of the t-SNE plots, appreciable clusters in walking-based
activities were only apparent with ground walking and stair ambulation. Through a combination of
density-based clustering and analysis of cluster distance and density, a novel algorithm inspired by
the t-SNE plots, resulting in three proposed and validated hypotheses, was able to identify cluster
formations that arose from ground walking and stair ambulation. Low dimensional clustering of
activities has thus been found feasible when analyzing individual sets of data and can currently
recognize stair and ground walking ambulation.

Keywords: activity recognition; clustering; prosthetics; unsupervised learning

1. Introduction

Physical activity is universally recommended for the general population and has
overwhelming evidence of health benefits [1,2]. This extends also to individuals with lower
limb amputation (ILLAs); by maintaining sufficient levels of physical activity, ILLAs will
over time see improvements both physically and mentally. From a physical perspective,
physical activity can evidently lead to improved heart and lung functionality and reduce
the effects of chronic lower back pain [3,4] as well as lead to improved perceptions of the
individual’s quality of life, self-esteem, and body image [5,6]. As such, the acquisition
of activity monitoring data for the purposes of providing feedback on physical activity
for an ILLA population is an invaluable endeavor, which can be achieved through sens-
ing and machine learning, briefly placing the study in a broad context and highlighting
its importance.

In particular, this paper explores how unsupervised learning, a machine learning
approach that does not use any labeled data, via dimensionality reduction and cluster
analysis can be used to support human activity recognition (HAR) that involves an ILLA
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population. The general objective of an unsupervised learning approach is to present
the data in a visualizable format where data points with similarities converge together
into clusters. Given the inherent disadvantage of being unable to use the ground truth to
influence the classifier behavior, unsupervised approaches tend to underperform compared
with supervised approaches when applied to HAR [7,8]. However, since labelling is
often impractical and/or expensive, from a clinical perspective, it is worth considering
unsupervised approaches to explore whether it is possible to identify unique activity groups
within the data features without annotated datasets. In a scenario where clinical researchers
want to monitor activity of their patients, they may not have the resources or skills to label
data and train a classifier. From that perspective, an unsupervised model would be able to
interpret useful data without the overhead of labelling activities, only requiring that the
patient wears an activity monitoring device for the time duration of interest.

For a general human population, Ariza-Colpas et al. [9] provided a concise summary
of unsupervised approaches to HAR. Unsupervised models that use wearable sensors as
primary means of data acquisition are used for the recognition of low-level activities such
as standing, sitting, and lying [10–12], though a few studies have attempted to distinguish
higher-level sporting activities and activities of daily living [13–15]. Though numerous
sensing and unsupervised approaches have been applied to HAR, there is a clear gap in
analysis within an ILLA population, especially in free-living scenarios.

This study aims to close this gap in the literature by proposing the first system for HAR
with an ILLA population by clustering relevant physical activities. The key contribution
this paper makes is the establishment of clustering scenarios of ILLA data in free-living
conditions and the proposal of an unsupervised algorithm, based on t-distributed stochastic
neighbor embedding (tSNE)-based dimensionality reduction and density-based spatial
clustering (DBSCAN), that can automatically differentiate different walking activities. The
contribution of the paper is to explore how unsupervised learning via dimensionality re-
duction and cluster analysis can be used to support HAR that involves an ILLA population
and be able to present the data in a visually interpretable manner. Datasets and Matlab
code for this paper are available for public use via the institutional repository [16]. The
paper builds on our prior work [17] that proposed supervised classification methods for
the recognition of activities carried out by the ILLA population.

The rest of the paper is structured as follows: In Section 2, the methodology of the
experiment is explained in terms of how a viable clustering model was obtained and how an
unsupervised algorithm was developed to recognize different walking activities. Section 3
details the results of the latter half of the methodology, which is followed by a discussion
in Section 4.

