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Developing a statistical electric vehicle charging model and its application in the
performance assessment of a sustainable urban charging hub
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ABSTRACT
A statisticalmodel to calculate dynamic, electric vehicle (EV) charging loads at public hubs,which can
be used with building simulation tools is presented; it was generated using two, real datasets and
shown to faithfully recreate the characteristics of charging seen in the monitored data. The model
was used with a building simulation tool to assess the ability of rooftop PV with battery buffering
to mitigate the effects of urban EV charging for a charging hub and car park in Glasgow, Scotland.
The car park’s 200 kW PV array could fully-offset the demand of a fleet of approximately 50 vehicles.
The addition of a small buffering battery (< 100 kWh) significantly increased utilization of renewable
energy, and reduced grid energy exchanges, but did little to mitigate peak demands.

ARTICLE HISTORY
Received 13 May 2023
Accepted 23 August 2023

KEYWORDS
Electric vehicle charging;
solar energy; photovoltaics;
building simulation;
sustainable buildings;
sustainable transport

Introduction

In common with the rest of the developed world, the
nature of energy demand in the UK built environment is
set to change radically, driven by the need to make our
buildings more sustainable (Scottish Government 2021;
UK Government 2019). This entails a transition away from
fossil fuels for water and space heating, towards zero-
carbon alternatives such as decarbonized grid electricity
(CCC 2022). There is a parallel migration away from fossil-
fuelled vehicles to more sustainable alternatives (DFT
2018), which has resulted in a rapid growth in electric
vehicles (EVs) charged at home, dedicated charging hubs,
or charge points at or near the workplace (Hardman et al.
2018). This nexus between electrified heating, and home
or work-based vehicle charging means firstly, that trans-
port loads are likely to become an intrinsic part of both
domestic and non-domestic building electrical demands,
and secondly, both peak electrical power demand and
bulk demand for electricity in the built environment will
increase substantially (e.g. Ramirez-Mendiola et al. 2022).
Zou et al. (2023) provide a comprehensive review of the
potential impact of EV charging on the characteristics
of built environment electrical demand, and on elec-
trical infrastructure. As building simulation (BSim) tools
are the de facto means of assessing energy use in the
built environment, they should encompass workplace or
home EV charging, allowing practitioners to assess the
impact of the electrification of heat andmobility onbuild-
ing performance, at a range of scales. For example, at
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the building scale, characterizing EV charging demand
will be required to properly size and orchestrate local,
clean energy systems for Net Zero operation. At the
city scale, predicting the impact of increased electrical
demand from communities (from the electrification of
heat, increased use of cooling and local vehicle charg-
ing) can inform energy networks planning and design,
reducing the risk of demand outstripping the sustain-
able energy infrastructure needed to support it (Fowler,
Elmhirst, and Richards 2018).

Review

There have been amany studies looking at buildingswith
integrated renewables and EV charging. Many papers
have focused on individual dwellings, attempting to opti-
mize charging schedules to minimize costs or reduced
peak demands. For example, Molina et al. (2012) devel-
oped a MATLAB model of a single EV connected to
a building with a photovoltaic (PV) array, they used a
neural network to optimize charging and discharging.
The authors concluded that the potential for cost sav-
ings was minimal under time-of-use-pricing, and do not
report on the potential for greenhouse gas savings. Kelly,
Samuel, and Hand (2015) modelled a building with PV
supported EV charging with a heat pump, using the
ESP-r building simulation tool (ESRU 2023) to investigate
co-ordination strategies between EV charging and heat
pump operation. The EV charging model was derived
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from travel survey data. The results indicated that oper-
ating the EV battery in vehicle-to-home (V2H) mode
(i.e. allowing some limited discharging to support heat
pump operation) and off-peak heat pump operation was
the best co-operative strategy to limit peak electrical
demand. Doroudchi et al. (2018) used a linear program-
ming approach to optimize the operation of a Net Zero
single family house modelled in IDA-ICE (Equa Simula-
tion Ltd. 2023), the study included rooftopPV, a stationary
battery and an EV. The EV demand was calculated by
a probabilistic approach using information from Finnish
travel survey data. The study looked at the use of the
EV for vehicle-to-home charging/discharging for a heat
pump and district-heat case, the work showed that V2H
operation reduced the power imported and exported
to the network. Svetozarevic et al. (2022) used agent-
based controlwithmachine learning, trainedofflineusing
historical performance data, to mimimise the cost and
maximize comfort associated with a real test dwelling
heated by a heat pump and with a ‘vehicle’ capable of bi-
directional charging; the vehicle was emulated by a sta-
tionary battery in their experiments. The authors demon-
strated the potential for both cost savings and comfort
improvements.

There are also studies looking at workplace, or domes-
tic charging of multiple EVs, often supported using pho-
tovoltaic arrays. In an early US study, Birnie (2009) under-
took some high-level modelling, indicating that for com-
muters in the north-eastern USA, the energy produced
by 15m2 of PV could entirely offset the energy required
for commutes of 15–30 km, with plug-in hybrid electric
vehicles. Mouli, Bauer, and Zeman (2016) analysed the
performance of a small PV system (10 kWp), supporting
the charging of up to 3 EVs in the Netherlands. The EV
charge taken was assumed to be a fixed 10 kWh, though
various charging profiles are analysed; the use of a small
10 kWh battery was seen to significantly reduce energy
drawn from the grid. Tulpule et al. (2013) analysed a
100 kW PV array supporting up to 50 electric vehicles in
different US cities along with the use of smart charg-
ing control. They demonstrated a significant reduction
in CO2 emissions. Chaudhari et al. (2018), utilized a lin-
ear programming approach in a least cost optimization
of an EV charging hub in Singapore featuring PV and bat-
tery storage. The authors concluded that the use of PV
plus storage could reduce the average and peak power
demand from EV charging. Yan, Zhang, and Kezunovic
(2019) use a multi-stage optimization algorithm (com-
prising day-ahead, hour-ahead, and real time compo-
nents) to optimize the charging of a fleet of EVs with PV-
supported EV charging and a battery. The study focused
on the optimization of costs. Both the PV generation
and EV behaviour used probabilistic models. The paper

