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Abstract: In-cylinder pressure is a key parameter for assessing marine engines health; therefore,
its measurement or prediction is paramount for these engines’ diagnosis. Thermodynamic models
are typically employed for predicting the in-cylinder pressure, which, however, face challenges
pertinent to their calibration and computational time requirements. Recent advances in the field
of machine learning have leveraged the development of data-driven models. This study aims to
compare two approaches for input features and six regression techniques to select the most effective
combination for developing data-driven models to predict the in-cylinder pressure of marine four-
stroke engines. Two approaches with different input and output features are initially compared. The
first employs regression to directly predict the in-cylinder pressure signal, whereas the second predicts
the harmonics coefficients by regression and subsequently estimates the in-cylinder pressure by using
a Fourier series function. Typical regression techniques, including linear, elastic, and polynomial
regression, support vector machines (SVM), decision trees (DT), and artificial neural networks (ANN),
are employed to develop data-driven models based on the second approach. The required datasets for
training and testing are derived by using a physical digital twin for the investigated marine engine,
which is calibrated against the shop trials and acquired shipboard measurements. The accuracy of
the data-driven models are estimated based on the root mean square error considering the testing
datasets. For the data-driven model based on the second approach and the ANN regression, a
sensitivity study is carried out considering the training datasets and the harmonics number to derive
recommendations for these parameters’ values. The results demonstrate that the second approach
provides higher accuracy, whereas the ANN regression is the most effective technique for developing
data-driven models to estimate the in-cylinder pressure, as the exhibited root mean square error is
retained within ±0.2 bar for the ANN trained with 20 samples. This study supports the development
and use of data-driven models for marine engines health diagnosis.

Keywords: machine learning; data-driven models; regression techniques, marine engine; in-cylinder
pressure

1. Introduction

Maritime transportation is responsible for approximately 80% of global freight move-
ment, and has a significant impact on the environment and the world economy. Several
technologies and strategies have been developed to maintain ship machinery and marine
engines, with the support of first-principle digital twins [1]. Digital twins are expected to
be crucial for real-time monitoring, predictive maintenance, and optimal marine machinery
performance, enhancing safety, and more importantly, assessing the health of the ship
machinery systems. In-cylinder pressure is a key parameter that conveys information for
characterising marine engine operation, and hence, it has extensively been employed for
fault diagnosis. Currently, digital twins are based on thermodynamic and fluid dynamic
principles and pertinent conservation laws, and they have been effective in predicting the
engine performance and emissions parameters. The use of digital twins is also common in
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several industrial sectors, including the automotive, power, and energy sectors. However,
they are computationally expensive, which renders their implementation on ships challeng-
ing [2]. As a result, the applications of traditional first-principle-based digital twins in the
shipping sector are limited.

Future digital twins will be required to predict several engine performance and emis-
sion parameters (in-cylinder pressure amongst them); however, the available computational
power (especially onboard ships) is expected to be insufficient to facilitate the use of physical
models [3]. Data-driven models are developed using datasets to capture the mathemati-
cal relations between the input and output parameters. Data-driven models require less
computational power compared to physical (first-principle) DTs, and therefore, they can be
used in ship applications’ edge computing. Advances in the field of machine learning and
artificial intelligence have leveraged several regression and classification techniques, which
are effective for developing data-driven models.

Regression techniques model the relationship between one or more independent
variables (predictors) and a dependent variable (target) in order to predict or estimate the
value of the target variable based on the values of the predictor variables. Commonly used
regression techniques include linear regression, polynomial regression, support vector
regression (SVR), decision trees, elastic regressions, and artificial neural networks (ANN).
Several applications of these techniques are reported in the pertinent literature.

The performance and emissions parameters of several engine types were predicted
using linear regression [4] and SVR [5]. A review of data-driven models for ship perfor-
mance was conducted by Alexiou et al. [6]. Random forest regression was used to predict
the combustion profile parameters in [7], whereas decision trees were proven effective for
energy demand modelling [8]. Applications of ANN in internal combustion engines were
reported by [9–11]. ANNs and non-linear autoregressive exogenous input (NARX-ANN)
was proved effective for the prediction of marine diesel engines’ performance parameters
in [12,13]. However, previous publications mostly focused on other engine performance
parameters (time variation of their cycle-mean values) and not on their in-cycle variations.
Hence, their capability for predicting high-resolution instantaneous signals for crucial
parameters, such as in-cylinder pressure, needs to be investigated.

Johnsson [14] studied several networks based on complex radial basis functions (RBF)
for estimating the in-cylinder pressure profiles from a six-cylinder ethanol-fuelled engine.
Saraswati and Chand [15] tested recurrent neural networks (RNNs) to estimate the in-
cylinder pressure for one engine operating point. Solmaz et al. [16] demonstrated that the
ANN approach is more effective compared to fuzzy logic to predict the in-cylinder pressure
and the indicated mean effective pressure. However, these techniques are complex, cover
limited operating points, and require additional datasets, which renders them less practical
for implementation to marine engines. Although typical regression techniques (mentioned
in the preceding paragraphs) exhibit the potential to estimate the in-cylinder pressure
following appropriate customisation, challenges pertinent to their structure, scalability,
and complexity must be addressed.