2. Methodology
2.1. Data Collection and Preprocessing

Ethical approval for this study was granted by the University of Strathclyde’s Univer-
sity Ethics Committee prior to conducting the investigation (Ref: UEC20/55). Participants
were recruited between September and December 2020 via posters on social media and
by contacting individuals who had consented to follow-up participation from previous
investigations (see also [17]). Due to a lack of recruitment numbers (primarily caused by
the COVID-19 epidemic), subjects were selected based on convenience sampling. All par-
ticipants had to be at least 18 years of age, be comfortable performing moderate activities,
and not be at risk for life-threatening conditions if infected with the coronavirus. The
ILLA volunteers were further required to be able to ambulate with a prosthesis without
the use of walking aids and not have any comorbidities, which could potentially impact
their ability to ambulate for sustained periods of time. As this study was primarily targeted
at monitoring the activity of ILLAs, participants were asked not to carry out vigorous
activities such as jogging or running.
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Recruited participants were instructed to carry out approximately 140 min of walking
in the local vicinity of their homes while recording accelerometer data via a thigh-worn
device (ActivPAL, PAL Technologies, Glasgow, UK)—see [17], while additionally wearing a
chest-mounted camera and recording elevation data via a GPS recording application (Strava,
Strava Inc., San Francisco, CA, USA) operating on an iPhone 6 (Apple Inc., Cupertino,
CA, USA). The smartphone was provided by the researchers to assist with ground truth
annotation of the activities. Activities were annotated using the Visual Object Tagging
Tool (VoTT) (Microsoft, Redmond, WA, USA), further using the GPS coordinates from
the Strava application to aid with labelling uphill and downhill movement. Note that
the ActivPAL accelerometers are used on both legs for amputee participants and only on
one leg for able-bodied participants. The obtained labels are used as ground truth for
validation. Refer to [17] for more details on the sensing setup, data collection, and cleaning.
This investigation was primarily concerned with 5 of the walking activities: level ground
walking (referred to as “flat”); uphill movement; downhill movement, and upstairs and
downstairs movement. All signal processing and machine learning were handled in a
Matlab environment (Matlab 2020b, Mathworks, Natick, MA, USA). The accelerometer
data were digitally filtered by a bandpass filter with a preserved frequency range of 0.4 Hz
to 3 Hz to remove the gravitational constant and high-frequency muscle artifact movements
from the raw signal [18,19]. The data were segmented into chunks of 2 s long (or 40 sample
width) windows with no overlap. A list of 243 features (refer to [16]) was constructed for
each segment of data and was standardized to have zero mean and a standard deviation
of one. Constructed features are in line with those used in the literature for HAR from
wearable sensors.

2.2. Participant Information

A total of 8 healthy participants with no gait impairment and 4 participants with
lower limb amputation were recruited for the study. All participants who consented to
participate in the study were able to carry out at least one of their recordings successfully,
with zero dropouts. However, 4 individual recordings were discarded from analysis
due to inadequate positioning of the recording camera, resulting in poor video quality
and making analysis of those recordings infeasible. The primary characteristics of the
participants can be found in Tables 1 and 2. There was a noticeable disparity between
healthy and ILLA demographics; while the demographics match in terms of height and
weight, there was significant age bias with most of the healthy volunteers being in their
mid-20s, while the mean age of the amputees was approximately 50 years and was skewed
towards male subjects in both demographics. While this undoubtedly could have had an
adverse impact on machine learning testing accuracies, for research purposes it would
be useful to determine if training data on a younger healthy population could still result
in the detection of activity for an older population with gait impairments. Further, the
review in [20] suggests that combining healthy and ILLA populations in supervised HAR
studies is commonplace; thus, there is precedence to achieve desirable results. Despite
the relatively small sample size of the ILLA subjects, there was some interesting variation
in the amputation time with 2 long-term experienced amputees and 2 comparatively
inexperienced amputees, and there was a bilateral amputee to provide a comparison point
to unilateral amputees. In the following, specific subjects are referred to using a letter-
number rule. For example, healthy subject #8 is referred to simply as “H8”, and ILLA
subject #2 is referred to as “A2”.
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Table 1. Characteristics of healthy participants with no gait impairment.

Subject Height (m) Weight (kg) Age (Years) Gender

Healthy Subject #1 1.80 84 24 Male
Healthy Subject #2 1.65 63 51 Female
Healthy Subject #3 1.62 65 18 Female
Healthy Subject #4 1.97 99 25 Male
Healthy Subject #5 1.92 102 25 Male
Healthy Subject #6 1.83 89 24 Male
Healthy Subject #7 1.84 88 25 Male
Healthy Subject #8 1.78 98 25 Male

Table 2. Characteristics of individuals with lower limb amputation.