concluded that hour-ahead optimization had the great-
est effect on performance in terms of reducing the cost
associated with charging. Wang et al. (2019) investigated
accuracy in short term forecasting of solar availability
and smart charge scheduling forworkplace PV-supported
charging of around 30 EVs. The objective of the smart
charge scheduling was to flatten EV charging demand
and reduce chargingvariability, however the authors con-
cluded that typical weather forecast errors were a barrier
to optimization. The paper used a probabilistic vehicle
chargingmodel, featuring varying vehicle arrival, lay-over
and charging requirements. However, noneof the param-
eters used in the model were linked to references. Huang
et al. (2022a) used a generic algorithm in an attempt
to optimize the home charging on a small fleet of vehi-
cles. The vehicle charging model was probabilistic with
its characteristics derived from wider transport survey
data. The electric demands and PV generation were cal-
culated using dedicated models. The paper tested dif-
ferent charging control strategies, with the authors indi-
cating a top-down strategy yielded the best results in
terms of self-consumption of PV and minimization of
peak power flows to and from the network. Using an
EV-centric charging model, that was developed from
Swedish travel data. Huang et al. (2022b) also investi-
gate the impact of smart charging on vehicle batteries,
with their modelling work indicating that smart charging
reduces peakdemandwithout significant impacts onbat-
tery performance, bidirectional charging increased bat-
tery degradation. Fachrizal et al. (2022) presented met-
rics for assessing workplace PV with EV charging based
on self-sufficiency and self-consumption. The study indi-
cated that smart charging significantly improved both
self-sufficiency and self-consumption. Park et al. (2023)
used EnergyPlus (EnergyPlus 2023) along with machine
learning to try and optimize PV-supported EV charging
at the community scale. The machine learning algorithm
was trained using real charging data, though the details
of this data were not elaborated on. The model was
used to try and optimize the design of the overall
energy system to accommodate EV charging. Korkas et al.
(2022) described a dynamic programming approach to
optimize a building-PV-EV-storage system with build-
ing loads modelled using EnergyPlus (ibid), comparing
a range of different algorithms and their ability to min-
imize global costs, whilst maximizing building thermal
performance. The work tested the optimization concept
and did not apply the modelling approach to a realistic
problem.

Many of the vehicle charging models in the papers
outlined use travel survey data. Pareschi et al. (2020)
tested the ability of EV models, created using travel
survey data, to predict charging behaviour, concluding
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that this approachenables realistic chargingprofiles tobe
developed, the reportedR2 correlationwith real data0.83,
though this dropped to 0.7 when situations modelled
differed markedly from the input data.

Aim

The aim of this work was to develop a rules-based, sta-
tistical model of EV charging demand that can be gener-
ated and re-calibrated as required using real EV charging
data (in contrast to models developed using travel sur-
vey data, seen frequently in the literature), and which
produces time-series, synthetic charging data for use
in building simulation studies; alternatively, the model
could be integrated directly into building simulation
tools. The supporting objectives were to analyse a sub-
stantial EV charging dataset; develop and calibrate a
probabilistic EV charging model, develop a building sim-
ulation model and complementary electrical load flow
model of a real EV charging hub from Glasgow, Scot-
land, and apply the models in combination to assess
the ability of PV and battery buffering to mitigate come
of the impacts of vehicle charging, making it more
sustainable.

Contributions

(1) Statistical analysis of EV charging datasets.
(2) A generic, statistical, vehicle-centric EV charging

model is developed and presented, that can be cal-
ibrated using charging data.

(3) The model was applied, along with a building sim-
ulation tool, to a case-study in the city of Glasgow,
Scotland.

Dataset analysis and EV chargingmodel
development

Two datasets were used in the development of the elec-
tric vehicle (EV) charging model. The first was a data
set from Transport Scotland, which comprised a record
of 754,200 vehicle charging events in Scotland over the
period 2013–2017. The dataset included the information
shown in Table 1.

A total of 547,321 entries were used in the develop-
ment of the model. Of the remaining charging events,
87,821 were data entries with no charging data, and
42,544 data entries had anomalous or unrepresentative
data (negative duration, e.g. durations exceeding 24 h,
chargingevents of less than0.1 kWh). Additionally, 76,508
data entries were for taxis, of which 76,126 related to one
firm. All of these entries were removed from the calibra-
tion dataset.

Table 1. Data headers from Transport Scotland EV charging
dataset.

Entry Data Item Entry Data Item

1 Charging event 10 Charge Cost £
2 User ID 11 Charger Location
3 Charger ID 12 Charger Group
4 Charger Point Connector ID 13 Charger Model Type
5 Charger Start Date 14 Host ID
6 Charge Start Time 15 Card Status
7 Charge End Date 16 Tag Serial
8 Charge End Time 17 Vehicle Type
9 Total Charge Taken kWh

Table 2. Data headers from the City of Glasgow EV charging
dataset.

Entry Data Item Entry Data Item

1 SDR ID (–) 7 Cost £
2 Site Name (–) 8 Consumption kWh
3 Card Number (–) 9 Duration hh:mm:ss
4 Charger ID (–) 10 Charge Start (Date)
5 Connector Number (–) 11 Charge End (Date)
6 Currency (–)

A second, smaller dataset acquired from the City of
Glasgow comprised 2,556 public charging events from
2022, and the data captured is shown in Table 2. In
this second dataset, 500 charges had a charge energy of
0 kWh and these were removed.

Developing a probabalistic EV chargingmodel

The datasets were used to generate a statistical vehi-
cle charging model that captured the inherent variabil-
ity in charging behaviour seen real charging, and which
could be applied to different scales of vehicle charg-
ing demand.1 Three key charging characteristics were
generated.

• Firstly, the transport Scotland dataset was used to cre-
ate a weekly charging frequency cumulative distribu-
tion function (CDF): used to derive a daily charging
probability and hence test whether a vehicle would
charge on a particular day.

• Secondly, the samedatasetwas used to create a charg-
ing start time CDF: used to determine when in the day
a vehicle would begin to charge.

• Thirdly, the City of Glasgow dataset was used to cre-
ate a charge taken CDF: used to determine the energy
taken during a specific charge event and charging
time.

