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Abstract: This study presents the development of a portable fluorometer with a smartphone applica-
tion designed to facilitate the early screening of chronic kidney and renal diseases by enabling the
sensitive detection of urinary albumin. Utilizing a fluorescence-based aptasensor, the device achieved
a linear calibration curve (0.001–1.5 mg/mL) with a linearity of up to 0.98022 and a detection limit
of 0.203 µg/mL for human serum albumin (HSA). The analysis of 130 urine samples demonstrated
comparable performance between this study’s fluorometer, a commercial fluorometer, and the stan-
dard automated method. These findings validate the feasibility of the portable fluorometer and
aptasensor combination as a reliable instrument for the sensitive and specific measurement of HSA
in urine samples. Moreover, the fluorometer’s portability offers potential applications in portable
point-of-care testing, enhancing its utility in clinical settings for early disease screening.

Keywords: albuminuria; aptasensor; fluorescence quenching; portable fluorometer; chronic kidney
disease; renal disease

1. Introduction

Human serum albumin (HSA), the most abundant protein in human plasma, plays an
important role in maintaining oncotic blood pressure and transporting various biomolecules
through the blood circulatory system. HSA, synthesized exclusively in the liver, contains
585 amino acid residues and has a molecular weight of 60 kDa [1–4]. Abnormal excretion
levels of HSA in the urine (albuminuria) serve as an early marker for screening and
monitoring kidney malfunction, often associated with non-communicable diseases such
as diabetes mellitus, cardiovascular diseases, glomerulitis, hypertension, and early-stage
kidney damage [5–10].

In hospitals, traditional methods for detecting albumin in urine primarily rely on
immunoassay techniques, including immunoturbidimetric assay, immunonephelometric
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assay, chemiluminescence immunoassay, radioimmunoassay, fluorescent immunoassay,
immunoelectrophoresis, and enzyme-linked immunosorbent assay [11–15]. Although
these approaches are highly sensitive and accurate, they are also expensive because they
require costly instrumentation. To address this issue, urine dipsticks have been used for
albuminuria screening due to their low cost and ease of use [16,17]. However, this method
exhibits low sensitivity and provides only semiquantitative results.

Biosensor methods have gained significant popularity as analytical devices in various
fields due to their fast response, low cost, and high sensitivity and specificity. Several
biological sensing techniques have been explored as alternative tools for detecting albu-
min in urine and blood samples [18–21]. The need for a highly selective, rapid, simple,
and cost-effective biosensing platform has spurred interest in nanomaterials with unique
optical, electronic, and catalytic properties that make them ideal candidates for advanced
biosensing systems [22,23]. Graphene, a two-dimensional single-layer carbon material, has
garnered attention for its distinctive features such as good water dispersibility, remarkable
mechanical strength, and excellent electrical and thermal properties. It has been widely
employed as a carbon nanomaterial for developing high-performance sensors capable of
detecting various biomolecules, including DNA, miRNAs, proteins, metal ions, and small
molecules [24–27].

In our recent work, we developed a fluorescence-based aptasensor platform using
graphene oxide (GO) as a fluorescence-quenching aptasensor [28,29] for the quantitative
detection of albumin in urine samples. However, a conventional commercial fluorom-
eter consists of high-cost and large-sized optical components such as xenon lamps and
photomultiplier tubes [30]. This results in bulky and expensive fluorometers that are not
affordable for healthcare systems in remote areas. Furthermore, commercial handheld
fluorometers require the interpretation of measured fluorescence intensities and concentra-
tions [31,32]. While several groups have developed low-cost fluorometer prototypes, these
prototypes are still in the early stages and are not specifically designed for albuminuria
quantification [33–37].

In this study, we developed a portable fluorometer and a smartphone application
(Figure 1) that allowed an aptasensor to determine HSA in urine samples and quantify
albuminuria, potentially aiding in the screening of kidney function abnormalities.