Subject Height (m) Weight (kg) Age (Years) Gender Type of
Amputation

Amputee
Subject #1 1.79 95 55 Male Unilateral

transtibial
Amputee
Subject #2 1.70 86 57 Male Unilateral

transtibial
Amputee
Subject #3 1.72 110 40 Male Unilateral

transtibial
Amputee
Subject #4 1.52 61 48 Female Bilateral

transtibial

2.3. Obtaining Variable Clustering Models

One of the main challenges of working towards achieving a viable cluster model was
to consider factors involved in the construction of the low-dimensional cluster model. The
main factors to consider are:

• Model Population: Should the data for constructing a cluster model include all par-
ticipants, split between healthy and ILLA demographics, or create models for each
subject individually?

• Dimensionality Reduction: Is it needed, and if so, which dimensionality reduction
method is the most appropriate?

• Parameter Tuning: What are suitable hyperparameters for the dimensionality reduc-
tion method?

• Label Description and Resolution: Does the detail of the true labels need to be reduced
before patterns in the clustering are observed?

The first stage in developing a cluster model is to determine whether the model
should include all participants, use separate models for each individual, or split models
into ILLA and healthy populations, as well as choosing the appropriate dimensionality
reduction method among those commonly used for time series signal clustering, e.g.,
principal component analysis (PCA), t-distributed stochastic neighbor embedding (tSNE),
or uniform manifold approximation and projection (UMAP). For each dimensionality
reduction method, the dimensionality is reduced from the original dimensionality (243 fea-
tures) to 2 dimensions to ensure simple and meaningful visualization and low-complexity
implementation. The data points are plotted in a 2D space and are manually labeled
post-clustering with their base activity label (flat/level walking, uphill, downhill, upstairs,
or downstairs) from ground truth camera observations to indicate the effectiveness of the
dimensionality method.

The outcomes of this exercise are shown in Tables 3–5, which demonstrate that all
dimensionality reduction approaches are only viable when cluster models are created for
the individual subject. Note that each color represents one activity. In tSNE and UMAP
models, when the activity labels are replaced with the identity of the subject, it becomes
evident that these approaches have modeled their cluster formation on the subject, rather
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than the activity. In contrast, appreciable clustering of activities with combined participant
data has been found in the analysis of public HAR datasets [21], implicating that the
uncontrolled environment for recording data led to a greater diversification of activities
that were unique to each individual. Thus, the chosen approach was to use individual
models for cluster analysis.

Table 3. PCA−generated cluster models of activity data for each population model.

Data Population PCA Model

All subjects
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Tables 3–5 further demonstrate that the tSNE and UMAP models were the only models
that showed appreciable separability of the activity classes. PCA models completely
failed to distinguish any of the 5 classes, and all data points had merged into a singular
homogenous shape. When analyzing the explained variance of the PCA components, it was
discovered that it took around 70 components to explain 95% of the total systematic variance
in the combined dataset of healthy individuals and ILLAs. This finding remains true when
PCA is applied to each individual’s dataset separately. It follows that the PCA process is
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unable to properly distinguish activities with just 2 principal components. This could be
because data distribution is far from Gaussian. Due to the instability of the UMAP function
for MATLAB 2020b (it would crash the software when run over multiple consecutive
executions) [22], it was decided to use tSNE for the remainder of the investigation as it
showed similar performance.

Following the initial models generated, though there was appreciable gradient-like
separability of activities in the tSNE models, the separation of flat and hill activities was
not significant enough to form a cluster. Thus, a reduced level of label resolution was
introduced, termed level “0”. In this level of resolution, the flat, uphill, and downhill labels
are all consolidated into a single label—“Walk”. The low dimensional clustering results for
healthy and ILLA subjects are illustrated in Tables 6 and 7, respectively. At level 1 of label
resolution, for many of the participants, the amount of overlap in flat, downhill, and uphill
labels cannot be separated in a practical manner. As a result, the investigation pivoted
towards studying clustering activity levels at a much simpler level: distinguishing ground
walking (flat, uphill, and downhill) from stairs (up and down).