Creation of the charge taken CDF using this more
recent, but smaller dataset was necessary as the electric
vehicle market has evolved rapidly, with vehicle battery
capacities increasing and a move from hybrid electric
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vehicles such as the Mitsubishi Outlander with small bat-
tery capacity of 12 kWh (Kane 2017), to full electric vehi-
cles such as the Tesla Model 3 with a battery capacity of
57.5 kWh (Kane 2022). Hence, charge requirements have
increased rapidly; for example, the average charge taken
in the 2022 City of Glasgow dataset was 20.97 kWh, whilst
the average charge taken in the older Transport Scotland
dataset (2013–2017)wasonly 8.5 kWh. The characteristics
of the timing of charge events were similar between the
two datasets.

Weekly charging CDF and daily charging probability
Individual vehicles were identifiable in the Transport
Scotland dataset (via a unique User ID shown in Table 1)
and the characteristics of theirweekly chargingbehaviour
was used to generate the cumulative distribution func-
tion (cchf ) of vehicle weekly charging frequencies shown
in Figure 1.

The probability that a vehicle would have a particular
charging frequency was calculated as follows.

pchf (i) =
∑

vehicles charging i times per week
number of vehicles in dataset

× 100, i ∈ Z ∩ [1, 7]. (1)

Also,

cchf (i) =
x≤i∑
x=1

pchf (x). (2)

Figure 1 shows that most vehicles charged only once or
less per week at a public charge point. The data showed
very little seasonal variation in charging frequency, so
seasonality is not considered as a factor.

To calculate the weekly charging frequency, pchf ,v , of
a vehicle, v, a random integer value X0 ∈ Z ∩ [0, 100]
was tested against the cumulative density function, cchf ,

(shown in Figure 1). The vehicle’s daily charging probabil-
ity pchd,v was then set using Equation (3):

pchd,v = 100 × i

7
,

where
{
cchf (i − 1) ≤ X0 ≤ cchf (i), 1 < i ≤ 7
X0 ≤ cchf (i), i = 1

(3)

However, the dataset indicated differences in the por-
tion of charges, fchx , occurring on weekdays, Saturdays or
Sundays, with 0.728 of vehicle charges occurring during
weekdays, 0.161 on Saturdays and 0.111 on Sundays. The
base daily charging probability pchd,v was therefore mod-
ified to account for these differences using Equations (4)
and (5) (Table 3).

p′
chd,v = dm × pchd,v , (4)

where

dm = fchx × 7∑
days in period x

(5)

The resulting modifiers for the base daily charge proba-
bility were as follows.

The calculated charging probability p′
chd,v was persis-

tent, so, a vehicle assigned a twice-weekly charging char-
acteristic would charge (on average) twice-weekly over
a simulated period. At an individual vehicle level, this
would not reflect reality, as individual chargingbehaviour
may vary wildly from week-to-week. But the role of the
modelwas to predict the demand of a population of vehi-
cles, so the realism of individual charging patterns was
less relevant than the realism of the aggregate charging
profile.

Table 3. Daily charging probability modifiers.

Day Type Modifier

Weekday 1.02
Saturday 1.13
Sunday 0.78

Figure 1. Probability and cumulative probability ofweekly vehicle charging frequency, cchf , derived from the transport Scotlanddataset.
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To test whether the vehicle, v, charged on a particu-
lar day, a random value X1 ∈ R ∩ [0, 100] was generated,
and tested against p′

chd , such that.

X1 ≥ p′
chd,v ⇒ chargingv = TRUE. (6)

Charging start time CDF
The charging datasets indicated that there was a clear
difference in the timing of charging behaviour between
weekdays and weekends (with Saturday and Sunday
charging timings being very similar). The left-hand graph
in Figure 2 shows the probability of a time-dependent
charging event starting, pchs, for both weekends and
weekdays; using the Transport Scotland dataset, the
probability for charge events starting within half-hour
time intervals during a day (differentiated by weekdays
or weekends) was derived as follows.

pchs(�tj) =

∑
(weekday||weekend)

charge events starting in � tj

number weekday||
weekend charge events

× 100 (7)

where�tj is a 30-min time interval in a day, j ∈ Z ∩ [1, 48].
There was a peak in weekday charging between

around 6–9 am, with less distinct peaks around midday
and 4pm. This pattern of usage was consistent across
all weekdays. Weekend charging peaked aroundmidday,
with a lower ramp up in the probability of a charging
event. The morning peak in the probability of charging
was entirely absent during weekends. The cumulative
probability of a charge event starting, cchs, is shown in the
right-hand graph of Figure 2, where

cchs(�tj) =
x≤j∑
x=1

pchs(�x). (8)

To determine the time at which a vehicle, v, would start
charging on a particular day, a random value X2 ∈ Z ∩

[0, 100] was tested against cchs, over multiple time incre-
ments, with charging deemed to start within the 30-
minute time interval �tj, where

tcharge−start,v ∈ �tj, where{
cchs(�tj−1) ≤ X2 ≤ cchs(�tj), 1 < j ≤ 48
X2 ≤ cchs(�tj), j = 1

(9)

Charge taken CDF
The left-hand graph in Figure 3 shows the probability of
a particular charge energy, Ek , being taken, pchE , from the
more recent City of Glasgow dataset, this is computed in
a similar fashion to pchs.

pchE(Ek) =
∑

charge events drawing Ek
number of charge events

× 100 (10)

Here Ek , is the nearest integer of the charge taken, which
showed a pronounced peak at around 22 kWh, and the
largest charge seen was 85 kWh, hence k ∈ Z ∩ [0, 85].
The right-hand image in Figure 3 shows the cumulative
probability, cchE , of a discrete quantity of charge being
taken:

cchE(Ek) =
x≤k∑
x=1

pchE(Ex). (11)

To determine the quantity of energy taken, Ek(kWh), by
a vehicle, v, during particular a charge event, a random
value X3 ∈ Z ∩ [0, 100] was generated and then tested
against the cumulative distribution function cchE(Ek), so
that

Echarge−taken,v = Ek , where{
cchE(Ek−1) ≤ X3 ≤ cchE(Ek), 1 < k ≤ 85
X3 ≤ cchE(Ek), k = 1

. (12)

Note that the charge taken does not distinguish between
charger types, a refinement of the model, using future
data, could include this differentiation between chargers.

Figure 2. Probability distribution, pchs and cumulative probability distributions, cchs of EV charging event starting for weekdays and
weekends derived from the Transport Scotland dataset.
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Figure 3. The probability pchE and cumulative probability cchE and off a particular charge being taken (kWh).