The aptasensor employs aptamer-labeled fluorescence, a single-stranded DNA de-
signed to target albumin in conjunction with GO, which exhibits fluorescence-quenching
properties [28]. The proposed mechanism involves the attachment of the fluorescence-
labeled aptamer to specific sites on human serum albumin situated on graphene oxide.
This attachment creates an aptamer–graphene complex that leads to fluorescence quench-
ing. Upon the introduction of a sample containing human serum albumin, the aptamer
disassociates from the graphene oxide, binds to the albumin, and restores the fluores-
cence signal. This recovered fluorescence signal corresponds to the concentration of the
human serum albumin target in the sample. The portable fluorometer was designed to
optimize the performance of the aptasensor, featuring a narrow wavelength spacing of
15 nm between the excitation peak (650 nm) and emission peak (665 nm). These long
excitation wavelengths and narrow spacings effectively mitigate undesirable signals from
autofluorescence in biological materials found in urine [38]. To ensure accuracy while
maintaining affordability, we incorporated small (5 × 5 mm2), high-quality (OD 4) optical
filters. The fluorometer was designed for mass production, utilizing an injection-molding
technique for the case. The fluorometer circuit board was designed for automatic assembly
by pick-and-place machines. We combined the portable fluorometer with a smartphone
application to calculate, report, and store albumin concentration data. To evaluate the
performance of our developed device, we compared its albumin measurement results with
those obtained from an immunoturbidimetric assay conducted at a hospital laboratory
using samples from 130 volunteers.
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Figure 1. Schematic of the complete device used in this study is presented. The device comprises a
fluorometer with an integrated graphene oxide (GO)–aptamer biosensor and a custom smartphone
application. (a) The fluorometer is combined with the smartphone application. (b) An illustra-
tion of the GO–aptamer assay principle demonstrates that the fluorescence signal is absent when
fluorescence-labeled aptamers bind to GO, resulting in fluorescence quenching. In the presence of the
target molecules, the aptamers bind to them, dissociating from GO and leading to the recovery of the
fluorescence signal.

2. Materials and Methods
2.1. Aptamer and Reagents’ Preparation, Aptasensors

In this study, the 87-base single-stranded DNA sequence of the albumin-binding ap-
tamer (5′/Cy5/ATA CCA GCT TAT TCA ATT CCC CCG GCT TTG GTT TAG AGG TAG
TTG CTC ATT ACT TGT ACG CTC CGG ATG AGA TAG TAA GTG CAA TCT/3′) or
H8 [28,37] was purchased from Integrated DNA Technologies (Singapore). Purified human
serum albumin (HSA) was obtained from Sigma-Aldrich (A9731; St. Louis, MO, USA).
Lyophilized HSA was dissolved in sterile phosphate-buffered saline (PBS) to prepare a
100 mg/mL stock solution. A calibration curve was generated using different concentra-
tions of HSA to determine the linearity range of the measurements. The HSA standard
was prepared by diluting the HSA stock solution with PBS (pH 7.4), resulting in final
concentrations ranging from 0.001 to 1.5 mg/mL. Monolayer powder graphene oxide (GO)
was synthesized using a modified Hummers’ method and dissolved in sterile ultrapure
water to prepare 5 mg/mL stock solutions, as described in our previous study [28]. The
solution was stored at 25 ◦C and used the following day.

2.2. Urine Sample Collection

Random spot urine samples were collected from 130 volunteers residing in the Ubon-
rat district area of Khon Kaen, Thailand, between March and April 2021. Urine samples
were collected in sterile screw-cap tubes and used on the same day without any addi-
tional pretreatment. Each urine sample was divided into two parts. The first part was
analyzed using commercial and developed fluorometers, while the second part was sent to
a hospital laboratory to determine the albumin concentration using reference methods. All
clinical samples were collected and studied under the ethical approval (Approval number
HE601035) granted by the Office of the Khon Kaen University Ethics Committee in Hu-
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man Research (Institutional Review Board number IRB00001189), Khon Kaen University,
Thailand.

2.3. Comparison of Urinary Albumin Analysis: Commercial Portable Fluorometer, Developed
Fluorometer, and Standard Hospital Method

Albumin measurements were conducted using a modified GO–aptamer assay, as
described in our previous study [28]. Briefly, 15 µL of GO (5 mg/mL) was suspended in
70 µL of PBS to prepare a GO–PBS solution. To form GO–aptamer complexes, 15 µL of
5 µM fluorescence-labeled aptamer (H8) was incubated with 85 µL of the GO–PBS solution
for 5 min at room temperature in the dark. Subsequently, 100 µL of the standard albumin
solution with concentrations ranging from 0.001 to 1.5 mg/mL (stock concentration) was
added to the complex mixture and incubated at room temperature for 30 min to facilitate
aptamer–albumin interactions. To detect albumin in the urine samples, undiluted urine
was incubated with the GO–aptamer mixture, following the same procedure. The albumin
measurements performed using a commercial portable fluorometer and our developed
platform are demonstrated in the VDO Supplementary Materials and illustrated in Figure 2,
respectively.
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Figure 2. Albumin measurement using our developed aptasensor platform. Reagent A refers to the
graphene oxide solution, and reagent B corresponds to fluorescence-labeled aptamer-bound human
serum albumin.