At resolution level 0, model parameters for the tSNE algorithm were manually ad-
justed. The tSNE parameters were empirically tuned one parameter at a time, using all
12 subject cluster models and visually comparing them. In general, the choice of parameter
had minimal visual improvement on the cluster models over the default configurations,
and the models tended to fail to form meaningful clusters when parameters were set to their
extreme limits. A configuration of num. Dimensions = 2, perplexity = 30, exaggeration = 4, and
distance = “Standard Euclidean” was found to be an appropriate solution for all clustering
models. Applying PCA prior to tSNE also resulted in poorer cluster models for various
levels of principal component preservation, and so it was decided against using PCA in the
tSNE process.

Table 6. Clustering at different levels of label resolutions for one healthy subject (H2).

Resolution Level Healthy Subject Cluster Model

0 (Walking and stairs)
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Table 7. Clustering at different levels of label resolutions for one ILLA subject (A2).

Resolution Level ILLA Subject Cluster Model
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2.4. Proposed Clustering t-SNE Motivated Algorithm to Distinguish between Walking and Stair
Ambulation Clusters

With the grouping of uphill, downhill, and level walking movements into a single label
at level 0 resolution, there is a severe class imbalance between walk and stair labels, with
walking movement typically encompassing between 90% to 99% of the total data for each
individual. Parametric clustering algorithms such as K-Means and Hierarchical clustering,
where the number of clusters is predetermined, were deemed ill-fit for cluster recognition,
as they typically tended towards forming clusters of equal sizes. Indeed, [23] demonstrated
that, regardless of the cluster initialization method, the K-means algorithm performs
poorly on unbalanced datasets. It was thus decided to employ density-based spatial
clustering (DBSCAN), a nonparametric clustering algorithm, which is more compatible with
recognizing clusters with contrasting sizes [24]. Upon initial application of DBSCAN with
grid-tuning for optimal parameter setting (found to be, using MATLAB terminology, epsilon
= 3, minimum points = 15), it was evident the DBSCAN algorithm was good at recognizing
stair clusters when the stair data was successfully clustered in the tSNE dimensionality
reduction process. However, because the upstairs data have not been successfully clustered,
the DBSCAN algorithm has no ability to recognize the upstairs sample points as a separate
cluster. The immediate disadvantage of the DBSCAN approach is that because the number
of clusters cannot be predetermined, the DBSCAN algorithm tends to form additional
“false” clusters that simply contain more ground-walking data. To mitigate this problem, a
novel algorithm is proposed and described next.

By reducing the classification problem to a binary outcome (a cluster is “walk”, or a
cluster is “stairs”), an effective cluster recognition algorithm is developed without the need
of using supervised training data. Based on observations of the true labels in the cluster
models, the following hypothesis was made:

I. The largest cluster identified by DBSCAN is always a walking cluster.

It can be observed in all DBSCAN-related figures in this paper that the largest
DBSCAN-identified cluster contains an overwhelming majority of “walk” data points
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when compared with the ground truth label plots (see Figures 1 and 2). Realistically, there
is no practical free-living scenario in which a participant will have more than 20% of their
total data based on the stair movement. Thus, the only scenario in which a stair cluster
could be the largest DBSCAN cluster is if the volume of input data is too sparse, resulting
in many incidental DBSCAN clusters being created. The outlying points detected by the
DBSCAN algorithm can also be eliminated from consideration, either as a walking cluster
or a stair cluster. If, after applying the DBSCAN algorithm, only one cluster has been
identified (excluding errors), the algorithm throws an error.
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Usually, there may remain a number of other clusters formed by DBSCAN, thus the
objective is then to determine which of these DBSCAN-detected clusters is the “walking”
cluster. If one other DBSCAN cluster has been identified (excluding the primary walk
cluster and outlier points), this cluster is automatically assigned to the stair cluster by the
simple process of elimination. If there are two other (or more) clusters, then the algorithm
must identify the DBSCAN cluster with the highest probability of being a stair cluster. The
assumption of the algorithm is that only one of these clusters is the stair cluster. All other
DBSCAN-detected clusters are assumed to be other “walk” clusters, not recognized as part
of the primary walking cluster.