Charging algorithm

The algorithm for the computation of vehicle charging
demand over a defined time interval is illustrated in
Figure 4. For a user defined population of chargers and
vehicles, using random variable X0, the algorithm firstly
sets each vehicle’s day-type-dependent daily charging
probability, p′

chd , as set out in Equations (1)–(5). The

daily charging probability, p′
chd is then tested against ran-

dom variable X1 to determine whether or not a vehi-
cle charged on a particular day (Equation (6)). Random
variable X2 is generated and used to test determine
the charge start time as set out in Equations (7)–(9).
The vehicle is then randomly allocated to a compati-
ble charge point from the available chargers. If a com-
patible charge point is not available (i.e. all compatible

Figure 4. Flow chart illustrating a vehicle-centric probability-based algorithm to calculate an aggregate charging profile.
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chargers are occupied by a charging vehicle), then the
start of charging for the vehicle is delayed until a com-
patible charger becomes available. Random variable X3
is then used to determine the charge taken according
to Equations (10)–(12), and finally, the charging time is
calculated by dividing the charge taken by the power
of the charge point, Pcp, that the vehicle is allocated
to, so

tend = tstart + �tcharge (13)

�tcharge = Echarge
Pcp

(14)

The average charge taken over a charging period will,
typically, be less than indicated by Pcp × �tcharge, and so
the charge taken in the final time increment is adjusted
to ensure that the charge taken is correct. The charg-
ing power for the vehicle is then added to the total
charging power for the relevant half hour time incre-
ment tj, j ∈ {1, 2, 3 . . . 47, 48}. All days in the user-defined
time period being simulated are treated in this way.
The process is repeated for each vehicle in the vehicle
fleet, building up a complete charging profile for the
user defined period, vehicle fleet and charger fleet being
simulated.

Anexampledemandprofile is shown in Figure 5, show-
ing time-varying demand for a fleet of 80 EVs for a calen-
dar year.

Model testing

The model’s ability to reproduce the intrinsic charging
behaviour seen in the input datasets was tested (i.e.
the degree of calibration). Figure 6, shows the time-
dependent probability of a charge event occurring on
weekdays and weekends for simulated data (80 vehicles)
and from the original Transport Scotland dataset. The R2

correlation between probabilities derived from empirical
and simulated data for the start of weekday charging is
0.991 and 0.981 for weekend charging. The weekday sim-
ulated dataset reproduces the surge in charging demand
between 6 and 9am seen in the Transport Scotland
dataset.

Figure 7 shows the cumulative probability of a par-
ticular charge being taken during a charge event from
both the same simulated data and the City of Glasgow
chargingdataset. TheR2 correlationbetween the cumula-
tive probabilities of charge taken from the simulation and
datasetwas 0.9996. TheR2 correlationbetween simulated

Figure 5. Example of demand profile for a fleet of 80 electric vehicles.

Figure 6. Simulated and monitored time-dependent charging probabilities.
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Figure 7. Simulated and monitored cumulative probabilities of charge taken during a charge event.

Figure 8. Mean charge taken and std. dev. of charge taken from
dataset and simulation.

and dataset the probability curves for charge taken was
0.925.

Finally, Figure 8 showsmean and standarddeviationof
the charge taken in charge events for the simulated and
Glasgow dataset.

The tests highlighted demonstrate that the charging
model can adequately recreate the charging characteris-
tics of the original dataset.

Application – Glasgow car park EV charging

The EV charging algorithm, has been applied, along with
the ESP-r building simulation tool (ESRU, ibid) to assess
the performance of a prospective sustainable electric
vehicle charging hub in Glasgow, Scotland, which fea-
tures a rooftopphotovoltaic array and abufferingbattery.
The hub is located at the Duke Street car park, close to
Glasgow city centre and has 1170 parking spaces located
over 9 floors. Given the space available, a PV rooftop array
with a total surface area of 1250m2, and comprising 625
PV panels with a notional peak power output of 200 kWp
was proposed (see Figure 9).

This investigation here systemwas undertaken as part
of the EU-funded RUGGEDISED project (RUGGEDISED
2023).

This study assessed the ability of the PV with bat-
tery buffering, to mitigate some of the effects of uncon-
strained EV charging, examining the effects of different
battery sizes and populations of vehicles using the hub.
This approach differs frommany of the papers in the liter-
ature, in that it does not include restrictions on charging
times, or the potential for vehicle-to-grid (V2G) operation.

Figure 9. Duke St car park (Image: Google street view) and rendered image of the ESP-r Duke St Car Park model with roof-mounted PV
arrays and shading from surrounding buildings.
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However, it does feature a range of charging load levels
andbufferingbattery sizes. The rationale is that (1) at least
in the short-term, intelligent control of vehicle charging
will lag the deployment of charging infrastructure and
so the work here represents the analysis of a likely-near-
term scenario. According to Zou et al. (2023) uncoordi-
nated charging accounts for the large majority of vehicle
charges; (2) local, supply-side approaches to controlling
EV charging impacts on the grid such as PV with bat-
teries could be seen to be preferable to demand-side,
time-based charge control for time-constrained users of
public charge points; (3) constraining stochastic demand
for power through control (intelligent-or-otherwise) can
lead to unintended demand peaks, worsening the impact
on the grid (e.g. Callaway 2009).

HUBmodel

The multi-tool approach was adopted to model the per-
formance of the charging hub.

• A model of the car park, including its 200 kWp
roof-mounted PV array was created on ESP-r, which
includes an electrical systemmodelling capability.

• The EV charging algorithm calculated the electrical
demand associated with different sizes of vehicles
fleets, this datawas used as boundary data for the load
flowmodel.

• A load flowmodel of the charging hubwas developed,
that included vehicle chargers, PV array, battery stor-
age, grid connection and that featured the ability to
apply a supportive battery operating strategy.

• The load flow model computed the electrical power
exchanges between PV array, charging hub, battery
and the grid for a series of year-long scenarios, and
metrics such as the renewable energy contribution,
renewable utilization factor, energy exchanges with
the grid and peak power flows extracted.