The fluorescence signal was measured using a commercial portable fluorometer (Quan-
tus, Promega, Madison, WI, USA) and our developed portable fluorometer at an excitation
wavelength of 630 nm and an emission wavelength of 670 nm. To calculate the albumin
concentration in the urine samples, a calibration curve of albumin concentration was plot-
ted against the fluorescence intensity. The percentage of the fluorescence response (F) was
calculated using Equation (1):

F = 100(Fob − Fmin)/(Fmax − Fmin) (1)

Here, Fmax and Fmin represent the maximal and minimal fluorescence intensities of
the fluorescently labeled aptamer with and without graphene (complex), respectively, and
Fob represents the fluorescence intensity of the fluorescently labeled aptamer-bound HSA.

HSA concentrations in 130 urine samples were analyzed using our modified aptasen-
sor [28,29], and fluorescence intensities were measured using both a commercial portable
fluorometer and our developed device. The results were compared with the concentrations
obtained from the turbidimetric immunoassay, which is the standard method used in
hospitals (COBAS INTEGRA 400; Roach Diagnostics, Singapore) for albuminuria quantifi-
cation. Correlation plots were constructed to determine the performances of the developed
aptasensor and fluorometer devices.

The data were analyzed using Origin software (version 6.0) and SPSS software (version
20.0) to calculate the Pearson correlation coefficients (r) and p-values, respectively. If the p-
values were less than 0.01, the datasets were considered statistically correlated. Conversely,
if the p-values were ≥0.01, the datasets were not considered correlated.
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2.4. High-Accuracy, Low-Cost, and Portable Fluorometer Development

A high-accuracy, low-cost, and portable fluorometer (Figure 3a) was designed to
measure the fluorescence intensity of the GO-mediated fluorescence-quenching aptasensor.
The fluorometer has a compact size of 11.0 × 7.5 × 4.0 cm3, allowing it to be easily held
and operated with one hand. The fluorometer lid is opaque, minimizing interference from
external light. The case material is acrylonitrile butadiene styrene (ABS), a suitable material
for medical applications. ABS possesses a high tensile strength of 29.6–48 MPa, resists
chemical reactions, and withstands temperatures of 68–100 ◦C.
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Figure 3. Photographs illustrating the developed portable fluorometer. (a) The complete body of the
portable fluorometer. (b) The front side, showing the connection between the circuit board and the
fluorescence chamber. (c) The back side of the circuit board, which does not include any devices to
support one-sided pick-and-place assembly.

Inside the fluorometer (Figure 3b), a circuit board integrates electronic components
with a 3D-printed fluorescence chamber that houses the optical components and provides
space for holding the measuring tube. The circuit board primarily utilizes surface-mount
devices (SMDs) on the top side, enabling mass production through surface-mount technol-
ogy component placement systems, also known as pick-and-place machines. The bottom
side minimizes the use of SMD components and employs through-hole devices sparingly
(Figure 3c).

2.4.1. Mechanical and Optical Design

The mechanical and optical design involves the integration of optical components
within the fluorescence chamber, as depicted in Figure 4, which provides space to accom-
modate the measuring tube. The optical components, illustrated in Figure 4a, include an
LED, an excitation filter, a transparent glass sheet, an excitation photodiode, an emission
filter, and an emission photodiode. These components, along with the measuring tube, are
inserted into the black opaque fluorescence chamber, as shown in the 3D model presented
in Figure 4b. The fluorescence chamber is fabricated using a fused filament fabrication 3D
printing technique, enabling rapid adjustments to the design of different measuring tubes
and optical components for various applications. To minimize reading errors caused by
light reflection and penetration, an opaque matte black polylactic acid filament is utilized.
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Figure 4. The fluorescence chamber integrates optical components and contains a measuring tube for
measuring fluorescence intensity. (a) A top view diagram illustrating the fluorescence chamber. (b) A
3D model showcasing the integration of the fluorescence chamber with optical components.