It can be deduced that the DBSCAN-detected cluster Ci that is most likely to be the
stair cluster Cstairs is the one that is least likely to be a walking cluster Cwalk since:

P(Ci = Cstairs) = 1− P(Ci = Cwalk) (1)

Through further observation of the stair clusters in the tSNE models using ground
truth labels, two additional hypotheses were formed:

II. Stair clusters tend to be the clusters with the highest Euclidean distance from the walking
cluster.

III. Stair clusters tend to have more compact clusters than walking clusters.

To simultaneously validate hypothesis II and develop Equation (1), the distances
of clusters can be directly correlated with probabilities; the probability of a DBSCAN-
detected cluster being the stair cluster can be calculated as the product of the distance of the
cluster’s centroid from the main walking cluster. To calculate this factor, a Gaussian Mixture
Model (GMM) with one component is fitted to the main walking cluster, thereby forming
a Gaussian distribution around its centroid. The resulting negative log-likelihood of the
GMM given the centroid data of each DBSCAN-detected cluster (excluding the already
recognized main walking cluster) can then be calculated using posterior probabilities. The
negative log-likelihood is a cost function that describes how well a data point or set of data
points fit into a machine learning model. The lower the negative log-likelihood, the greater
the fit. Thus, clusters with centroids that are located far from the main walking cluster will
have high negative log-likelihoods. This will make the data point a poor fit for the walking
cluster, thereby being more likely to be the stair cluster.
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To validate hypothesis III, the compactness of a DBSCAN-identified cluster is esti-
mated as the median of the pairwise distances between all observations within the cluster.
The median was chosen as the summative property to mitigate the effect of any outlier
observations in the region.

Using these two hypotheses, an equation for stair cluster probability was composed as
the probability of a DBSCAN-detected cluster, Ci being the stair cluster Cstarirs as follows:

P(Ci = Cstrairs) = 1− 1
`(Kci ∈ Cw)× ϕj(Ci)

(i = 1 . . . I) (2)

Here, `(Kci ∈ Cw) represents the negative log-likelihood that a centroid K of cluster
Ci belongs to the walking cluster Cw. ϕj(Ci)

represents a ranking factor of the cluster’s
compactness. For a clustering model with several potential stair clusters, the cluster with
the least compactness is given a value of one. The cluster with the next highest level
of compactness is given a value of one plus a scalable reward factor, repeating for all
remaining clusters up to the most compact cluster. Once the two main factors have been
calculated, the probability of each cluster Ci for all i clusters is calculated, and the cluster
with the highest probability is assigned as the stair cluster. All other remaining clusters are
reassigned as walking clusters.

Given the small number of participants, the number of clusters available for analysis
was fairly small. Fortunately, the randomness of the tSNE model-building process can be
taken advantage of to help combat the small dataset sizes: by setting the random number
generator to a fixed value, the resulting tSNE model is consistently the same when a script
is called multiple times, and hence reproducible. The RNG seed was varied from 1 to
5, and the resulting cluster compactness and negative log-likelihoods from each tSNE
model were acquired. The statistical analyses of hypotheses II and III are discussed in the
Results Section.

2.5. Algorithm Summary

In summary, the proposed algorithm steps are as follows. First, the data are collected
using ActivPAL and band-pass filtered as described in Section 2.1. The continuous sequence
is then segmented into 2 s windows that are used to generate 243 features as in [16]. Each
243-dimensional vector is then projected into 2 dimensions using t-SNE (see Section 2.3).
Finally, based on our heuristic analysis of the extracted 2-dimensional data, we apply
DBSCAN clustering with the following modifications:

1. If, after applying the DBSCAN algorithm and removing outliners, only one cluster
has been identified, the algorithm declares an error.

2. If two clusters are identified, based on hypothesis I, the larger cluster will be labeled
as the Walking cluster and the remaining cluster will be the Stair cluster.

3. If multiple clusters are identified, based on hypotheses II and III, Equation (2) is
used to estimate the stair cluster probability such that only the cluster with the
highest probability is labeled as the Stair cluster. All other clusters are labeled as
Walking clusters.