This study aims to comparatively assess data-driven models based on typical machine
learning regression techniques, specifically linear, elastic, and polynomial regression, sup-
port vector machines (SVM), decision trees (DT), and artificial Neural Networks (ANN),
for predicting the in-cylinder pressure of a marine four-stroke engine. The complete
operating envelope and healthy conditions of this engine are considered in this study.
Initially, feature engineering analysis is carried out to determine the data-driven mod-
els’ input and output requirements using two approaches, out of which one is selected.
Subsequently, the data-driven models based on six regression techniques are developed,
trained, and tested. The root mean square errors of the predicted pressure signals for nine
cylinders along with the mean effective pressure and maximum pressure for each cylinder
are compared to identify the most effective regression technique. Finally, a sensitivity
study is performed to conclude on the recommended values of the testing datasets’ ratio
and harmonics number. The required datasets are generated by using a thermodynamic



Machines 2023, 11, 926 3 of 19

digital twin for the investigated marine four-stroke engine, which was validated against
shop trials’ measured parameters and experimentally acquired in-cylinder pressure in five
operating points. The ensemble techniques (including AdaBoost and random forest) are
not considered herein, as this study focuses on only regression techniques.

The novelty of this study stems from addressing the preceding challenges using
explainable data-driven models. The most effective techniques are identified, whereas
recommendations for training are provided. Insights for the development and use of the
most accurate and least computationally expensive data-driven models for in-cylinder
pressure prediction are also generated.

This study contributions are (a) the comparative assessment of two approaches (predic-
tion of in-cylinder pressure by regression; prediction of harmonics coefficient by regression
and in-cylinder pressure reconstruction using Fourier series function); (b) the comparative
analysis of the data-driven models based on six regression techniques considering their
accuracy characterised by the root mean square error (RMSE) on estimating the in-cylinder
pressure and other performance parameters; (c) the bench marking of the data-driven mod-
els based on ANN regression (to predict harmonics coefficients) and in-cylinder pressure
reconstruction considering the test-to-train datasets’ ratio and harmonics number.

2. Methodology

The methodological approach is illustrated in the flowchart of Figure 1 and consists of
the following four phases, each one including several steps:

• Phase 1 generates the required datasets using a first-principle digital twin for the
training and testing (validation) of the data-driven models. It additionally focuses
on these datasets’ pre-processing, which includes standardisation and splitting into
training and testing datasets.

• Phase 2 includes the comparison of two approaches and their input features. The first
approach considers the engine speed, power, and crank angle as input to directly
predict the in-cylinder pressure for all cylinders via ANN regression. The second
approach considers the engine speed and power as input to predict the harmonics
coefficients via ANN regression, and subsequently uses a Fourier series function to
reconstruct the in-cylinder pressure for all cylinders.

• Phase 3 focuses on the comparative assessment of the data-driven models based
on the second approach and six regression techniques, namely, linear regression,
elastic regression, polynomial regression, support vector regression, decision tree
regression, and ANN regression. The training datasets (from Phase 1) are further
split by considering the ratio γ (explained in Section 2.3.1) and the derived datasets
are employed to train the data-driven models. A parametric study is performed
considering several values of γ (0.9, 0.95, 0.995) to comparatively assess the data-
driven models’ performance on predicting the in-cylinder pressure with minimum
amount of training datasets. The test datasets (Phase 1) are employed to assess the
data-driven models’ accuracy considering the root mean square error (RMSE) on the
in-cylinder pressure prediction, as well as errors on predicting the mean effective
pressure (MEP) and maximum in-cylinder pressure. Recommendations on the most
effective regression technique are provided.

• Phase 4 includes the sensitivity study of the data-driven model based on the sec-
ond approach and the ANN regression, considering different training datasets and
harmonics numbers, to derive recommendations for these parameters’ values.
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Figure 1. Methodology flowchart.

2.1. Data Generation and Pre-Processing

Initially, a thermodynamic digital twin (based on thermodynamic and fluid dynamics
principles) of the zero-dimensional (0D) type is setup in MATLAB. The investigated marine
engine is a medium-speed, nine-cylinder, four-stroke, turbocharged engine from Wärtsilä.
The main particulars of this engine are presented in Table 1.

Table 1. Reference marine engine technical specifications.

Maximum Continuous Rating (MCR) power 9450 kW
MCR speed 500 rpm

Cylinders No. 9
Cylinder Bore 460 mm
Turbocharger ABB TPL 77-A30

This digital twin was calibrated based on the framework developed by Tsitsilonis et al. [17],
which involves the determination of the combustion and friction mean effective pressure
parameters for the reference operating point. Subsequently, the calibration determines
the values of the Woschni–Anisits combustion model constants by considering all the
remaining shop tests’ operating points.

The thermodynamic digital twin results are validated against shop trials’ measured
parameters. Table 2 lists the obtained percentage errors for the engine brake’s specific fuel
consumption and maximum in-cylinder pressure. The detailed discussion of the validation
and verification process at healthy and limited faulty conditions is provided in [17–19].
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Table 2. Digital twin validation results at healthy conditions; adapted from [18].

Operating Point BSFC (% error) pmax (% error)

4.725 MW @ 500 RPM 2.7 2.5
7.088 MW @ 500 RPM 1.2 3.0
8.033 MW @ 500 RPM –0.1 0.0
9.450 MW @ 500 RPM –0.5 –0.4

1.0395 MW @ 500 RPM –1.2 –0.1
6.143 MW @ 440 RPM 1.04 1.2
4.725 MW @ 400 RPM 0.1 0.1

The validated digital twin is employed to generate datasets (in-cylinder pressure
profiles) considering the complete engine operating envelope. Around 5000 operating
points spread across the whole engine operating envelope (ranging from 350 to 500 rpm)
are simulated.

2.1.1. Feature Standardisation

Feature standardisation is a data pre-processing technique used in machine learning
to ensure all features have a consistent scale. By subtracting the mean and dividing by the
standard deviation of each feature, they are transformed into a standard normal distribution
(mean of zero and variance of one). This prevents certain features from dominating
others during data-driven model training. Standardisation is particularly important for
algorithms sensitive to feature magnitudes, including support vector machines and k-
nearest neighbours, ensuring fair comparisons and enhancing the model accuracy.