The employed LED (VLCS5830, Vishay Intertechnology, Malvern, PA, USA) has a
central wavelength of 631 nm, aligning with the absorption peak of the Cy5-fluorescence-
labeled aptamer. It offers a high intensity of 65,000 mcd and a small angle of half intensity
of ±4◦ to maximize excitation. High-quality excitation and emission filters (Shenzhen
Kaitao Optical Technology, Shenzhen, China) with an optical density of 4 were employed
for accurate fluorescence intensity measurements. The cost of optical filters was minimized
by using small-area filters measuring 5 mm × 5 mm. To select the appropriate excitation
wavelength, an excitation bandpass filter with a central wavelength of 625 nm and a full
width at half maximum (FWHM) of 30 nm was utilized, considering the partial overlap
between the LED spectrum and the emission spectrum. LEDs are preferred over laser
diodes due to their longer lifetimes and lower costs [39,40]. Additionally, a transparent
glass sheet was placed at a 45◦ angle to split a portion of the excitation beam toward the
excitation photodiode (Osram SFH 213, Osram, Munich, Germany), which measures the
excitation beam intensity. For measuring fluorescence intensity, a clear measuring tube
was used to contain the sample mixture. The fluorescence light was filtered using an
emission bandpass filter with a central wavelength of 668 nm and an FWHM of 15 nm.
The emitted fluorescence light intensity was measured using an emission photodiode
(Osram SFH 213 PIN photodiode). PIN photodiodes were chosen because they demon-
strate acceptable performance and are more cost-effective than avalanche photodiodes and
microphotomultiplier tubes.

The case was manufactured using an injection-molding technique to reduce costs
during high-volume production. It was designed to be user-friendly and easy to operate.
For instance, the symmetric design and small size enable the one-handed operation of the
fluorometer. The case thickness ranges from 0.5 to 1.0 mm, ensuring rigidity while keeping
the device lightweight.

2.4.2. Circuit Design and Analysis

The circuit board of the fluorometer was designed to accurately quantify albuminuria
using low-cost electronic components. Figure 5 illustrates the simplified circuit diagram,
which includes a microcontroller, power management, excitation LED driver, excitation
photodiode amplifier, and emission photodiode amplifier. The excitation LED driver
utilizes a current source circuit with a stable bandgap voltage reference (U1, MAX6070B,
2 ppm/◦C) and a stable current-sensing resistor (R1, MCR03EZPD24R0, 100 ppm/◦C). The
current flowing through the excitation LED (ILED,EX) is calculated as follows:

ILED,EX = VU1/R1 (2)

where VU1 is the reference voltage and R1 is the resistance of the current sensing resistor.
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The excitation light is partially reflected off a transparent glass sheet towards the
excitation photodiode (D1) to measure the excitation intensity. The fluorescence emitted
from the measuring tube is detected using an emission photodiode (D2). To minimize errors
caused by the photodiode dark current [41], transimpedance amplifiers are employed for
both the excitation and emission photodiodes instead of using a photovoltaic mode or
shunt resistor. The voltage output is calculated as follows:

VA1 = VR2 + ID,EXRF1, (3)

Here, VR2 represents the reference voltage, ID,EX is the excitation photodiode current,
and RF1 denotes the resistance of the feedback resistor. To enhance stability and minimize
noise and power line interference, the capacitor CF1 is incorporated to reduce the bandwidth
of the transimpedance amplifier ( fEX = 1/2πRF1CF1). Similarly, the voltage output for the
emission photodiode reader (VA3) is determined as follows:

VA3 = VR2 + ID,EMRF2, (4)

Here, ID,EM represents the emission photodiode current and RF2 denotes the resis-
tance of the feedback resistor. The bandwidth of the emission photodiode amplifier is
fEM = 1/2πRF2CF2. The voltage outputs from the photodiode amplifiers are measured
using an analog-to-digital converter (ADC, MCP3462RT). A microcontroller (ESP32) facili-
tates communication with smartphones via Bluetooth, controls the LED, and reads data
from the ADC and a Hall sensor for lid-closing detection.

2.4.3. Fluorometer and Smartphone Software

A user-friendly smartphone application (Figure 6) was developed using Flutter 2.10.5,
an open-source, cross-platform UI software development kit. Users can easily read and
track albumin concentrations using iOS and Android phones. The application commands
the microcontroller to measure the fluorescence intensity and sends the results to the
smartphone via Bluetooth. The albumin concentration is calculated from the fluorescence
intensity using a calibration curve. Data are saved in NoSQL and the Firestore database, a
real-time document database platform. Users have the option to log into the application to
record and track albumin concentrations over an extended period.