Building simulationmodel
The ESP-rmodel of the car park, featured adetailedmodel
of the PV array on the car park roof (Figure 9). When sim-
ulated, using real climate data (temperature, solar radia-
tion, wind speed and direction and relative humidity) as
a boundary condition over a user defined period (a year
in this case), the transient energy and mass transfer pro-
cesses occurring in the building were computed, solar
insolation and temperature-sensitive PV output, etc; the
work described here primarily used ESP-r’s solar energy
and PV modelling capability (Kelly 1998); which have
been validated by Strachan, Kokogiannakis, andMacdon-
ald (2008), Mottillo et al. (2006), respectively. ESP-r’s PV
algorithm computed the power output from the car park

array, also factoring in the impact of self-shading and
shading from surrounding buildings. It firstly calculated
the operating voltage and current of a single PV cell as a
function of the incident solar radiation and cell tempera-
ture. The results were then extrapolated to determine the
operating state of the panel and hence the whole array,
assuming all of the panels are of the same type and at the
same orientation and tilt (Equations (12)–(16)).

1 + IL
IG

= exp
(

eVi
λkTi

)[
1 + eVi

λkTi

]
(15)

where λ is given by:

λ =
(

e
kTref

) (
VMP

VOC
n

)
(
ISC−IMP

ISC

) ; (16)

The cell generation current IG is calculated by:

IG = β

⎛
⎜⎜⎝ − ISC

m

exp
(

e
VOC
n

λkTref

)
− 1

⎞
⎟⎟⎠ 2(Ti−Tref ) (17)

The cell light generated current, IL, is given by:

IL = Q̇i SOL

Q̇ref

ISC
m

. (18)

The total array power output is given by:

Pi =
[
ViIG

(
1 − exp

(
eVi
λkTi

))
− VMPIL

]
nmq. (19)

The input data for the PV model is shown in Table 4.
ESP-r’s thermal solver computed the panel tempera-

ture Ti, and the incident solar radiation intensity Q̇iSOL,
which included the effects of shading. So, for a layer, i, in
a surface of the building containing the PV material, the
heat balance equation was as follows.

dTi
dt

= 1
Mc

⎡
⎣ n∑

j=1

Q̇i,j − Pi

⎤
⎦ (20)

Table 4. Characteristics of the PV panels used in the analysis
(Longi 2020).

Open circuit voltage (VOC ) 49.5 V
Short circuit current. (ISC ) 11.66 A
Voltage at maximum power point (VMP) 41.7 V
Current at maximum power point (IMP) 10.92 A
Reference insolation (Q̇ref ) 1000 W/m2

Reference temperature (Tref ) 298 K
Number series connected cells in a branch (n) 144
Number of parallel connected branches (m) 6
Number of panels (q) 24
Temperature sensitivity of IG (β) 1.072
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where Q̇i,j are the different heat fluxes associated with
the layer, e.g. solar absorption, conduction from adjacent
layers, convection, etc.

Figure 10 shows the output from preliminary simula-
tions of the PV array, showing notional yield per m2 in a
Glasgow climate, indicating that 30o slope from the hor-
izontal provided the maximum annual electrical energy
output.

The calculated PV power output using a test reference
year for Glasgow is as shown in Figure 11.

Although the array mounted on the car park roof had
a notional output of 200 kWp, the simulated peak power
produced was significantly less than this at 139 kW. The
reasons for this are that the peak incident solar radia-
tion on the PV arrays of 808.9W/m2 on the PV was less
than that used bymanufacturers in tests to determine the
notional power output; the peak insolated panel temper-
ature of 64.0°C was higher than the temperature used in
the tests of 25°C, further reducing operating efficiency;
and the model also included power converter inefficien-
cies (∼10%). This reduction in in-situ performance com-
pared to manufacturers’ tests has been noted elsewhere
e.g. (Clarke et al. 1996).

The car park model also accounted for the lighting
loads for the car park bays, stairwells and a small office
along with 500W of load for the office IT. There were
some 520 light fittings each with a full power demand of

Figure 10. PV array annual energy yield vs slope.

58W, dimmable to 12W (GCC 2018), which were subject
to daylighting and occupancy sensitive controls control.
Daylighting control allowed 25% of lights to be switched
off when daylight levels were suitable (computed by ESP-
r). Further, occupancy control temporarily increased the
light output of 3 light fittings from the default (dimmed
state) in the immediate vicinity of vehicles to full power
(GCC 2018); this used the vehicle charging data from the
charging algorithm to estimate vehicle presence and the
dynamic changes in lighting demand.

Charging hub electrical model
To assess the interaction between the PV, battery, charg-
ing load and the network, an electrical load flow model
was created as shown in Figure 12. This integrates the
othermodel components: PV array, EV charging demand,
other car park electrical loads, and also includes the
buffering battery and connection to the local low voltage
(LV) grid. The battery, PV array and charging hubs are all
connected via converters to a common AC busbar, and
the battery and grid connection are bi-directional. The
battery can reconcile short term-temporal mismatches

Figure 12. Car park charging hub electrical load flowmodel.

Figure 11. Simulated car park half-hourly PV output.
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Table 5. Battery parameters used with the model (GCC 2018).

battery capacity (CMAX ) 0–500 kWh
minimum state of charge (SOCMIN) 0.2
charging efficiency (ηC ) 0.960
discharge efficiency (ηD) 0.972
battery standing loss (ε) 6.25× 10−5 of CB(t) per time step
converter efficiency (ηX ) 0.9

between the availability of PV-generated electricity and
vehicle charging.

The basic equation for the determining power exch-
anged between the different elements of Figure 12 was
as follows.

PLV = PEV − PPV − POL ± PB (21)

where PLV is the power exchanged with the low voltage
grid (LV), so the system can either import or export power
when the battery PV cannot support charging or export
power when the battery is full and PV output exceeds
charging demand. The battery state of charge was deter-
mined as follows.

CB(t + �t) = (1 − ε)CB(t) ± PB (22)

SOCB = CB(t + �t)

CB MAX
(23)

The battery power flow, PB, was determined by the bat-
tery operating strategy.2 If there was available energy
from the PV, and the total demand (vehicle charging
demand and other electrical loads), PTD = PEV + POL, was
less than the PVgeneration,PPV , then thebattery charged.
Where the PV output power exceeded the battery’s max-
imum charging rate, then the surplus was spilled to the
grid. If there was energy available from the PV, but this
was less than the total demand, the battery discharged to
help meet the demand – if there was sufficient charge in
the battery. Only where the PV and battery output were
insufficient to meet the demand, was power drawn from

the grid (Table 5).