All numerical attributes of the datasets are standardised by removing the mean and
scaling to the unit variance. For a numerical attribute x, the standardised attribute x′ is
derived by using the following equation:

x′ =
x− µ

σ
(1)

where µ is the mean value the attribute, and σ is the standard deviation. The transformed
data (from Section 2.2) includes 909 parameters (101 per cylinder) .

2.1.2. Data Splitting

The standardised datasets are split into training and testing datasets. Training datasets
are used for training the data-driven models during the training phase, as described in the
next section. The testing datasets are different from the training datasets, and are employed
to test (and validate) the data-driven models.

The test data ratio (βTest = 0.15) is used to separate the test datasets, which is defined
by the following equation:

βTest =
nTest

nTrain + nTest
(2)

It must be noted that the distribution of testing datasets should be similar to the training
datasets covering the complete engine operating envelope. Figure 2 presents the distribution
of training and testing datasets for the considered marine engine operating envelope.
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(a) Training dataset (b) Test data-set

Figure 2. Distribution of operating points over the operating envelope of marine engine for training
(a) and test (b) datasets selected by the splitting ratio βTest/Train.

2.2. Feature Selection Approaches

Feature engineering involves the selection and transformation of input parameters
for developing a machine learning regression model [20]. The commonly used wrapper
approach [21] is employed in this case to identify the input parameters to develop a data-
driven model for predicting in-cylinder pressure. It encompasses application of a suitable
regression technique (ANN is used herein) with all the available input options.

This study considers the in-cylinder pressure prediction for healthy conditions. There-
fore, the engine speed and power are considered independent parameters to represent
the engine operating point. The fuel consumption (or injected fuel amount) becomes a
dependent parameter, and hence is not employed as an input parameter.

However, since the output parameter (in-cylinder pressure) is a function of the crank
angle (ranging 0–720 degrees for four-stroke engines), two approaches for developing
data-driven models are considered. The first approach considers the estimation of the
in-cylinder pressure with ANN regression, using engine speed, power, and crank angle as
input for each cylinder. This approach can be represented using the following equation:

p(α) = f(Ne, Pe, α)ncyl (3)

where Ne, Pe, ncyl are the engine speed, power and cylinder number, respectively, whereas
α denotes the crank angle.

The second approach considers only the engine speed and power as input to derive
the harmonics (Fourier series) coefficients via ANN regression. Subsequently, a block
with a Fourier series function is employed to calculate the in-cylinder pressure by the
following equation:

p(α) = A0 +
N

∑
n=1

Ancos
(

2πnα

T

)
+

N

∑
n=1

Bnsin
(

2πnα

T

)
(4)

where coefficient A0 denotes the average value of the in-cylinder pressure within the engine
cycle; An and Bn coefficients represent the amplitudes of the cosine and sine functions
of the nth harmonic order; n denotes the individual coefficient number from 1 to N; N
represents the total number of harmonics; T denotes the period of the periodic function
(720 ◦CA).
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The reference Fourier coefficients corresponding to the derived in-cylinder pressure
datasets (Phase 1), which are termed C1, C2...C2N+1 henceforth, are also calculated in Phase 1
by using Fourier analysis [22], and mapped as functions of engine speed and power for
each cylinder, i.e.,

(C1, C2...C2N+1)ncyl = f(Ne, Pe)ncyl (5)

The number of harmonic orders required to accurately represent the in-cylinder pres-
sure (with minimal error) depends on the pressure sampling rate (typically 1 ◦CA sampling
requires 720 harmonic orders for four-stroke engines). However, for reducing dimensions
for machine learning problems, fewer harmonic orders should be selected without losing
meaningful information.

Therefore, 50 harmonic orders (N = 50) corresponding to 101 Fourier coefficients
for each cylinder are selected herein for comparing the two approaches. This harmonics
number is also employed for comparatively assessing the regression techniques described
in Section 2.3.

A basic artificial neural network (ANN) for estimating the output parameters for the
engine nine cylinders is employed for each approach. The details of the developed ANNs
based on the first modelling approach is provided in Table 3. The input layer consists of
three input parameters, specifically engine speed, engine power, and crank angle (α). The
output layer has only one parameter for each cylinder, which is the in-cylinder pressure at a
given crank angle (α). By iterating the crank angle values in the range 1–720◦, the in-cylinder
pressure within the complete engine cycle (for each engine cylinder) is calculated.

The second approach employs only two inputs (engine speed, and power) and es-
timates in total 101 outputs for each cylinder (909 for the engine nine cylinders), which
include AN , BN and A0 corresponding to 50 harmonic orders (N = 50). The in-cylinder
pressure for each cylinder is then calculated in the pressure reconstruction block (Figure 1),
by employing Equation (4) that uses these coefficients as input. The details of this approach
ANN structure are provided in Table 4. The ’None’ in the model summary represents the
variable batch size, as the employed software package does not consider fixed batch size
by default.

Table 3. ANN regression characteristics—first approach.

Layer (Type) Output Shape Parameters

Input layer (None, 4) 0
Hidden layer (dense) (None, 10) 50
Hidden layer (dense) (None, 10) 110
Output layer (None, 1) 11

Table 4. ANN regression characteristics—second approach.

Layer (Type) Output Shape Parameters

Input layer (None, 3) 0
Hidden layer (dense) (None, 10) 30
Hidden layer (dense) (None, 10) 110
Output layer (None, 909) 999

The training of the two ANNs is carried out by using the training datasets selected
as described in Section 2.1.2. The Adam optimiser [23] is used to reduce the root mean
square error (RMSE) between the reference values y and the predicted values ŷ by using
the backpropagation of the gradients over the hyperparameters determined in previous
steps of the optimisation process. The Adam optimiser is able to adapt to new learning
rates based on the number of steps required to reach the global minimum for RMSE.