Biosensors 2023, 13, 876 8 of 17Biosensors 2023, 13, x FOR PEER REVIEW 9 of 18 
 

 

Figure 6. The mobile application used with the fluorometer. (a) The software’s welcome screen. (b) 

Options for the user to choose between glycated albumin and HSA. (c) An example of instructions 

guiding users to properly prepare a sample. (d) An example of the incubation process during the 

preparation of a sample. (e) The last step of sample preparation, with an error showing that the 

application is not connected to the machine. (f) An example screen when the application receives 

intensity data from the machine. 

To measure albumin concentration, users install the smartphone application, connect 

the fluorometer to the application via Bluetooth, and follow the instructions on the appli-

cation until they reach the measurement screens. Users collect and mix urine with solu-

tions prepared according to the protocol explained in Section 2.3. After mixing, the mix-

ture is placed in a measuring tube, and the tube is inserted into the fluorometer. Once the 

fluorometer lid is closed, the fluorescence intensity is automatically measured and sent to 

the smartphone. The albumin concentration is calculated, stored, and displayed in the 

smartphone application. 

Fluorescence intensity measurement is controlled by a microcontroller, as described 

in the pseudocode in Figure 7. The microcontroller turns off the LED by setting the enable 

pin (𝐸𝑁) of the voltage reference (𝑈1) to a low state and waits for 300 ms. The waiting time 

was set to be longer than the time constant of the excitation photodiode amplifier (𝑅𝐹2𝐶𝐹2 

Figure 6. The mobile application used with the fluorometer. (a) The software’s welcome screen.
(b) Options for the user to choose between glycated albumin and HSA. (c) An example of instructions
guiding users to properly prepare a sample. (d) An example of the incubation process during the
preparation of a sample. (e) The last step of sample preparation, with an error showing that the
application is not connected to the machine. (f) An example screen when the application receives
intensity data from the machine.

To measure albumin concentration, users install the smartphone application, connect
the fluorometer to the application via Bluetooth, and follow the instructions on the applica-
tion until they reach the measurement screens. Users collect and mix urine with solutions
prepared according to the protocol explained in Section 2.3. After mixing, the mixture
is placed in a measuring tube, and the tube is inserted into the fluorometer. Once the
fluorometer lid is closed, the fluorescence intensity is automatically measured and sent
to the smartphone. The albumin concentration is calculated, stored, and displayed in the
smartphone application.

Fluorescence intensity measurement is controlled by a microcontroller, as described in
the pseudocode in Figure 7. The microcontroller turns off the LED by setting the enable
pin (EN) of the voltage reference (U1) to a low state and waits for 300 ms. The waiting
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time was set to be longer than the time constant of the excitation photodiode amplifier
(RF2CF2 = 22 ms) and the emission photodiode amplifier (RF1CF1 = 10 ms) to ensure stable
output. The microcontroller reads the outputs of the photodiode amplifier (VA1 and VA3),
as well as the reference voltages (VA2 and VA4), using the ADC operating in the differential
mode. The averaged values of the photodiode amplifier outputs are subtracted from
the corresponding reference voltage and output when the LED is off to reduce errors.
Fluorescence intensity (F) is calculated using the following formula:

F =
[
(VA3 −VA4)AVG, LED ON − (VA3 −VA4)AVG, LED OFF]/[(VA1 −VA2)AVG, LED ON − (VA1 −VA2)AVG, LED OFF

]
, (5)

where AVG indicates that the quantities are averaged and the other variables are as shown
in Figure 5.
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2.4.4. Noise and Variation Analysis

Various techniques (Table 1) were employed to analyze and mitigate the noise and
variation of the fluorometer, thus ensuring high accuracy. Device-to-device variation occurs
as a result of differences between individual devices due to variations in the manufacturing
process and component specifications. Run-to-run variation arises over time due to compo-
nent degradation. Sample-to-sample variation occurs when users change the measuring
tube, while in-run variations persist throughout the measurement process. Calibration
can help mitigate device-to-device and run-to-run variations caused by manufacturing
and component degradation. Changes in the fluorescence chamber design can address
sample-to-sample variation resulting from the measuring tube position and sample quan-
tity variation. The measuring tube holder was designed to accommodate measuring tubes
with the same conical angles, fitting loosely on the top. This design allows users to drop
the measuring tube into the fluorometer without applying pressure, minimizing position
variations. Lowering the measurement position of the measuring tube can help mitigate
errors caused by sample quantity variation.
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Table 1. Noise and variation with mitigation techniques.