PB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηCηX(PPV − PTD), if SOCB < 1 ∧ PPV > PTD
PTD − PEV

ηDηX
,

if SOCB > SOCMIN

∧PPV < PTD
0 otherwise

(24)

The fleet of chargers at the hub is shown in Table 6.

Simulationmethodology

To assess the impact that the numbers of EVs using the
hub and the battery size had on performance, the follow-
ing parameters were explored:

• the vehicles supported by the hub were varied
between 0 and 500; the car park has 1170 spaces. With
an average occupancy of 82% City Parking Glasgow
(2015), 500 EVs represents approximately half of all
vehicles frequenting the car park; a scenario not likely
to occur until the late 2030s, given current projections
(Hirst 2020).

• the battery size was varied between 0 and 500 kWh;
the upper value is sufficient to store the typical
daily electrical output from the PV array, after vehicle
charging.

In total, 90 operating caseswere analysed. As an objec-
tive was to assess peak power flows, no limits were set
on the power that could be drawn from or exported to
the network and the power that could be accepted by or
discharged from the battery.

The basic process for the simulation of the car park
operating cases was as follows.

• Stage 1 The vehicle charging model (Equat-
ions (1)–(14)) was run to determine the half-hourly
electrical demand profiles for 10, 20, 50, 100, 200, and
500 vehicles using the car park.

• Stage 2 Annual ESP-r building simulations were then
run with Glasgow climate data and each of the EV

Table 6. Charger ‘fleet’ used with the model (ChargePlace Scotland 2023).

Charger information Connector information

Charger Type Number of connectors Maximum Power (kW) Type Maximum Power (kW) Type Maximum Power (kW) Type

OC4S 1 2 22 Fast 22 22 Fast 22
OC4S 2 2 22 Fast 22 22 Fast 22
OC4S 3 2 22 Fast 22 22 Fast 22
OC4S 4 2 22 Fast 22 22 Fast 22
Rapid 1 3 51 RDCa 51 RAC2 43 RAC
Rapid 2 3 51 RDC 51 RAC 22 Fast 22
Rapid 2 3 51 RDC 51 RAC 22 Fast 22
aRDC – rapid DC; RAC – RAPID AC.
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demand profiles to determine the PV output at half-
hourly intervals (Equations (15)–(20)), and the occu-
pancy and daylight sensitive lighting loads for the car
park.

• Stage 3 The car park electrical load flow model (fea-
turing the battery) was run for all operating cases
using the demand profiles from stage 1, the PV gen-
eration and lighting/small power loads from 2; solving
Equations (21)–(24), enabled the battery state, battery
charge/discharge and the import/export with the grid
to be computed at half-hourly intervals.

Note, for each case analysed with the load flowmodel,
performance was simulated over two calendar years
using two-year-long time series, comprising duplicated
annual profiles of PV output, EV demand and light-
ing/SPL demand. The first year of data was used for pre-
simulation, and only the second year’s data was used in
the analysis. This ensured that the starting SOC of the
battery at the beginning of the simulated period was
based on calculated values and not a guesstimate, as for
larger battery sizes, the starting SOChad an impact on the
annual results.

The metrics derived from each operating case were as
follows.

• The fraction of hub electrical load that was supplied by
the PV – the renewable energy contribution (REC), and
a complimentarymetric the renewable utilization frac-
tion (RUF). The higher value of REC and RUF, the more
local, zero-carbon electricity is being used to charge
vehicles and power the car park loads, rather than
being drawn from the grid.

• The energy exchanges with the grid – this information
was used to calculate the carbon emissions associated
with the charging hub.

• The peak power imported or exported to the electricity
network – the latter has an impact on the viability of
the EV charginghub scheme, as higher the peak power
flows require a larger investment in infrastructure to
support charging and may require that the surround-
ing network is reinforced.

• The state of charge (SOC) and power flows associated
with the battery – this is useful in determining a best-fit
battery size to support EV charging and understand-
ing the characteristics of electrical power and energy
exchanges with the network.

Results and discussion

Figure 13 illustrates the basic time series outputs from the
model for the case of a fleet of 50 vehicles serviced by the
hub, with a 100 kWh battery. It shows the PV generation

and EV charging load, exported and imported power, and
the battery SOC respectively, for one simulated year. The
data highlights the strong seasonality of PV generation
in a Glasgow climate, with relatively little power produc-
tion in the winter months; this is reflected in the export
of energy to the grid occurring mainly between mid-
February toOctober. Import of energy occurs throughout
the year (but reduces April – October), when solar and
stored energy in the battery is not sufficient to support
charging. The battery state of charge (SOC) is regularly at
100% April to October, but drops over the winter period.

Overall energy supply and demand

The total annual energy from the PV array, after conver-
sion and shading losseswas approximately 159MWh. The
non-EV demand was approximately 78MWh. The total
simulated demand for the different numbers of vehicles
using the charging hub is as shown in Table 7.

The net demand of the car park with a clientele of just
over 50 EVs could be fully offset by the 200 kWp PV array
of the car park.

Renewable energy contribution and renewable
utilization fraction

Thesemetrics show the contributionof renewable energy
to the overall demand of the hub, and the amount of
renewable energy from the PV array that was used to
meet local needs, respectively. The renewable energy
contribution was calculated as follows:

REC = 100 ×
[
1 − Annual Imported Energy(kWh)

Annual Energy Demand(kWh)

]

(25)

And the renewable utilization fraction (RUF) was calcu-
lated using:

RUF = 100 ×

⎡
⎢⎢⎢⎣1 − Annual Exported Energy(kWh)

Annual Renewable
Energy Output(kWh)

⎤
⎥⎥⎥⎦
(26)

Figure 14 shows the REC and RUF, for vehicle numbers
between 10 and 500 and battery sizes between 0 and
500 kWh. The REC decreased with increasing numbers
of vehicles. The maximum possible REC was 80% with
10 vehicles, dropping to under 20% with 500 vehicles.
Increasing battery size generally increased the REC, but
for the 500-vehicle case, increasing battery size made
a minimal difference. The RUF increased as the load-
ing from vehicles increased. At lower vehicle loadings,
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Figure 13. Example of time series output from the simulation, for the case with 50 vehicles and 100 kWh battery.