The comparative assessment of the data-driven models based on these two approaches
is presented in the results section, and demonstrates that the second approach is superior.
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2.3. Data-Driven Models Based on Regression

This section focuses on the development and training of the data-driven models based
on the second approach reported in Section 2.2 and six regression techniques. A parametric
study is performed by using different training datasets for estimating these regression
techniques’ accuracy.

2.3.1. Parametric Study

The available training datasets (4250 samples that were split from the generated
datasets as reported in Section 2.1.2) are used to train the data-driven models. Further
splitting of these datasets is carried out to select training datasets, by employing the split
ratio (γ) calculated according to:

γ = 1− nTrain

nTrain total
(6)

Only selected datasets from the total training datasets are used (by varying γ) for
training, allowing for the data-driven models’ accuracy assessment. This is achieved by
using discrete values of γ (γ = 0 implies that all the training datasets are used for training).
Table 5 lists the γ values used for this parametric study. The data-driven models with the
six regression techniques are trained using the training datasets corresponding to each γ
value. The performance results of this parametric study are presented in the results section.

Table 5. Parametric study of training datasets’ split ratio (γ) to select training datasets for the
developed data-driven models.

Split Ratio (γ) Training Datasets Percentage Training Datasets Number

0.9 10% 425
0.95 5% 212
0.995 0.5% 20

The following six regression techniques are employed to develop the data-driven
models (second approach): linear regression, elastic regression, polynomial regression,
support vector regression, decision tree regression, and artificial neural networks (ANN).

2.3.2. Multiple Linear Regression (LR)

Linear regression is one of the simplest machine learning techniques, which considers
a linear combination of input parameters along with a bias (θ0) to to map the output [24]. To
calculate the Fourier coefficients as a function of the engine speed and power, the following
equation is employed:

Ccyl = θ0,cyl + θ1,cyl Ne + θ2,cyl Pe (7)

where Ccyl = [A0, A1, ...AN , B1, ...BN ]cyl and θ1,cyl , θ2,cylandθ3,cyl are hyperparameters for
each cylinder.

The loss function to minimise the prediction error is calculated by the following
equation:

L =
n

∑
i=1

(p(α)− p̂(α))2 (8)

where p denotes the reference in-cylinder pressure, and p̂ denotes the in-cylinder pressure
estimated from the data-driven model that uses the linear regression to predict the Fourier
coefficients and the pressure reconstruction block (according to Equation (4)).

2.3.3. Elastic Regression (ER)

Elastic regression is a statistical modelling technique similar to linear regression that
combines both L1 (Lasso) and L2 (Ridge) regularisation techniques to enhance the linear
regression model’s performance and address potential issues like multicollinearity and
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overfitting [25]. It introduces a penalty term to the loss function, allowing for feature
selection and reducing the impact of irrelevant features. The employed equation is similar
to the linear regression on (Equation (7)).

However, the following equation is employed to calculate the loss function:

L =
1

2n

n

∑
i=1

(p(α)− p̂(α))2 + λ1

2

∑
j=1
|θj|+ λ2

2

∑
j=1

(θj)
2 (9)

where n is the number of training datasets; λ1 and λ2 denote the penalty terms for the L1
and L2 regularisations, respectively.

2.3.4. Polynomial Regression (PR)

Polynomial regression (PR) is a form of linear regression known as a special case of
multiple linear regression. It maps the relationship between the input and output parame-
ters as an nth degree polynomial [24]. Polynomial regression is sensitive to outliers, which
greatly affect its accuracy. This study considers regression of second degree, employing the
following equation for the estimation of the Fourier coefficients:

Ccyl = θ0 + θ1,cyl Ne + θ2,cyl Pe + θ3,cyl(Ne)
2 + θ3,cyl(Pe)

2 + θ4,cyl(Ne, Pe) (10)

where Ccyl = [A0, A1, ...AN , B1, ...BN ]cyl and θ1,cyl ,θ2,cyl , θ3,cyl and θ4,cyl are hyperparameters
for each cylinder.

2.3.5. Support Vector Regression (SVR)

Support vector regression (SVR) is a non-linear regression technique based on support
vector machines (SVM) that approximates the provided dataset with a specific error mar-
gin [26]. It is used to identify a hyperplane that fits the training data whilst minimising error
and maximising the distance from the hyperplane to support vectors (closest data points).
SVR maps the input parameters to a higher-dimensional space using a kernel function.

SVR advantages include (a) versatility in handling linear and non-linear regression
using different kernels (linear, polynomial, RBF, and sigmoid); (b) robustness with few
samples or outlier data; (c) control over generalisation by using the margin parameter
preventing overfitting; (d) effectiveness in high-dimensional spaces, rendering it suitable
for datasets with high dimensions [27]. SVR disadvantages include (a) high computational
effort for large datasets due to the use of quadratic optimisation; (b) challenges in selecting
kernel and parameters; (c) lack of transparency due to complex kernels and reliance on
support vectors [27].

Considering as input the engine speed and power, the SVR estimates the function
f (Ne, Pe)i for the ith Fourier coefficient by using the following equation:

(Ccyl)i − ε ≤ f (Ne, Pe)i ≤ (Ccyl)i + ε (11)

where ε denotes the tolerance margin, whilst no penalty is considered to errors in the loss
function minimisation. The settings for hyperparameters for the SVR regression are listed
in Table 6.