2.6. Algorithm Validation

For each subject, the clustering algorithm is evaluated based on two factors:

A. Stair cluster purity
B. Algorithm-corrected normalized mutual information (NMI).

Stair cluster purity is acquired by reading the labels of the data points of the cluster
that has been assigned as the stair cluster, and subsequently calculating the proportion of
the number of labels that are either “upstairs” or “downstairs”. Once clusters that do not
have the highest stair cluster probability are reassigned to have the same cluster identity
as the main walking cluster, the resulting algorithm-corrected tSNE model will only have
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2 clusters. This model can then be compared with the ground truth labels and assessed via
NMI. The process is run for five unique tSNE model iterations of each subject.

3. Results
3.1. Validation of Hypotheses

From 5 iterations of tSNE models for each subject, a total of 55 stair clusters and
45 extraneous walking clusters were acquired. From each cluster, the compactness and
negative log-likelihood of fitting to the main walking cluster of the respective subject
were calculated.

The first stage in statistical analysis was a check for normal distribution, which was
achieved through the Shapiro–Wilk test [25]. The p-value was found to be less than 0.05 for
extraneous walk clusters for both negative log-likelihood and compactness properties
(p = 9.46 × 10−4 and p = 0.003, respectively). The same was true for stair clusters for both
properties (p = 1.7 × 10−4 and p = 1.22 × 10−7); thus, it did not follow normal distribution.
As sample distributions were not normal, the Wilcoxon rank-sum test was applied [26].
The significance level was set to 95% (α = 0.05). The null hypothesis for the negative
log-likelihood property could be rejected (p = 0.023); however, the compactness property
could not (p = 0.387). This would imply that the distance of the cluster centroid from the
main walking cluster is the only significant factor in whether the cluster is a stair cluster
or an extraneous walk cluster. It was not desirable to use Equation (2) as univariate, and
considering that the compactness p-value is significant when a t-test was applied (p = 0.026),
a compromise was made by making cluster compactness a very weak weighting factor: each
cluster in successive order of compactness had an additional rank factor (ϕj(Ci)

) of 0.05.

3.2. Clustering Algorithm Results

Table 8 presents the purity of stair data counts found within the detected stair clusters.
Subject H1 was discarded from analysis due to two of their recordings being carried out
with improper wear of the camera, thus having insufficient data for the clustering algorithm.
When the stair cluster was correctly recognized, the purity was relatively consistent. There
was a clear failure to recognize stair clusters in H3 and A4. The Supplementary Materials
Section contains exemplary comparisons of the ground truth activity labels for each subject
and comparisons with the algorithm-detected cluster labels. The NMI collected after the
algorithm had recognized the stair cluster was compared with the initial NMI obtained
through the singular application of DBSCAN in Table 9. While the NMI was still low
for most subjects after the application of the algorithm, the algorithm-corrected NMI was
found to be greater or equal to the original NMI in all but two of the subjects. To reinforce
the positivity of the findings from the algorithm, an additional right-tailed pairwise t-test
was carried out to determine, on average across all subjects (excluding H1), whether the
algorithm-corrected NMI was greater than the initial NMI after only performing DBSCAN,
with the null hypothesis stating that there was no significant difference. The null hypoth-
esis was rejected (p = 0.0031), indicating that the proposed algorithm made a systematic
improvement in NMI only using DBSCAN.

Table 8. Mean stair cluster purity percentage for each subject and each model.

Subject H2 H3 H4 H5 H6 H7 H8 A1 A2 A3 A4

Mean 38.95 0 85.11 65.99 79.26 72.38 26.45 70.12 86.82 71.25 9.41
Std. 38.15 0 0 33.1 39.66 7.96 33.84 0.78 5.59 16.36 18.82
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Table 9. NMI of cluster model after application of an algorithm compared with the initial application
of only DBSCAN.