14 N. J. KELLY ET AL.

Table 7. Annual simulated electrical demandwith different num-
bers of vehicles using the huba.

Vehicles 10 20 50 100 200 500

EV Demand (MWh) 17.5 29.3 71.9 156.8 302.6 732.0
Total Car Park Demand
(MWh)

95.9 107.7 150.3 235.2 381.1 810.4

aAs the EV charging profiles are generated using a probabilistic model, the
increases in energy demand will not be exact multiples of the number of
vehicles.

the RUF also increased with battery size, due to reduced
export of power to the electricity network.

The addition of a relatively small battery (less than
100 kWh), significantly improved the RUF, the localized
use of the PV generated power. For example, with 10 EVs
using the hub, the RUF was approximately 26% with no
battery, rising to 47% with a 100-kWh battery.

Adding additional battery capacity above approxi-
mately 100 kWh, resulted in more marginal improve-
ments in performance. For example, for the same EV case
with a 100 kWh and 500 kWh supporting battery capacity,
the RUF only increased from 47% to 55%.

Import and export of electricity

The annual electrical energy imported from the grid to
support the hub is shown in Figure 15, the numbers of
vehicles using the hub dominated this metric. For exam-
ple, for the 10-vehicle case with no battery, over 57 MWh
of imported electricity was required, whilst with 500 vehi-
cles over 666MWhof electricitywas imported. For smaller
numbers of vehicles using the hub, a relatively small bat-
tery size of less than 100 kWh made a significant reduc-
tion to imported energy. For example, with 50 vehicles
using the hub, the electrical energy imported from the
grid to support charging was some 91MWh with no bat-
tery. A 50 kWhbattery reduced the electricity imported to
approximately 75MWh.

Figure 16 shows that the peak imported electrical
powerwasonly sensitive tobattery sizewhere small num-
bers of vehicles were serviced by the hub. Above 50 EVs,
the sensitivity was minimal. The principal reason for this

Figure 15. Imported electrical energy against battery size for
different vehicle fleets.

Figure 16. Peak imported power against battery size for different
vehicle fleets.

insensitivity was that the peak power drawn was in mid-
winter when the PV contribution to charging was mini-
mal. Consequently, the magnitude of power drawn was
mainly a function of the numbers of vehicles charging
simultaneously.

At lower vehicle loads (< 50 vehicles) and larger bat-
tery sizes, the stored PV energy was enough to supply
some of the vehicle charging demand throughout the
year, and the peak imported electrical power and energy,
were reduced.

Exported electrical energy (Figure 17) was very depen-
dent on vehicle numbers, it reduced with increasing load
from EVs. For smaller vehicle numbers (<50EVs). For a
given vehicle load the annual exported energy reduced
markedly for battery sizes between 1 and 100 kWh and

Figure 14. REC and RUF (expressed as a %) for different supporting battery sizes and vehicle fleets.
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Figure 17. Exported electrical energy against battery size for dif-
ferent vehicle fleets.

Figure 18. Peak exportedelectrical power against battery size for
different vehicle fleets.

was then relatively insensitive to increasing battery size.
For example, with 20 vehicles using the hub, the electri-
cal energy exported to the network was 107MWh with-
out a supporting battery; this dropped to 79MWh with a
battery capacity of 100 kWh and 66 MWh with a battery
capacity of 500 kWh. For 100 and 200 vehicles the drop
in exported energy continued as battery size increased.
With 500 vehicles, there was no export of energy above
battery sizes of 100 kWh.

Peak exported power was little affected by battery
buffering for cases below 200 vehicles. With 200 and

500 vehicles, the peak demand dropped as battery size
increased (Figure 18).

The reason for this drop in peak export power with
larger battery capacities and vehicle numbers was that
with this large number of vehicle charges, the battery
generally had a low SOC (Figure 19), so surplus power
was used primarily to charge vehicles directly, with a lim-
ited surplus available to charge the battery, but not to
full capacity. For battery capacities below 200 kWh and
smaller numbers of vehicles using the hub, the peak
exported power was largely dictated by the output from
the fixed-size PV array as peak exported power occurred
in summer, when the battery was close to full SOC and
vehicle charging demand was low (Figure 20).

Battery state of charge (SOC)

The battery average state of charge (SOC) over the sim-
ulated period was primarily dictated by the number of
vehicles using thehub. For example,with 10 EVs, the aver-
age SOC for a 100 kWh battery was approximately 45%.
Whilst with 200 EVs, the average SOC for the samebattery
dropped to around 19% (Figure 21).

The average SOC (for a given number of vehicles) was
sensitive to small battery capacities (smaller than 10 kWh)
and relatively insensitive with battery capacities above
200 kWh. At lower vehicle loadings, below 100 EVs, aver-
age SOC initially dropped for small battery capacities
(<10 kWh) then rose with increasing battery size to a
near-stable value.

Carbon emissions

The carbon emissions associated with the hub are shown
in Figure 22. These were calculated by firstly consid-
ering the electrical energy imported Ei (kWh) from the
grid by the charging hub at each time increment t. The

Figure 19. Simulated variation in PV output, vehicle demand, battery SOC, power export and import on 20/21 June for the case with
500 vehicles and 500 kWh battery.
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Figure 20. Simulated variation in PV output, vehicle demand, battery SOC, power export and import on 20/21 June for the case with 50
vehicles and 50 kWh battery.

Figure 21. Average battery state of charge (expressed as a %)
against battery size for different vehicle fleets.

carbon emissions associated with vehicle charging are
therefore:

Ci(t) = Ei(t)γ (t) (27)

To account for the temporal variability in charging
demand and of UK electricity carbon intensity (i.e. peak
vehicle charging at times of higher carbon intensity
of grid electricity) a time varying grid carbon intensity
γ (t) was applied, rather than the average intensity. This
was determined for every hour of the simulated year
using data on the UK generating mix from Elexon (2021)
and carbon intensity data on different generation types
(Staffell 2017).

γ (t) = Fa(t)δa + Fb(t)δb + · · · + Fn(t)δn (28)

where Fx is the contribution of generator type x at time t
and δx is its associated carbon intensity (kg/kWh).