2.3.6. Decision Tree Regression (DT)

Decision tree regression is a machine learning technique that develops a binary tree
structure consisting of internal and leaf nodes to predict the regression tasks [28]. The
internal nodes represent decisions based on features, whereas the leaf nodes provide the
predicted output. The algorithm recursively splits the training data to minimise variance
or maximise information gain. Predictions are made by traversing the tree from root to leaf.
The standard settings for the model are described in the Table 6.

Decision trees’ advantages include (a) interpretability, providing a clear understanding
of decision-making processes; (b) non-parametric structure, accommodating numerical and
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categorical features without assumptions on data distribution; (c) robustness to outliers due
to relative ranking used in splitting; (d) representation of complex interactions and non-
linear relationships among features [29]. Decision trees’ drawbacks include (a) overfitting if
the tree depth or the number of features and relationships is uncontrolled; (b) sensitivity to
slight changes in training data, leading to varying tree structures and predictions; (c) piece-
wise constant predictions, lacking smoothness compared to other methods; (d) challenges
when handling datasets with numerous irrelevant features [29].

Table 6. Hyperparameter settings and error minimisation criteria for the employed regression techniques.

Regression Technique Abr. Error Minimisation Hyperparameters

Multiple Linear Regression LR Mean Squared Error –

Elastic Regression ER Mean Squared Error –

Polynomial Regression PR Mean Squared Error Degrees: 2

Support Vector Regression SVR Mean Squared Error

Kernel: ’rbf’
Degree = 3
C = 1 1

ε = 0.1 2

Γ = 1/(no. f eatures× X.var()) 3

Decision Tree Regression DT Mean Squared Error Splitter: ’best’
minimum sample split: 2

Artificial Neural Networks ANN Mean Squared Error

Hidden layers No: 2 (exponential linear unit activation)
Output layers No: 1 (linear activation)
Neurons No per hidden layer: 10
Epochs No: 200

1 C: Regularisation parameter. 2 ε: Epsilon SVR model. 3 Γ: Kernel coefficient.

2.3.7. Artificial Neural Networks (ANN)

Artificial neural networks (ANN) were inspired by biological nervous systems, and they
are used to perform machine learning tasks including classification and regression. ANNs
are extremely versatile as they can accurately model complex non-linear systems.

Multilayer perceptron (MLP) networks, which are also known as multilayer feedfor-
ward networks, are widely used in practical applications [30]. Two important parameters
of MLP are the number of hidden layers and the number of neurons per layer (hidden layer
size). The number of the hidden layers’ neurons is typically selected by using trial-and-error
approaches to obtain the minimum converged squared error on the training data.

2.4. Metrics Selection

The developed data-driven models’ performance is evaluated based on the prediction
of the in-cylinder pressure as well as the maximum cylinder pressure and the indicated
mean effective pressure (MEP). The root mean square error (RMSE) of the predicted in-
cylinder pressure for a complete engine cycle is calculated by using the following equation:

RMSE =

√
n

∑
i=1

(p(α)− p̂(α))2 (12)

where p(α) denotes the reference values of the in-cylinder pressure as a function of the
crank angle (α) for each engine cylinder, whereas p̂(α) represents the estimated in-cylinder
pressure by the data-driven models. The accuracy of the given regression techniques
is determined by the coefficient of determination (R2) considering the test (validation)
datasets, which is calculated by the following equation:

R2 = 1− ∑n
i=1(p− p̂)2

∑n
i=1(p− p̄)2 (13)



Machines 2023, 11, 926 11 of 19

where ∑n
i=1(p− p̂)2 is the sum of residuals and ∑n

i=1(p− p̄)2 is the total sum of squares
(equal to variance) of the test datasets, with p̄ denoting the mean value of pressure. In the
best case, when the predicted values exactly match the reference values, R2 becomes equal
to 1.

3. Results and Discussion

Figure 3 presents the predicted along with the reference in-cylinder pressure diagram
for each engine cylinder for one engine cycle (crank angle from−360 ◦CA to 360 ◦CA) using
the two approaches described in Phase 2 (Section 2.2). The dotted lines represent reference
cylinder pressure (predictions of the thermodynamic digital twin), whereas the the green
and red lines represent the predicted in-cylinder pressure by the first and second approach,
respectively. It is inferred that the second approach provided in-cylinder pressure closer
to the reference one (exhibiting a percentage error in the in-cylinder pressure prediction
within ±2%).

However, the first approach completely fails to predict the in-cylinder pressure at
the open cycle. It provides adequate predictions for the closed cycle, although exhibiting
higher errors compared to the predictions of the second approach. It is inferred that the
first approach involves considerable errors, and does not satisfy the requirements of tools
for marine engine health assessment. Therefore, the second approach, which involves the
prediction of 101 Fourier coefficients per cylinder and subsequent reconstruction of the
in-cylinder pressure by using Equation (4)), is selected for comparatively assessing the six
regression techniques.
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Figure 3. Predicted in-cylinder pressures using the data-driven model based on the first approach
(green lines), the second approach (red lines), and reference values (dotted lines) for the engine
operating point at 424 rpm and 3.06 MW.

The data-driven models corresponding to the second approach and the six regression
techniques are evaluated by using the test datasets (15% of the total generated datasets),
which were separated as reported in Section 2.1.2. The number of the test datasets corre-
sponding to the several areas of the engine operating envelope are illustrated in Figure 2b.