Time Scale Noise and Variation Mitigation Techniques

Device-to-device
variation Manufacturing variation Factory calibration

Run-to-run
variation

Long-term optical, mechanical, and electronic
component degradation Periodic calibration

Sample-to-sample
variation

Measuring tube position variation Measuring tube holder design

Measuring tube sample quantity variation Fluorescence chamber design

In-run
variation

Johnson–Nyquist noise Increase averaging time

Flicker noise Subtract output measured when LED is on and off

Temperature fluctuation Measure both excitation and emission intensity to
calculate fluorescence intensity

External light interference Opaque case and lid design

Excitation light leakage Opaque matte black fluorescence chamber

Photodiode dark current Use transimpedance amplifier to read photodiode

Transimpedance amplifier offset fluctuation Use operational amplifiers with low input voltage
and current offset

Powerline interference Decrease bandwidth and increase averaging time

3. Results
3.1. Calibration of Low-Cost, Portable Fluorometer

The optical components of the fluorometer were carefully chosen to optimize the
accuracy of albuminuria quantification. The spectra of the fluorescence-labeled aptamer
(H8-Cy5) absorption and fluorescence represent the spectral characteristics of the aptasen-
sor when the aptamer is released from GO and binds to albumin. Figure 8 illustrates
the H8-Cy5 spectra, LED irradiance, and filter transmission, while Table 2 provides the
central wavelength and FWHM values. The absorption and fluorescence spectra of the
Cy5 fluorescence-labeled aptamer (Figure 8a) were measured using a UV–Vis–NIR spec-
trophotometer (Agilent Technologies Cary 5000) and a fluorescence spectrometer (Perkin
Elmer LS55), respectively. Figure 8b displays the LED irradiance and the transmission of
the excitation and emission filters.

Table 2. Central wavelength and FWHM of the optical components and H8-Cy5.

Quantity Central Wavelength (nm) FWHM (nm)

Aptamer–Cy5 absorption 649.5 42.7
Aptamer–Cy5 emission 665.0 37.4

LED irradiance 632.3 19.7
Excitation filter transmission 615.0 30.1
Emission filter transmission 667.0 15.8

To measure the filter transmission and LED irradiance, a spectrometer (Ocean Op-
tics HR4000CG-UV-NIR) with a UV–VIS–NIR light source (Ocean Optics DH-2000-BAL,
Ocean Insight, Orlando, FL, USA) was utilized. The LED irradiance was measured at the
center of the fluorescence chamber, which corresponded to the location of the measuring
tube during the measurement process. The measured spectra indicated that the excitation
filter efficiently allows the LED light to excite the aptamer–Cy5 without leaking through
the emission filter. Moreover, the emission filter’s transmission band was found to align
with the central wavelength of the fluorescence emission spectrum, ensuring the accu-
rate measurement of fluorescence intensity while avoiding autofluorescence from other
substances [38].
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Figure 8. Spectra of the LED, the excitation filter, and the emission filters are matched with the
absorption and fluorescence emission spectra of H8-Cy5. (a) Measured absorption and fluorescence
intensity spectra of H8-Cy5 show central wavelengths at 650 nm and 665 nm, respectively. (b) Mea-
sured LED irradiance, excitation filter transmission, and emission filter transmission show central
wavelengths at 632 nm, 615 nm, and 667 nm, respectively.

3.2. Performance Comparison of Developed vs. Commercial Fluorometer Using Aptasensor for
HSA Detection
3.2.1. Comparison of Calibration Curves for HSA Concentration Measurement: Developed
Fluorometer vs. Commercial Fluorometer

To establish a calibration curve for albumin detection, the developed fluorometer
was utilized in conjunction with the aptasensor procedure described in Sections 2.1–2.3.
The aptasensor’s GO and aptamer components were combined in a dark environment,
with an incubation time of 5 min at room temperature, forming the GO–aptamer complex.
Purified HSA solutions with varying concentrations ranging from 0.001 to 1.5 mg/mL
were prepared in the optimized PBS and artificial urine system for the aptasensor. The
fluorescence intensities obtained with the developed fluorometer were plotted against
the corresponding HSA concentrations, as shown in Figure 9. These results were then
compared with those obtained using a commercial fluorometer (QuantusTM, Promega).