Subject H2 H3 H4 H5 H6 H7 H8 A1 A2 A3 A4

Initial NMI 0.279 0.01 0.266 0.419 0.377 0.226 0.149 0.538 0.595 0.168 0.023
Std. 0.176 0.002 0.022 0.091 0.125 0.026 0.046 0.07 0.057 0.038 0.044

Final NMI 0.374 0.01 0.367 0.433 0.377 0.216 0.164 0.538 0.608 0.155 0.027
Std. 0.133 0.001 0.048 0.086 0.125 0.017 0.078 0.046 0.064 0.052 0.052

4. Discussion
4.1. Clinical Significance

Overall, the experience of attempting to provide a clinically beneficial analysis of free-
living activity data of healthy and lower-limb individuals with an unsupervised approach
proved to be challenging. Recalling Tables 3–5, it was found that when the population
model contained multiple participants, the nonlinear dimensionality reduction techniques
formed clusters based on the individual rather than the activity. This phenomenon was
especially pronounced in the ILLA population model (Figure 1b). Within the ILLA sample
group, there was one bilateral amputee and three unilateral transtibial amputees. Account-
ing just for the three transtibial amputees, there was some diversity in regard to their age
and prosthetic experience, both of which can have an impact on gait patterns [27,28]. Given
the very small sample size, it is difficult to comment on how the modeling would change if
more participants could have been recruited. Furthermore, there was an insufficient num-
ber of participants to compare relative findings between healthy individuals and those with
ILLA. Regardless, the findings of this investigation imply that an unsupervised approach
is only viable by analyzing data from the individual, and not from a general population.

Furthermore, when the true activity labels were investigated, it was found that dis-
cernible clustering only existed between stair activity and walking activity, with walking
activity encompassing level walking, uphill, and downhill movement. While a few sub-
jects showed an appreciable linear gradient-like distribution of flat, uphill, and downhill
movement in the main walking cluster, most subjects did not display this behavior. By
observing Figure 3 for subject H2, the downhill labels are distally the furthest away from
upstairs and downstairs activities, flat labels are slightly closer, and uphill labels are the
closest. These differences may arise because of different natural walking speeds in level
walking, hills, and stairs. Unfortunately, it was not possible to validate the walking speed
in this study, but gait kinematics literature appears to support this notion. From Sun
et al. [29], it was observed that in young adults, walking speed generally tends to increase
as the angle of slope decreases. Likewise, it decreases, though to a lesser extent, when
traversing uphill. Fujiyama et al. [30] demonstrated that walking speeds on flat surfaces
are significantly faster than walking speeds when ascending or descending stairs, even
when stairs were being descended quickly, and this was true for both the young adult and
elderly population. In ILLA populations, significant differences in preferred walking speed
were observed by Rodrigues et al. [31] in transtibial and transfemoral amputees for level
walking, uphill, and downhill movement, though interestingly no significant differences
in speed were observed in the healthy control group. Finally, Wolf et al. [32] illustrated
significant differences in walking speed between ascending ramps and ascending stairs,
and descending ramps and descending stairs in ILLAs. These sources indicate that, on a
fundamental level, there will be some changes in walking speed between the five main
types of ambulation. Therefore, this investigation hypothesizes that successful clustering
of stair and hill movement is largely dependable on appreciable changes in walking speed.
As the walking speed changes, features relating to the walking speed such as the energy of
acceleration and frequency-related features will have significantly different values, which
the tSNE algorithm is able to recognize and cluster together in low dimensions. In stair
movement, this change in walking speed should be much more appreciable as the subject
has to significantly decrease their walking speed to traverse the stairs in a safe manner.



Sensors 2023, 23, 8164 15 of 18

Whereas in hill movement, if the angle of the slope is not steep, the subject does not need
to make significant alterations to their walking speed, thereby resulting in greater inter-
spersion of the hill and level walking data in the tSNE models. Naturally, this theory will
require further testing with validation of the walking speed.
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Despite being only able to distinguish two kinds of activities (“walking” and “stairs”),
the implications of the investigation could be highly beneficial when applied in the early
stages of rehabilitation of an ILLA. A patient, who may have recently acquired a prosthetic
fitting for the first time or changed to a new prosthetic component may have trepidations
about traversing stairs. Providing a system in which stair traversal activity can be recog-
nized without the need for training or annotating data could be useful for a healthcare
professional who wants to evaluate the progress of their clients. Regardless of the findings
from the investigation, further experimentation on an ILLA population, particularly those
in the early stages of rehabilitation, is warranted to fully comment on the capability of the
unsupervised learning approach.