The derived RMSEs (in bar, calculated according to Equation (13) considering the test
datasets—750 samples) for the developed data-driven models corresponding to the six
employed regression techniques, which were trained using training datasets derived by
three different γ values (0.9, 0.95, and 0.995), are presented in Figure 4. The number of
training samples for each γ value is listed in Table 5. It is deduced that the RMSE (for all
regression techniques) increases with higher γ values, corresponding to smaller number
training datasets. Therefore, a higher number of training datasets increases the data-driven
model accuracy (lower RMSE). However, the RMSE changes for LR, PR, and ANN are
not so pronounced, whereas RMSE values for gamma equal to 0.9 and 0.95 are almost the
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same. This implies the the Fourier series coefficients (second approach) can be effectively
mapped using these linear regression techniques types, requiring a relatively low training
dataset number. Contrary, the SVR and DT regression techniques are sensitive to γ and
require higher dataset numbers. DT regression trained with the lowest datasets number
exhibited low accuracy (high RMSE) on the test datasets. From the preceding discussion
and presented results, it is inferred that the ANN regression is the most effective technique,
as it resulted in RMSE less than 0.6 bar when trained using 20 datasets.

LR ER SVR PR DT ANN
Regression Techniques
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0.4

0.6

0.8

1.0

1.2

1.4

1.6

RM
SE

 [b
ar

]

gamma_0.9
gamma_0.95
gamma_0.995

Figure 4. Root mean square error for the six data-driven models (second approach and six regression
techniques) for different training datasets (split using three values of γ).

Figure 5 presents the average error of the predicted in-cylinder pressure (considering
all the engine cylinders) by the data-driven models considering the test data (750 datasets);
these data-driven models correspond to the six regression techniques trained using three
different datasets (γ = 0.9, 0.95, 0.995). The range of the error distributions (whiskers)
increases with the γ aligning with exhibited RMSE trends (Figure 4). The ANN regression
exhibits an average error within ±0.5 bar even when trained with the lowest dataset
number. The DT regression performs adequately when trained using high numbers of
training datasets. The ANN and PR regression techniques also showcase the minimum
number of outlier error points with only 20 training samples. Therefore, it is deduced that
the ANN and PR regression techniques exhibit the highest potential compared to the other
regression techniques.

The predicted in-cylinder pressure diagrams (using the six regression techniques) are also
used to derive other engine performance parameters, including the mean effective pressure
(MEP) characterising the engine power output, and the in-cylinder maximum pressure (pmax)
characterising the engine thermo-mechanical limits. The accurate estimation of these parame-
ters is important for marine engine health assessment. Figure 6 presents the average MEP error
(from all the engine cylinders) considering the six regression techniques and the three γ values.
The average MEP error remains almost the same for the linear regression techniques (LR, ER
and PR) despite using different training datasets, which is in alignment with the respective
RMSE trends of the in-cylinder pressure diagram prediction (discussed in the proceeding
paragraphs). The SVR and DT techniques resulted in the highest MEP error variations. ANN
use resulted in the lowest MEP errors, which gradually increased with the use of smaller
training datasets. However, the ANN’s performance (considering the error tolerance and
outliers) was found to be the best among all of the employed regression techniques. Positive
offsets (mean of MEP errors) are observed for all the regression techniques, implying the MEP
overestimation, which requires correction measures (e.g., the use of a negative bias).
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Figure 5. In-cylinder pressure error (average for 9 cylinders) of the data-driven models using six
regression techniques and different γ values (0.9, 0.95, 0.995). (a) Training using 425 datasets (γ = 0.9).
(b) Training using 212 datasets (γ = 0.95). (c) Training using 20 datasets (γ = 0.995).

Figure 7 presents the maximum in-cylinder pressure error (from all the engine cylin-
ders) considering the six regression techniques and the three γ values. When using the
highest training dataset number (γ = 0.9), the ANN and DT regression techniques pro-
vided the lowest error distributions, whereas the respective mean errors exhibited slightly
negative offsets. However, when using the lowest training dataset number (γ = 0.995),
the DT regression technique led to considerable errors, whereas the PR and ANN regression
techniques resulted in errors ranging ±2.5 bar. The PR regression led to mean errors with
negative offset, the value of which increased with γ.
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Figure 6. Mean effective pressure (MEP) error (average for 9 cylinders) of the data-driven models
using six regression techniques and different γ values (0.9, 0.95, 0.995). (a) Training using 425 datasets
(γ = 0.9). (b) Training using 212 datasets (γ = 0.95). (c) Training using 20 datasets (γ = 0.995).

Figure 8 presents the absolute error of the predicted in-cylinder pressure from the
data-driven models developed by the six regression techniques (and second approach)
trained using 20 datasets (γ = 0.995) on the whole engine operating envelope. These
results are employed to characterise the ability of the employed regression techniques
to predict the in-cylinder pressure throughout the investigated marine engine operating
envelope. The data-driven models based on LR, ER, PR, and ANN regression techniques
exhibited absolute error in predicting the in-cylinder pressure less than 1 bar considering
the whole engine operating envelope. Data-driven models using the SVR and DT regression
techniques exhibited higher absolute errors, reaching 4.8 and 2.4 bar, respectively, as shown
in Figure 8c,e). The ANN regression exhibited the smallest absolute error compared to the
other techniques in the whole operating envelope.
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Figure 7. Maximum in-cylinder pressure error (average for 9 cylinders) of the data-driven models
using six regression techniques and different γ values (0.9, 0.95, 0.995). (a) Training using 425 datasets
(γ = 0.9). (b) Training using 212 datasets (γ = 0.95). (c) Training using 20 datasets (γ = 0.995).

From the preceding discussion, it was confirmed that the the ANN regression exhibited
the lowest errors in all the considered metrics considering the whole engine operating
envelope, whilst requiring the smallest number of training datasets. Hence, the use of
ANN regression is recommended for developing data-driven models to predict the marine
engine in-cylinder pressure.