Secondly, the carbon offset from PV export (Ei kWh) to
the grid, was calculated as follows.

Cx(t) = Ex(t)γ (t) (29)

Figure 22. Net carbon emissions due to use of PV and battery
against battery size for different vehicle fleets.

The total, net carbon emissions associated with charging
are therefore calculated as follows.

Ce =
∫ t=T

t=0
[Ci(t) − Cx(t)]dt (30)

The net emissions were dictated by the number of vehi-
cles serviced by the hub. Below 50 vehicles, the net car-
bon emissions are approximately zero or negative, indi-
cating that the PV canopy offsets more carbon than is
associatedwith charging. However, above this number of
vehicles serviced, the PV generation cannot offset charg-
ing and net emissions turn positive. The size of the sup-
porting battery makes little difference to the results.

Final comments

There are some caveats regarding these results and their
interpretation.

Thedata used togenerate the EV chargingmodel char-
acteristics (the CDFs, daily charging modifier, etc.) was
based on the use of charge points in Scotland. How-
ever, if the model is applied to other countries then re-
calibration using local datawould need to be undertaken,
and the veracity of the output tested against, preferably,
and independent dataset.
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The data sets usedwas collected from free-to-use pub-
lic charge points. Imposing a cost for charging could
result in different in charging behaviour, compared to
thatmodelled in this paper, e.g. more use of home charg-
ing and less frequent use of public charge points, and this
would impact the results.

Itwas assumed that therewouldbeunrestrictedaccess
to charge points for all vehicles using the hub and con-
sequently no queuing. The EV charging algorithm also
tracked occupancy of charge points and analysis of this
information indicated that even with 500 vehicles using
the hub, there was no charge point congestion. However,
this assumes that access to the chargingpointwas is freed
upat the endof the chargingperiod,with no chargepoint
‘hogging’ (Milukic, n.d.). If significant charge point con-
gestionwere tooccur, as EVpopularity increases, then the
shape of the demand profiles would change from those
generated for this exercise.

Charging was assumed to occur at full power until the
final time interval of the charge,when the chargingpower
was reduced. In reality, tapering of the charge delivered
to a vehicle is likely to occur well before the end of charg-
ing and so the calculation of the charge delivered to the
vehicle shouldbe refined in future iterations of themodel.

The simulations reported here only tested the battery
operating in buffer mode (absorbing surplus power from
the PV). Other strategies such as overnight top-up and
peak shaving remain to be tested with this model.

Lastly, the carbon savingspresentedarebasedon2021
UK emissions data (Elexon 2021). The UK electricity sys-
tem is in a rapid state of decarbonization. Consequently,
as the carbon intensity of grid electricity decreases, so
the savings associated with PV supported charging will
decrease.

Conclusions

This paper has described the development of a statisti-
cal electric vehicle (EV) charging model, its application
to assess the value of a car-park-based photovoltaic (PV)
array with battery to support vehicle charging at a pro-
posed EV charging hub in Glasgow, Scotland.

Over 90 use cases were analysed, where the battery
capacity (kWh) was varied between 0 and 500 kWh and
the number of vehicles using the hub varied between 0
and 500.

The peak simulated PV power output for the car park
array of 139 kW was significantly less than the installed
PV capacity of 200 kWp. PV output was strongly seasonal
with little useful power output in the winter months and
a surfeit of power (for most of the cases modelled) in
summer.

The renewable energy contribution (REC), renewable
utilization fraction (RUF) and energy exchanges with the
grid were primarily dictated by the number of EVs using
the hub.

The simulation results indicated that a relatively small
battery capacity (100 kWh or less) made a significant
difference to the REC and RUF, and reduced energy
exchanges with the grid.

The impact of the PV and battery on peak imported
power was marginal. With less than 50 vehicles, peak
power imports from the grid reduced slightly with
increasingbattery size, but above this number of vehicles,
the battery size had a minimal effect and the peak was
dictated by the number of vehicles charging.

Peak exported power reducedwith battery size ifmore
than 200 vehicles used the hub, but below this load level
thenumberof vehicles andbattery sizemademinimal dif-
ference. Instead, the peak power exported was dictated
by the size of the installed PV array.

The hub was carbon neutral or carbon positive when
servicing less than 50 vehicles, as the exported PV elec-
trical energy offset the electrical energy used for EV
charging.

Notes

1. It should be noted that individual driver behaviours would
likely be very different for those predicted by the model
and so the model not suitable for the purpose of modelling
individual vehicle behaviour.

2. Note that other battery operating strategies are can be
testedwith themodel including overnight top-up and peak
demand shaving, however only the battery operating in a
buffering capacity is assessed here.
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Nomenclature

c specific heat J/kgK
c cumulative probability 0–1 or 0–100%
C capacity kWh
Ce net carbon emissions kg
Ci EV charging carbon

emissions
kg

Cx carbon offset from PV
exports

kg

d modifier (–)
e charge on an electron

(1.602177× 10−19)
C

E Energy kWh
f fraction 0–1
F generator fraction 0–1
I current A
k Boltzmann constant

(1.380649×10−23)
J/K

m number of parallel con-
nected branches in a
panel

–

M mass kg
n number of series connected

cells in a branch
–

p probability 0–1 or 0–100%
P power W
q number of panels –
Q̇ solar insolation W/m2

REC renewable energy
contribution

0–100%

RUF renewable utilisation factor 0–100%
SOC state of charge 0–100%
T temperature K
t time S
�t time increment s
V voltage V
X random variable 0–1 or 0–100%

Greek Symbols
β temperature sensitivity

coefficient
–

δ generator carbon intensity kg/kWh
γ time dependent grid carbon

intensity
kg/kWh

ε battery standing loss 0–1
λ diode factor –
η efficiency 0–1

Subscripts
B battery
C charge
chd daily charge
chd′ modified daily charge
chE charge energy
chs charge start
chx charge in period x
cp charge point

D discharge
E energy
EV electric vehicle
G generation current
i event, layer or number of charges per week
j PV material layer or charging time interval
k charge energy taken
L light generated current
LV low voltage
m modifier
MIN minimum
MAX maximum
OL other electrical loads
OC open circuit
MP maximum power point
PV photovoltaic
ref reference value
s start time
SOL solar
SC short circuit
t time
TD total demand
v vehicle
x variable, period
X converter
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