4.2. Comparison with Relevant Literature

Studies that are most comparative with this investigation are those that have attempted
to differentiate stair and walking activities using only wearable sensors through an unsu-
pervised method for a healthy population. Hunyh [14] was able to distinguish walking and
stair movements (upstairs and downstairs separately) with high precision and recall values
for each activity. Their sensory setup, however, required a cumbersome and extensive
sensory network, with multiple sensors needing to be placed in different locations around
the body to acquire good performances. Trablesi et al. [8] used multi-hidden Markov
model regression to distinguish walking and ascending stairs with high precision and
recall values. Like Hunyh’s research [14], the caveat is that data collection required a
multi-sensor array worn across the whole body. Both studies also had significantly smaller
numbers of participants than were included in this research, limiting their generalizability
to a larger and more diverse population. These studies also appear to have more favorable
results by using traditionally supervised-based validation metrics (recognition accuracy)
over external clustering validation metrics, such as the NMI used in this study. Given
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the large class imbalance between stair and walking movement, the existence of outliers
within the minority (stair) cluster will proportionately magnify the reduction in mutual
information (i.e., the shared labels) between calculated and true cluster identities, thus the
cluster quality is higher than the NMI appears to indicate. Finally, both Trablesi et al. [8]
and Hunyh [14] studies were carried out in laboratory conditions: this means there was no
presence of hill movement (particularly uphill movement), which can potentially muddy
the cluster separability between strictly flat walking and stair movement. The literature
that has attempted to perform clustering while including ramp activities is very rare, likely
due to the difficulty of the task. The only identified study to have attempted to do this with
wearable sensors is the work of Kafle and Dou [33], who used EMG sensors and Hierar-
chical clustering to distinguish level walking, ramps, and stairs. Their highest clustering
accuracy achieved was 39.1%, giving a similar performance to this investigation.

4.3. Limitations and Future Work

The proposed algorithm can only detect the presence of a stair cluster, and not whether
that movement is upstairs or downstairs. In a clinical context, it could be argued that a
healthcare professional may only be concerned whether their client is traversing stairs at
all, and the direction of movement may be inconsequential. Nonetheless, future iterations
of the algorithm would still benefit from recognizing the direction of stair movement. One
key factor that strictly limits the generalisability of these findings was that all participants,
including ILLAs, used a step-over-step approach to stair ambulation. In a clinical pop-
ulation, ILLAs who have limited prosthetic experience or transfemoral amputation are
more likely to use a step-to ambulation approach to improve their stability in gait ampu-
tation [34]. Theoretically, this could improve the cluster models as the step-to approach
is more different in gait properties than level walking compared with the step-over-step
approach but would nonetheless require further testing and validation. Ideally, we would
have preferred to carry out a validation study utilizing a stationary motion capture system
within a meticulously controlled outdoor setting. Regrettably, this became unfeasible due
to the constraints imposed by the pandemic situation.

5. Conclusions

This investigation has covered the exploration of an unsupervised clustering approach
to distinguish walking activities for healthy and ILLA populations in free-living conditions.
After studying the clustering behavior and compromising on label resolution, a novel
algorithm based on combining DBSCAN cluster models with a probability equation was
created to identify the presence of stair movement, which could be clinically beneficial for
monitoring the progress of ILLAs in the early stages of rehabilitation. The significance of the
cluster analysis findings lies in its ability to discern the surface on which a prosthetic user
is walking solely through the analysis of activity data in real-world scenarios, eliminating
the need for costly and intricate motion analysis equipment. Accurate monitoring and
evaluation of the real-world activity of individuals with lower limb amputation can be
complex. Prosthetic users can often over- or under-report their true activity. The ability to
evaluate their activity and the environmental barriers they encounter is a critical component
of making an accurate prescription.

Future work should provide validation of the subject’s walking speed as a potential
confounding factor on cluster model quality and include volunteers where the step-to
approach is their preferred method for stair ambulation. The final aim is to create an initial
“health” system for prosthetics that can prevent significant complications for both the user
and the healthcare system.
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