Figure 9 presents the results of the performed sensitivity study considering the data-
driven model of the second approach and the ANN regression; the R2 on the predicted
in-cylinder pressure is plotted as function of the harmonics number (corresponding to
2N + 1 Fourier coefficients for each cylinder) and test-to-train ratio (γ, corresponding to the
used training dataset number). It is deduced that the harmonic number greatly affects R2,
which characterises the data-driven model error. For more than 45 harmonic orders, high R2

values are observed, indicating sufficient accuracy. The test to train ratio slightly impacted
R2. It is deduced that the proposed data-driven model using ANN regression trained
with only 25% of the 4750 datasets (corresponding to engine operating points) randomly
selected can achieve sufficient accuracy. This reduces the computational effort required
for generating datasets (by employing the physical digital twins that are computationally
expensive). The developed data-driven model can provide sufficient accuracy on the in-
cylinder pressure prediction in healthy engine conditions, whilst substantially reducing the
required computational effort.
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Figure 8. In-cylinder pressure absolute error of data-driven models based on the six regression
techniques and second approach trained using 20 datasets (γ = 0.995) in the complete engine
operating envelope.
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Figure 9. Data-driven model based on the second approach and ANN regression–R2 variation of the
predicted in-cylinder pressure against the harmonics number and γ.

4. Conclusions

This study comparatively assessed data-driven models for the in-cylinder pressure
prediction of marine engines, which were developed based on two approaches and six
regression techniques. The first approach employed as input for each cylinder the engine
speed and power along with the crank angle to directly calculate the in-cylinder pressure
via regression. The second approach employed as input the engine speed and power to
calculate Fourier coefficients for each cylinder, which were subsequently used to calculate
the in-cylinder pressure via the Fourier series function. The following regression techniques
were employed: linear, elastic, and polynomial regression, support vector regression (SVR),
decision trees (DT), and artificial neural networks (ANN). The main findings of this study
are summarised as follows.

• The second approach with ANN regression and 50 harmonics (corresponding to
101 Fourier coefficients per cylinder) was proved the most effective, exhibiting per-
centage errors for the in-cylinder pressure prediction within ±2% and RMSE within
±0.2 bar when trained with only 20 datasets.

• Simple linear regression techniques exhibited an overall root mean square error for
the in-cylinder pressure prediction up to 0.65 bar with only 20 training samples.

• ANN demonstrated the best performance on predicting the mean effective pressure and
maximum in-cylinder pressure with minimum outliers compared to other methods.

• A higher training dataset number led to higher accuracy of SVR, DT and ANN
regression techniques, whereas linear regression techniques exhibited saturation in
the predicted parameters error with the increase in the training dataset number.

• The sensitivity study revealed that minimum 10% of the training datasets (1000 samples)
along with 45 harmonics led to RMSE values ranging 0.04–0.05 bar corresponding to
R2) close to 0.99%.

• ANN regression is therefore recommended for use in data-driven models for the
prediction of marine engine in-cylinder pressure.

This study provided insights on the characteristics of regression techniques to develop
data-driven models for marine engine performance parameter prediction. Future studies
may consider more advanced regression techniques along with the extension of the operat-
ing envelope to include ambient and anomalous conditions. Heat release rate analysis of
the in-cylinder pressure estimated by the data-driven model can also be investigated. More-
over, the prediction of other performance and emissions parameters can also be considered,
thus moving forward to the establishment and validation of real-time, trustworthy digital
twins for marine engines. The use of shipboard measurements to (re)train data-driven
models as part of a prognostics framework is recommended.
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Nomenclature

Ne Engine speed (rev/m)
n Number of samples (-)
Pe Engine power (kW)
p Reference in-cylinder pressure (bar)
p̂ Predicted in-cylinder pressure (bar)
α Crank angle (◦CA)
β Split ratio for separating test data (-)
γ Split ratio (-)
θ Hyperparameters (-)
µ Mean value of parameter (unit of parameter)
σ Standard deviation of parameter (unit of parameter)

References
1. Mauro, F.; Kana, A. Digital twin for ship life-cycle: A critical systematic review. Ocean Eng. 2023, 269, 113479.
2. Coraddu, A.; Oneto, L.; Cipollini, F.; Kalikatzarakis, M.; Meijn, G.J.; Geertsma, R. Physical, data-driven and hybrid approaches to

model engine exhaust gas temperatures in operational conditions. Ships Offshore Struct. 2022, 17, 1360–1381.
3. Mihai, S.; Yaqoob, M.; Hung, D.V.; Davis, W.; Towakel, P.; Raza, M.; Karamanoglu, M.; Barn, B.; Shetve, D.; Prasad, R.V.; et al.

Digital twins: A survey on enabling technologies, challenges, trends and future prospects. IEEE Commun. Surv. Tutorials 2022, 24,
2255–2291.

4. Venkatesh, K.; Murugesan, S. Prediction of Engine Emissions using Linear Regression Algorithm in Machine Learning. Int. J.
Innov. Technol. Explor. Eng. 2020 , 9, 7. https://doi.org/10.35940/ijitee.G5707.059720.

5. Zhang, Y.; Wang, Q.; Chen, X.; Yan, Y.; Yang, R.; tao Liu, Z.; Fu, J. The Prediction of Spark-Ignition Engine Performance and
Emissions Based on the SVR Algorithm. Processes 2022, 10, 312.

6. Alexiou, K.; Pariotis, E.G.; Leligou, H.C.; Zannis, T.C. Towards data-driven models in the prediction of ship performance
(speed—power) in actual seas: A comparative study between modern approaches. Energies 2022, 15, 6094.

7. Liu, J.; Ulishney, C.; Dumitrescu, C.E. Application of Random Forest Machine Learning Models to Forecast Combustion Profile
Parameters of a Natural Gas Spark Ignition Engine. Des. Syst. Complex. 2020, 6, V006T06A003.