The calibration curve displayed a sigmoidal correlation within the 0–1.6 mg/mL
range. Both the QuantusTM commercial fluorometer and the developed fluorometer
showed two linear correlations: one between 0 and 200 µg/mL (QuantusTM fluorometer:
Y = 0.0006593(X) + 0.01042, R2 = 0.98485; developed fluorometer: Y = 0.0017(X) + 0.0213,
R2 = 0.93056) and another between 200 and 1600 µg/mL (QuantusTM fluorometer:
Y = 0.02442(X) − 6.34609, R2 = 0.99374; developed fluorometer: Y = 0.5557(X) − 12.98087,
R2 = 0.9961).

The limits of detection (LODs) were determined to be 40 ng/mL for the QuantusTM

fluorometer and 203 ng/mL for the developed fluorometer, which were impressively lower
than those of the immunoturbidimetry method by 150-fold and 30-fold, respectively [35],
showcasing the excellent sensitivity of both portable fluorometers for albumin detection.
The developed fluorometer’s LOD was 5-fold higher than that of the commercial fluorom-
eter due to some environmental light leakage during the onsite field test. This issue can
be addressed by improving the fluorometer case design and material to completely block
external light. Overall, the sensitivity is more than sufficient for screening and monitoring
kidney function by detecting albuminuria.
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Figure 9. Calibration curves for HSA detection using an aptasensor with two different fluorometers:
(a) the QuantusTM commercial fluorometer and (b) the developed fluorometer. The curves plot
fluorescence response against HSA concentration. Both devices exhibited sigmoidal correlation within
the 0–1.6 mg/mL range. The QuantusTM commercial fluorometer results show two linear correlations,
one between 0 and 200 µg/mL (upper graph (a)) with Y = 0.0006593(X) + 0.01042 (R2 = 0.98485) and
another between 200 and 1600 µg/mL (lower graph (a)) with Y = 0.02442(X) − 6.34609 (R2 = 0.99374).
The developed fluorometer results also display two linear correlations, one within 0–200 µg/mL
(upper graph (b)) with Y = 0.0017(X) + 0.0213 (R2 = 0.93056) and another between 200 and 1600 µg/mL
(lower graph (b)) with Y = 0.5557(X) − 12.98087 (R2 = 0.9961).

3.2.2. Comparison of HSA Detection in Urine Samples Using the Developed Fluorometer,
Commercial Fluorometer, and Standard Hospital Method

The clinical performance of the aptasensor with the developed fluorometer was as-
sessed using 130 urine samples collected from volunteers in the Ubonrat area (Khon Kaen,
Thailand). The albumin concentrations in the urine samples were directly measured using
the aptasensor and the developed fluorometer without the need for additional treatment.
The GO and aptamer were incubated to form the GO–aptamer complex, and the urine sam-
ples were added to the complex solution. The fluorescence intensities of the samples were
then measured using both the developed fluorometer and a commercial fluorometer. Each
sample was tested in parallel using both fluorometers. The albumin concentrations obtained
from both fluorometers were analyzed using standard HSA calibration curves (Figure 9),
and the corresponding fluorescence intensities are presented in Figure 10. The albumin
concentrations determined using the developed fluorometer were comparable to those mea-
sured using the commercial fluorometer. The linear equation for the correlation between
the fluorescence intensities measured by both fluorometers is y = 0.92628x − 16.134, and
the coefficient of determination (R2) was calculated as 0.9652, indicating a strong positive
relationship between the measurements.

The albumin concentrations measured using the developed fluorometer were com-
pared to the results obtained from the standard method, immunoturbidimetry (Cobas Mira
System, Roche Diagnostics, Tokyo, Japan), conducted at Srinagarind Hospital (Khon Kaen,
Thailand). The correlation between the albumin concentrations measured by the developed
fluorometer and the commercial fluorometer is depicted in Figure 11a. Figure 11b dis-
plays the correlation between the commercial fluorometer and the standard method, while
Figure 11c illustrates the correlation between the developed fluorometer and the stan-
dard method.
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Figure 11. Correlation analysis of measurements obtained using the developed fluorometer, the
commercial fluorometer, and the standard method. (a) Comparison between the developed fluo-
rometer and the commercial fluorometer, revealing a linear relationship described by the equation
y = 0.81496x – 0.00144, with an R2 value of 0.98095. (b) Relationship between the commercial fluo-
rometer and the standard method, characterized by the equation y = 1.26442x – 0.06416 and an R2

value of 0.96806. (c) Correlation between the developed fluorometer and the standard method, with a
linear equation of y = 1.48508x − 0.06243 and an R2 value of 0.9446.