8. Yu, Z.J.; Haghighat, F.; Fung, B.C.M.; Yoshino, H. A decision tree method for building energy demand modeling. Energy Build.
2010, 42, 1637–1646.

9. Bhatt, A.N.; Shrivastava, N. Application of Artificial Neural Network for Internal Combustion Engines: A State of the Art Review.
Arch. Comput. Methods Eng. 2022, 29, 897–919. https://doi.org/10.1007/s11831-021-09596-5.

10. Wang, R.; Chen, H.; Guan, C. A self-supervised contrastive learning framework with the nearest neighbors matching for the fault
diagnosis of marine machinery. Ocean Eng. 2023, 270, 113437.

11. Panda, J. Machine learning for naval architecture, ocean and marine engineering. J. Mar. Sci. Technol. 2023, 28, 1–26.
12. Noor, C.M.; Mamat, R.; Najafi, G.; Yasin, M.M.; Ihsan, C.; Noor, M. Prediction of marine diesel engine performance by using

artificial neural network model. J. Mech. Eng. Sci. 2016, 10, 1917–1930. https://doi.org/10.15282/jmes.10.1.2016.15.0183.
13. Raptodimos, Y.; Lazakis, I. Application of NARX neural network for predicting marine engine performance parameters. Ships

Offshore Struct. 2020, 15, 443–452. https://doi.org/10.1080/17445302.2019.1661619.
14. Johnsson, R. Cylinder pressure reconstruction based on complex radial basis function networks from vibration and speed signals.

Mech. Syst. Signal Process. 2006, 20, 1923–1940. https://doi.org/10.1016/j.ymssp.2005.09.003.

https://doi.org/10.35940/ijitee.G5707.059720
https://doi.org/10.1007/s11831-021-09596-5
https://doi.org/10.15282/jmes.10.1.2016.15.0183
https://doi.org/10.1080/17445302.2019.1661619
https://doi.org/10.1016/j.ymssp.2005.09.003


Machines 2023, 11, 926 19 of 19

15. Saraswati, S.; Chand, S. Reconstruction of cylinder pressure for SI engine using recurrent neural network. Neural Comput. Appl.
2010, 19, 935–944. https://doi.org/10.1007/s00521-010-0420-6.

16. Solmaz, O.; Gurbuz, H.; Karacor, M. Comparison of artificial neural network and fuzzy logic approaches for the prediction
of in-cylinder pressure in a spark ignition engine. J. Dyn. Syst. Meas. Control. Trans. ASME 2020, 142, 091005. https:
//doi.org/10.1115/1.4047014/1082935.

17. Tsitsilonis, K.M.; Theotokatos, G. A novel method for in-cylinder pressure prediction using the engine instantaneous crankshaft
torque. Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ. 2022, 236, 131–149.

18. Tsitsilonis, K.M.; Theotokatos, G.; Patil, C.; Coraddu, A. Health assessment framework of marine engines enabled by digital
twins. Int. J. Engine Res. 2023, 24, 3264–3281.

19. Tsitsilonis, K.M.; Theotokatos, G. Engine malfunctioning conditions identification through instantaneous crankshaft torque
measurement analysis. Appl. Sci. 2021, 11, 3522.

20. Khurana, U.; Samulowitz, H.; Turaga, D.S. Feature Engineering for Predictive Modeling using Reinforcement Learning. arXiv
2017, arXiv:1709.07150.

21. Maldonado, S.; Weber, R. A wrapper method for feature selection using Support Vector Machines. Inf. Sci. 2009, 179, 2208–2217.
22. Zeng, P.; Assanis, D.N. Cylinder Pressure Reconstruction and Its Application to Heat Transfer Analysis; SAE Technical Peper; SAE:

Atlanta, GA, USA, 2004.
23. Zhang, Z. Improved Adam Optimizer for Deep Neural Networks. In Proceedings of the 2018 IEEE/ACM 26th International

Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018 ; pp. 1–2.
24. Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: New York, USA, 2006; Volume 4.
25. Townsend, W. ELASTICREGRESS: Stata Module to Perform Elastic Net Regression, Lasso Regression, Ridge Regression; Research

Papers in Economics; Boston College Department of Economics: Boston, MA, USA, 2017.
26. Yang, X.S. Support vector machine and regression. In Introduction to Algorithms for Data Mining and Machine Learning; Academic

Press: Cambridge, MA, USA, 2019.
27. Basak, D.; Pal, S.; Patranabis, D.C. Support Vector Regression. Neural Inf. Process. Lett. Rev. 2007 11, 203–224 .
28. Czajkowski, M.; Kretowski, M. The role of decision tree representation in regression problems—An evolutionary perspective.

Appl. Soft Comput. 2016, 48, 458–475.
29. Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1 14–23. https:

//doi.org/10.1002/widm.8
30. Szoplik, J. Forecasting of natural gas consumption with artificial neural networks. Energy 2015, 85, 208–220. https://doi.org/10.1

016/j.energy.2015.03.084.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00521-010-0420-6
https://doi.org/10.1115/1.4047014/1082935
https://doi.org/10.1115/1.4047014/1082935
 https://doi.org/10.1002/widm.8
 https://doi.org/10.1002/widm.8
https://doi.org/10.1016/j.energy.2015.03.084
https://doi.org/10.1016/j.energy.2015.03.084

	Introduction
	Methodology
	Data Generation and Pre-Processing
	Feature Standardisation
	Data Splitting

	Feature Selection Approaches
	Data-Driven Models Based on Regression
	Parametric Study
	Multiple Linear Regression (LR)
	Elastic Regression (ER)
	Polynomial Regression (PR)
	Support Vector Regression (SVR)
	Decision Tree Regression (DT)
	Artificial Neural Networks (ANN)

	Metrics Selection

	Results and Discussion
	Conclusions
	References