These findings revealed a significant correlation between the albumin concentrations
determined with both fluorometers and the data obtained through the immunoturbidimetry
method, as depicted in Figure 11. Notably, the correlation coefficient between the developed
fluorometer and the standard method was 0.9446, indicating a robust correlation. Similarly,
the correlation coefficient between the commercial fluorometer and the standard method
was 0.96806. These results align closely with those of the standard method and validate the
reliability and suitability of the aptasensor integrated with the developed fluorometer for
detecting albumin in urine samples without the need for sample dilution.

4. Discussion

The aptasensor and portable fluorometer developed in this study exhibited the suc-
cessful measurement and detection of human serum albumin (HSA) in urine samples. The
measured sensitivity limit of detection (LOD) was 0.203 µg/mL, which is comparable to
the LOD of the standard method, immunoturbidimetry, at a fraction of the cost. These
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findings support the feasibility and cost-effectiveness of the aptasensor and fluorometer for
HSA detection.

Although the selectivity of the developed sensor results from the aptamer, which
has already been proven to be strongly bound to human serum albumin [28,29], to gain
high reproducibility and repeatability from the aptasensor solution, we subtracted the
fluorescence signal with the background signal before taking measurements and calculated
the percentage fluorescence response instead of the raw fluorescence data. In terms of the
fluorometer, the sensor could face long-term optical, mechanical, and electronic component
degradation. However, performing calibration before use enhances the reproducibility and
repeatability of the fluorometer.

To further the clinical applications of this technology, further investigations are war-
ranted to establish the recommended albumin concentration threshold for the accurate
diagnosis of kidney disease. Additionally, it is recommended to explore the utilization of
injection-molding techniques for the mass production of the fluorometer’s fluorescence
chamber. Rigorous testing, including assessments of shelf life, storage temperature ranges,
and drop tests, should be conducted to ensure the reliability of the aptasensor and fluorom-
eter prior to commercialization.

Notably, the user-friendly nature and affordability of the aptasensor, fluorometer,
and accompanying software make them suitable for potential commercialization as a
home-based kidney disease screening test kit. Such a kit has the potential to facilitate the
early screening and monitoring of chronic kidney and renal disease in a convenient and
accessible manner.

5. Conclusions

In conclusion, this article presents a comprehensive study on the development of an
aptasensor coupled with a high-accuracy, low-cost, portable fluorometer and a smartphone
application for the measurement of albumin in urine samples, enabling the early detection
of kidney disease. The aptasensor incorporates a fluorescence-labeled aptamer in combina-
tion with fluorescence-quenching graphene. Remarkably, the aptasensor integrated with
the fluorometer achieved an impressive limit of detection (LOD) of as low as 0.203 µg/mL
for albumin in urine.

The design of the fluorometer was focused on achieving accuracy while maintaining
affordability through the utilization of compact, high-quality optical filters. The fluo-
rometer case was efficiently manufactured using an injection-molding technique, while
the circuit board was designed for automatic assembly using pick-and-place machines,
facilitating mass production. The portable fluorometer was seamlessly integrated with
a smartphone application, enabling the real-time calculation, reporting, and storage of
albumin concentration data.

To evaluate its performance, aptasensor-based albumin detection was compared
against an immunoturbidimetric assay conducted in a hospital laboratory, utilizing sam-
ples from 130 volunteers. The results demonstrated that the aptasensor, fluorometer, and
accompanying software exhibit ease of use, a compact size, and low cost, making them
highly promising for potential commercialization as home-based albuminuria test kits.

Notably, the portable fluorometer can be easily adjusted for various applications by
simply modifying the LED and filters. The software, designed to support multiple users,
enables the recording of concentrations for different chemical substances and facilitates
long-term health tracking.

Overall, the successful development and validation of the aptasensor, fluorometer, and
software highlight their potential as valuable tools for early kidney disease detection, with
the added advantages of user-friendliness, affordability, and adaptability. Future efforts
should focus on further optimizing and refining these technologies to bring them closer to
widespread commercial availability.
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6. Patents

Some materials in this study have been submitted for intellectual property patents in
Thailand (Application number: 19022002705, filing date: 11 July 2019).
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